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Abstract
Weighted graphs are ubiquitous throughout biology, chemistry, and the social
sciences. However, most current deep generative models are designed for un-
weighted graphs and are not easily extended to weighted topologies. This paper
proposes two autoregressive models on weighted graphs: Adj-LSTM and BiGG-
E. Experiments on a variety of benchmark datasets demonstrate that both models
adequately capture distributions over weighted graphs while remaining computa-
tionally scalable. Specifically, we experiment with Erdős–Rényi, tree, lobster,
and 3D point cloud graph data sets.

1 Introduction
Graph generative modeling is a prominent field in machine learning due to its application in a variety
of domains, such as molecule generation, semantic parsing, and phylogenetic tree construction (Guo
and Zhao, 2020). Most graph generative models, however, focus on graph topology that precludes
the learning of a joint distribution over edges and weights. Indeed, such a model must account for
complex, non-local dependencies between the graph’s edges and corresponding weights, where the
sampling of a weight depends on the existence of an edge that further complicates this distribution.

In this work, we compare three autoregressive models that learn distributions over weighted graphs:
Adjacency-LSTM (Adj-LSTM), BiGG-E, and BiGG+GCN. Adj-LSTM is a fully expressive but
slower model that directly parameterizes a graph’s adjacency matrix; BiGG-E is an extension of the
existing BiGG model (Dai et al., 2020) that takes advantage of graph sparsity to jointly generate a
weighted graph in log-linear time; and BiGG+GCN is a two-stage model consisting of the original
BiGG model and a graph convolutional network (GCN) that generates edge weights conditioned
on an unweighted graph. Experiments on benchmark datasets indicate the models are capable of
learning joint distributions over weighted graphs and highlight relative computational performance.

2 Background
Data. We define a weighted graph G = (V,E,W ) as a graph with a set of nodes V = {v1, ..., vn},
edges E ⊆ V × V = {(vi, vj)|vi, vj ∈ V }, and corresponding edge weights W : V × V → R+,
where W (vi, vj) = wij if (vi, vj) ∈ E and otherwise is 0. A graph under node ordering π is
represented by its weighted adjacency matrix Aπ ∈ Rn×n with entries W (vi, vj), from which the
probability of observing a graph G is expressed as p(G) = p(|V | = n)

∑
π p(A

π) (Dai et al., 2020).

Given that the probability of observing a particular graph necessitates summing over all possible
node orderings, we assume a single canonical ordering π of G as in Liao et al. (2019) to estimate the
lower bound p(G) ≃ p(|V | = n)p(Aπ(G)) (Liao et al., 2019). As implemented in Dai et al. (2020),
we estimate p(|V | = n) as a simple multinomial distribution over the number of nodes in the training
graph set and learn an expressive model for p(Aπ(G)) using deep autoregressive neural networks.
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Previously Proposed Generative Models for Graphs. Numerous generative models have suc-
cessfully learned distributions over graph topologies with varying degrees of scalability. Early work
consists of VAE-based methods (Grover et al., 2019; Kipf and Welling, 2016), autoregressive models
(Dai et al., 2020; Liao et al., 2019; You et al., 2018), and more recently, score-based diffusion models
(Jo et al., 2022; Niu et al., 2020). Most implementations do not directly model a joint distribution
over continuous non-negative edge weights. Such weighted graphs are a common occurrence in the
sciences, which motivates us to build general models tailored to these graphs.

BiGG (Dai et al., 2020) addresses scalability issues that arise in modeling large graphs. The original
model leverages the sparsity inherent to many real-world graphs to directly generate the edge-set in
an autoregressive manner by directly estimating

p(A) =

m∏
i=1

p(ei|{ek;k<i}) (1)

A row i of the adjacency matrix is constructed by building a decision tree that recursively divides
the interval of possible node connections [v1, vi−1] in half through a sequence of Bernoulli decisions
corresponding to whether an edge connection exists in the left-half or the right-half of the node
interval. Once an interval [vj , vj ] is reached in the decision tree (denoted as a leaf of the tree), an
edge between nodes vi and vj is formed. As autoregressive models scale well with larger graphs, we
use these models for weighted graph generation.

3 Methods and Contributions
3.1 Joint Modeling of Topology and Edge Weights

We use the framework established in Section 2 to modify (1) as follows: given an edge exists between
nodes vi and vj , sample a corresponding weight w from a conditional density function p(w). Since
no weight is sampled for non-edge connections, the probability of observing an adjacency matrix can
be expressed as

p(A) =

m∏
i=1

p(ei, wi|{(wk, ek)}k<i) =

m∏
i=1

p(ei|{(wk, ek)})p(wi|ei, {(wk, ek)}). (2)

Using (2), we can compute our objective function as the log likelihood over the edges of the adjacency
matrix as

L(θ;E,W ) = log pθ(E)pθ(W |E) =

m∑
i=1

log pθ(ei, ·) +
m∑
i=1

log pθ(wi|ei, ·) (3)

Last, we place a prior distribution on the non-negative weights wi using a normal random variable
ϵi ∼ N(µi, σi) transformed with the softplus function Softplus(ϵi) = log(1 + exp(ϵi)). In our
studies, such a transformation of a normal random variable performs best with gradient-based
optimization by providing enough flexibility in modeling distributions, where work such as Rodríguez
and Dunson (2011) demonstrates that a probit transformation of a random normal variable provided a
prior capable of generating a rich class of distributions. Thus, with the softplus-normal prior placed
on the weights, the term log p(wi|ei, ·) in (3) becomes

log pθ(wi|ei, ·) = −1

2
log(σ2

i )−
1

2σ2
i

(log(ewi − 1)− µi)
2

where the models use multilayer perceptrons (MLPs) to parameterize µi and σ2
i .

3.2 Proposed Models

Adjacency-LSTM. Our first model directly generates the lower half of A row-wise in O(n2)
time by using an LSTM that models topology and weights jointly (see Appendix 6.2 for details).
The objective function to be minimized is augmented from (2) as the model directly generates A
(Appendix 6.3)

L(θ;E,W ) =

n∑
i=1

i−1∑
j=1

(1− eij) log(1− pij) + eij log pij + eij log p(wij |eij)

2
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BiGG-E. We extend the BiGG model to generate weighted sparse graphs with n nodes and m
edges in O((n+m) log n) time (Dai et al., 2020). Weight generation in Section 3.1 is implemented
by sampling a weight once a leaf in the decision tree is reached. Such an extension allows for the joint
modeling of edge existences and corresponding weights in an autoregressive manner: the generation
of future edges and weights depends on the set of edges and weights generated in the graph thus far.
The objective function is given by (3), as we are directly generating the edge-set of A.

BiGG+GCN. We developed a two-stage comparison model that (1) uses the original BiGG to
generate an unweighted graph and (2) uses a GCN conditioned on the topology of the unweighted
graph to sample the edge weights. This model serves as a comparison model to the joint estimation
of edge weights and topologies with BiGG-E versus independent estimation.

4 Experiment
Our experiments answer the following questions: (1) do the models autoregressively generate
weights; (2) do the models capture complex weighted graph distributions; and (3) do the models scale
computationally to larger graphs? We use the same evaluation protocol per Liao et al. (2019). We use
measures on graph topologies and weights independently and jointly. Our measures of graph topology
use the maximum mean discrepancy (MMD) (Gretton et al., 2012) statistic with test functions on
degree distribution, clustering coefficient, and spectrum of the normalized unweighted Laplacian.
Our measures of graph weights include first and second-order summary statistics on the edge weights,
as well as the MMD statistic on the distribution of weights per graph. Our measure that captures
graph topology and edge weights jointly is the MMD on the spectrum of the normalized weighted
Laplacian matrix. Finally, we use an Erdos-Renyi baseline model. Results are in Table 1, with
complete summary measures located in Appendix 6.6.

Data. We use the following datasets to evaluate each models’ generative quality (Appendix 6.4).

• Erdős–Rényi: 100 graphs that represent a null case to test whether the models are capturing the
distribution of weighted graphs under an Erdős–Rényi model. (Erdős and Rényi, 1959)

• Tree: 1000 graphs of bifurcating trees. The tree weights are constructed to test for the autore-
gressiveness in each model: weights globally have a standard deviation of 2, but weights per tree
only have a standard deviation of 1. Hence, we should observe half as much variability among
weights when stratified among trees than when pooled together, on average.

• 3D Point Cloud: Graphs are of 41 household objects (Neumann et al., 2013).
• Lobster: 1000 graphs where edges at most two hops away from the backbone.

(1) Weight Generation and Autoregressiveness. We hypothesized both Adj-LSTM and BiGG-E
would outperform BiGG+GCN and the baseline model with respect to weight generation. While
Table 1 indicates the baseline models performed well when weights were generated independently
as in the Erdős–Rényi and lobster data sets, both struggled to capture the dependence found in the
weights for the tree data set, as evidenced by the lack in difference between the global weight standard
deviation (sw) and the per-tree standard deviation (sT ). On the other hand, the Adj-LSTM and
BiGG-E both demonstrated a clear difference in sw (1.955 and 1.962, respectively) and sT (1.118
and 1.084, respectively).

(2) Capturing Distributions. For the lobster data set, we observed that both Adj-LSTM and
BiGG-E outperformed BiGG+GCN and the baseline model on all observed metrics. The superior
topological spectral and degree MMD measures indicated Adj-LSTM better captured the topological
properties of the graphs, whereas BiGG-E provided better weight generation from the superior
weighted spectral and weight MMD measures, though the differences appeared minor between the
two models. A similar observation occurred for the tree data sets, where both models outperformed
the baseline Erdos-Renyi model and maintained similar performance across measures. Overall, all
proposed models seemed to be capturing the distributions of smaller graphs quite well.

3
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Table 1: Model performance on datasets. The MMD metrics use the test functions from {Deg., Clus.,
Spec. using Unweighted (T) or Weighted (W) Laplacian}. For the MMD metrics, smaller values are
better. OOM indicates out of memory. Node and edge counts are given as max (avg).

Datasets
Methods

Adj-LSTM BiGG-E BiGG+GCN Erdos-Renyi

Erdős–Rényi Spec-T 0.516 2.81e−3 4.26e−3 2.06e−3

Spec-W 0.469 3.64e−3 4.64e−3 2.48e−3

|V |max = 749 (499) Deg. 0.437 4.00e−3 7.13e−3 2.80e−3

|E|max = 2846 (1349) Clus. 0.744 0.034 0.014 0.015

Tree Spec-T 1.67e−3 1.45e−3 8.55e−4 0.268
Spec-W 1.13e−3 1.20e−3 2.09e−3 0.109

|V | = 199, |E| = 198 sw 1.955 1.962 1.955 1.994
σw = 2, σT = 1 sT 1.118 1.084 1.956 1.993

3D Point Cloud Spec-T OOM 1.64e−2 8.25e−3 0.089
Spec-W OOM 1.73e−2 9.50e−3 0.112

|V |max = 5037 (1377) Deg. OOM 0.247 0.070 0.418
|E|max = 10886 (3074) MMDWT OOM 2.34e−5 3.43e−3 9.01e−3

Lobster Spec-T 9.98e−4 1.86e−3 1.11e−3 0.192
Spec-W 8.51e−4 7.86e−4 1.32e−3 0.270

|V |max = 100 (55) Deg. 2.46e−4 8.28e−4 4.84e−4 0.178
|E|max = 99 (54) MMDWt 4.93e−3 3.27e−3 5.09e−3 0.010

Figure 1: Model Performance on Graph Size

(3) Scalability. We hypothesized that Adj-LSTM would struggle with scalability despite producing
high quality smaller graphs. On the other hand, we expected BiGG-E and BiGG+GCN to perform
well modeling graphs of any size. Indeed, Table 1 indicates Adj-LSTM performed well on the
smaller tree and lobster graphs well, but struggled to scale to the Erdős–Rényi graphs and was
computationally infeasible for the 3D Point Clouds. BiGG-E, however, maintained high generative
quality with respect to the Erdős–Rényi graphs. BiGG+GCN outperformed BiGG-E on the 3D
Point Clouds, suggesting difficulties in jointly training over topologies and weights with respect to
large graphs. Figure 1A shows that both models are capable of still sampling weighted graphs in
O((n+m) log n) time, and Figure 1D shows both models train in O(log n) time. Finally, Figure 1C
shows that BiGG-E scales more easily with larger graphs, where BiGG+GCN scaled with graphs up
to 10K nodes but begins failing to scale on graphs with 15K nodes.

5 Conclusion and Future Work
We introduced two autoregressive models that can learn complex joint distributions over graphs
with edge weights. Both Adj-LSTM and BiGG-E are able to learn from distributions from smaller
graphs, and BiGG-E scales to graphs with thousands of nodes. Hence, future work consists of further
exploring the benefits of joint modeling edge weights and topologies by learning joint distributions
over topologies and vectors of edge and node attributes, and learning conditional distributions over
these given node- or edge-related data.
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6 Appendix
6.1 More Details on Related Work

Graph Generative Models. The earliest graph generative models date back to Erdos-Renyi graphs,
which assume an identical and independent probability of existence for all edges in the graph
(Erdős and Rényi, 1959). Barbasari and Albert introduce a generative model that uses a preferential
attachment mechanism to produce graphs obeying a power law over its degree distribution, where the
degree of a node is the number of edges in the graph connected to that node (Albert and Barabasi,
2002). While additional improvements beyond Erdos-Renyi and Barbasari-Albert graphs encapsulate
deeper mathematical properties of graphs, such hand-engineered models often fail to capture subtle yet
complex dependencies between edges in real-world graphs, motivating the development of expressive
deep graph generative models capable of learning potentially nonlinear relationships between the
edges of a graph.

Deep generative modeling has proven to be a successful avenue in the learning of probability
distributions over graphs, with the deployment of a diverse set of architectures. Early work consists
of VAE-based methods (Kipf and Welling, 2016) that require prohibitively costly graph matching,
limiting their success on small graphs. Grover et al. (2019) improves upon the VAE framework by
parameterizing the encoder-decoder pipeline with graph neural networks that incorporate node and
edge features. While Graphite scales to larger graphs compared with earlier models, these gains
on larger graphs are limited to downstream representation tasks such as link prediction and node
classification. Recently, new score-based diffusion models such as those of Niu et al. (2020) and Jo
et al. (2022) have been successfully deployed, where these models attempt to learn from the score
function over adjacency matrices of the graphs and apply annealed Langevin sampling dynamics
to recover the adjacency matrix. While such models consider weighted adjacency matrices in their
generative processes, their use of graph neural networks limits scalability to larger graphs. Further,
Langevin sampling dynamics compound this issue by making sampling too slow for large graphs
(Jo et al., 2022). Finally, autoregressive models decompose the problem of graph generation into
a sequential problem, wherein nodes are added to a graph one by one in a way that subsequent
connections depend on previously generated connections (Li et al., 2018; Liao et al., 2019; You et al.,
2018). Such models, however, are currently limited to the generation of unweighted graphs, where
most prominent examples do not incorporate edge weights.

Modeling Graphs with Edge Weights. Most prior work on graph generative modeling only
evaluates the generative quality of graphs with respect to topology, conditioning on edge and node
features at most. Even among models that do incporate edge features, most do not formally define a
joint distribution over topology and weights, nor do they evaluate whether sampled features match
the distribution from which they arise. Furthermore, existing popular autoregressive models such
as GraphRNN (You et al., 2018), GRAN (Liao et al., 2019), and BiGG (Dai et al., 2020) only learn
from unweighted graphs.

Generative Models on Weighted Graphs. Current work on graph generative models do not
directly consider modeling a joint distribution over graph edges and corresponding edge weights.
While various models incorporate edge and node features in the graph generative process, such
features are either categorical (Kawai et al., 2019; Kipf and Welling, 2016; Li et al., 2018) or are
designed to handle a specific class of graphs such as protein graphs (Ingraham et al., 2019). Prior
work on autoregressive models focus such as You et al. (2018), Liao et al. (2019), and Dai et al.
(2020) exclusively on unweighted graphs, motivating the need to provide an autoregressive model
capable of learning over weighted graphs.

Of the models that do learn from weighted graphs, most implementations do not provide a solid
foundation for the modeling of continuous non-negative edge weights. Graphite proposes modeling
weighted adjacency matrices by parameterizing a simple Gaussian random variable using graph
neural networks, but such a distributional assumption introduces the possibility of infeasible negative
weights. While Niu et al. (2020) proposes a score-based generative model that incorporates weighted
graphs, their model relies on thresholding to produce a weighted adjacency matrix. Further, Niu
et al. (2020) only evaluates their performance on discretized adjacency matrices. Finally, a recently
proposed hierarchical model HighGen (Karami, 2023) directly models edge weights by assuming a
multinomial distribution on the weight. However, such weights may only represent count variables,
whereas our weight generation is focused on continuous attributes that can be made general. Our
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model addresses these differences by formally defining a joint distribution over topology and edge
weights and evaluating the generative performance of our models on the edge weights themselves.

Scalability. Scaling generative models to larger graphs on the order of thousands of nodes remains
an ongoing challenge. The primary issue is that most generative models leverage the entire adjacency
matrix of a graph, which grows quadratically in size with respect to the number of nodes n in the
graph. Further, the VAE-based and score-based diffusion models discussed here utilize graph neural
networks, which - although powerful tools when working with graph data - necessitate performing
convolutions over the entire adjacency matrix of the graph and thus precludes scaling these models to
larger graphs. While such models have been able to scale up to graphs with a few hundred nodes (Jo
et al., 2022), we are interested in scaling graphs to thousands of nodes.

Autoregressive models have currently achieved the most progress with respect to scalability. The
earliest model GraphRNN uses a BFS-ordering scheme to reduce model complexity of generating a
full adjacency matrix, but still scales on the order of O(n2) with respect to graph size (You et al.,
2018). GRAN improves upon the scalability of autoregressive models by using graph neural networks
with an attention mechanism to generate blocks of nodes of the graph at a time, but trades this gain
in scalability for sample quality as the model must now use a mixture of Bernoulli distributions to
estimate edges per block of nodes (Liao et al., 2019).

6.2 Adjacency-LSTM Algorithm

Algorithm 1 outlines the sampling process for a graph of size n using Adj-LSTM. The functions
fp, fµ, fσ, and fw are each parameterized by MLPs with one hidden layer. The function Pos(·)
represents positional encodings from (Vaswani et al., 2017) on the initial row state of each node. The
embedding of edge eij and weight wij is composed of four components: the first is an embedding of
edge existence; the second is an embedding of the weight using an MLP; and the third and fourth are
trainable positional embeddings of the current adjacency entry of row i and column j, respectively.

Algorithm 1 Adjacency-LSTM Sampling Algorithm

Input: Number of nodes n
1: Initialization Initial row node state sR0,0 = (h0,0, c0,0)
2: for i = 1, ..., n do
3: si0 = si−1,i−1 + Pos(n+ 1− i) {initialize new row node state}
4: for j < i do
5: sij = Cat(sRi,j−1, s

C
i−1,j) {concatenate the previous node states of row i and column j}

6: pij = σ(fp(hij))
7: Sample edge eij ∼ Bernoulli(pij)
8: if edge exists then
9: µij = fµ(hij)

10: log σ2
ij = fσ(hij)

11: ϵij ∼ Normal(µij , σij)
12: wij = log(1 + exp(ϵij))
13: else
14: wij = 0
15: end if
16: embed(eij , wij) = Cat(Eij , fw(wij), Ni, Nj)
17: s∗ij = LSTM(embed(eij , wij); sij) {update the adjacency state with edge embedding}
18: sRij , s

C
ij = Split(s∗ij)

19: end for
20: sRi,i = sRi,i−1 {set final row node state for subsequent row generation}
21: end for
Output: G with V = {1, 2, ..., n} and E = {eij , wij}ni=1;j>i

6.2.1 Adjacency-LSTM Motivation

The primary issue with using an LSTM to build the adjacency matrix of a graph is that most recurrent
neural networks are best suited for linear data. Flattening an adjacency matrix and using an LSTM
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is one potential avenue for building a model, but suffers from significant drawbacks – the flattened
vector varies based upon the node ordering π, and the model sacrifices the underlying structure
of A. (You et al., 2018) Generative models such as GraphRNN and GRAN, which use recurrent
neural networks to build generative models of graphs, circumvent this issue by using node-level and
graph-level recurrent networks that maintain edge generation and the global structure of the graph,
respectively. Adj-LSTM was inspired by such methods and instead uses a partitioning of the hidden
state to take advantage of the grid structure of the adjacency matrix directly. We will also show that
partitioning the hidden state of a single LSTM provides greater generative quality, as this facilitates
information passing between the states of the row and column nodes.

The classic LSTM Cell uses four gates – the input, forget, cell, and output gates – to model dependen-
cies between observations. (Sak et al., 2014) Each gate can be summarized as a linear transformation
between the current input xt and prior hidden state ht−1

Zt = Wi·xt +Wh·ht−1 + b· (4)

followed by a sigmoid activation function. As we are now generating a two-dimensional matrix,
we re-index (4) as Zij,t = Wi·xij +Wh·hij,t−1 + b· to correspond with updating the LSTM with
adjacency entry xij .

To adapt the LSTM architecture to suit a two-dimensional adjacency matrix, we partition the hidden

state of the LSTM into hij =

[
hR
i,j−1

hC
i−1,j

]
, where hR

i,j−1 and hC
i−1,j are the prior hidden states of the

row and column nodes corresponding to entry Aij . As all state updates are the same regardless of
which entry Aij is being generated, we drop the subscripts i and j moving forward.

We re-compute the linear recurrence (4) using this partitioning of the hidden state. First, we note the
dimensions of each weight and bias vector. Suppose the hidden dimension is hdim and the embedding
dimension if idim. Then we have the following:

1. hR, hC ∈ Rhdim =⇒ h ∈ R2∗hdim and Wh ∈ R2hdim∗2hdim .
2. xij ∈ Ridim =⇒ Wi ∈ R2hdim∗idim .

3. b ∈ R2∗hdim .

Hence, we can partition the weight matrices and bias vector in (4) by defining the following partitions:

Wi =

[
UR

UC

]
(5)

Wh =

[
V RR V RC

V CR V CC

]
(6)

where each U∗ ∈ Rhdim∗idim and each V ∗∗ ∈ Rhdim∗hdim .

Using the partitioning from (5) and (6) and partitioning the bias vector as b =
[
bR

bC

]
, we see that the

partitioned form of (4) is [
ZR

ZC

]
=

[
URx+ V RRhR + V RChC + bR

UCx+ V CRhR + V CChC + bC

]
Jointly updating the row and column states allows for the transfer of information between the row
and column nodes via the weight matrices V RC and V CR, which we hypothesized would mitigate
the issue of long-term memory – as the model is predicting entries row-wise, information early in
the row-generation process becomes lossy without the joint update property of the LSTM with a
partitioned hidden state.

To test this hypothesis, we trained the lobster graphs on two models: one which uses the single
LSTM-update on the concatenated row and column states, and the other which uses two LSTMs that
update the row and the column states independently, which corresponds to setting V CR = V RC = 0

9



Autoregressive Generative Modeling of Weighted Graphs

in partitioning (6). As observed in Table 2, the LSTM joint update provided superior results on all
observed metrics.

Table 2: Performance on updating the states simultaneously ("Joint") vs separately ("Independent")

Update Mode Deg. Clus. Top Spec. Wt. Spec. MMDWt Error

Joint 2.46e−4 0.0 9.98e−4 8.51e−4 4.93e−3 0.065
Independent 3.27e−4 6.20e−5 2.98e−3 2.46e−3 6.40e−3 0.275

6.3 Log Likelihood and Training Objective Details

In this section, we provide details of the derivation of the training objective for the Adjacency
LSTM. For readability, assume entries Aij are conditioned on all prior entries; that is, p(Aij) ≡
p(Aij |{Akl}k<i;l<k)

For each entry Aij , we must decide if an edge connects nodes vi and vj by sampling eij ∼
Bernoulli(pij) and if so, sample a non-negative weight wij with prior p(wij). Hence, we note
that the probabilities of a particular entry Aij being 0 or weight wij are given by

p(Aij = 0) = p(eij = 0) = 1− pij

p(Aij = wij) = p(eij = 1)p(wij |eij = 1) = pijp(wij)

Hence, we may succinctly represent the probability of a particular entry of the adjacency matrix as

p(Aij = wij) = (1− pij)
1−eij

(
pijp(wij)

)eij
As the training objective is the log-likelihood over all entries A, we sum over the terms

ℓij
(
θ; (eij , wij)

)
= (1− eij) log(1− pij) + eij log pij + eij log p(wij)

where eij log p(wij) = 0 if eij = 0. This yields the training objective for Adj-LSTM as

L(θ;E,W ) = log

n∏
i=1

i−1∏
j=1

p(Aij) =

n∑
i=1

i−1∑
j=1

ℓij(θ; (eij , wij))

6.4 Information on Weights for Data

Weights were sampled from the following distributions:

• Erdős–Rényi: Weights were independently sampled from the standard normal distribution and
transformed with the softplus function.

• Tree: Weights were sampled in a hierarchical manner. For each tee Tk, a mean µk was sampled
uniformly between values 7 and 13. Given this mean, weights were sampled independently as
wij ∼ Γ(µ2

k, µ
−1
k ), where Γ is the gamma distribution.

• 3D Point Cloud: Weights were computed as wij = |nu · nv|, where nu is the normal vector of
the tangent plane consisting of all nodes adjacent to node u. (Neumann et. al, 2013)

• Lobster: Weights were independently sampled from the Beta distribution as wij ∼ Beta(5, 15).

Tree Autoregressiveness. The hierarchical sampling scheme of the tree weights provided a means
of testing for autoregressiveness in the models with respect to the edge weights. There were two main
quantities of interest: the variance of weights pooled across all trees (Var(wij)), and the variance of
weights found in a single tree (Var(wij |µk))). Note a few preliminaries that are easily derived from
their respective distributions

1. µk ∼ Uniform(7, 13) =⇒ E(µk) = 10 and Var(µk) = 3
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2. wij ∼ Γ(µ2
k, µ

−1
k ) =⇒ E(wij |µk) = µk and Var(wij |µk) = 1

Importantly, the variance of weights found in each tree is free of the parameter µk.

Next, an application of iterative expectation and variance yield the mean and variance of weights
pooled from all trees as

1. E(wij) = Eµ[Ew(wij |µk)] = Eµ(µk) = 10.

2. Var(wij) = Eµ[Varw(wij |µk)] + Varµ[Ew(wij |µk)] = Eµ(1) + Varµ(µk) = 1 + 3 = 4

Thus, to test for autoregressiveness in the models, we observe that weights pooled from all trees have
variance Var(wij) = 4, whereas weights from a single tree have variance Var(wij |µk) = 1.

6.5 Training Details

Hyperparameters. For Adj-LSTM, node states were parameterized with a hidden dimension of
128 and use a 2-layer LSTM. An embedding dimension of 32 was used to embed edge existence, and
an embedding dimension of 16 was used to embed the weights. Positional encoding was used on the
initialized row states.

Training Procedure. Both models were trained using the Adam Optimizer with weight decay and
an initial learning rate of 1e−3.

For the tree and lobster data sets, BiGG-E was trained for 500 epochs and validated every 250 epochs.
At epoch 100, the learning rate was decreased to 1e−5. The Adjacency LSTM was trained for 100
epochs on the tree data set and validated every 25 epochs, and trained for 300 epochs on the lobster
data set and validated every 100 epochs. The learning rate was decayed to 1e−5 after 25 and 100
epochs, respectively.

For the Erdős–Rényi data set, BiGG-E was trained for 1000 epochs and validated every 250 epochs.
At epoch 250, the learning rate was decreased to 1e−5. Due to timing, the Adjacency LSTM was
only trained for 27 epochs. It is possible the model would improve generative quality of the graphs
with more training time, which can be investigated in future work.

For the 3D Point Cloud data set, BiGG-E was trained for 3000 epochs and validated every 1000
epochs. At epoch 1000, the learning rate was decreased to 1e−5. Adj-LSTM was reported out of
memory for this dataset.

Baseline Models. The Erdos-Renyi model baseline estimates were generated by first estimating
the global probability of an edge existing between two nodes based on the training data, and then
constructing Erdős–Rényi graphs with that probability of edge existence. Weights were sampled with
replacement from all possible training weights in order to produce weighted graphs.

The BiGG+GCN model followed the same protocol outlined above with BiGG-E. For the convolu-
tional network, two convolutions were used and each component was trained jointly on the same
objective function used on BiGG-E.

6.6 Full Tables

Below are the tables for topological measures (Table 3) and weight measures (Table 4) from the
experiments. The error reported for the tree and lobster datasets represent the proportion of graphs
that were not bifurcating trees or lobster graphs. The "N-error" reported in the tree dataset represents
the proportion of nodes across all graphs that have an incorrect number of edges, as we found most of
the models produced trees where only one node did not meet the bifurcating property of the trees,
which is not emphasized in the original error metric.
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Table 3: Topological Measures

Datasets
Methods

Adj-LSTM BiGG-E BiGG+GCN Erdos-Renyi

Erdős–Rényi Deg. 0.437 4.00e−3 7.13e−3 2.80e−3

Clus. 0.744 0.034 0.014 0.015
|V |max = 749 (499) Orbit 0.263 0.061 0.099 0.083
|E|max = 2846 (1349) Spec. 0.516 2.81e−3 4.26e−3 2.06e−3

Tree Deg. 6.63e−6 5.59e−5 3.95e−5 0.269
Spec. 1.67e−3 1.45e−3 8.55e−4 0.084

|V |max = 199 (199) Error 0.125 0.54 0.38 1.0
|E|max = 198 (198) N-Error 0.003 0.008 0.006 0.543

3D Point Cloud Deg. OOM 0.247 0.070 0.418
Clus. OOM 0.658 0.296 1.142

|V |max = 5037 (1377) Orbit OOM 0.416 0.293 0.999
|E|max = 10886 (3074) Spec. OOM 1.64e−2 8.25e−3 0.089

Lobster Deg. 2.46e−4 8.28e−4 4.84e−4 0.178
Clus. 0.0 0.0 0.0 0.072

|V |max = 100 (55) Spec. 9.98e−4 1.86e−3 1.11e−3 0.192
|E|max = 99 (54) Orbit 1.73e−3 0.014 5.87e−3 0.182

Error .065 .305 .115 1.0

Table 4: Weighted Measures

Datasets
Methods

Adj-LSTM BiGG-E BiGG+GCN Erdos Renyi

Erdős–Rényi Mean −0.163 3.16e−3 −0.022 1.81e−3

SD 0.983 1.007 0.998 1.002
µz = 0.0 Spec. 0.469 3.64e−3 4.64e−3 2.48e−3

σz = 1.0 MMDWT 4.40e−3 1.80e−3 1.40e−3 2.08e−3

Tree w̄ 9.879 10.068 9.975 9.980
sw 1.955 1.962 1.955 1.949

µw = 10, σw = 2 sT 1.118 1.084 1.956 1.948
σT = 1 Spec. 1.13e−3 1.20e−3 2.09e−3 0.113

MMDWT 3.45e−3 9.43e−4 0.024 0.021

3D Point Cloud Mean OOM 0.226 0.234 0.224
SD OOM 0.415 0.164 0.068

w̄ = 0.904 Spec. OOM 1.73e−2 9.50e−3 0.112
sw = 0.213 MMDWT OOM 2.34e−5 3.43e−3 9.01e−3

Lobster w̄ 0.249 0.250 0.252 0.254
sw 0.101 0.101 0.150 0.098

µ = 0.25 Spec. 8.51e−4 7.86e−4 1.32e−3 0.270
σ ≈ 0.095 MMDWT 4.93e−3 3.27e−3 5.09e−3 0.010
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