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ABSTRACT

Social intelligence is one of the most challenging capabilities to develop in
Artificial Intelligence (AI) systems. Existing benchmarks for social reasoning
mainly rely on unstructured text dialogues or simplified scenarios. There are
very limited platforms that can support the community to systematically inves-
tigate the complex social cognitive mechanisms in social interactions. Thus, we
present Mindmaster Roleplay, a social interaction platform that captures the dy-
namic interplay between beliefs, intentions, values, and actions through dyadic
role-play games. Our platform provides interpretable first-person annotations of
mental states, enabling researchers to trace how reasoning evolves and influences
decision-making in diverse social scenarios. Our dataset establishes a valuable
foundation for training and evaluating Al systems that more closely resemble hu-
man social intelligence in complex social reasoning tasks. Our experiments and
analyses with both LLMs and human participants reveal a range of intriguing phe-
nomena in social reasoning and decision-making. We will release our platform,
dataset, code, and models upon acceptance.

1 INTRODUCTION

Human intelligence is primarily distinguished by our exceptional social cognitive abilities, which far
exceed those of other primates ( , ). As Al systems advance, developing socially
intelligent agents has emerged as a critical frontier ( s ; s ). A genumely
socially intelligent agent must perform online, context-sensitive social reasoning ( ,

) and adaptive planning( , ; R ), which means to infer diverse mental
states under complex, dynamic environments while regulating its own intentions and actions based
on intrinsic values and resolving internal conflicts. These constitute core capabilities for human-like
social interactions characterized by agility and flexibility ( s ; s ), but
continue to pose substantial challenges for modern Al systems.

One major challenge in building socially intelligent Al systems lies in the dual nature of the environ-
ment: Beyond the observable physical world, there is also an invisible but significant mental world,
just like “dark matter” ( s ). For example, latent mental states (e.g., beliefs, intentions,
and values, etc.), different from visible signals like gaze directions, gestures, or actions, play key
roles in shaping decisions and actions ( , ). A socially intelligent agent must perceive
and predict many variables within a vast state space, reason over the graph formed by visible and
latent variables, and subsequently make decisions ( , ). A central
challenge in Al is to develop a unified computational framework in Wthh structured mental rep-
resentations can emerge, evolve, and guide behavior in interpretable, human-aligned ways through
efficient reasoning and planning across both physical and mental domains.

Cognitive architecture provides a umﬁed computational framework for modeling human-like cogni-

tive mechanisms ( s s ). However, traditional cognitive architec-
tures ( , ) prlmarlly focus on individual cognitive processes such as mem-
ory and learning, with very limited attention paid to social cognition ( , ).
Others have begun to integrate multiple cognitive components to support social interaction, but usu-
ally focus on a single dominant component ( , ) or depend on handcrafted
rules that limit scalability and adaptability ( s ; s ). The well-known Belief-
Desire-Intention (BDI) framework ( , ; , ) incorporates diverse cog-
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nitive elements, but is typically centered on individual decision-making ( , ) and
lacks support for recursive and nested mental state reasoning. ( ) proposed a theo-
retical dual-agent communication model highlighting intent communication, but it lacks integration
with other cognitive components. Recent rapid development of Large Language Models (LLM) also
gave birth to many LLLM social agents ( ;

, ). Yet, these models often rely on dlalogues surface heur1stlcs and struggle with gener-
alization or recursive reasoning ( , , ). A unified cognitive
architecture that systematically integrates multlple cognitive components for rich and dynamic so-
cial interaction remains an open challenge.

Existing benchmarks further limit progress, relying on synthetic textual QA tasks (mostly focusing

on isolated mental states and Sally-Anne-style ( , ) simple tasks) that neglect
multi-turn dynamics and rich structured mental-state trajectories ( , ),
and fail to capture the complexity of real-world social cognition. Many rely on LLM generated
dialogues verified ex post by humans ( , ; , ), creating a distributional

gap between first-person enactment and third-person Verlﬁcatlon Few resources support structured,
interactive, extensible environments where beliefs, intents, values, and actions can fully interact
with each other together and evolve with the social context ( , ; ,

).

To address these limitations, we introduce Mindmaster Roleplay, the first general-purpose, phys-
ically simulated, and cognitively grounded platform for studying multi-agent social interaction.
Grounded in the BDI framework ( , ; s ) and Tomasello’s theory
of agent communication ( , ), our platform specifically targets the core mental mech-
anisms underlying dual-agent interaction. Unlike existing approaches that isolate specific cognitive
processes, Mindmaster Roleplay supports two core cognitive processes: inverse reasoning (infer-
ring others’ minds) and forward planning (determining one’s own minds and actions), as well as
three core cognitive components: belief, intent, and value. Going beyond simple false-belief tasks
like the Sally-Anne test ( , ), we design a rich suite of cognitively grounded
scenarios—drawing from classic psychological paradigms ( , ; ,

), which capture complex social dynamics such as cooperation, helping, competition, decep-
tion, concealment, harm, and strategic counter-deception, etc. Moreover, Mindmaster Roleplay is
carefully designed with a generalizable object space featuring everyday items selected to represent
diverse affordances, along with a structured action, intent, and value space. This setup enables both
humans and models to engage in long-term social interactions, while naturally eliciting first-person
annotations, reasoning, and explanations of mental states and actions throughout gameplay, thereby
mitigating the gap between first-person “ground-truth” and third-person labels of mental states, and
reducing annotation noise, establishing better evaluation criteria for social intelligence. Another ad-
vantage is that we don’t simply study a single mental component; we study human cognitive mech-
anisms from the perspective of the entire cognitive architecture. Therefore, we can systematically
and comprehensively study the dependencies and associations between mental variables, such as
how values influence intent and how beliefs influence intent. Our interactive game environment is
extensible and supports human—human, human-Al, and AI-Al configurations, making it a promising
platform for future “social Turing test”—style evaluations.

Building on Mindmaster Roleplay, we conducted a large-scale human-subject study with 232 partic-
ipants in controlled, in-person experimental sessions. To ensure high-quality data, we implemented
a comprehensive onboarding process with a tutorial and mandatory quiz. Only participants who
completed this process participated in the interaction phase, where they engaged in gameplay with
assigned initial intent and value profiles. During interaction, participants performed social reason-
ing and planning while annotating their mental states and estimating their partner’s mental states.
Participants also provided natural language explanations of their reasoning processes, creating inter-
pretable cognitive traces valuable for model training and evaluation. After extensive data cleaning
and preprocessing, we produced a high-quality dataset of annotated human social interactions. While
smaller than datasets generated by Large Language Models (LLMs) ( , ) or rule-based
simulations ( , ), our dataset offers superior cognitive fidelity and human alignment.
It captures the full spectrum of mental dynamics, including belief updates, partner mind modeling,
intention updates, and value-driven trade-offs throughout naturalistic dyadic interactions.

Beyond data collection, we performed comprehensive experiments and analyses to uncover insights
into human cognitive mechanisms during social interaction. We evaluated state-of-the-art large lan-
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Figure 1: Game Interface and Game Flow of Mindmaster Roleplay Platform. (1) Observation: The sec-
tor depicted represents the agent’s attention direction and field of view, encompassing the entire area between
the two boundary rays. (2) Belief: Highlighted objects indicate those currently observed by the agent, while
grayed objects represent the agent’s memory of previously perceived positions stored in belief. (3) Values:
The platform incorporates three value dimensions: (i) active dimension (inactive/neutral/active), (ii) social di-
mension (unsocial/neutral/social), and (iii) helpful dimension (harmful/unhelpful/neutral/helpful/very helpful).
Each value state corresponds to a distinct icon. (4) Intention: Participants are assigned an initial intent. (5)
Game Pipeline: Each round consists of five sequential stages derived from cognitive processes based on the
BVI framework and Tomasello’s theory: (i) collecting observations, (ii) inferring other player’s intent and val-
ues, (iii) updating intent, (iv) planning the next action, and (v) awaiting the other player’s action. Note that there
are no given scripts during the game, and agents are required to perform freely based on the assigned initial
intent and value profile.

guage models and humans, fine-tuned a large language model, and built a cognitive agent architec-
ture. We find the “uncertain” nature of human cognition, the strengths and weaknesses of current
large language models, and the potential of building agent architectures.

In summary, our contributions include:

* A cognitively grounded, dyadic interaction platform Mindmaster Roleplay for studying human-
like social reasoning and planning;

* A high-quality dataset from 232 human participants, annotated with fine-grained mental states and
reasoning traces from first-person views;

» Comprehensive experiments and analyses of current popular methods and humans, demonstrating
our dataset’s value for training and evaluation.

2 PLATFORM AND DATA COLLECTION

2.1 THE Mindmaster Roleplay PLATFORM

Cognitive Process Decomposition The essence of social cognition is learning a decision function
P(at|og.) that maps observations (0g.¢) to actions (a;). Following the Bayesian Theory of Mind
(BToM) framework, we decompose this process into modular components representing distinct cog-
nitive functions. We propose that an agent’s action planning P(a;) depends directly on three mental
states: intention 7, (target state the agent aims to achieve), belief b; (the agent’s understanding of
the world and others), and value v (the agent’s stable preferences). Note that “value” is conceptually
similar to “desire” in the BDI ( s , ) framework; we adopt the term

“value” instead of “desire” to better align w1th the terminology commonly used in the current Al
community. Formally, this gives us P(a¢|n;, b, v). The belief state b, is nested and encompasses
belief about the world states and the others’ mental states b, = (b(s;),b(b}), b(n},),b(v")), where
the prime notation denotes the other agent’s mental states. The intention is updated based on be-
lief, value, and previous intent: P(n:|bs, v, 7:—1). We assume that the agent’s value v remains stable
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Figure 2: Components of the Game. Here we only present a subset of examples for each component; please
refer to the appendix for the complete space. Several scenarios are derived from established experiments in
cognitive psychology, enabling systematic investigation of specific cognitive functions. Additional scenarios
are procedurally generated according to predefined environmental parameters and task constraints. Here we
show five typical scenario examples: (1) cooperate to open the box using a key; (2) help to find something; (3)
understand compositional pointing gestures; (4) play chess together; (5) pointing gesture disambiguation.

throughout the game interaction. Given these components, we can systematically factorize the deci-
sion function:

P(at|U777tflabt71>0t) (1
= Z P(at‘ntabtyv)P(ntMtfl’bt»'U)P<b<b;>7b(n;),b(vlﬂb(st)’btfl)P<b<st)|bt71aot> 2
Nt,be

This modular approach allows us to model each cognitive process independently while preserving
their functional integration in the complete social cognitive architecture. Please refer to the supple-
mentary material for the complete derivation of the equations.

The Platform Design Based on the cognitive process decomposition described above, our game
environment is structured into several key sub-steps: collecting observations (i.e., 0;), inferring the
other player’s intent and value (i.e., P(b(b}),b(n;),b(v")|b(st), bs—1)), updating the agent’s own
intent (i.e., P(n¢|ni—1,bt, v)), planning the next action (i.e., P(a¢|n, by, v)), and waiting for the
other player’s action. The agent is required to complete these steps sequentially during the game by
selecting corresponding options from dropdown menus, while also articulating the reasoning and
justification for each choice in natural language within a designated text box. See Figure 1 for an
illustration.

As shown in Figure 1, the central playground in our game interface represents the agent’s belief
world, rather than the real world. The platform adopts a “dark-room spotlight + memory residue”
metaphor to imitate the belief world, in which the agent has partial observations of the world, and
only entities in the agent’s belief are shown in the belief world. Among these entities in belief,
the entities currently within the agent’s perception field appear in vivid colors, while entities that
were previously observed and stored in memory are rendered in faded tones, indicating residual
memory traces. We have curated diverse interactive objects with distinct affordances (e.g., banana
(eatable), cabinet (container), chess (joint activity), etc.) and implemented atomic actions (e.g., wave
hand, drink, eat, point to, nod head, grab, etc.) based on involved affordances and daily life interac-
tions. A scenario is defined by the initial spatial configuration of objects and agents, as well as their
pre-assigned intentions and values. Our scenario design enables complex interactions and positions
previous experimental paradigms (e.g., ( , ), allowing us to both reproduce
existing findings and generate novel interactions. Based on these objects and actions, we systemati-
cally define an intent space encompassing all possible agent intentions. Figure 2 shows some intent
examples, such as “find”, “get”, “put onto”, “open”, “inform”, “help”, “request help”, “harm”, etc.
As for value, we have three value dimensions significant for social interaction: “active” (preference
for physical motion), “social” (preference for social interaction) and “helpful” (preference for as-
sisting others). Each value dimension in our framework has multiple possible levels, as illustrated in
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Figure 3: Data Collection Process: Step 1 participant recruitment; Step 2 participants training; Step 3 partici-
pants playing game in pairs; Step 4 preprocessing raw data to get high-quality clean data

Figure 1 with corresponding icons. Note that the choice of value dimension is not arbitrary: These
three value dimensions cover the typical values involved in basic single-agent activities (“active”)
as well as higher-level dyadic social activities (“social” and “helpful””’). Moreover, these dimensions
may come into conflict, providing a useful setting to study the mechanisms by which agents make
decisions under value conflicts. During gameplay, each agent is shown its own value profile, and
the associated icons are persistently displayed around the agent. This visual cue serves as a constant
reminder for the agent to stay immersed in its assigned role and make decisions aligned with the
designated value profile. Figure 2 shows an illustration of object, action, intent spaces, and scenario
examples. Please see our supplementary materials for more details about our game designs (e.g., the
scenario designs, details of all spaces, our game website link, etc.)

After completing the tutorial and passing the quiz, each participant is paired with another player
to enter the game. Players are instructed to role-play based on their assigned initial intent (if not
“None”) and value configuration, and sequentially complete the cognitive sub-steps shown in Fig-
ure 1. The gameplay unfolds as turn-based interactions over a fixed number of rounds. A session
ends when a player successfully fulfills their objective or the maximum round limit is reached. The
experimental design may introduce tensions between value-driven dispositions and intention ful-
fillment, encouraging participants to engage in context-sensitive reasoning and planning from their
character’s perspective. These decision points reveal how agents prioritize competing motivations
and reconcile potential conflicts, such as: 1) Whether to abandon personal goals to assist others; 2)
How to proceed when experiencing low motivation but facing goal requirements; and 3) When to
seek assistance versus pursuing independent action. Through this methodology, we examine how
agents with different mental state configurations infer others’ mental states, update their own mental
models, resolve value conflicts, and plan appropriate actions in social contexts. Note that we also ask
the players to provide their reasons for all steps so as to assist future model training and evaluation.

2.2 DATASET COLLECTION AND ANALYSES

The detailed illustration of the data collection process can be seen at Fig. 3. The main game is
conducted in pairs, with each participant paired with another. Participants would be assigned an
initial intent (including intent none) and value, and if necessary, they are encouraged to reasonably
adjust their intent based on their character’s role. They are asked to embody their assigned roles,
reason thoughtfully according to the given context, and make coherent decisions accordingly.

Based on the process described, Mindmaster Roleplay provides a unique opportunity to collect unob-
servable data on human social interactions. While some may argue that explicitly asking individuals
to mark their intentions may introduce biases compared to spontaneous thought processes, this ap-
proach offers a valuable alternative in the absence of direct brain imaging techniques like fMRI. It
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(a) Action transition (b) Intent transition (c) Intent-action distribution

Figure 4: Heatmaps for action transition, intent transition and intent-action distribution.

stands as one of the most effective ways to collect data on human cognitive processes, facilitating
significant advances in the field of social cognition and human intention understanding.

2.3 DATA STATISTICS AND EXAMPLES

Basic statistics indicate our dataset maintains balance in initial intent and value distribution, as de-
tailed in the supplementary material. Figure 4 illustrates significant patterns in action and intent tran-
sitions. The action transition matrix reveals that “MoveTo” and “RotateTo” constitute the majority
of action pairs, serving as physical prerequisites for subsequent operations, while other frequently
transitioning actions include object interactions (“Grab”, “Open”) and agent-to-agent interactions
(“PointTo”, “Speak”). Intent transition analysis demonstrates that most intents persist across rounds,
with exceptions being the quickly resolvable temporal intents “Greet”, “Inform”, and “RespondTo”;
notably, participants executing intents such as “Find”, “Get”, and “Open” exhibit higher proba-
bility of requesting assistance. The intent-action distribution matrix reveals structural relationships
between these dimensions: “MoveTo” correlates strongly with most intents as a fundamental pre-
requisite action, the high co-occurrence between “PointTo”” and “RequestHelp” demonstrates how
physical gestures effectively convey assistance needs, and certain actions appear exclusively with
specific intents (e.g., action “PutInto” with intent “Putlnto”), indicating partial overlap between in-
tention and action spaces.

Generally speaking, the collected human data is diverse and reflects human decisions, especially
when there are conflicts in assigned Value and Initial Intent. As we limit the verbal communica-
tions, the non-verbal way of communicating is accentuated: how to convey your intent non-verbally
and how the other comprehends the information. The agent is supposed to make various choices
according to the attributed values, though in the same scenario.

In Figure 5, we provide two examples of the human social interactions in our dataset. The key
frames from the two agents’ perspectives are shown. The agents’ action strategies are consistent
with their assigned value. Meanwhile, the other agent’s intent and value are successfully inferred
from observation. More examples can be seen in the appendix.

3 EXPERIMENTS AND ANALYSES

3.1 EXPERIMENT SETUP

Task Decomposition Based on the factorization in Equation equation 2, we can decompose the
social cognitive process into four distinct subtasks:

* Intention and Value Estimation P(b(v’,7;)|b(s;)): This task involves inferring others’
underlying intentions and values from their observed behaviors. We introduce two obser-
vational conditions: partial observation (where the agent has limited information as would
occur in actual interactions) and full observation (where complete world information is
available). This distinction enables us to determine whether inference errors stem from
information limitations or from constraints in the agent’s inferential capabilities.

* Intention Updating P (n;|n:—1, b, v): Revising one’s own intentions in response to current
beliefs and value systems, reflecting adaptations environmental and others’ mental changes.
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(a) Agent 1 initially engages in cooperative play chess to pursue his own task, but upon inferring Agent 2’s intent
for getting a cup (from the performing drinking action), he leaves and smashes the cup. Agent 2 observes this
behavior and correctly infers Agent 1’s harmful value as well as his intent of harm.
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(b) Agent 1 (inactive value) points to the book, which Agent 2 (active, helpful value) interprets as a request and
retrieves it. Subsequently, from Agent 1’s pointing to the table, Agent 2 correctly infers the intent to place the
book on the table and successfully assists Agent 1 in completing the task.

Figure 5: Qualitative examples of the human social interactions in our dataset. We only select key frames from
the whole videos.

* Social Interaction Policy P(a|n:, b;, v): Generating appropriate responses by integrating
updated intentions, current beliefs, and contextual observations.

This decomposition enables systematic evaluation of models’ social intelligence by isolating key
cognitive components, thereby facilitating precise benchmarking and targeted improvements in com-
putational social cognition capabilities.

Evaluation Metrics Representing answer with ¢ and the human label with p, we employ the
following metrics to assess the performance of LLMs across the four tasks:

* Similarity: For selection tasks, we measure whether any of the model’s top-n predicted outcomes
match the human labels: Sim,, = vazl >%i—1 1(qi,; == pi)/N. This approach provides a more
comprehensive evaluation beyond single-prediction accuracy.

* Confidence Discrimination (Cfd): We calculate the difference between the average confi-
dence scores for correct and incorrect predictions: C'fd = Y| (ala==p} ¢f (9)/N(qg == p) —
2qlq'=p} ¢/ (@)/N(q! = p). The confidence is reported by the model itself. A larger Cfd value
indicates superior ability to discriminate between correct and incorrect responses with self report
confidence, reflecting better calibration.

* Value Distance: For value estimation tasks, we compute the Euclidean distance between predicted
and true values across multiple dimensions: Dis = Zi\il lg;i — pil/N.

* Pearson Correlation Coefficient (PCC): We calculate the PCC between confidence scores and
2 (Xi=X)(Yi—Y)
VI (X =X)2 X (YY)’
X; = |pi — q¢i|, Yi = ¢f(q;)- This metric quantifies the linear relationship between self-reported
confidence and actual error magnitude. A strong negative correlation indicates proper calibration,

as higher confidence should correspond to lower value distances.

observed error distances to evaluate the model’s calibration: Pcc =
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We conducted multiple experiments on the open-source large model, setting the temperature to 0.6
with 5 runs, and the results are as follows:

Table 1: Performance variance of Llama-3 and Qwen3-8B across different tasks. Metrics include confidence
discrimination (Cfd) of the most possible answer, similarity (Sim) when providing three answers, and total
distance (Dis) of all values.

Estimation Tasks Policy Tasks

Model partial observation full observation intent action

Intention Value | Intention Value |
Sim Dis | Sim Dis Sim | Sim

Llama-3 0.13840.012 (8.7%) ~ 1.243+0.055 (4.4%) | 0.053£0.009 (17.0%)  1.988+0.057 (2.9%)  0.427+0.015 (3.5%) 0.183+0.013 (7.1%)
Qwen3-8B  0.277£0.012 (4.3%) 0.888+0.026 (2.9%) | 0.154£0.011 (7.1%) 1.808+0.034 (1.9%) 0.489+0.012 (2.5%) 0.237£0.008 (3.4%)

Results of related papers such as FANToM and ToMATO showed that the final accuracy error of the
large model after multiple runs is generally around 1%. Our results showed the error is mostly below
5%. Due to the high cost of multiple test with closed-source large model, we did not choose to run
multiple experiments on these models to provide an error range.

3.2 EVALUATION RESULTS OF LLMSs

We want to compare the similarity between human and models with collected data. At the same time,
we want to see whether we can use the self-report confidence from models to predict the change of
the similarity. Results are as follows:

Table 2: Performance across different tasks and LLMs. Metrics include confidence discrimination (Cfd) of
the most possible answer, similarity (Sim) when models provid three answers, pearson correlation coefficients
(Pcc) when predicting the active value, and total distance (Dis) of all values. The error bar of open-source model
can be get from Tab. 1.

Estimation Tasks Policy Tasks
Model ") o - I ,, ;
partial  observation full  observation intent action
Intention Value Intention Value
Cfd Sim | Pcc Dis Cfd  Sim | Pcc Dis Cfd  Sim Cfd  Sim
Random / 0.007 | nan + nan 1.514 / 0.015 | nan + nan 2.109 0.000 0.031 0.000 0.041
GPT-40 -0.004 0.199 | —0.051 +£0.110 1.018 0.033 0.208 | —0.261 £0.113 1.808 0.030 0.528 0.025 0.240
Gemini -0.128 0.228 | -0.053+0.110 1293 0.033 0.251 | —0.187 £0.117 1.775 0.056 0.469 0.024 0.260
Claude -0.006 0.276 | —0.020 +£ 0.110 0.962 0.072 0.264 | —0.268 £ 0.112 1.726 0.065 0.559 0.054 0.286
Deepseek-R1 ~ 0.053 0.217 | —0.019 £0.110 1.272 0103 0.222 | -0.289 +0.111 1.720 0.109 0.528 0.059 0.273
Qwen 0.072  0.237 | —0.039 £0.110 0.885 0.037 0.166 | —0.147 £ 0.118 1.825 0.001 0.494 0.023 0.247
LLaMA 0.199 0.154 | 0.032+0.110 1.197 0.007 0.052 | —0.088 £0.120 2.002 0.084 0.456 0.007 0.186
ft_Qwen / 0.553 | / 0.782 / 0.356 | / 1.538 / 0.660 / 0.444

For intention estimation, intention updating and social interaction policy, experimental results in
Tab. 2 demonstrate that Claude achieves the highest similarity, but its confidence is not reliable
in partial observation. For value estimation, Qwen achieves the lowest total distance in the partial
observation setting, while Deepseek-R1 performs best with full observation. The pearson correlation
coefficients are negative because when the model is more confident, the distance between esitmated
value and the true value should be lower.

Current results show that the performance of the large model on the four subtasks is significantly
different from that of humans. We have added more repeated experiments with humans and models
in the same context to better compare the performance distribution of humans, the performance
distribution of models, and the performance gap between humans and models. We selected a subset
of the dataset and recruited human annotators to observe interaction videos from individual agent
perspectives, labeling mental states and actions under partial observability conditions. Combining
these newly collected annotations with existing human labels in the dataset, we re-evaluated model
performance across different architectures.

Results from Table 3 demonstrate that augmented human annotations consistently improve model
performance across all tasks. Notably, intent estimation and action prediction exhibit substantial
performance gains, indicating high inherent uncertainty in these cognitive processes under partial
observability. Conversely, value estimation and intent updating show modest improvements, sug-
gesting these processes are more robust and exhibit lower variability in human annotations.

Unified Supervised Fine-Tuning (SFT) For our SFT experiments, we consolidated data across
the four previously described task categories. After removing a small fraction of excessively long
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Table 3: Results with additional human annotations. To address the limitation of single-label data and provide
comprehensive model evaluation, human annotators were recruited to observe interaction videos from individ-
ual agent perspectives and label mental states and actions under partial observability conditions. All estimation
tasks utilize partial observations. The similarity (Sim) metric is used for intent estimation, intent prediction, and
action selection tasks, while total distance (Dis) is used for value estimation tasks. Asterisks (*) denote metrics
computed using augmented human annotations.

Estimation Tasks Policy Tasks
Model Intent Estimation Value Estimation Intent Action
* * * *
Sim Sim Dis Dis | Sim Sim Sim Sim

GPT-40 0.486 0.286 1.350 1.733 0.549 0465 0448 0.224
Gemini 0.514 0.257 1.572 1.500 0.465 0394 0.483 0.241
Claude 0.629 0.286 1.367 1.733 0.521 0493 0448 0.276
DeepSeek-R1  0.514 0.314 1.394 1.567 0.577 0465 0.345 0.172
Qwen3-8B 0.486 0.229 1.303 1.733 0.577 0479 0.466 0.241
Llama3 0.286 0.171 1.559 2.001 0.493 0493 0276 0.103

instances, the final dataset comprised 10,533 training samples and 4,440 test samples. We selected

the Qwen2.5-7B-Instruct model ( , ) as the base for SFT due to its stability and
widespread adoption. We conducted full-parameter fine-tuning of this model exclusively on ground
truth answers within the veRL framework ( , ). Training was implemented with a
batch size of 256 using the AdamW optimizer ( , ) with a learning rate of

1 x 1072 and 4 A100 GPUs. For evaluation and inference, we employed two distinct settings: one
with a temperature of 0 and a single sampling pass, and another with a temperature of 1 and three
sampling passes. As shown in Tab. 3, while SFT yields performance improvements, a significant
gap remains between model performance and human-level intelligence. Training and Inference cost
6 hours totally.

4 DISCUSSIONS AND CONCLUSIONS

Our work introduces a novel decomposition of social cognitive processes into four components
with first-person perspective labeling, enabling precise input-output mapping for targeted model
evaluation. Results reveal substantial performance gaps between large language models and human
reasoning, underscoring limitations of current social intelligence benchmarks and establishing a
foundation for future social Turing tests.

Unlike previous datasets relying on simplified scenarios or third-person annotations, our ap-
proach systematically captures mental states from a first-person perspective, enabling analysis of
perspective-driven discrepancies and supporting more authentic mental state modeling. Our focus
on dyadic interactions reflects both theoretical necessity and practical constraints. Dyadic interac-
tion constitutes the fundamental atomic unit of multi-agent social behavior, with complex interac-
tions often decomposable into constituent dyadic components. The complexity inherent in dyadic
tasks already presents substantial challenges, as evidenced by observed performance gaps across
state-of-the-art models.

Our experimental design encompasses representative daily social scenarios while addressing social
reasoning’s two-stage nature: perceptual pattern recognition and symbolic processing for higher-
order reasoning. By focusing on symbolic reasoning mechanisms while abstracting perceptual pro-
cessing, we concentrate on cognitive mechanisms that remain challenging even in simplified set-
tings, facilitating future integration with multimodal capabilities.

Current limitations include high cognitive load reducing annotation efficiency and dataset scale,
and restriction to dyadic interactions limiting immediate multi-agent applicability. Future research
will expand to richer social dynamics, integrate multimodal perception, and enhance computational
cognitive modeling to bridge gaps between Al systems and human social intelligence. Our dataset
provides the first comprehensive cognitive annotation of authentic human interactions from a first-
person perspective, constituting a foundational contribution toward sophisticated social Al systems.
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5 ETHICS STATEMENT

Our study involves human participants. Informed consent was obtained from all participants prior
to data collection. The released dataset has been carefully anonymized to remove any personally
identifiable information, and participants were informed that their data may be shared for research
purposes. To mitigate potential misuse, the dataset is distributed under a research-only license, and
documentation describing appropriate usage scenarios is provided. We believe that the potential
benefits of this dataset for advancing research outweigh possible risks, and we have taken steps to
minimize privacy, security, and fairness concerns in accordance with the ICLR Code of Ethics.

6 REPRODUCIBILITY STATEMENT

We have taken multiple measures to ensure the reproducibility of our results. We provide a detailed
description of our designed platform and data collection method in Section 2, and report the LLM
prompts, model versions, and data splitting strategies in Appendix A.2. To further support repro-
ducibility, we will release our platform, dataset, code, and models upon acceptance.
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A APPENDIX

A.1 RELATED WORK
A.1.1 COGNITIVE ARCHITECTURE

Classic cognitive architectures, such as ACT-R ( s ) and Soar ( s ;
, ) et al., aim to unify key components of human cognition (e.g., memory, learning, rea-
soning, and planning) into structured and interpretable models, using symbolic production rules to
simulate goal-directed behavior and procedural learning. These architectures have laid the founda-
tion for modeling individual cognitive processes, and recent surveys emphasize their generality and
modularity, but they lack the flexibility and robustness needed for unpredictable social environments
( s ; s ). More recent systems begin to address social cog-
nition (Sun, ; ; s ). Despite these advances, existing
architectures still struggle Wlth rich mult1 -agent social cognition ( , ), lack
support for recursive theory of mind, and struggle with dynamic belief, intent and value updates in
interactive environments ( , , ). To bridge these gaps,
we introduce MindMaster Roleplay—a cognmvely grounded, symbolically structured multi-agent
platform designed to model and evaluate complex and dynamic social reasoning and planning.

A.1.2 MODELING AND EVALUATING SOCIALLY INTELLIGENT LLMS

Large language models have demonstrated emerging capabilities in social reasoning, 1nc1ud1ng false-
belief understanding, indirect requests, and pragmatic inference ( s ; s
). To enhance these abilities, researchers have explored prompting ( s ; s
), fine-tuning and reinforcement learning ( s ; s ), and hybrid frame-
works combining symbohc reasoning, planning, or memory systems ( ,
s s ). Multi-agent simulations such as Generatlve
Agents ( , ) and SOTOPIA ( s ), as well as structured dialogues in
MindDial ( , ) and PersuasiveToM ( , ), elicit social behavior in interac-
tive settings. However, these systems often rely on shallow heurlstlcs and lack generahzatlon across
roles, contexts, or recursive belief structures ( R R
), while unified integration of perception, memory, plannlng, and learnlng remains limited (

s 5 ]

These challenges are compounded by limitations in existing benchmarks. Datasets like ToMi (

s ), BigToM ( , ), OpenToM ( s ), and ToMBench ( s

) primarily involve synthetic stories and short-form QA tasks with limited context and symbolic
structure. Although tools like ExploreToM ( , ) expose brittleness in LLM reasoning,
most benchmarks still lack multi-turn dynamics and cognitively annotated trajectories. Meanwhile,
interaction-centric datasets such as AIR-Act2Act ( , ), SoGrln ( ),
and HSRI ( , ) offer ecological richness but provide limited support for behef intent,
or planning evaluation. These gaps motivate our proposed MindMaster Roleplay, which integrates
structured cognitive annotations with ecologically valid multi-agent interactions to support rigorous
training and evaluation of socially intelligent agents.

Note that our approach differs somewhat from situated dialogue. While situated dialogue empha-
sizes verbal communication, our focus is on common nonverbal social signals in everyday social
interactions (not card games, Werewolf ( ); ( ), etc.), such as movement,
gestures, and eye contact. Therefore, our game doesn’t involve direct dialogue between agents, but
rather allows them to choose actions within a symbolic action space. This significantly differentiates
our approach from previous situated dialogue papers (such as MindCraft ( ), which
directly utilize dialogue). Our dataset and platform are a crucial complement to research on the
reasoning and planning mechanisms of other important social signals in social intelligence beyond

dialogue. Compared with some related machine theory of mind papers ( ) us-
ing the grid world, our goal space, value space, and action space are much more complex than their
toy task setting. Communication in Werewolf-style games ( ); ( ) mostly

depends on language, but our game depends mostly on nonverbal actions like gestures. Language
allows players to directly communicate their mental state, while gestures require additional mecha-
nisms like joint attention. Thus, our game places higher demands on understanding the mechanisms
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behind communication. The classic false belief task only focuses on belief within the mental state,
ignoring desire and intention. Our dataset is more comprehensive.

In contrast, our Mindmaster benchmark is the first platform to integrate structured multi-step reason-
ing trajectories with value-grounded social decision-making, reflecting a theoretical aim to evaluate
advanced theory-of-mind reasoning in dynamic social contexts. Our tasks involve sequential interac-
tions that require tracking others’ beliefs and goals over time and making choices with social value
trade-offs—features with no direct analogue in prior benchmarks. Thus, a straightforward cross-
benchmark evaluation would be misaligned. We agree that cross-benchmark validation is valuable
and will pursue it in future work, but adding such experiments to the current paper is beyond scope.
Mindmaster’s unique focus makes direct comparisons to existing benchmarks inherently difficult.

A.2 IMPLEMENTATION DETAILS

LLM Prompts To ensure fair comparison between human and LLM performance, we designed
prompts that provide LLMs with information comparable to what human participants receive. Our
prompts begin with a concise introduction to the Intention, Value, and Action spaces, mirroring
the tutorial provided to human participants. For each decision point, we supply the LLM with step-
by-step observations of the environment, corresponding to the visual signals human players receive
during gameplay. This approach creates an information parity between human and LLM agents.

{Game_Target}, {Thinking process}, {IntentionSpace}, {ActionSpace}, {ValueSpace}, {Exam-
ple}, {Observations}. Let’s think step by step and output the three most possible intentions and
the corresponding confidences in the following format: {Format}

Model Version and Data Splitting. The version of the used model is shown in Tab. 4. We separate
the data for training and test with 0.3 test ratio, and then segment the whole trajectories into parts
for different tasks. We tested all six tasks using eight A800 GPUs over a period of six hours for the
open-source model.

Table 4: Model and Data used in the experiments.

Models Used H Tasks and Test Sizes
Name Model Version Name Model Version Task Test Size Task Test Size
Gemini [47] gemini-2.5-pro-preview-05-06  GPT-4o [1]  gpt-40-2024-11-20 Intent Estimation full 591 Intent Estimation partial ~ 714
Deepseek-R1 [19]  deepseek-reasoner Claude [3]  claude-3-7-sonnet-20250219  Value Estimation full 264 Value Estimation partial 317
Llama [18] Llama-3.1-8B-Instruct Qwen [56]  Qwen3-8B Intent Update 1424 Social Interaction Policy 1152

A.3 DATA EXAMPLES

We show more qualitative social interaction examples from our dataset in Figure 6 and Figure 7.

A.4 GAME DETAILS

Examples of the possible intent updating trajectories are shown at Figure 8.

A.5 EXPERIMENT RESULTS

Figure 9 shows comparisons of various models on six core metrics.

Table 5: Intention estimation results. Metrics include accuracy (Acc.@n) for top-n results, confidence (Cf.@n),
and confidence discrimination (Cfd.@n). Evaluations distinguish between predicate-only (@nP) and complete
intention (@nT) assessments under both partial and full observation conditions.

Model partial observation full observation
Acc@IP CL@IP Cfd@IP Acc.@3P Acc@IT Cf@IT Cfd.@IT Acc.@3T Acc.@IP CL@IP Cfd.@IP Acc.@3P Acc.@IT CL@IT Cfd@IT Acc.@3T
Random 0.036 / / 0.098 0.001 / 0.007 0.051 / / 0.139 0.007 / 0.015
GPT-40 0.151 0.822 0.018 0.374 0.074 0.803 -0.004 0.199 0.196 0.873 0.018 0.355 0.122 0.887 0.033 0.208
Gemini 0218 0748  -0053 0396 0123 0677  -0.128 0228 0197 0859 0021 0.363 0137 0872 0033 0251
Claude 0.242 0.629 0.016 0.443 0.157 0.612 -0.006 0.276 0.193 0.699 0.052 0.399 0.154 0.718 0.072 0.264
Deepseck-RI ~ 0.179  0.697 0051 0.387 0106 0703 0053 0217 0174 0783 0070 0354 0122 0815 0103 0222
Qwen 0.210 0.920 0.059 0.366 0.151 0.935 0.072 0.237 0.146 0.908 0.024 0.289 0.096 0.921 0.037 0.166
LLaMA 0.154 0.826 0.129 0.266 0.102 0.896 0.199 0.154 0.086 0.673 -0.001 0.245 0.030 0.681 0.007 0.052

We show more experiment result details in Table 5, Table 6, Table 7 and Table 8.
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(a) Agent 1 (inactive value) points to the cup, which Agent 2 (active, helpful value) interprets as a request and
retrieves it. Subsequently, from Agent 1’s pointing to the table, Agent 2 correctly infers the intent to place the
cup on the table and successfully assists Agent 1 in completing the task.

(b) Agent 1 (inactive, pointing) indicates the books to Agent 2 (active, helpful), who interprets this as a request
to retrieve them. After getting the books, Agent 2 returns to Agent 1. Agent 1 is now pointing to the table, which

Agent 2 realizes means Agent 1 wants to place the books on the table. Agent 2 then successfully assists Agent 1
in completing the task.

I JuoSe

7 uade

(c) When Agent 1 (active/helpful) found the key at the location Agent 2 was pointing to, Agent 1 mistook the
action as a prompt to open the box. However, Agent 2’s true intent was only to give Agent 1 the key.

Figure 6: Qualitative examples of the human social interactions in our dataset. We only select key frames from
the whole videos.
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(a) Agent 2 (harmful value) deliberately provides misleading signals, directing Agent 1 toward the dumbbell that
is not actually needed. Misinterpreting this as Agent 2’s intent, Agent 1 approaches the dumbbell but, due to his
inactive value, merely points at the dumbbell instead of grabbing it.

T Juabe

Z usbe

(b) Agent 1 (inactive value) initially points to the box in an attempt to solicit Agent 2’s help in finding the key.
However, after receiving no response, Agent 1 proceeds to complete the task independently despite his inactive
disposition. Meanwhile, Agent 2 (active, unhelpful value) ignores Agent 1 and instead moves aimlessly around
the environment.

Figure 7: Qualitative examples of the human social interactions in our dataset. We only select key frames from
the whole videos.
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Figure 8: Examples of intent updating with distinct attributed values in the same scenarios. For the ‘Help-
ful’ dimension, ‘Harmful’ seeks to harm the other agent, ‘Helpful’ tends to offer help after the agent’s own
needs, and ‘Very helpful’ sets offering help as the priority. For the ‘Social’ dimension, ‘Unsocial’ refers to
avoidance of social communications, while ‘Social’ results in proactive communications. For the ‘Active’ di-
mension, ‘Inactive’ indicates laziness in movements, while ‘Active’ shows willingness to make movements.

Intent Estimation
(Partial) Acc@3

Value Estimation
(Full) Total Dis Intent Estimation

(Full) Acc@3

Value Estimation Intent Update

(Partial) Total Dis Acc@3
Social Interaction
Acc@3
—e— human  —e— Gemini —e— Deepseek-R1 Llama

—e— GPT-40 —o— Claude —e— Qwen

Figure 9: Performance comparison of various Large Language Models (LLMs) on six core metrics, visu-
alized. ‘Full’ and ‘Partial’ denote full and partial observation settings, respectively. For the Value Estimation
tasks, the ‘Total Dis’ metric is normalized and inverted, such that higher values indicate superior performance.
The results indicate that Claude achieves the highest overall performance among the evaluated LLMs, while
Llama shows the lowest. Other models perform comparably to each other. Critically, all LLMs are substantially
outperformed by humans on these ToM tasks.
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Table 6: Value estimation performance across different LLMs. partial denotes partial observation; full de-
notes complete observation. Dis. @A/S/H denote distance metrics for Active, Social, and Helpful dimensions;
Cf.@A/S/H denote confidence scores; Pcc@A/S/H denote Pearson correlation coefficients with standard errors;
Dis.@T denotes total distance.

partial _observation full _observation
Model L

Dis@A_Cf@A Pcc@A Dis.@S cr@s Pec@s Dis@H_Cf@H __ Pcc@H __ Dis@T Dis@A CL@A Pec@A Dis.@S cf@s Pc@s Dis@H _CL@H Pec@H  Dis.@T
Random 0402/ nantnan 0393/ nan £ nan 0720 / nan £nan 1514 0498 / nantnan 0494/ nan + nan| 1117 / nan & nan 2.109
GPT40 0321 0709 —0051+0.110 0287 0737 —0100£0.109 0409 0700 0326:0099 101§ 0427 0748 —0201+0.113 0381 0718 —0079£0.120 1000 0747 00330121 1808
Gemini 0349 0787 00530110 0343 0789  0220+0.105 0601 0708 0.483:0085 1293 0383 0833 —0.187=0.117 0377 0826 —0.007+0120 1015 0790 —0051+0120 1775
Claude 0319 0696 —0020+0110 0294 0674 01130109 0349 0557 0426+0090 0962 0413 0770 —0268=0112 0351 0742 03120109 0962 0664 -0.095:0.120 1726
Deepseck-RI 0323 0705 —0.019£0110 0290 0722 —0.074+0110 0659 0594 04200091 1272 0384 0770 0326 0755 —0.277+0.112 1009 0668 -0023£0.121 1720
Quen 0307 0695 —0.039+0110 0305 0678 —0015+0110 0273 0600 0.197+0106 0885 0425 0816 —0.147=0.118 0404 0731 —0.183+0.117 099 0666 —0.012+0121 1825

Llama 0312 0693 0.032+0110 0353 0733 00450110 0532 0.657  0129+0.108 1197 0443 0768 —0.088+0.120 0468 0709 —0.003+£0.121 1091 0659  0.036+0.121 2002

Table 7: Performance on Intention Updating and Social Interaction Policy. Metrics are the same as Intent Esti-
mation.

Model intent action
Acc.@]P Cf@]P Cfd@IP Acc.@3P Acc.@IT Cf.@IT Cfd@IT Acc.@3T Acc.@IP Cf.@IP Cfd@IP Acc.@3P Acc.@IT Cf@IT Cfd@IT Acc.@3T

Random 0.065 / 0000 0178 0011 / 0000 0031 0.036 / 0000 0124 0012 / 0000 0041
GPT-40 0419 0847 0034 0664 0319 0848 0030 0528 0213 0864 0010 0452 0115 0878 0025 0.240
Gemini 0328 0825 0053 0618 0223 0833 0056 0469 0256 0844 0016 0502 0131 0853 0024 0260
Claude 0.423 0.693 0.063 0.710 0.324 0.701 0.065 0.559 0.277 0.647 0.020 0.574 0.146 0.678 0.054 0.286
Deepseek-R1 0.400 0.673 0.104 0.660 0.302 0.687 0.109 0.528 0.237 0.705 0.023 0.541 0.133 0.738 0.059 0.273
Qwen 0361 0853 0005 0624 0283 085  0.001 0494 0210 0877 0009 0505 0111 0891 0023 0.247
LLaMA 0328 0662 0071 0567 0249 0678 0084 0456 0185 0631  -0007 0431 0079 0643 0007 0.186

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs in the following aspects: (1) We evaluated task performance on several LLMs; (2) We
finetuned a LLM; (3) We use LLMs to build an agent architecture; (4) We use LLM to assist us with
paper writing slightly.

A.7 POTENTIAL SOCIAL IMPACT

Our paper discusses both positive and negative societal impacts of our work on socially intelligent
Al systems.

Positive Societal Impacts Our research aims to enhance human-Al interaction by developing
more socially cognizant Al systems capable of understanding human mental states. The Mindmaster
Roleplay platform provides a valuable tool for cognitive science research, potentially advancing our
understanding of human social cognition mechanisms. By grounding Al systems in cognitive theo-
ries (e.g., BDI framework and Tomasello’s communication theory), our work contributes to creating
Al systems that better align with human values and intentions, promoting more effective human-Al
collaboration in various domains including healthcare, education, and assistive technologies.

Potential Negative Societal Impacts We acknowledge several potential risks associated with our
research:

1. Psychological manipulation: Al systems with enhanced understanding of mental states
could be misused to manipulate human decision-making through targeted advertising, po-
litical propaganda, or deceptive practices.

2. Privacy and ethical concerns: Our system collects detailed data about human mental
states, values, and intentions, raising privacy and consent issues. While we implemented
strict human subject protection protocols in our research, broader applications require care-
ful data governance.

3. Deceptive social agents: The technology could enable the creation of highly realistic social
agents that are difficult to distinguish from humans, potentially facilitating fraud, phishing,
or fake identity creation.

4. Social inequality: If such technology is primarily leveraged by entities with existing re-
source advantages, it could exacerbate social inequalities, particularly when used to predict
and influence public behavior.

Mitigation Strategies We have implemented several measures to address these concerns:

1. Transparency and explainability: Our system design emphasizes interpretable mental
states and reasoning processes, increasing transparency of system decisions.

2. Data governance: We enforce strict protocols for data collection, processing, and storage
to protect participant privacy and rights.
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Table 8: Comparative performance of various Large Language Models (LLMs) and a supervised fine-tuned
Qwen model (ft_Qwen) across four social reasoning tasks: Intent Estimation (Task 1, with partial and full
observation), Value Estimation (Task 2, with partial and full observation), Intent Update (Task 3), and Social
Interaction Policy (Task 4). The metrics are the same as previous experiments. The ft_Qwen model demon-
strates substantial improvements, outperforming the other evaluated LLMs on most metrics across all tasks.

Intent Taskl partial Taskl  full Task2 partial Task2  full Task3 Task4
Acc.@P  Acc.@T Acc.@P  Acc.@T Dis.@A Dis.@S Dis.@H Dis.@T Dis.@A Dis.@S Dis.@H Dis.@T Acc.@P Acc.@T Acc.@P Acc.@T

Random 0.036 0.001 0.051 0.007 0.498 0.494 1.117 2.109 0.402 0.393 0.720 1.514 0.065 0.011 0.036 0.012
GPT-40 0.151 0.074 0.196 0.122 0.427 0.381 1.000 1.808 0.321 0.287 0.409 1.018 0.419 0.319 0.213 0.115
Gemini 0218 0.123 0.197 0.137 0.383 0.377 1015 1.775 0.349 0.343 0.601 1.293 0.328 0.223 0.256 0.131
Claude 0.242 0.157 0.193 0.154 0.413 0.351 0.962 1.729 0319 0.294 0.349 0.962 0.423 0.324 0.277 0.146
Deepseek-R1 ~ 0.179 0.106 0.174 0.122 0.384 0.326 1.009 1.720 0.323 0.290 0.659 1.272 0.400 0.302 0.237 0.133
Qwen 0210 0.151 0.146 0.096 0.425 0.404 0.996 1.825 0.307 0.305 0.273 0.885 0.361 0.283 0.210 0.111
LLaMA 0.154 0.102 0.086 0.030 0.443 0.468 1.091 2.002 0.312 0.353 0.532 1.197 0.328 0.249 0.185 0.079
ft_Qwen 0.556 0.553 0.399 0.356 0.315 0.311 0.157 0.782 0.265 0.300 0.973 1.538 0.721 0.660 0.573 0.444

3. Open-source approach: By providing an open-source platform and dataset, we promote
equitable access to the technology and enable broader community oversight.

4. Ongoing evaluation: We recommend continuous monitoring of systems in practical appli-
cations to identify and mitigate potential negative impacts.

We remain committed to responsibly developing and deploying these technologies, prioritizing hu-
man wellbeing, autonomy, and rights protection while advancing the field of socially intelligent Al
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