
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CASUALHDR:ROBUST HIGH DYNAMIC RANGE 3D
GAUSSIAN SPLATTING FROM CASUALLY CAPTURED
VIDEOS

Anonymous authors
Paper under double-blind review

Figure 1: a) Our method can reconstruct 3D HDR scenes from videos casually captured with auto-exposure
enabled. b) Our approach achieves superior rendering quality and greater robustness compared to methods like
Gaussian-W and HDR-Plenoxels. c) After 3D HDR reconstruction, we can not only synthesize novel view, but
also perform various downstream tasks, such as 1) HDR exposure editing, 2) image deblurring.

ABSTRACT

In recent years, thanks to innovations in 3D scene representation, novel view syn-
thesis and photo-realistic dense 3D reconstruction from multi-view images, such
as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered
widespread attention due to their superior performance. However, most works rely
on low dynamic range (LDR) images and representations of scenes, which limits
the capturing of richer scene details. Prior works have focused on high dynamic
range (HDR) scene recovery, typically require repeatedly capturing of multiple
sharp images with different exposure times at fixed camera positions, which is
time-consuming and challenging in practice. For a more flexible data acquisi-
tion, we propose a one-stage method: CasualHDR to easily and robustly recover
the 3D HDR scene from casual videos with auto-exposure (AE) enabled, even in
the presence of severe motion blur and varying exposure time. CasualHDR con-
tains a unified differentiable physical imaging model which jointly optimize (i.e.
bundle adjust) exposure time, camera response function (CRF), continuous-time
camera motion trajectory on SE(3), and the 3DGS-based HDR scene. Extensive
experiments demonstrate that our approach outperforms existing reconstruction
methods in terms of robustness and rendering quality. Three applications can be
achieved after the 3DGS HDR scene reconstruction: novel-view synthesis, image
deblurring (deblur input images) and HDR editing (adjust the exposure time thus
brightness of the input images).

1 INTRODUCTION

Photo-realistic 3D scene reconstruction and Novel View Synthesis (NVS) are essential areas in com-
puter vision with applications in VR/AR, autonomous driving, and embodied AI, offering immer-
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sive experiences for both humans and AI agents. Neural Radiance Fields (NeRFs) (Mildenhall et al.,
2020) have become a mainstream approach in NVS due to their high-quality rendering. The intro-
duction of 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) further advanced the field. In contrast
to implicit representations like NeRFs, 3DGS uses explicit 3D Gaussian primitives, greatly improv-
ing training and rendering efficiency yielding high-quality images, making it a popular choice.

However, most 3D reconstruction methods struggle with high-contrast inputs, assuming good-
quality images with consistent exposure conditions and low dynamic range (LDR). Limited dynamic
range of the inputs hinders 3D scene representations from reconstructing fine details in high dynamic
range (HDR) environments, thereby restricting its further applications, e.g., 3D HDR content cre-
ation. Although 2D HDR contents (i.e. images and videos) have been standardized, consumed and
exploited in recent years (Hannuksela et al., 2015; ITU-R, 2018; Alakuijala et al., 2019), 3D HDR
free-viewpoint (volumetric) content is still a new concept with great potential value. Therefore, re-
constructing high dynamic range (HDR) scenes is of significant practical value for achieving better
visual effects and meeting the needs of downstream tasks.

Current 3D HDR reconstruction methods can be divided into two categories. The first category, e.g.
RawNeRF (Mildenhall et al., 2022) and LE3D (Jin et al., 2024) etc., takes in noisy RAW images,
aiming to reconstruct noise-free 3D HDR scenes. The second category, represented by HDR-NeRF
(Huang et al., 2022) , HDR-GS (Cai et al., 2024), HDR-Plenoxels (Jun-Seong et al., 2022) and
Cinematic Gaussians (Wang et al., 2024a), draws inspiration from HDR imaging (HDRI), using
multi-exposure LDR images at fixed positions as inputs to reconstruct the 3D HDR scene while
learning camera response function (CRF). However, the strict inputs and high reconstruction costs
limit their flexibility and broader applications. The challenges include: 1) Data acquisition of RAW
images and accurate exposure time is ususally expensive due to the use of professional equipment.;
2) In low-light conditions, long exposure times increase the risk of motion blur from camera shake,
reducing reconstruction quality; 3) The geometric consistency will be compromised if given inaccu-
rate camera pose initialization, as the camera poses are not being optimized. Thus, a key challenge
is reducing the cost of data acquisition, enabling high-quality 3D HDR scene reconstruction with
consumer-grade devices.

Most modern consumer-grade cameras use auto-exposure during video recording, automatically
adjusting exposure time based on ambient lighting. This expands the captured dynamic range in
the video, making it possible for us to reconstruct 3D HDR scenes. However, naively applying
these videos to existing HDR 3D reconstruction methods presents several challenges: 1) Accurate
exposure times for individual frames are often unknown; 2) Auto-exposure can cause inconsistencies
in brightness between frames, leading to pose estimation errors in structure from motion (SfM)
frameworks; 3) In low-light conditions, longer exposure times combined with camera movement
during recording often cause severe motion blur.

To address these challenges, we cannot assume that the camera is static during the exposure time
as in previous methods. Therefore, we must also account for camera motion during this period.
Through analyzing the physical imaging process, we found that both motion blur and brightness
variations are both directly related to the exposure time. For example, a longer exposure time lead
to more severe motion blur and higher image brightness. Thus, camera motion blur can serve as an
indicator of the exposure time, providing a useful constraint for joint optimization.

Building on above reasoning, we propose a one-stage method called CasualHDR, which is an uni-
fied 3DGS-based HDR reconstruction framework that couples the physical imaging model with
camera motion representation, impoving the robustness and flexibility. In our designed unified
imaging model, the continuous-time camera trajectory on SE(3), exposure time, and camera re-
sponse function are jointly optimized and mutually constrained. Therefore, our approach does not
require ground truth exposure times as previous methods.

Our method takes as input a casual video captured by a consumer-grade imaging device, where
each frame exhibits brightness variations and motion blur due to different unknown exposure times.
To evaluate the effectiveness of our method, we conducted experiments using synthetic datasets
generated by Blender and self-captured real-world datasets. The results demonstrate that our method
outperforms other approaches in 3D HDR reconstruction, achieving high-quality rendering.

In summary, our contributions can be outlined as follows:
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• CasualHDR, a unified imaging model that jointly optimizes continuous-time camera tra-
jectory, CRF, exposure times and 3DGS-based HDR representation, which enables users to
reconstruct 3D HDR scenes from casually captured videos at a low cost.

• A dataset that includes both synthetic data and real-world data, where each video contains
severe variations in brightness and camera motion blur, that can be useful to the community
to further investigate into this problem.

• With extensive experiments, we demonstrate how to utilize this model to reconstruct high-
quality HDR scenes from casual videos, and exhibit state-of-the-art performance across all
datasets.

2 RELATED WORK

2.1 HIGH DYNAMIC RANGE IMAGING

High Dynamic Range Imaging (HDRI) enhances luminosity beyond standard digital imaging by
merging multi-exposure LDR images from fixed poses. In video capture, alternating long and short
exposures achieves similar effects. Recently, deep learning approaches have treated HDRI as an
image domian translation task, designing networks to convert LDR to HDR images. However,
camera disturbances often lead to ghosting artifacts. To address this, Gryaditskaya et al. (2015)
proposed an adaptive metering algorithm to adjust exposure and reduce motion artifacts, while other
methods use spatial attention to mitigate motion blur. With the advent of 3D scene representations
such as NeRF and 3DGS, methods like (Huang et al., 2022; Jun-Seong et al., 2022; Cai et al., 2024;
Huang et al., 2024; Wang et al., 2024a) have emerged to reconstruct 3D HDR scenes and calibrate
CRFs simultaneously. While these methods are effective, they often rely on precise exposure times
and struggle with motion blur, highlighting the need for improved robustness and generalizability.

2.2 IMAGE DEBLURRING

Image deblurring aims to restore sharp images from blurred ones, and current techniques are catego-
rized into three main types. The first type uses hand-crafted priors, such as total variation and heavy-
tailed gradient priors, to constrain the solution space, solving for the blur kernel. However, these
methods are limited as different blur kernels can produce similar blurred effects (Krishnan & Fergus,
2009; Cho & Lee, 2009). The second type is deep learning-based, which achieves end-to-end im-
age restoration by training on large datasets, with notable methods including MPRNet (Zamir et al.,
2021) and Stripformer (Tsai et al., 2022). Despite their success, these 2D approaches sometimes
struggle with tasks requiring multi-view geometric consistency. The third type utilizes multi-view
blurred images to reconstruct the 3D scene representation and deblur the images while adhering
to geometric constraints. Pioneering works in this category include Deblur-NeRF (Ma et al., 2021),
PDRF (Peng & Chellappa, 2022), DP-NeRF (Lee et al., 2023a) and BAD-NeRF (Wang et al., 2023).
Deblur-NeRF, PDRF and DP-NeRF jointly learn blur kernels with the radiance field to approximate
the blurring process, while BAD-NeRF proposed a physical motion blur imaging model that jointly
recovers (i.e. bundle adjusts) the radiance field along with camera trajectories on SE(3). Following
BAD-NeRF, numerous emerging works (Lee et al., 2023b; Li et al., 2024a; Lee et al., 2024b;a; Sun
et al., 2024; Chen & Liu, 2024; Oh et al., 2024; Zhao et al., 2024; Yu et al., 2024; Li et al., 2024b;
Qi et al., 2024; Tang et al., 2024) have proved the effectiveness of continuous SE(3) trajectory rep-
resentations for modeling coupled camera motion and imaging characteristics in the process of joint
3D reconstruction and multi-view image recovery.

2.3 ROBUST NOVEL VIEW SYNTHESIS

Novel view synthesis involves generating images from arbitrary viewpoints using a series of images
with known poses. Neural Radiance Fields (NeRF) has significantly advanced the field by recon-
structing the radiance field as the 3D scene representation to render images from new perspectives.
Building on NeRF, 3D Gaussian Splatting (3DGS) was proposed, which uses explicit Gaussian
primitives to represent the 3D scene, significantly improving training and rendering speeds while
maintaining good image quality. Most novel view synthesis methods assume high-quality input data;
however, when this assumption is violated—such as with blurry images, large exposure variations,
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or inaccurate poses—the reconstruction quality degrades rapidly, producing artifacts.To address this,
NeRF-W (Martin-Brualla et al., 2021) and Gaussian-W (Zhang et al., 2024) attach an optimizable
appearance vector to each image, modeling varying appearances from internet-sourced images.
HDR-NeRF (Huang et al., 2022) reconstructs HDR 3D scenes using multi-view, multi-exposure
images with known precise exposure times, while HDR-HexPlane (Wu et al., 2024) extends this to
dynamic scenes, enabling fast reconstruction even with unknown exposure times. Other approaches,
such as Fu et al. (2024), tackle reconstruction with inaccurate or random poses, reducing reliance
on traditional SfM methods. Methods like Zhao et al. (2024) incorporate camera motion models to
handle blurry inputs, achieving deblurring while reconstructing the 3D scene. I2-SLAM(Bae et al.,
2024) is a concurrent work similar to ours, capable of using images with exposure inconsistencies
and blur as input. However, it focuses on RGB-D SLAM, and its representations of trajectory and
CRF differ from ours; Meanwhile, it cannot adjust the rendering exposure times fexibly as ours, as
its CRF module follows Jun-Seong et al. (2022). These approaches improve robustness in handling
various forms of image degradation, enhancing the quality of novel view synthesis.

3 METHOD

In this section, we will provide a detailed explanation of our proposed CasualHDR, which takes
video captured with auto-exposure settings as input. In Section 3.1, we will first give a brief overview
of the scene representation based on 3D Gaussian Splatting, followed by a description of the cam-
era’s continuous motion trajectory in Section 3.2. Section 3.3 will detail the camera imaging model
and explain how we integrate exposure time to link both components. Finally, we will introduce the
loss functions used in Section 3.4. A detailed illustration of the method is provided in Figure 2. We
will now elaborate on each component.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D-GS represents the scene as 3D Gaussian primitives denoted as G. Each 3D Gaussian primitive
is characterized by a mean position µ ∈ R3, opacity o ∈ R, color c ∈ R3, and a 3D covariance
matrix Σ ∈ R3×3. To ensure Σ remains positive semi-definite, it is parameterized using a scaling
matrix S ∈ R3 and a rotation matrix R ∈ R3×3, which is stored as a quaternion q ∈ R4. During
rendering, the 3D Gaussians are projected onto the image plane at a specific pose Pi, transforming
Σ into a 2D covariance matrix Σ′ ∈ R2×2. These can be mathematically expressed as:

G(x) = e−
1
2 (x−µ)⊤Σ−1(x−µ), Σ = RSSTRT , Σ′ = JRcΣRT

c J
T , (1)

where J ∈ R2×3 is the Jacobian of the affine approximation of the projective transformation. Next,
the 2D Gaussians undergo depth sorting followed by tile-based rasterization. The final color values
for individual pixels are obtained using α-blending:

C(x, y,Pi) =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), αi = oi · exp(−σi), σi =
1

2
∆T

i Σ
′−1

∆i, (2)

where ci is the learnable color of each Gaussian, and αi is the alpha value determined by the 2D
covariance Σ′ multiplied by the learned Gaussian opacity o. ∆i ∈ R2 represents the offset between
the pixel center and the 2D Gaussian center. The above derivations show that the rendered pixel
color, C in Eq. (2), is differentiable with respect to all learnable Gaussian parameters G and camera
poses P, which is crucial for our bundle adjustment formulation and allows incorporating motion-
blurred images and inaccurate camera poses into the 3D-GS framework.

3.2 CONTINUOUS TRAJECTORY REPRESENTATION

Cumulative SE(3) B-spline is a widely used continuous-time trajectory representation in robotics,
especially in state estimation, sensor fusion and path planning (Furgale et al., 2012; Lovegrove
et al., 2013; Bry et al., 2015; Rehder et al., 2016; Mueggler et al., 2018; Geneva et al., 2020) be-
cause of many excellent characteristics: such as C2 continuity, locality and convex hull property
that delicately incorporates gradient information and dynamic constraints, which converges quickly
to generate smooth and feasible trajectories (Zhou et al., 2019) . SE(3) B-spline allows for the
calculation of pose, velocity, and accelerations at any timestamp given along a trajectory.
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Figure 2: The pipeline of CasualHDR. Given a casually captured video with auto exposure, camera motion
blur, and significant exposure time changes, we train 3DGS to reconstruct an HDR scene. We design a unified
model based on the physical image formation process, integrating camera motion blur and exposure-induced
brightness variations. This allows for the joint estimation of camera motion, exposure time, and camera re-
sponse curve while reconstructing the HDR scene. After training, our method can sharpen the train images and
render HDR and LDR images from specified poses.

Targeting at unordered inputs, existing multi-view deblurring methods following BAD-NeRF (Wang
et al., 2023) model the camera motion and estimate short splines for each frame separately, thus
cannot utilize the cross-frame motion constrains and priors, given a continuous video as their input.
Some methods (Wang et al., 2021; Li et al., 2022; Sun et al., 2024; Li et al., 2024c; Lin et al.,
2024; Shih et al., 2024; Wang et al., 2024b) utilize basis functions to regularize continuous-time
deformations to reconstruct dynamic scenes, but robust reconstruction from casual videos with a
continuous-time camera trajectory representation has not yet been explored. To this end, this paper
estimates the camera motion across the whole video with a continuous-time cumulative SE(3) B-
spline trajectory.

Following Lovegrove et al. (2013), given a series of temporally uniformly distributed control knots,
the pose P(t) at a given timestamp t can be interpolated with 4 adjacent control knots, denoted as
T0, T1, T2 and T3 ∈ SE(3):

P(t) = T0 ·
2∏

j=0

exp(B̃(u)j+1 ·Ωj), B̃(u) = C

 1
u
u2

u3

 , C =
1

6

6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

 . (3)

where τ represents the spline sampling interval, u = t
τ , and u lies within the interval [0, 1); B̃(u)j+1

denotes the (j +1)th element of the vector B̃(u), Ωj = log(T−1
j ·Tj+1), based on the Qin (1998).

3.3 PHYSICAL IMAGE FORMATION MODEL

The physical image formation process refers to a digital camera collecting scene irradiance during
the exposure time ∆t and converting them into measurable electric charges, which are ultimately
mapped into pixel values through the camera response function (CRF) defined by F . Assuming
the camera moves along a continuous trajectory t 7→ P(t) during exposure time ∆t with constant
velocity, this process can be mathematically modeled as follows:

B(x, y) = F

(∫ tb+∆t

tb

H (x, y,P(t)) dt

)
(4)
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where B(x, y) ∈ RH×W×3 denotes the real captured image, x, y ∈ R2 represents the pixel location,
tb denotes the timestamp when the shutter opens, H (x, y,P(t)) represents scene irradiance mapped
into camera at pose P(t) which is interpolated from the continuous trajectory. Additionally, if the
camera moves during the exposure time, the camera will collect irradiance from different scene
points, resulting in camera motion blur. The integral part in Eq. (4) can be discretized as follows:

H(x, y) ≈
N−1∑
k=0

Hk (x, y,P(tk))∆tk ≈ 1

N

N−1∑
k=0

Hk (x, y,P(tk))∆t (5)

H(x, y) ∈ RH×W×3 denotes blur HDR image, N represents the number of virtual latent sharp
images, ∆tk represents the exposure time of virtual camera k and can be set as a constant equal to
∆t
N , tk denotes the timestamp corresponding to virtual camera k, it can be calculated as tb + ∆t

N ∗ k.

After obtaining H(x, y), we need to use the camera response function F , which includes image-
varying white balance WB and tone mapping TM, to convert it into an LDR image:

B(x, y) = F(H(x, y)) = TM ◦ WB(H(x, y)),WB(c) = [wbr, wbg, wbb]
T ⊙ [cr, cg, cb]

T
. (6)

Due to the fact that RGB channels have different camera response curves for TM, we adopt separate
MLP for each channel. Unlike prior methods, we treat ∆t as an optimizable quantity rather than a
precisely known parameter. Initially, ∆t can be assigned a random value. Since the exposure time
directly affects the brightness and motion blur of the image, it will be gradually optimized to the
actual value during the subsequent deblurring and HDRI processes. This significantly reduces the
dependency on the exposure time and enhances the robustness of 3D HDR reconstruction.

3.4 LOSS FUNCTION

Given a series of video frames moving along a continuous trajectory, we can estimate the learnable
Gaussian primitives, the camera trajectory parameters, implicit CRF representation and the exposure
time for each image. This estimation can be achieved by minimizing a loss function, which can be
specifically expressed as follows:

L = Lrec + λexpLexp, Lrec = (1− λ)L1 + λLD-SSIM, (7)

where Lrec can constrain the consistency between the rendered image Ck(x) (the kth blurry LDR
image synthesized from 3D-GS using the aforementioned image formation model (Eq. 5)) and the
input LDR image Cgt

k (x).

To accurately model significant exposure variations in the input images, the second term of the loss
function normalizes the images to a medium exposure by scaling pixel intensities before computing
discrepancies Liu et al. (2020); Wang et al. (2024a):

Lexp = L1

(
Cgt

k (x)

C̄gt
k (x)

,
Ck(x)

C̄k(x)

)
+ LD-SSIM

(
Cgt

k (x)

C̄gt
k (x)

,
Ck(x)

C̄k(x)

)
, (8)

where C̄gt
k (x) and C̄k(x) represent the average pixel value of Cgt

k (x) and Ck(x). We set λexp =
0.25 in all our experiments, and train our models using the Adam optimizer (Kingma & Ba, 2017).

4 EXPERIMENTS

4.1 DATASETS

Synthetic datasets. We generated a synthetic dataset using Blender 3.6 with the Cycles engine,
featuring four distinct scenes: Factory, Pool, Cozyroom, and Trolley. Each scene contains 77 images,
with manually crafted Bézier camera trajectories. The dataset generation combines physical motion
blur imaging model (Wang et al., 2023) and tone mapping from HDR to LDR. For each scene,
images were assigned random exposure times, and captured using a continuous camera trajectory,
generating sharp HDR images, which were averaged over the exposure period to create motion-
blurred images. These HDR blurred images were then processed using the tone-mapping function
from HDR-NeRF (Huang et al., 2022) to generate the corresponding LDR blurred images.
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Real datasets. Since current HDRI datasets consist of multiple images with known exposure times
captured from fixed viewpoints, which differs from our approach of using casual videos for HDR
scene reconstruction, we captured a challenging real-world dataset, CasualVideo, using the Intel
RealSense D455 and Google Pixel 8 Pro mounted on a DJI RS3 Mini gimbal. The dataset com-
prises two subsets: RealSense and Smartphone. RealSense contains four sequences: Yakitori, Toufu,
Toufu-vicon and Girls-vicon, where the the latter two sequences have ground truth camera poses
from the Vicon motion capture system. Smartphone contains two sequences: Building and Fish.

Due to the RealSense camera cannot provide the current exposure times when auto-exposure is
enabled, which is detrimental for baseline methods that require exposure time, we implemented our
own auto-exposure control with fixed aperture and gain (ISO) following Su & Kuo (2015) on both
camera devices. We also developed scripts to extract measured exposure times from the hardware
as ground truth labels. Additionally, we utilized the publicly available dataset, ScanNet (Dai et al.,
2017), which contains scenes recorded with the auto-exposure feature enabled (Bae et al., 2024), to
evaluate the performance of our method on real-world data.

4.2 IMPLEMENTATION DETAILS

We implemented our method using PyTorch within the gsplat framework (Ye et al., 2024) with
MCMC strategy (Kheradmand et al., 2024). The optimization of HDR scene representation, implicit
CRF representation, camera motion trajectory, and exposure times was performed using the Adam
optimizer, with the learning rate for the Gaussian primitives kept consistent with gsplat. To balance
performance and efficiency, we set the number of virtual camera poses (i.e., n in Eq. 5) to 10. For
initialization, we used HLoc (Sarlin et al., 2019) instead of COLMAP Schönberger & Frahm (2016)
like in many other works to initialize camera poses and Gaussian primitives for the synthetic and
our Realsense datasets, because we discover that learning-based SfMs performs more robustly in our
challenging setting, as the change of exposure time breaks the photo-consistency across consecutive
frames, meanwhile, overexposure and underexposure are challenging for hand-crafted feature detec-
tion. For the ScanNet dataset (Dai et al., 2017) and our Smartphone datasets, DPV-SLAM (Lipson
et al., 2024) was used since HLoc (Sarlin et al., 2019) was unable to initialize due to the poor im-
age quality of the scenes. Synthetic dataset experiments were conducted on a single NVIDIA RTX
3090 (24G VRAM) GPU, while real dataset experiments were performed on a single NVIDIA RTX
A6000 (48G VRAM) GPU because the real datasets contain more images and require larger VRAM.

4.3 BASELINE METHODS AND EVALUATION METRICS

To evaluate the robustness of our method in learning accurate scenes representation under poorly
exposed conditions and server motion blur, we compared it against scene reconstruction methods
that handle brightness variations, e.g. HDR-NeRF (Huang et al., 2022), HDR-Plenoxels (Jun-Seong
et al., 2022), Gaussian-W (Zhang et al., 2024), as well as method for scene reconstruction from
blurred images, such as BAD-Gaussians (Zhao et al., 2024). In addition, 3D-GS (Kerbl et al., 2023)
implemented by gsplat (Ye et al., 2024) was included as the comparison baseline. The quality of im-
ages rendered from the learned scene is evaluated with commonly used metrics such as PSNR, SSIM
(Wang et al., 2004), and LPIPS (Zhang et al., 2018). Furthermore, to evaluate whether our method
effectively recovers camera motion trajectories, we compared it with pose estimation method, e.g.
HLoc (Sarlin et al., 2019), DPV-SLAM (Lipson et al., 2024), BAD-Gaussians (Zhao et al., 2024).For
pose estimation accuracy, we utilize absolute trajectory error (ATE) with mean and std as the met-
ric. I2-SLAM (Bae et al., 2024) is a concurrent work similar to our settings, but since it is not
open-sourced, we cannot compare our method against it.

4.4 QUANTITATIVE EVALUATION RESULTS.

We conducted experiments with our method using two different settings: one with randomly
initialized exposure times (CasualHDR-random) and one with ground truth exposure times
(CasualHDR-gt). We demonstrated the performance of our method in scene learning compared
to prior methods through novel view synthesis and image deblurring tasks, while also comparing the
ATE metric in the pose estimation task. The results of Scannet dataset and 2 scenes of Realsense
dataset will be presented in the supplementary materials.

Due to the fact that most images in real-world datasets are blurry, we select 5 to 10 sharp images
for each sequence to evaluate metric.The experimental results in Table 1 and Table 2 demonstrate
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Figure 3: Qualitative results of HDR editing with various exposure times. After reconstruction, Casual-
HDR can generate any expected exposure time at a given camera pose.

Table 1: Quantitative comparisons on the synthetic datasets in terms of novel view

Factory Pool Trolley Cozyroom
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

gsplat (Kerbl et al., 2023) 15.14 0.75 0.25 11.73 0.65 0.30 14.48 0.62 0.32 13.86 0.76 0.22
Gaussian-W (Zhang et al., 2024) 23.68 0.75 0.26 23.28 0.69 0.62 17.83 0.64 0.34 27.16 0.85 0.15

BAD-Gaussians (Zhao et al., 2024) 14.99 0.81 0.25 25.09 0.72 0.30 16.12 0.66 0.22 17.12 0.75 0.20
HDR-Plenoxels (Jun-Seong et al., 2022) 24.36 0.72 0.29 30.84 0.81 0.33 17.05 0.55 0.42 28.13 0.81 0.13

HDR-NeRF (Huang et al., 2022) 14.57 0.31 0.68 - - - - - - 13.62 0.32 0.77

CasualHDR-random (ours) 30.25 0.89 0.10 32.63 0.91 0.09 25.14 0.81 0.24 29.62 0.86 0.10
CasualHDR-gt (ours) 30.75 0.90 0.09 32.36 0.92 0.08 25.85 0.88 0.11 31.32 0.92 0.09

that our method significantly outperforms prior methods in novel view synthesis. Despite using
randomly initialized exposure times, CasualHDR-random still exceeds previous works due to its
ability to jointly optimize exposure times and CRF representation. Unlike HDR-NeRF (Huang et al.,
2022), our method can learn accurate HDR scene representations from degraded images without
measured exposure times. Note that HDR-NeRF failed in all scenes on the real dataset. Additionally,
by modeling the physical principles of actual camera imaging and integrating this into the scene
learning, our method shows improved performance over HDR-Plenoxels (Jun-Seong et al., 2022)
and Gaussian-W (Zhang et al., 2024). Furthermore, our method utilizes spline representations to
optimize camera motion trajectories, facilitating proper scene representation learning, whereas the
aforementioned methods struggle without ground truth camera poses.

Table 3 shows that our method achieves superior performance in image deblurring task compared
to BAD-Gaussians (Zhao et al., 2024). This is because our method can recover accurate scene
representation from images affected by both motion blur and poor exposure.

The experimental results presented in Table 4 demonstrate that our method outperforms prior ap-
proaches in the pose estimation task. HLoc, which relies on feature point matching, exhibits poor
performance under conditions of varying brightness and motion blur. Although DPV-SLAM (Lipson
et al., 2024) and BAD-Gaussians (Zhao et al., 2024) can operate effectively in the presence of mo-
tion blur, they struggle to tolerate environments with high-contrast and varying exposure time. This
indicates that our method can robustly estimate continuous camera trajectories under high-contrast
environments, within varying exposure time and motion blur.

4.5 QUALITATIVE EVALUATION RESULTS.

The results in Figure 3 demonstrate that our method can accurately learn HDR scenes and the bright-
ness of the rendered images can be adjusted by manually changing the exposure time. The qualita-
tive comparisons of the NVS and deblurring tasks on both synthetic and real datasets are shown in
Figure 4, Figure 5, Figure 6 and Figure 7. The experimental results indicate that our method out-
performs previous approaches and is visually closer to the ground truth. This demonstrates that our
method can effectively learn scene representations from images that simultaneously exhibit varying
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Table 2: Quantitative comparisons on the real-world datasets in terms of novel view.

Fish-pixel8pro Building-pixel8pro Toufu-vicon Girls-vicon
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

gsplat 23.20 0.82 0.16 25.99 0.81 0.11 24.34 0.81 0.28 23.81 0.77 0.28
BAD-Gaussians 24.28 0.78 0.14 26.93 0.82 0.11 24.22 0.82 0.24 23.95 0.77 0.28
HDR-Plenoxels 19.39 0.53 0.65 26.87 0.81 0.15 17.90 0.51 0.69 26.73 0.84 0.30

Gaussian-W 26.13 0.83 0.15 27.99 0.82 0.11 26.38 0.83 0.29 26.88 0.86 0.25

CasualHDR-random (ours) 28.30 0.83 0.13 28.79 0.83 0.09 30.87 0.90 0.15 32.00 0.90 0.19
CasualHDR-gt (ours) 30.81 0.87 0.12 29.71 0.85 0.08 31.34 0.92 0.12 32.39 0.91 0.17

Table 3: Quantitative comparisons on the synthetic datasets in terms of deblur

Factory Pool Trolley Cozyroom
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

BAD-Gaussians (Zhao et al., 2024) 24.32 0.73 0.12 25.87 0.79 0.23 19.06 0.62 0.19 23.37 0.79 0.11

CasualHDR-random (ours) 31.20 0.88 0.05 32.95 0.87 0.10 23.65 0.69 0.12 29.60 0.84 0.05
CasualHDR-gt (ours) 32.00 0.91 0.07 34.53 0.96 0.05 29.35 0.87 0.08 33.01 0.93 0.04

Table 4: Quantitative comparisons for pose estimation on the Realsense sequences with Vicon motion
captured groundtruth. The results are in the absolute trajectory error metric (ATE) with units in centimeters.

HLoc DPV-SLAM BAD-Gaussians CasualHDR-random (ours) CasualHDR-gt (ours)

Toufu-vicon .4644±.3921 .4043±.3877 .3935±.4212 .3687±.3874 .3595±.3462
Girls-vicon 1.528±1.011 .9557±.8231 .8548±.8628 .8294±.8834 .6478±.8268

exposure time and motion blur, while prior work lacks robustness given the challenging conditions
and failed to reconstruct high-quality HDR 3D scene.

4.6 ABLATION STUDIES.

We conduct experiments to evaluate the performance of our method under various configurations on
three different sequences of synthetic datasets(e.g. Pool, Factory and Cozyroom).

Initialization for camera motion spline. In our method, the camera motion spline needs to be
initialized by leveraging the poses estimated from HLoc (Sarlin et al., 2019) or DPV-SLAM (Lipson
et al., 2024) before being optimized. Therefore, the configuration of initialization will impact the
performance of our method. We define a ratio representing the number of control knots of spline
divided by the number of input images , and evaluate the effect of the ratio. The results in Table 5
indicate that model performance improves until it saturates as the ratio increases. We set ratio = 3.0
for all experiments to ensure a trade-off between the performance and computational overhead.

Table 5: Ablation studies on the ratio
for initializing camera motion spline.

Pool Factory
ratio PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

0.5 29.89 0.83 0.12 23.25 0.69 0.20
1.0 30.49 0.83 0.11 23.93 0.70 0.16
1.5 31.13 0.84 0.10 24.78 0.74 0.16
2.0 32.01 0.87 0.10 25.64 0.77 0.16
2.5 32.04 0.88 0.10 26.90 0.81 0.14
3.0 32.95 0.88 0.10 27.25 0.84 0.15
3.5 33.13 0.89 0.09 27.54 0.84 0.14
4.0 33.63 0.90 0.08 27.60 0.84 0.14

Table 6: Ablation study on each module to investigate their ef-
fect on model performance.

Deblur
Exp.
Opt.

CRF
Conti.
Traj.

Factory Cozyroom
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✗ ✗ ✗ ✗ 15.14 0.75 0.25 13.86 0.76 0.22
✓ ✗ ✗ ✗ 14.99 0.81 0.25 17.12 0.75 0.20
✗ ✗ ✗ ✓ 19.13 0.62 0.28 20.95 0.71 0.30
✓ ✗ ✗ ✓ 20.30 0.65 0.28 19.65 0.70 0.30
✗ ✓ ✓ ✓ 25.17 0.77 0.12 26.89 0.81 0.12
✓ ✓ ✓ ✓ 27.25 0.84 0.15 29.60 0.84 0.05

Effect of each module. Deblur represents the method’s ability to remove blur, Exp. Opt. indicates
exposure time optimization, CRF represents whether the model includes a CRF module, and Conti.
Traj. refers to the use of continuous trajectories to represent camera motion. The results presented
in Table 6 highlight several key findings: 1) Utilizing splines to represent the continuous camera
trajectory significantly enhances model performance, achieving approximately a 24% improvement
in PSNR. 2) Jointly optimizing exposure time while learning an implicit representation of the CRF
substantially boosts performance, leading to a 42% increase in PSNR. This demonstrates that our
method can robustly reconstruct HDR scenes in environments with varying brightness. 3) Repre-
senting motion blur as the average of a series of sharp images over the exposure time yields a 9%
improvement in PSNR, showing that our approach effectively handles input images with motion
blur. In summary, the proposed representation of continuous trajectories and the joint optimization
of exposure time with CRF contribute significantly to the model’s performance.
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5 CONCLUSION

In this paper, we introduce a novel method CasualHDR for reconstructing 3D HDR scenes from
videos casually captured with low-cost cameras, which often exhibit limited dynamic range and
motion blur. Our method can reconstruct 3D HDR scene and generate LDR images with given
specified exposures and camera poses, providing high robustness and flexibility. By leveraging the
auto-exposure capabilities of modern cameras, we incorporate the high dynamic range of captured
videos into a unified physical image formation model. This allows for the joint optimization with
exposure time, continous-time camera trajectory, and camera response function, enabling accurate
HDR scene reconstruction. Extensive experiments demonstrate that our method outperforms previ-
ous approaches in 3D HDR reconstruction.

BAD-Gaussians Gaussian-W HDR-Plenoxels Ours-random Ours-gt Reference

Figure 4: Qualitative comparison on the Girls-vicon sequence of the Realsense dataset in terms of NVS.

BAD-Gaussians HDR-Plenoxels Gaussian-W Ours-random Ours-gt Reference

Figure 5: Qualitative comparison on the Building sequence of the Smartphone dataset in terms of NVS.

BAD-Gaussians HDR-Plenoxel Gaussian-W Ours-random Ours-gt Reference

Figure 6: Qualitative comparison on the Trolley sequence of the synthetic dataset in terms of NVS.

Figure 7: Qualitative comparison on the Pool sequence of the synthetic dataset under training view.BAD-
Gaussians is capable to deblur the training views as ours Due to the failure of pose optimization in the
BAD-Gaussians, its image are misaligned with others.
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A APPENDIX

In the appendix, we present more quantitative and qualitative experimental results for image ren-
dering under both training and novel viewpoints. We also visualized the results of camera motion
estimation and performed a qualitative comparison. The rendered novel view high frame-rate HDR
video is presented in the supplementary video. We will present each part as follows.
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A.1 MORE EXPERIMENTAL RESULTS UNDER TRAINING VIEW.

Figure 8: Qualitative comparison on synthetic dataset (Trolley, Factory, Cozyroom) under training view.
BAD-Gaussians is capable to deblur the training views as ours. However, due to the failure of pose optimization
in the BAD-Gaussians, its image are misaligned with others.

The results in Figure 8 demonstrate that our method effectively deblurs images under training views
and achieves better image quality compared to other methods. It is worth noting that while BAD-
Gaussians (Zhao et al., 2024) is also capable of deblurring images under training view, its lack of
robustness to varying brightness conditions leads to pose optimization failure. As a result, The
performance of deblurring is poor, even causing misalignment in the images under the training view.

Table 7: Quantitative comparisons on the synthetic datasets in term of deblur.

Factory Pool Trolley Cozyroom
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

BAD-GS (Zhao et al., 2024) 24.32 0.73 0.12 25.87 0.79 0.23 19.06 0.62 0.19 23.37 0.79 0.11
BAD-GS+bilagrid (Wang et al., 2024c) 28.25 0.79 0.08 31.99 0.86 0.06 22.16 0.65 0.15 26.48 0.81 0.09

CasualHDR-random (ours) 31.20 0.88 0.05 32.95 0.87 0.10 23.65 0.69 0.12 29.60 0.84 0.05
CasualHDR-gt (ours) 32.00 0.91 0.07 34.53 0.96 0.05 29.35 0.87 0.08 33.01 0.93 0.04

Table 8: Quantitative comparisons on the ScanNet dataset in term of deblur (using BRISQUE metric).

scene0024 01 scene0031 00 scene0036 00 scene0072 01 scene0077 00 scene0489 02 Average

BAD-GS (Zhao et al., 2024) 42.78 60.48 57.37 42.72 67.30 65.01 55.94
CasualHDR-random (ours) 38.08 47.65 53.37 37.55 62.35 58.23 49.53

We added comparison against the bilateral grid method (Wang et al., 2024c) applied to gsplat (Ye
et al., 2024) and BAD-Gaussians (Zhao et al., 2024) in Table 7 and Table 10. The bilateral grids
applied to NeRFs and 3DGS gives robustness to large appearance changes, enabling high quality
3D LDR reconstruction and mid-tone rendering quality. However, bilateral grids are not compatible
with representing a 3D HDR scene, thus gives degraded renderings on high-contrast, over-exposured
and under-exposured views.
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In addition, we also evaluated the quantitative metrics for deblurring on public real-world datasets,
e.g. ScanNet datastes. Due to most images of ScanNet dataset are motion-blurred, we can not
find sharp reference images for evaluating, thus we utilize the no-reference image quality metric
BRISQUE (Mittal et al., 2012) to quantitatively compare the deblurring performance between our
method and BAD-Gaussians (Zhao et al., 2024), as shown in Table 8.

A.2 MORE EXPERIMENTAL RESULTS UNDER NOVEL VIEW.

The quantitative experimental results in Table 9 indicate that our method significantly outperforms
previous approaches in novel view synthesis on two real-world datasets. Further, the qualitative ex-
perimental results in Figure 10 and Figure 11 demonstrate that our method produces higher-quality
rendered images under novel viewpoints compared to other approaches. These results indicate that
our method is capable of learning accurate HDR scene representations and implicit CRF represen-
tations.

Table 9: Quantitative comparisons on Realsense and SmartPhone dataset under novel view.

Yakitori Toufu
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

gsplat (Ye et al., 2024) 25.04 0.83 0.27 29.88 0.81 0.24
BAD-Gaussians (Zhao et al., 2024) 23.31 0.78 0.28 30.05 0.82 0.24
HDR-Plenoxels (Jun-Seong et al., 2022) 27.13 0.81 0.33 30.91 0.82 0.29
Gaussian-W (Zhang et al., 2024) 27.57 0.84 0.28 30.89 0.83 0.26

CasualHDR-random (ours) 28.56 0.84 0.22 32.75 0.87 0.17
CasualHDR-gt (ours) 29.19 0.87 0.16 32.84 0.91 0.18

Fish-pixel8pro Building-pixel8pro Toufu-vicon Girls-vicon
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

gsplat (Ye et al., 2024) 23.20 0.82 0.16 25.99 0.81 0.11 24.34 0.81 0.28 23.81 0.77 0.28
gsplat+bilagrid (Wang et al., 2024c) 25.26 0.78 0.14 25.47 0.77 0.16 30.48 0.82 0.17 26.76 0.69 0.25
BAD-GS (Zhao et al., 2024) 24.28 0.78 0.14 26.93 0.82 0.11 24.22 0.82 0.24 23.95 0.77 0.28
BAD-GS+bilagrid (Wang et al., 2024c) 25.12 0.77 0.17 25.63 0.77 0.15 30.52 0.83 0.17 26.18 0.71 0.23
HDR-Plenoxels (Jun-Seong et al., 2022) 19.39 0.53 0.65 26.87 0.81 0.15 17.90 0.51 0.69 26.73 0.84 0.30
Gaussian-W (Zhang et al., 2024) 26.13 0.83 0.15 27.99 0.82 0.11 26.38 0.83 0.29 26.88 0.86 0.25

CasualHDR-random (ours) 28.30 0.83 0.13 28.79 0.83 0.09 30.87 0.90 0.15 32.00 0.90 0.19
CasualHDR-gt (ours) 30.81 0.87 0.12 29.71 0.85 0.08 31.34 0.92 0.12 32.39 0.91 0.17

In addition, we compare against the bilateral grid method (Wang et al., 2024c) applied to gsplat
(Ye et al., 2024) and BAD-Gaussians (Zhao et al., 2024), as shown in Table 9 and Figure 9. As
aforementioned, with bilateral grid (Wang et al., 2024c), BAD-Gaussians (Zhao et al., 2024) cannot
represent the HDR details of the 3D scenes, thus yields degraded renderings in the high-contrast
areas. As it is showed in the Figure 9, the girls in the Fish sequence of the Smartphone dataset are
over-exposed in some views, thus exhibits under-saturation; Meanwhile, the duck in the Building
sequence of the Smartphone dataset has lost its details and exhibits artifacts on its edge.

A.3 MORE EXPERIMENTAL RESULTS ABOUT POSE ESTIMATION.

To demonstrate that our method can accurately recover the continuous camera motion trajectory, we
visualized and compared the trajectory optimized by our method with the ground truth trajectory,
as well as with other baselines. The qualitative results in Figure 12 and Figure 13 indicate that our
method achieves higher pose estimation accuracy compared to previous methods.
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Figure 9: Qualitative comparison with bilateral method on Smartphone dataset under novel view. It is
better to view the results on a monitor with high resolution and a gamut coverage close or better than sRGB.
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Figure 10: Qualitative comparison on synthetic dataset(Cozyroom, Factory, Outdoorpool) under novel
view.
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BAD-Gaussians HDR-Plenoxels Gaussian-W Ours-random Ours-gt Reference

Figure 11: Qualitative comparison on Smartphone dataset under novel view.

Figure 12: Qualitative comparison for pose estimation on the Girls-vicon sequence of the Realsense
dataset.

Figure 13: Qualitative comparison for pose estimation on the Toufu-vicon sequence of the Realsense
dataset.
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