Under review as a conference paper at ICLR 2025

A DIAGONAL STRUCTURED STATE SPACE MODEL ON
LOIHI 2 FOR EFFICIENT STREAMING SEQUENCE
PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

The unsustainable rise in energy cost from increasingly capable deep learning
systems spurs computer architecture innovation beyond conventional deep learn-
ing accelerators such as GPUs. However, a novel computer architecture presents
a problem: much of deep learning research has been optimized for conventional
computer architectures, and the extent to which modern deep learning models can
unlock improved efficiency on a novel computer architecture is not well under-
stood. In this work, we demonstrate for the first time that a State Space Model
(SSM) can achieve substantial efficiency improvement when mapped to Loihi 2, a
state-of-the-art neuromorphic research chip, versus a Jetson Orin Nano GPU (Jet-
son). Specifically, we benchmark our SSM on sMNIST, psMNIST, and sCIFAR
online token-by-token inference and find approximately 1000x increased energy
efficiency and 75x improved latency and throughput on Loihi 2 with a decrease
in accuracy of less than one to three percentage points compared to the full pre-
cision implementation on Jetson. We comprehensively tailor our implementation
to Loihi-specific features and constraints, such as the co-location of memory and
compute as well as fixed precision arithmetic. Our results elucidate how SSMs
meaningfully bridge conventional and neuromorphic hardware via their dual na-
ture: SSMs can operate in an offline mode using convolution or scan, which is
efficient on a GPU, or in an online mode as a recurrent network, which we show is
efficient on Loihi 2. This work provides a foundation for performant sequence
models on neuromorphic hardware, potentially unlocking substantial improve-
ments in latency-sensitive or energy-limited online inference applications, such
as speech enhancement or vision for robotic control.

1 INTRODUCTION

Deep learning systems exhibit improved representational power and Al capabilities as their compu-
tational cost increases, and their commensurate rising energy use has been driving unprecedented
innovation in computer architecture. The growth of compute (FLOPs) and memory (bandwidth)
requirements of data-center-scale deep learning systems such as Large Language Models (LLMs)
vastly outpaces the compute and memory delivered by year-over-year improvements in GPUs, the
standard workhorse computer architecture of deep learning (Gholami et al., 2024). Similarly, at the
edge, the proliferation of intelligent Internet of Things (IoT) devices pushes demand for increasingly
capable deep learning systems under power, latency, privacy, and connectivity constraints (Mao
et al., 2024; Meuser et al., 2024). To deliver deep learning training and inference efficiency im-
provements beyond what GPU architectures can offer, in recent years we have seen a “Cambrian ex-
plosion” of new computer architectures (Sukumar et al., 2021), such as the TPU (Jouppi et al., 2017),
the Cerebras WSE-2 (Lie, 2024), neuromorphic chips such as Loihi 2 (Labs, 2021) or DYNAP-SE2
(Richter et al., 2024), and even analog Al chips, (e.g., Ambrogio et al., 2023), to name a few.

This Cambrian explosion, however, faces a problem known as the hardware lottery: novel com-
puter architectures struggle to take hold because years of deep learning research has targeted
GPUs (Hooker, 2021). The continual investment in GPU-focused algorithms has certainly created
incredible GPU-based deep learning systems such as ChatGPT (Achiam et al., 2023). Concurrently,

Under review as a conference paper at ICLR 2025

however, deep learning research has become locked-in to GPU implementation at some level, as the
most successful algorithmic innovations have compounded around the GPU architecture. The extent
to which today’s most impactful deep learning technologies can be transferred to novel computer ar-
chitectures for improved efficiency remains unclear.

In this paper, we show a positive example of broad relevance for how one can substantively improve
a modern deep learning system’s efficiency on a highly-differentiated novel computer architecture.
In particular, we map a State Space Model (SSM) to Loihi 2, a state-of-the-art neuromorphic re-
search chip (Labs, 2021). SSMs are efficient sequence models that rival transformers (Gu et al.,
2021b). Importantly, SSMs can perform inference in a convolution or scan mode which is efficient
on GPUs, and in a recurrent online token-by-token processing mode. The recurrent formulation of
SSMs with their local stateful computation aligns well with the architecture of neuromorphic pro-
cessors, in which compute and memory are co-located (Davies et al., 2021). This is in contrast to
GPUs, where the separation of compute and memory tends to provide efficiency only for batched,
predictable, or highly structured computations and memory accesses, such as convolutions (Kumar,
2023). We show that this online token-by-token recurrent mode is in fact extremely efficient on
the Loihi 2 architecture. Importantly, online token-by-token inference is highly salient for a wide
variety of latency-sensitive or energy-constraint applications such as robotics, autonomous vehicles,
and speech enhancement.

Our main contributions are as follows:

1. We demonstrate for the first time an SSM that runs on neuromorphic hardware.

2. We present our Post Training Quantization (PTQ) and Quantization Aware Fine Tuning
(QAFT) techniques underpinning the successful mapping of our SSM to Loihi 2.

3. We benchmark our SSM’s online token-by-token sMNIST, psMNIST, and sCIFAR infer-
ence on Loihi 2 versus a recurrent SSM baseline on an edge GPU, Jetson Orin Nano, and
we find approximately 1000x improved energy efficiency, 75x decreased latency, and 75x
increased throughput, with only a modest decrease in classification accuracy.

4. We also benchmark our SSM’s offline sample-by-sample sMNIST, psMNIST, and sCI-
FAR inference on Loihi 2 versus a convolutional SSM baseline on Jetson Orin Nano, and
we find Jetson Orin Nano to be advantageous in this context, especially when using batch-
ing. This result helps elucidate a more comprehensive account of the differing scenarios
for which neuromorphic versus GPU architectures are preferable.

2 BACKGROUND

2.1 PRELIMINARIES ON NEUROMORPHIC COMPUTING AND LOIHI 2

Neuromorphic computing draws inspiration from the brain’s highly efficient approach to information
processing. Despite operating at around 20 watts of power, the brain executes complex tasks that
include perception, decision-making, coordination, and learning—all in real-time. Neuromorphic
computers aim to emulate the brain’s incredible efficiency by incorporating the pertinent computa-
tional paradigms of the brain’s architecture: highly parallel processing, event-driven computation,
memory-compute co-location, inherent scalability, and stochasticity (for a review see Schuman
et al., 2022). The highly parallel processing and memory-compute co-location help address the
aforementioned growing compute and memory interface shortcomings of GPU architectures (Gho-
lami et al., 2024). Furthermore, event-driven computation promotes energy efficiency, as computa-
tions and communications are only performed when necessary.

The digital neuromorphic processor Loihi 2 (Labs, 2021) realizes the principles of neuromorphic
computing throughout its architecture. Loihi 2 is comprised of computational units, called neuro
cores, that contain programmable neurons which communicate by sending spiking events through
a Network-on-Chip mesh. These spiking events are small message packets, which carry either a
binary or integer payload; spiking events with integer payload are referred to as graded spikes. With
co-located memory, the neuro cores enable various types of synaptic connectivity, including linear
projections and convolutions, as well as more flexible patterns like (pseudo) stochastic or factorized
connections. Importantly, Loihi 2 allows users to define custom stateful neurons in the neuro cores

Under review as a conference paper at ICLR 2025

Loihi 2 chip Kapoho Point KP Stack Alia Point Hala Point
8-chip system 32-chip system 128-chip Datacenter 1152-chip HPC

Figure 1: Different form factors of Loihi 2 chips, from 31 mm? single chip to datacenter scale sys-
tems. Each Loihi 2 chip features 120 neuro cores dedicated to executing neuromorphic workloads,
along with six embedded processor cores for managment. The Loihi 2 chip also includes a dedicated
spike I/O unit with a 10 Gbps Ethernet interface. Loihi 2 chips can be connected through six asyn-
chronous parallel interfaces, enabling the extension of the neuromorphic mesh in three dimensions.

input interval

——

input 72 10 Y t1 X [) 13 X t4 X J/i X

\ / \ 4 7 . 4 jFD
— >— >— >— i

layer compute
time

layer n 27770 I_/" y am SDS
‘ latency I
input interval
input t1 (/D—
layer 0 \ e /5
layer 1 (/5/—\/:
layer n 27277777 > y

latency

Figure 2: Different modes of inference on Loihi 2. (a) Pipelined execution mode prioritizes through-
put at the cost of increased latency. (b) Fall-through mode prioritizes latency at the cost of decreased
throughput.

using microcode with a flexible instruction set, including multiplication, (saturated) addition, com-
parisons, jumps, and bit shifts. Additionally, Loihi 2 is inherently scalable (see Figure 1), equipped
with the necessary infrastructure for low-latency interchip and external interface event-based spike
communication. The merit of the Loihi 2 architecture has been demonstrated in a variety of domains,
including model predictive control (Mangalore et al., 2024), solving QUBO problems (Pierro et al.,
2024), monocular depth estimation (Chiavazza et al., 2023), and efficient video and audio processing
(Shrestha et al., 2024).

Furthermore, in contrast to most computer chips which use a synchronous clock, Loihi 2 is an asyn-
chronous system, which affords energy efficiency and a flexible latency-throughput trade-off. A
system of Loihi 2 chips, no matter whether it is single or thousand chips, operates asynchronously
performing only the necessary computations as quickly as possible and synchronizing the advance
of time-step via a barrier-synchronization mechanism. When considering a deep neural network, the
asynchronous nature of Loihi 2 also allows us to seek a sweet spot in latency-throughput trade-off
as depicted in Figure 2: one can execute workloads on Loihi 2 scheduling inputs as fast as possible
to maximize throughput in a pipelined manner, where all of the layers of the network are active in
every time-step or allow the current input to propagate through all the layers in the network before
injecting the next input in a fall-through fashion so that each layer spends a minimum amount of
time necessary, thus minimizing the overall latency of the inference per input. Importantly, the dis-
tinction between pipelined execution and fall-through execution is not binary but can be considered

Under review as a conference paper at ICLR 2025

a continuum, where many latency-throughput trade-off performance points can be achieved. For
example, one could opt for the amount of pipelining that provides the minimal latency under the
condition that Loihi 2’s throughput can keep up with the sampling rate of an input stream.

2.2 DEEP STATE-SPACE MODELS

Recently, a family of linear recurrent architectures, deep SSMs, has emerged. Deep SSMs, such as
S4, S4D, Liquid-S4, S5 and Mamba (Gu et al., 2021a; Smith et al., 2022; Hasani et al., 2022; Gu
etal., 2022; Gu & Dao, 2023), are based on the memory property of state-space dynamics (Gu et al.,
2020). Their task performance (e.g., classification accuracy, perplexity) can surpass or compete
with transformers, especially for long sequence tasks (Tay et al., 2020). Yet, remarkably, SSMs
do not suffer from the quadratic scaling of compute cost of the attention mechanism with context
length (Vaswani et al., 2017). Instead, they offer linearly increasing computational costs due to their
recurrent formulation. While recurrent neural networks are generally hard to train, SSMs further
offer the advantage that they can be implemented as a convolution or as a parallel scan, allowing for
easy training on GPUs (Gu et al., 2021a; Smith et al., 2022).

To gain deeper insight on the pertinent internal workings of SSMs, let us examine the original SSM,
S4 (Gu et al., 2021a), which captures the essence of the family of subsequent SSM architectures. S4
models can perform their computations using one of three representations, which can be transformed
into each other and serve different functional purposes:

@(t) = Az (t) + Bu(t), y(t) = Cx(t) (1)
x), = Az_1 + Buy, yp = Cayy (2
K =(CB,CAB,--- ,.CA" 'B), (- ,ypyr) =K*(ug,-,a1) (3

The continuous recurrent representation in equation 1 processes continuous 1-D signals u(t) to out-
put signals y(t) via an N-dimensional latent space x(t): u(t) € R — x(t) € RN — y(t) € R.
The parameters include the state matrix A € CV*¥ and the matrices B € CV*! and C € C'*¥,
The discrete recurrent representation in equation 2 assumes constant step sizes A to transform the
matrices A, B, and C into discrete matrices A, B, and C and enables autoregressive inference
when inputs u are presented sequentially. The convolutional representation in equation 3 trans-
forms the linear time-invariant SSM in equation 2 into a global convolution, which enables efficient,
parallelized training when L data points are available in a batch.

Several hardware-aware adjustments have been applied to SSMs to make them more efficient on
GPUs. Most notably, it has been shown that A can be diagonalized with little to no detrimental
effect on the algorithmic performance (Gupta et al., 2022), leading to the S4 variant S4D (Gu et al.,
2022) which we use in our work.

In addition, there have been recent efforts to make sequence modeling architectures compatible with
neuromorphic hardware. These efforts include SpikeGPT (Zhu et al., 2023), Spiking SSMs (Shen
et al., 2024), Stochastic Spiking SSMs (Bal & Sengupta, 2024), and Spiking-S4 (Du et al., 2024).
These works focus on demonstrating how Spiking Neural Networks (SNNs) can increase activa-
tion sparsity, which may increase energy efficiency on neuromorphic hardware. However, impor-
tantly, these works rely on biologically-inspired Leaky Integrate-and-Fire neurons and binary spikes.
This prioritization of biological plausibility can leave underutilized the full gambit of capabilities in
modern neuromorphic processors like Loihi 2, such as customizable microcode neurons and graded
spikes. Additionally, none of these neuromorphic-compatible SSM efforts include implementations
on neuromorphic hardware. The lack of any benchmarked SSMs on actual neuromorphic hardware
leaves unknown the efficiency of SSMs on neuromorphic hardware in practice, which we evaluate
in this work.

Under review as a conference paper at ICLR 2025

Hxl H HNxH HN HxNH H HH H 10H 10

. Reduc- . Bias +
lil s S4D tion ReLU || Mixing | | ggiy D

Figure 3: n-S4D model architecture as implemented on Loihi 2. Light blue layers refer to connec-
tions and dark blue layers to programmable neurons on Loihi 2. The large yellow box refers to an
S4D block, which is repeated four times (represented by the three yellow empty boxes). Variables
above each layer denote the dimensionality of the layer, where H denotes the model dimentionality
and N denotes the number of hidden states per model dimension.

3 NEUROMORPHIC DIAGONAL DEEP STATE-SPACE MODEL

3.1 MODEL ARCHITECTURE ON LOIHI 2

Figure 3 shows the SSM model architecture, neuromorphic-S4D (n-S4D), that we implemented on
the Loihi 2 neuromorphic processor for sequence classification. n-S4D is inspired by the architecture
used by (Gu et al., 2022) with hardware-aware modifications. Our n-S4D network consists of an
encoder layer that expands the input to a higher dimensionality, four S4D blocks, and a decoder
layer that reduces the dimensionality to the number of output classes. At the top of Figure 3, the
dimensionality of each layer of the model is listed, where I represents the input dimensionality,
H is the model dimension, and N is the number of hidden states per model dimension; the output
dimensionality (number of classes) is 10.

Each S4D block starts with the S4D dynamics implemented as a recurrent network (implementation
described in section 3.2), followed by a ReLU activation. After each S4D layer, the dimensions
are mixed using a linear projection followed by another ReL U activation. In contrast to the network
architecture used to evaluate the original S4D model (Gu et al., 2022), to increase activation sparsity
(proportion of zero-valued neural outputs), we only use ReLU activations instead of GLUs and
GeLUs. Importantly, when a ReLU neuron outputs a zero, no spike message is sent on Loihi 2; this
saves energy thanks to the event-driven nature of Loihi 2. To further simplify the model, we also
leave out normalization layers and residual connections.

All S4D layers, ReLLU activations, and biases (depicted in dark blue in Figure 3), are implemented
as programmable neurons on Loihi 2. All linear projections (depicted in light blue in Figure 3)
are implemented in Loihi 2 using linear synapses on neuro cores (weight matrices), including up-
projection, expansion, reduction, mixing, and down-projection.

We evaluate two model sizes with 67k parameters (H = 64, N = 32) and 265k parameters (H =
128, N = 64) for different datasets (see section 4 for details). We optimize how each layer is
distributed across neuro cores to achieve uniform compute load; this ensures that no single layer
dominates compute time during any given timestep. We place subsequent layers onto neighboring
neuro cores to reduce spike Network-on-Chip mesh traffic. These configurations lead to a usage of
31 and 111 neuro cores of a single Loihi 2 chip for the small and large model, respectively.

3.2 INCORPORATING SSM DYNAMICS WITHIN PROGRAMMABLE NEURONS

The fact that A is diagonal and B and C are 1-D matrices (see equation 2) implies that each hidden
state within the S4D layers evolves independently, without any cross-dependencies with other states.
This independence allows for a straightforward implementation of the recurrent SSM dynamics
(equation 2) on Loihi 2. Namely, B and C could be integrated into the synaptic connectivity for
expansion and reduction, and A could be realized through additional recurrent synaptic connections
to the corresponding S4D neuron. However, we opt to modify this straightforward implementation
by embedding the complete SSM dynamics directly within the programmable S4D neurons. This
approach presents two advantages. Firstly, it minimizes mesh traffic by requiring only a single set
of expansion and reduction connections to handle B and C, as opposed to separate connections for

Under review as a conference paper at ICLR 2025

Algorithm 1 Simplified programmed behavior of one instance of the H N S4D Neurons.

1: Initialize constants areal, Gimags breals Dimag»> Creal> Cimag

2: Initialize hidden state Zrey and Timag

3: u <— RECEIVE_INPUT

4: wie;ﬂ < Qreal X Treal — Qimag X Timag T breal X u
S Timag £ Qreal X Timag — @imag X Treal + bimag xXu
6: Treal < Thoyy

7: w42 X (Creal X Treal — Cimag X ximag)

8: SEND(y)

their real and imaginary components, plus two extra recurrent connections for A. Secondly, it allows
for the use of higher bit precision for the SSM parameters. While standard synaptic weights on Loihi
2 are limited to 8 bits, the states and constants within programmable neurons can be represented with
8 bits, 16 bits, or even 24 bits. This is particularly beneficial for the recurrent weights, which are
sensitive to accumulating quantization errors over time.

The described structure leads to the expansion and reduction of synaptic connections through the
matrices E and E7, respectively, where ET € RYN*H g described as follows:

g _ [l NG-1)+1<j<Ni
7710 otherwise

4)

The matrix E performs the expansion operation, multiplexing the input structure across /N parallel
paths. The transpose, ET, performs a reduction operation by summing over the N hidden states for
each model dimension.

The behavior of a single microcoded S4D neuron is detailed in Algorithm 1. For readability, we
omit both bit-shift operations that are necessary due to the mixed precision of different weights,
activations, and states and we omit jumps between memory registers. We denote the H N entries of
A as ey and Gimag and denote the entries for Band C analogously. Each S4D layer contains H N
individual S4D neurons.

3.3 POST TRAINING QUANTIZATION AND QUANTIZATION AWARE FINE TUNING

As all computations on Loihi 2 are performed in fixed precision, we describe in this section how we
quantize our models for training and inference.

All models are pre-trained in full precision using the convolutional view of n-S4D. After pre-
training, we switch to the recurrent mode and quantize our models for inference on Loihi 2 using
Post Training Quantization (PTQ) leading to an expected drop of accuracy. To recover the accuracy
of the quantized model, we re-train the models using Quantization Aware Fine Tuning (QAFT) in
recurrent mode with Loihi 2-specific bit-widths and precisions for one epoch.

All activations are quantized using a bit-width of 24 bits, with 6 to 8 bits being allocated to the
fractional part (precision) and the remaining bits for the integer part. While the A, B, and C
matrices of the S4D layers are quantized with a fixed bit-width of 16 bits using a precision of 13
bits, the parameters (weights and biases) of the feed-forward layers such as the encoder, decoder,
expansion, reduction and mixing layers are quantized using 8 bits with dynamic precision. In the
case of dynamic precision, we calculate scaling factors based on the maximum absolute value of the
relevant tensor to use the full dynamic range.

All tensors X are kept in full precision while simulating the effects of quantization (X) during the
forward path:

X = |Xs]d, ©)
where s scales the tensor to the desired precision of b bits and the floor operator |-| denotes the
truncation of the fractional part. The scaling factor can either be calculated by s = 2° in the case
of a fixed precision or s = 2°/| X |y.x in the case of dynamic scaling. To be fully accurate to
Loihi 2’s fixed precision arithmetic, we also quantize the descaling factor d = 1/s with a fixed
precision of 16 bits. To allow gradient flow in the backward computation, we use a straight-through
estimator (Bengio et al., 2013).

Under review as a conference paper at ICLR 2025

Table 1: Comparison against leading reported test accuracies from prior works (Transformer, CNN,
RNN, SSM) on the SsMNIST, psMNIST, and sCIFAR datasets.

Model SMNIST psMNIST sCIFAR
(Input length) (784) (784) (1024)
Transformer (Vaswani et al., 2017; Trinh et al., 2018) 98.9 97.9 62.2
CCNN (Romero et al., 2022) 99.72 98.84 93.08
LipschitzRNN (Erichson et al., 2020) 994 96.3 64.2
LSSL (Gu et al., 2021b) 99.53 98.76 84.65
S4 (Guetal., 2021a; 2022) 99.63 98.70 91.80
S4D-LegS (Gu et al., 2022) - - 89.92
Liquid-S4 (Hasani et al., 2022) - - 92.02
S5 (Smith et al., 2022) 99.65 98.67 90.10
Q-S5 (8 bit precision PTQ) (Abreu et al., 2024) 96.27 - 44.83
Q-S5 (8 bit precision QAFT) (Abreu et al., 2024) 99.54 - 86.95
AHP SNN on Loihi 1 (Rao et al., 2022) 96.00 - -
n-S4D, full precision (Ours) 99.51 97.53 86.53
n-S4D, after PTQ (Ours) 99.20 92.45 71.74
n-S4D, on Loihi 2 after QAFT (Ours) 99.20 96.16 84.13

In order to extract the quantized parameters after QAFT or to perform PTQ, we can use equation
5 without the descaling part d. The descaling factor d for the activations is then applied in the
microcoded neuron dynamics on Loihi 2. The fake quantization hooks and the switch to the recurrent
mode slow the training substantially, hence we apply QAFT for only one epoch.

4 RESULTS

We evaluate our n-S4D model running on Loihi 2 and Jetson Orin Nano on the datasets sequential
MNIST (sMNIST, LeCun et al., 2010), permuted sequential MNIST (psMNIST, LeCun et al., 2010),
and sequential CIFAR10 (sCIFAR, Krizhevsky, 2009).

4.1 ACCURACY AND PARAMETER COUNT

Table 1 shows the accuracy on sSMNIST, psMNIST, and sCIFAR of our n-S4D model in full preci-
sion, after quantization, and on Loihi 2 in comparison to other models. Although we use a simplified
version of the S4D model, by only using ReLLU activations and no normalization (see section 3.1),
the performance in full precision drops by only less than one to four percentage points compared to
the more complex S4 and S4D models on all three datasets.

We observe a drop in accuracy when preparing the model for deployment on Loihi 2 by switching to
the recurrent mode and quantizing the model after training (PTQ). Precisely, the accuracy only drops
substantially on the psMNIST (97.53 % to 92.45 %) and the sCIFAR (86.53 % to 71.74 %) datasets.
This drop in accuracy is however less than the drop in accuracy observed when applying PTQ to S5
with 8 bits as reported by Abreu et al. (2024), where the accuracy drops from 99.65 % to 96.27 % for
SMNIST and from 90.10 % to 44.83 % for sCIFAR. This loss in accuracy can be recovered to nearly
the level of the full precision model by applying QAFT for just one epoch (psMNIST: 96.16 %,
sCIFAR: 84.13 %), a similar recovery is observed for QS-5 (Abreu et al., 2024) after 15 epochs of
QAFT. Note how there was no switch from the scan mode to the recurrent mode for QS-5 and fake-
quantization was applied instead of full quantization, which makes a direct comparison difficult.

Previous non-SSM neuromorphic solutions for sMNIST such as the AHP SNN model on
Loihi 1 (Rao et al., 2022) reach a lower accuracy than our n-S4D model on Loihi 2, suggesting
a substantial maturing of models and hardware in the neuromorphic domain. Overall, the CCNN
model exhibits the highest accuracy on all tasks, while using 2M parameters (Romero et al., 2022).
For comparison, our model only uses less than 265k parameters for SCIFAR and 67k parameters for
the MNIST datasets.

Under review as a conference paper at ICLR 2025

Table 2: Compute cost comparisons for sample-by-sample and token-by-token based processing.
Sample-by-sample based processing assumes that the entire sample (the entire image) is available to
the system at the start of processing, whereas token-by-token based processing assumes that tokens
(individual pixels) arrive one at a time and are processed sequentially. Implementations use either
recurrent (Rec) or convolutional (Conv) n-S4D. Parmater b listed under the column Exec mode
indicates batch size. For Loihi 2, “ft” refers to fall-through and “pipe” to pipelined processing.

HW Exec mode | Prec Acc (1) Token-by-Token Processing Sample-by-Sample Processing
%) < < _
32 |32 & 2l 32 | 32 | iz e
~ O 5] =3 ~ £ ~ = —~
SE|SE|ES| B3 4 E SE |EZ 82
Loihi 2* | Rec (ft) gint | 99.20 || 0.003 | 0.068 | 14,705 | 0.0002 2.678 53.314 19 141.59
E Loihi 2* | Rec (pipe) gint | 99.20 || 0.002 | 0.168 | 83,343 | 0.0004 1.828 9.575 106 17.502
é Jetson® | Rec (b=1) fp32 | 99.51 || 15.725 | 4.976 201 | 79.252 || 12328.652 | 3901.313 | 0.256 48.097x 108
% | Jetsont | Conv (b=1) fp32 | 99.51 || 23.000 | 6.366 157 | 146.418 23.000 6.366 157 | 146.418
Jetson™ | Conv (b=256) | fp32 | 99.51 - - - - 0.217 8.872 | 28,853 1.921
. | Loihi 2 | Rec (ft) gint | 96.16 || 0.003 | 0.068 | 14,720 | 0.0002 2.678 53.262 19| 142.639
£ | Loihi 2* | Rec (pipe) gint | 96.16 || 0.002 | 0.168 | 83,349 | 0.0004 1.920 9.574 106 15.200
é Jetson® | Rec (b=1) fp32 | 97.53 || 15.851 | 5.012 200 | 70.449 || 12426.807 | 3929.739 | 0.254 48.834x 108
. | Jetson® | Conv (b=1) fp32 | 97.53 || 23.183 | 6.306 158 | 146.187 23.183 6.306 158 | 146.187
Jetson™ | Conv (b=256) | fp32 | 97.53 - - - - 0.218 8.837 | 28,969 1.924
Loihi 2* | Rec (ft) gint | 84.13 || 0.016 | 0.066 | 15,259 | 0.0010 16.284 65.534 15 | 1092.808
°<‘ Loihi 2* | Rec (pipe) gint | 84.13 || 0.010 | 0.172 | 81,508 | 0.0017 10.355 12.735 80| 131.869
% Jetson™ | Rec (b=1) fp32 | 86.53 || 16.106 | 4.978 201 | 80.173 || 16492.163 | 5097.42 | 0.194 84.067x10°
Z | Jetson! | Conv (b=1) fp32 | 86.53 || 26.887 | 6.325 158 | 170.053 26.887 6.325 158 | 170.053
Jetson™ | Conv (b=64) | fp32| 86.53 - - - - 0.961 8.476 | 17,550 8.142
* Loihi 2 workloads were characterized on an Oheo Gulch system with N3C2-revision Loihi 2 chips running on NxCore 2.5.8 and

alpha version of the NxKernel API with on-chip IO unthrottled sequencing of input tokens.
T GPU workloads were characterized on an NVIDIA Jetson Orin Nano 8GB 15W TDP running Jetpack 5.1.2, TensorRT 8.6.1,
Torch-TensorRT 1.3.0. Energy values include CPU_GPU_CV and SOC components as reported by jtop.

¥ Performance results are based on testing as of September 2024 and may not reflect all publicly available security updates. Results
may vary.

4.2 COMPUTATIONAL COST

Since our study focuses on a small SSM model appropriate for low-latency and low-power edge
processing, we compare our Loihi 2 n-S4D to a recurrent as well as a convolutional implementation
of n-S4D on an edge GPU, Nvidia Jetson Orin Nano. While we tried optimizing n-S4D on Jetson
Orin Nano, we were unable to create a stronger baseline due to lack of native support for complex
numbers in TensorRT (Jeong et al., 2022) for the convolutional implementation (which can not be
efficiently implemented using just using just real numbers) and excessively long compilation times
for the recurrent model (which can easily be implemented using just real numbers). Consequently,
we conducted our assessments using a PyTorch model that had been compiled just-in-time, operating
at fp32 precision.

We use the jtop API to characterize power. For runtime, only the time spent to input the data and
compute the output is considered. For these measurements on Loihi 2, we store a sequence of
input values on a neuro core and inject them to the n-S4D network at peak throughput without 10
constraints to obtain stable power measurements; this is repeated for 10 representative samples. The
energy of the neuro core used to store input values is included in the results for Loihi 2, while the
IO power of Jetson is excluded.

The primary point of comparison for the Loihi 2 versus the Jetson implementation is the stream-
ing mode (with a batch size of one) of inference. In we also include the peak-performing batched
mode of inference for a representative optimum performance on Jetson. Table 2 reports computa-
tional cost of inference on Loihi 2 and Jetson on the three datasets. In addition to energy, latency,
and throughput, the energy-delay product (EDP, Shrestha et al., 2024) is reported to more readily
compare systems running at different speeds.

Sample-by-sample processing The right side of Table 2 shows results from sample-by-sample
processing, which assumes that all tokens of a sample are available to the system at the beginning of
processing and only a single classification is required for the whole sample. Recurrent formulations

Under review as a conference paper at ICLR 2025

of the model have to process each token sequentially, while convolutional formulations can process
the entire sample with a single convolution.

In the online processing regime with a batch size of one, it is evident that Loihi 2 is very efficient
compared to the recurrent mode on Jetson and shows better energy per sample of 1.8 mJ compared to
23 m]J for Jetson in the convolutional mode that is favorable for GPU architectures. The throughput
and latency on Loihi 2 and Jetson in convolutional mode are also competitive. Jetson, however,
achieves peak performance in higher batch mode with substantially reduced energy per sample of
0.22mJ and 0.96 mJ for SsMNIST and sCIFAR along with orders of magnitude higher throughput,
which is expected for GPU architectures.

Token-by-token processing The middle columns of Table 2 show results of token-by-token pro-
cessing. This assumes streaming input that requires a classification for every token. For these types
of tasks, both Loihi 2 and the recurrent mode on Jetson process all tokens sequentially. The convo-
lution mode on Jetson, however, has to perform a convolution over the entire sequence with every
new token. Its latency, energy, throughput, and EDP are therefore the same for processing one to-
ken in token-by-token processing as they are for processing one sample in the sample-by-sample
processing mode when using the convolutional implementation.

For token-by-token processing, Loihi 2 outperforms Jetson in all metrics on all datasets. Latency and
energy are two to three orders of magnitude lower for Loihi 2. This is reflected in EDP: For MNIST
workloads, EDP for Loihi 2 is 0.0002uJ s and 0.001 uJ s for sCIFAR. In contrast, the recurrent
processing on Jetson incurs EDP of 70 uJ s and 80 uJ s on the respective datasets, demonstrating the
efficiency of Loihi 2 in token-by-token processing.

Fall-through vs. pipelined processing Table 2 shows the tradeoff between latency and throughput
when executing the model on Loihi 2 in fall-through or pipelined processing (see section 2.1). With
fall-through processing, we see a latency of 68 us per token on the SMNIST dataset, compared
to 168 us in pipelined processing. This comes at the cost of throughput of only 14.705 token/s,
compared to 83.343 token/s in pipelined processing. The lower throughput per token in fall-through
mode results in a higher latency per sample of 53.314 ms compared to the pipelined mode with
9.57 ms. Results on the other datasets highlight the same tradeoff.

5 DISCUSSION

Our benchmark results (see section 4) show that the n-S4D model on Loihi 2 particularly excels in
online token-by-token inference. Online token-by-token inference is widely applicable in streaming
scenarios in which an incoming data stream must be rapidly processed on a token-by-token basis. In
the token-by-token scenario, we demonstrate that Loihi 2 can meaningfully leverage its substantively
differentiated compute and memory co-located architecture to outperform the baseline Jetson GPU.
On sCIFAR, the largest workload we measured, Loihi 2 consumes approximately 1000x less energy
with a 75x lower latency and a 75x higher throughput compared to the recurrent implementation of
n-S4D on the Jetson GPU. We also benchmark the offline sample-by-sample and batched scenarios,
for which we find the Jetson GPU to be preferable to Loihi 2. Our results corroborate the notion
that GPU architectures are optimized for offline processing of large amounts of data in parallel. It
should be noted that our implementation of n-S4D on Jetson is not completely optimized for speed
and efficiency. Creating a stronger baseline implementation on Jetson as well as considering other
types of hardware would be valuable future work.

Taken comprehensively, our results provide the first benchmarks of an SSM on a neuromorphic
hardware platform versus an edge GPU, comparing both the recurrent and convolution modes and
revealing the differences in energy, latency, throughput, and task accuracy. To the best of our knowl-
edge, this is the most holistic picture to date of the merits of neuromorphic hardware for SSM
efficiency. Furthermore, by virtue of our focus on SSMs—a family of promising and broadly ap-
plicable deep learning sequence models—we build an exemplar for others to replicate and expand
upon to help bridge deep learning technology to highly-differentiated computer architectures with
compute and memory co-location for substantively improved efficiency.

Promising future work includes the following. The modest drop in accuracy of n-S4D on Loihi 2 in
this work could potentially be ameliorated by applying QAFT for a longer duration than one epoch.

Under review as a conference paper at ICLR 2025

The balance of latency, energy, and throughput on Loihi 2 over the continuum between fall-through
and pipelined processing could be more extensively characterized; indeed, only the endpoints of this
continuum are characterized in this work. Direct extensions of S4, for instance Liquid-S4 (Hasani
et al., 2022) or S5 (Smith et al., 2022), could be investigated; these extensions have shown state-of-
the-art performance on sequence modeling tasks and are also compatible with Loihi 2. Finally, our
work and potential optimizations and extensions can be applied and tested in real-world streaming
use-cases, such as keyword-spotting, audio denoising, vision for drone control, autonomous driving,
and other latency or energy constrained domains.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Steven Abreu, Jens E Pedersen, Kade M Heckel, and Alessandro Pierro. Q-S5: Towards quantized
state space models. arXiv preprint arXiv:2406.09477, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Stefano Ambrogio, Pritish Narayanan, Atsuya Okazaki, Andrea Fasoli, Charles Mackin, Kohji
Hosokawa, Akiyo Nomura, Takeo Yasuda, An Chen, A Friz, et al. An analog-ai chip for energy-
efficient speech recognition and transcription. Nature, 620(7975):768-775, 2023.

Malyaban Bal and Abhronil Sengupta. Rethinking spiking neural networks as state space models.
arXiv preprint arXiv:2406.02923, 2024.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Stefano Chiavazza, Svea Marie Meyer, and Yulia Sandamirskaya. Low-latency monocular depth
estimation using event timing on neuromorphic hardware. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 4071-4080, 2023.

Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca Guerra,
Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic computing with
Loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5):911-934, 2021.

Yu Du, Xu Liu, and Yansong Chua. Spiking structured state space model for monaural speech
enhancement. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 766-770. IEEE, 2024.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W Ma-
honey. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, and Kurt
Keutzer. Ai and memory wall. IEEE Micro, 44(3):33-39, May 2024. ISSN 1937-4143. doi:
10.1109/MM.2024.3373763.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent memory

with optimal polynomial projections. Advances in neural information processing systems, 33:
1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in Neural Information Processing Systems, 34:572-585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971—
35983, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=RjS0j6tsSrf.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. arXiv preprint arXiv:2209.12951, 2022.

11

https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf

Under review as a conference paper at ICLR 2025

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58-65, 2021.

EunlJin Jeong, Jangryul Kim, and Soonhoi Ha. Tensorrt-based framework and optimization method-
ology for deep learning inference on jetson boards. ACM Transactions on Embedded Computing
Systems (TECS), 21(5):1-26, 2022.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1-12, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
Subodh Kumar. Introduction to Parallel Programming. Cambridge University Press, 2023.

Intel Labs. Taking neuromorphic computing to the next level with Loihi 2, 2021. URL
https://download.intel.com/newsroom/2021/new—technologies/
neuromorphic-computing-loihi-2-brief.pdf.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Sean Lie. Inside the cerebras wafer-scale cluster. IEEE Micro, 44(3):49-57, 2024. doi: 10.1109/
MM.2024.3386628.

Ashish Rao Mangalore, Gabriel Andres Fonseca, Sumedh R Risbud, Philipp Stratmann, and Andreas
Wild. Neuromorphic quadratic programming for efficient and scalable model predictive control:
Towards advancing speed and energy efficiency in robotic control. IEEE Robotics & Automation
Magazine, 2024.

Yuyi Mao, Xianghao Yu, Kaibin Huang, Ying-Jun Angela Zhang, and Jun Zhang. Green edge ai: A
contemporary survey. Proceedings of the IEEE, 2024.

Tobias Meuser, Lauri Lovén, Monowar Bhuyan, Shishir G Patil, Schahram Dustdar, Atakan Aral,
Suzan Bayhan, Christian Becker, Eyal de Lara, Aaron Yi Ding, et al. Revisiting edge ai: Oppor-
tunities and challenges. IEEE Internet Computing, 28(4):49-59, 2024.

Alessandro Pierro, Philipp Stratmann, Gabriel Andres Fonseca Guerra, Sumedh Risbud, Timothy
Shea, Ashish Rao Mangalore, and Andreas Wild. Solving qubo on the loihi 2 neuromorphic
processor. arXiv preprint arXiv:2408.03076, 2024.

Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long short-term memory for Al
applications in spike-based neuromorphic hardware. Nature Machine Intelligence, 4(5):467-479,
2022.

Ole Richter, Chenxi Wu, Adrian M Whatley, German Kostinger, Carsten Nielsen, Ning Qiao, and
Giacomo Indiveri. Dynap-se2: a scalable multi-core dynamic neuromorphic asynchronous spik-
ing neural network processor. Neuromorphic Computing and Engineering, 4(1):014003, 2024.

David W Romero, David M Knigge, Albert Gu, Erik J Bekkers, Efstratios Gavves, Jakub M Tom-
czak, and Mark Hoogendoorn. Towards a general purpose CNN for long range dependencies in
ND. arXiv preprint arXiv:2206.03398, 2022.

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Bill Kay, et al. Oppor-
tunities for neuromorphic computing algorithms and applications. Nature Computational Science,
2(1):10-19, 2022.

Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang,
and Luziwei Leng. Spikingssms: Learning long sequences with sparse and parallel spiking state
space models. arXiv preprint arXiv:2408.14909, 2024.

Sumit Bam Shrestha, Jonathan Timcheck, Paxon Frady, Leobardo Campos-Macias, and Mike
Davies. Efficient video and audio processing with Loihi 2. In ICASSP 2024-2024 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 13481-13485.
IEEE, 2024.

12

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Under review as a conference paper at ICLR 2025

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Sreenivas R. Sukumar, Jacob A. Balma, Cong Xu, and Sergey Serebryakov. Survival of the fittest
amidst the cambrian explosion of processor architectures for artificial intelligence : Invited paper.
In 2021 IEEE/ACM Programming Environments for Heterogeneous Computing (PEHC), pp. 34—
43, 2021. doi: 10.1109/PEHC54839.2021.00010.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le. Learning longer-term dependencies in RNNs
with auxiliary losses. In International Conference on Machine Learning, pp. 4965-4974. PMLR,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Rui-Jie Zhu, Qihang Zhao, Guogqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

13

	Introduction
	Background
	Preliminaries on Neuromorphic Computing and Loihi 2
	Deep State-Space Models

	Neuromorphic Diagonal Deep State-Space Model
	Model architecture on Loihi 2
	Incorporating SSM Dynamics within Programmable Neurons
	Post Training Quantization and Quantization Aware Fine Tuning

	Results
	Accuracy and parameter count
	Computational cost

	Discussion

