
Under review as a conference paper at ICLR 2024

TRANSPLANT OF PERCEPTRONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose to transplant active cells into inactive cells in neural networks, in-
spired by the concept of “transplant” in the field of neuroscience, where dead
neurons are replaced with live ones to improve brain functions. This is motivated
by the fact that a number of major machine learning methodologies such as the
perceptron and convolutional neural networks have been invented via the collabo-
ration between neurobiology and computer science. We theoretically discuss how
transplant improves the quality of representation of perceptron layers in terms of
the mutual information and the loss function with respect to the performance of the
whole network. Moreover, we empirically evaluate the effectiveness of transplant
in the task of supervised classification. Our proposal is simple and applicable to
any neural networks which contain at least one perceptron layer.

1 INTRODUCTION

The history of neural networks stretches back to the middle of 20th century, when Frank Rosenblatt
proposed the idea of the “Perceptron” in 1958 (Rosenblatt, 1958). The perceptron is inspired by the
“formalized neuron”, which is the first mathematical model of neural networks presented by Warren
McCulloch and Walter Pitts in 1943 (McCulloch & Pitts, 1943). The origin of the mathematical
approach to neurons can be traced back to Norbert Wiener, who is the father of Cybernetics (Wiener,
1948) that tries to find common laws of the control and communication between different fields
like physics, biology, psychology, or social sciences. Since the perceptron has appeared, neural
networks have been evolved with a number of milestone discoveries including convolutional neural
networks (Fukushima, 1980; LeCun et al., 1998), backpropagation (Rumelhart et al., 1986), and
the attention mechanism (Vaswani et al., 2017). Several pioneers found fundamental technologies
while trying to find common rules between neural networks and biological neurons (Churchland
& Sejnowski, 1988; Hinton et al., 1984; Hopfield, 1982; Turing, 1950). Although essential studies
were performed via collaborations with neuroscience, recently such an interaction has decreased,
due to the enormous and complicated growth of both topics. Therefore, looking back at the fusion
of those disciplines has been discussed and re-evaluated again (Hassabis et al., 2017).

In neuroscience, the ability of the mammalian brain to recover for neuronal loss caused by disease or
injury is hardly limited (Falkner et al., 2016). However, recent studies show that the transplantation
of neuronal cells (e.g. fatal neurons) into lost cells recover and improve the ability of the brain under
some conditions (Grade & Götz, 2017). Moreover, repair of the traumatically injured brain based
on the transplantation of neuronal cells to improve memory precision has also been presented (Zhu
et al., 2019; Götz & Bocchi, 2021) (Figure 1).

In this paper, we propose the concept of “transplant” in the perceptron, inspired by the above recent
advance of transplant techniques in neuroscience. The “activeness” of each cell in the perceptron,
which indicates the significance of the corresponding cell, is defined based on the Hebbian learning
rule (Hebb, 1949), one of the major theories in neuroscience which represents the law of synaptic
plasticity in the brain. To increase the ratio of important cells for active information propagation,
we copy active cells into less active cells. We call this operation “transplant” of the cells, as it
implants active cells with flexible outputs instead of inactive cells, like grafting embryonic neurons
into damaged part of the brain. Transplant is flexible and scalable, since this method is applicable
for any neural architectures which contain perceptron layers.

The contributions of this paper can be summarized as follows:

1

Under review as a conference paper at ICLR 2024

Figure 1: Illustration of neuronal replacement therapy.

Algorithm 1 Transplant

Require: Percentage of transplant η(%), perceptron weights W ∈ Rm×n, biases b ∈ Rn, number
of iterations k ∈ N, concatenated perceptron outputs between checkpoints D ∈ Rkβ×n

Ensure: W , b
Initialize a as an n-dimensional vector a = a(D), from equation 1;
W ′ ←W = (w1,w2, . . . ,wn) and b′ ← b = (b1, b2, . . . , bn);
Sort W ′ and b′ in descending order of a;
wn−l+1 ← w′

l and bn−l+1 ← b′l for each l ∈ {1, . . . , ⌊(η/100)n⌋};

• We bring the concept of transplant into machine learning, by crossing the fields of neuro-
science and neural networks.

• We theoretically analyze the behavior of transplantation in terms of the mutual information.
• We apply our method to supervised training for classification and evaluate it on real-world

datasets including the MNIST dataset (LeCun et al., 1998). We show that transplant im-
proves the accuracy for different architectures of the multi-layer perceptron (MLP).

2 FORMULATION OF TRANSPLANT

We formulate the operation of transplant and discuss the relationship with neuroscience.

2.1 ALGORITHM OF TRANSPLANT

The transplant procedure is formally defined as follows: For each checkpoint, we compute the ac-
tiveness of each cell in a perceptron, followed by copying (transplanting) η% of cells with higher
activeness into the same number of inactive cells with lower activeness. The outline of the transplan-
tation process is shown in Figure 2 and the algorithm is shown in Algorithm 1. Once we define the
activeness of each cell, the transplant can be performed on any neural architectures, and we propose
to use the variance of output values as the activeness. An overview of the process of calculating
activeness is shown in Figure 3.

More precisely, given a perceptron with a weight matrix W ∈ Rm×n for m dimensional input and
n dimensional output and biases b ∈ Rm. For an input vector x ∈ Rm, the output y ∈ Rn of the
perceptron is defined as y = xW + b. While training with the batch size β ∈ N, during k ∈ N
iterations between each checkpoint, we store batches of perceptron outputs and concatenate them as
D ∈ Rkβ×n. For each column vector d of D, we define its activeness a(d) as its variance, that is,

a(d) := V [d] = E[(d− E[d])2], where E[d] = E[(d1, . . . , dkβ)
T] =

1

kβ

kβ∑
l=1

dl. (1)

In 1949, Donald Hebb proposed the theory “Hebbian learning rule” (Hebb, 1949), which says that
if the axon of a cell A is close enough to stimulate another cell B, or repeatedly participates in its
firing, a growth process or metabolic change takes place in one or both cells, so that the efficiency
of A as one of the cells firing B is increased. In short, “neurons that fire together, wire together”.

2

Under review as a conference paper at ICLR 2024

Figure 2: Transplant process in a perceptron. Figure 3: Activeness.

In the Hebbian learning, if data has zero-mean, the weight vector will ultimately align itself with
the direction of greatest variance in the data, and hebbian learning adjust the weight vector so as
to maximize the variance in the output (Hebb, 1949). In the architecture of the perceptron, we can
interpret the variance of an input cell as the efficiency of A to fire B, and the deviation of signals
means the fire for B, since the behavior of the output cell Y is determined by the linear connection
of the connected cells X in the neuron of the next layer. Also, there are multiple works that evaluates
the importance of cells by measuring the variance of neural response activities (Churchland et al.,
2011; Waschke et al., 2021). Therefore, we use the variance of the signals of the perceptron cells to
evaluate the activeness of each cell.

2.2 MEMORY-EFFICIENT WAY TO CALCULATE THE ACTIVENESS

In the operation of the transplantation, we store batches of perceptron outputs and concatenate them
as D ∈ Rkβ×n. In this case, the space complexity becomes O(kβn), and more time/memory
computational resources are required. However, the equation V [d] = E[d2]−E[d]2 shows that we
do not need to save all of the outputs, but just need to save the sum of the square of each n values
and the sum of each n values. We get E[d2] and E[d] at the checkpoint, and we are able to calculate
the activeness from the above equation, which reduces the time complexity to O(β + n).

3 THEORETICAL ANALYSIS

In this section, we theoretically analyze the behavior of the perceptron under transplant using the
mutual information as an evaluation metric. Moreover, we estimate the impact of transplant with
respect to the performance of the model, and explain the statistical functionality of transplant in
minimization of the error of neural networks.

Suppose that each input xi to the i-th cell (i ∈ {1, 2, . . . ,m}) follows a Gaussian distribution
xi ∼ N (µXi , σ

2
Xi

) with the mean µXi and the standard deviation σXi. From the definition of the
perceptron, output yj of the j-th cell (j ∈ {1, 2, . . . , n}) of the next layer is given as

yj =
∑
i

xiwi,j + bj . (2)

From Equation 2 and the reproductive property of the Gaussian distribution, yj also follows the
Gaussian, and its mean µY j is directly obtained by plugging µXi into xi in Equation 2. Also, when
Cov(xi1 , xi2) is the covariance between xi1 and xi2 (i1, i2 ∈ {1, 2, . . . ,m}, i1 ̸= i2), the variance
of yj becomes

σ2
Y j = V

[∑
i

wi,jxi + bj

]
= V

[∑
i

wi,jxi

]
=
∑
i

w2
i,jσ

2
Xi + 2

∑
i1<i2

wi1jwi2jCov(xi1 , xi2).

(3)
In addition, we use pXiY j(xi, yj) as the probability of the joint distribution of xi and yj . When
ρi,j ∈ R is the correlation coefficient between xi and yj , the absolute value of ρi,j is maximized to
1 when |wi,j |/

∑
i |wi,j | = 1 since yj = wi,jxi+bj , and minimized to 0 when |wi,j |/

∑
i |wi,j | = 0.

3

Under review as a conference paper at ICLR 2024

Using ρi,j , pXiY j(xi, yj) can be written as (Yost, 1984)

pXiY j(xi, yj) =
1

2πσXiσY j

√
1− ρ2i,j

exp

(
− 1

2(1− ρ2i,j)

(
(xi − µXi)

2

σ2
Xi

− 2ρi,j
(xi − µXi)(yj − µY j)

σXiσY j
+

(yj − µY j)
2

σ2
Y j

))
.

(4)

To evaluate the impact of transplantation in the neural network, we measure the representation of
the model by the mutual information, which is a Shannon entropy-based measure of dependence
between random variables. It is also used to measure the transmission of information between
layers (Fan et al., 2021).

In the process of transplantation, the weight of an inactive j-th cell wj is swapped into that of
an active j′-th cell wj′ with the larger variance, where σ2

Y j′ > σ2
Y j . For the mutual information

I(X;Y), let T (I(X;Y)) be the mutual information after transplant. Since we only change the
weights when transplanting, the amount of the change of the mutual information can be described
as

T (I(X;Y)) =

∫
x

∫
y

(
pXY (x, y) + ∆trpXY (x, y)

)
log

pXY (x, y) + ∆trpXY (x, y)

pX(x)
(
pY (y) + ∆trpY (y)

)dxdy, (5)

where ∆tr describes the variation when we apply transplant. Using Equation 2, Equation 4, and
Equation 5, we have

∆trpXY (x, y) =

1

mn

(∑
j′∈S′

1

2πσXi

√∑
i w

2
i,j′σ

2
Xi + 2wi1j′wi2j′

∑
i1<i2 Cov(xi1 , xi2)

√
1− ρ2i,j′

exp

(
− 1

2(1− ρ2i,j′)

((xi − µXi)
2

σ2
Xi

− 2ρi,j′
(xi − µXi)(

∑
i(xi − µXi)wi,j′)

σXi

√∑
i w

2
i,j′σ

2
Xi + 2wi1j′wi2j′

∑
i1<i2 Cov(xi1 , xi2)

+
(
∑

i(xi − µXi)wi,j′)
2∑

i w
2
i,j′σ

2
Xi + 2wi1j′wi2j′

∑
i1<i2 Cov(xi1 , xi2)

))
−
∑
j∈S

1

2πσXi

√∑
i w

2
i,jσ

2
Xi + 2wi1jwi2j

∑
i1<i2 Cov(xi1 , xi2)

√
1− ρ2i,j

exp

(
− 1

2(1− ρ2i,j)

((xi − µXi)
2

σ2
Xi

− 2ρi,j
(xi − µXi)(

∑
i(xi − µXi)wi,j)

σXi

√∑
i w

2
i,jV (xi) + 2wi1jwi2j

∑
i1<i2 Cov(xi1 , xi2)

+
(
∑

i(xi − µXi)wi,j)
2∑

i w
2
i,jσ

2
Xi + 2wi1jwi2j

∑
i1<i2 Cov(xi1 , xi2)

)))
, (6)

∆trpY (y) =
1

n

(∑
j′∈S′

1√
2π
∑

i w
2
i,j′σ

2
Xi + 2wi1jwi2j′

∑
i1<i2 Cov(xi1 , xi2)

exp

(
−

(
∑

i(xi − µXi)wi,j′)
2

2
∑

i w
2
i,j′σ

2
Xi + 2wi1jwi2j′

∑
i1<i2 Cov(xi1 , xi2)

)
−
∑
j∈S

1√
2π
∑

i w
2
i,jσ

2
Xi + 2wi1jwi2j

∑
i1<i2 Cov(xi1 , xi2)

4

Under review as a conference paper at ICLR 2024

Figure 4: Joint distribution of xi and yj with respect to ρi,j

Figure 5: Joint distribution of x and y before/after transplant.

exp

(
−

(
∑

i(xi − µXi)wi,j)
2

2
∑

i w
2
i,jσ

2
Xi + 2wi1jwi2j

∑
i1<i2 Cov(xi1 , xi2)

))
, (7)

where S′ is the set of the top η% active cell indices and S is that of the bottom η% inactive cell
indices. Furthermore, from the linear connection of x and y in Equation 2, we can understand that
xi and yj are fully dependent when |wi,j |/

∑
i |wi,j | = 1, where |ρi,j | = 1 and pXiY j(xi, yj) =

pXi(xi) = pY j(yj) =
√

pXi(xi)pY j(yj), and xi and yj are independent when |wi,j |/
∑

i |wi,j | =
0, where |ρi,j | = 0 and pXiY j(xi, yj) = pXi(xi)pY j(yj) since the effect of the i-th cell (σXiwi,j)

2

on the variance of the j-th cell σ2
Y j =

∑
i(σXiwi,j)

2 changes with the absolute value of wi,j .
Figure 4 shows the summary for the example of joint distribution when ρi,j changes. By arranging
wi,j based on the balance of σXi and µXi, we can increase I(X;Y). Figure 5 shows an example
of the surface of pXY (x, y) before and after transplantation, with parameters m = 5, n = 4, and
η = 25%. We can see that the distribution of pXY (x, y) is smoothed by the transplant operation.

Next we discuss the whole impact of the combination of transplant and optimization of neural net-
works. When we train a neural network, an optimizer continuously updates the weights of the
perceptron. Let f be a function that updates weights w at a given step as

f(w) = w − g(∇L(w)), (8)

where L(w) is the loss determined by the whole weights and g(∇L(w)) is the update of the weights
based on the gradient of the loss, to minimize the loss of the network for each step.

In general, the more training steps k; that is, the more f is applied to w, the larger the exploration
space of weights. Let O(I(X;Y)) be the mutual information after optimization with k-step training,
between input and output of the perceptron layer which we apply transplant. When we train the
model, both weights and the probability distributions of x and y are updated. When ∆opt denotes the
variation of the probability when we apply a training of k steps, the mutual information O(I(X;Y))
after the training can be obtained as Equation 5 by replacing ∆tr with ∆opt.

Therefore, the mutual information I(X;Y) changes into I(X;Y)′ such that

I(X;Y)′ = O ◦ (T ◦O)(c−1)(I(X;Y)). (9)

after c ∈ N times training of k steps.

In the transplant operation, we preferentially adopt weights with the larger variance σ2
Y j . When the

perceptron tries to improve the network by minimizing the loss, well trained cells are expected to

5

Under review as a conference paper at ICLR 2024

Accuracy with k for a fixed η Surface of accuracy over η and k

Figure 6: Schematic estimation of behavior of perceptron with transplant.

return balanced, and high variance output. Moreover, since the exploration space of each weight is
limited in the k-step training, when the larger number of weights are well updated with larger |wi,j |,
the more the variance σ2

Y j =
∑

i(σXiwi,j)
2 becomes. This means that weight selection for larger

σ2
Y j tends to lead to balanced weights, where |wi,j |/

∑
i |wi,j | is expected to be smoother than the

case that the less number of weights are well updated. Therefore, transplant can be considered as
stochastic regularization of a neural network. Since an optimizer has to coordinate the weights of
the following layers to propagate a varied distribution, we can assume that k has to be large enough
to balance the weights after transplantation. In contrast, when k is too large, the performance of the
model converges to the state without transplantation, hence transplantation has less impact on the
overall training of the model. Figure 6 shows an estimate of the performance behavior of the model.

The changes of the performance with respect to k is considered to be a convex upward function,
which is maximized at a certain k = Kbest, and converges to certain accuracy that coincides with
the performance without transplant as k increases. Moreover, when we increase the ratio η% of
cells to be transplanted, the optimizer needs more k to arrange the weights, and Kbest is considered
to become larger. Furthermore, the performance gets maximized with an appropriate η to replace
redundant cells, while too large η will make the accuracy worse, since the transplant will start to
replace even active cells. Therefore, the best η to maximize the accuracy is also thought to be a
convex upward like the right surface in Figure 6.

4 EXPERIMENTS

To grasp the behavior of neural networks when we apply transplantation during training, and to val-
idate the activeness we proposed, we empirically investigate transplantation on real-world datasets.

In our experiments, we use the following setup: (1) Report the accuracy for transplantation over
parameters (k, η) on grid search, and evaluate the mutual information. (2) Compare performance
of the model trained with transplant with our proposed activeness and that trained with transplant
without using the activeness. (3) Evaluate the performance of models with different architectures,
and test the distributions of inputs and outputs for the middle layer. (4) Test the effect of the trans-
plant on different datasets. For all experiments, we use Ubuntu Linux (version: 4.15.0-117-generic)
and run all experiments on 2.20 GHz Intel Xeon E5-2698 CPU with 252 GB of memory, and Tesla
V100 GPU with 32GB of memory.

4.1 RESULTS OF TRANSPLANT

To evaluate the effect of transplantation, we use the MNIST dataset (LeCun et al., 1998), which con-
sists of a training set of 60,000 instances and a test set of 10,000 instances. Each instance is a 28x28
grayscale image associated with a label from 10 classes of digits. In this experiment, the network is a
simple architecture with the 2 layer perceptron, which contains a fully connected layer with 100 cells
as the target of transplantation, and the other classification layer. We use a learning rate of 0.0003
and train the network for 20 epochs with a batch size of β = 10. We transplant η% of the cells in
the target layer for the checkpoint after every k iterations, and evaluate the accuracy of training and
validation. To confirm the behavior of the score when the parameters change gradually, we experi-
ment the accuracy of the model for all combinations of k in 100, 200, 500, 1000, 1500, 2000, 2500,
and η in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

6

Under review as a conference paper at ICLR 2024

Training dataset. Test dataset.

0
2
4
6

8

k
0 500 1000150020002500

Acc

0.78
0.80
0.82
0.84
0.86
0.88
0.90

Training dataset.

0
2
4
6

8

k
0 500 1000150020002500

Acc

0.78
0.80
0.82
0.84
0.86
0.88
0.90

Test dataset.

Figure 7: Accuracy under various k and η on the MNIST dataset.

Table 1: Mutual information with/without transplant on MNIST dataset.

Method Mutual Information

Without transplant 0.0002058± 0.0000117
Transplant 0.0004514± 0.0000392

Figure 8: Output distributions
with/without transplant.

The summary of the results is shown in Figure 7, where
the accuracy curve with respect to changes of k is roughly
convex upwards. The surface of the accuracy forms a
hilly curve over k and η, and is maximized at certain val-
ues as expected from our theoretical discussion. Here we
used neither activation layers nor a large number of cells
to directly validate our theoretical analysis. Thus the ac-
curacy obtained in our experiments is lower than that of
the state-of-the-art MLP models.

After training each model, we evaluate the mutual infor-
mation between the input layer and the hidden layer, for
the model trained without transplantation, and the model
trained with transplantation of the best parameters k and
η. Results are shown in Table 1. Figure 8 also compares
probability distributions of y in the original training without transplant and that with transplant. The
parameters k and η for the transplant are set to the best values in Experiment 4.1. As we expected,
the distribution with transplant is smoother, and the variance of y is larger.

To evaluate the effectiveness of the activeness we have proposed, we compare the performance
via the transplant under the proposed activeness and transplant that randomly switches the weights
without using the activeness. We run the experiment with the same parameters of (k, η) as in the
previous experiment in Section 4.1 and show results in Figure 9. We can see that the resulting
accuracy with the activeness behaves significantly more convex than the random switching, and gets
better accuracy overall.

4.2 RESULTS IN MULTIPLE ARCHITECTURES

Since transplantation can be applied to any architectures, we consider different model architectures
by increasing the number of layers in the MLP and evaluate the effect of transplantation. Each model
is trained with the same parameters as in Section 4.1, while we apply transplant to all hidden layers.
We train the 3-layer MLP, which has 2 hidden layers to transplant, and the 4-layer model, which has
3 hidden layers to transplant. Results are summarized in Table 2. We can confirm the improvement
in accuracy due to the transplantation for all architectures.

After training of the perceptron with 3 layers with the best parameters of (η, k), we perform pre-
diction on all the test data with the model and plot the joint distribution between input x and output
y of the model with/without transplantation in Figure 10. We can see that the distribution becomes
smoother when we apply transplantation during training.

7

Under review as a conference paper at ICLR 2024

100 200 500 1000 1500 2000 2500
k

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Acc
=0
=1
=2
=3
=4
=5
=6
=7
=8
=9

Our activeness

100 200 500 1000 1500 2000 2500
k

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Acc
=0
=1
=2
=3
=4
=5
=6
=7
=8
=9

Random switching

Figure 9: Comparison of transplant based on our activeness and random switching.

Table 2: Results of Experiment 4.3

Number of layers Accuracy without transplant Accuracy with transplant

1 0.8870 0.9005
2 0.8812 0.8945
3 0.8819 0.8930

Also, we show the scatter plots of some samples of (xi, yj) in Figure 12 of Appendix 1. We can see
that transplant arranges the weights of the model as they increase the mutual information between
X and Y by increasing the correlation ρi,j as shown in Figure 4.

4.3 RESULTS ON DIFFERENT DATASETS

We also examine the behavior of the model trained with transplantation on different datasets. We
follow the same protocol of our experiment in Section 4.1 on three other classification benchmarks.
(1) Fashion MNIST (Xiao et al., 2017), which consists of a training set of 60,000 instances and a
test set of 10,000 instances. Each instance is a 28x28 grayscale image associated with a label from
10 classes of fashion items. We use a learning rate of 0.0003 and train the network for 20 epochs
with a batch size of β = 10. We searched for k in 100, 200, 500, 1000, 1500, 2000, 2500, and η in
0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (2) CIFAR-10 (Krizhevsky, 2009), which consists of a training set of 50,000
instances and a test set of 10,000 instances. Each instance is a 28x28 color image, associated with
a label from 10 classes. We use a learning rate of 0.0003 and train the network for 20 epochs with
a batch size of β = 10. We searched for k in 148, 181, 221, 270, 330, 403, 492, 601, 735, 897, 1096,
and η in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (3) Mushroom dataset (Lincoff, 1981), consisting of 8124 instances.
We randomly split 80% of them as a training set and 20% of them as a test set. Each example has 12
dimensional features about mushrooms, associated with a binary class of edibility. We use a learning
rate of 0.0003 and train the network for 50 epochs with a batch size of β = 10. We searched for k
in 148, 181, 221, 270, 330, 403, 492, 601, 735, 897, 1096, and η in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Results are shown in Figure 11. In the MNIST and Fashion MNIST datasets, we can see the clear
relationship of the convex function between k and the accuracy, according to the value of η. Also,
the relationship can be observed in the Mushroom dataset, but in the CIFAR-10 dataset, the effect
of transplantation is relatively difficult to find, because the value of accuracy is too low, and varies
widely throughout results. From these experiments, we can assume that transplantation generally
improves the performance of the model by regularizing the weights, regardless of the task.

5 RELATED WORK

There is a research field called “grow-and prune” (Lemeng et al., 2020; Sokar et al., 2023; Xiaoliang
et al., 2019), which initializes a part of the model while training networks, inspired by the biological
brain function “synaptic pruning”, in which excess neural connections exist in the brains of new-
born animals, but eventually the necessary connections are strengthened and the unnecessary ones
are removed, and the neural circuit matures. The idea of transplant is related to the genetic algo-

8

Under review as a conference paper at ICLR 2024

Original Transplant

Figure 10: Joint distribution of input and output of 3-layer MLP with/without transplant.

100 200 500 1000 1500 2000 2500
k

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Acc
=0
=1
=2
=3
=4
=5
=6
=7
=8
=9

(a) MNIST

148 181 221 270 330 403 492 601 735 897 1096
k

0.970

0.975

0.980

0.985

0.990

0.995

Acc = 0
 = 1
 = 2
 = 3
 = 4
 = 5
 = 6
 = 7
 = 8
 = 9

(b) Mushroom

100 200 500 1000 1500 2000 2500
k

0.55

0.60

0.65

0.70

0.75

0.80

Acc = 0
 = 1
 = 2
 = 3
 = 4
 = 5
 = 6
 = 7
 = 8
 = 9

(c) Fashion MNIST

148 181 221 270 330 403 492 601 735 897 1096
k

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

Acc

 = 0
 = 1
 = 2
 = 3
 = 4
 = 5
 = 6
 = 7
 = 8
 = 9

(d) CIFAR-10

Figure 11: Accuracy under various k and η on four datasets.

rithm (Sastry et al., 2005; Katoch et al., 2021), which is inspired by the phenomenon that “stronger
individuals that adapt to their environment survive, while weaker individuals that cannot adapt to
their environment are weeded out”, which occurs in the process of biological evolution. Genetic
algorithms are a mechanism for passing on superior individuals to the next generation in a pro-
grammed manner. There are some discoveries by applying genetic algorithms to neural networks.
For example, the idea of dropout (Srivastava et al., 2014) was motivated from a theory of the role
of sex in evolution (Livnat et al., 2010), and it improves the robustness of the model. The genetic
algorithm is also classified as a type of the evolutionary algorithm (Cheng et al., 2016), which is a
population-based metaheuristic optimization algorithm. The evolutionary algorithm uses algorithms
inspired by evolutionary mechanisms such as reproduction, mutation, genetic modification, natural
selection, and survival of the fittest as its mechanism. It is also proposed to improve optimization
methods including neural networks with the natural selection of evolutionary algorithms (Vrugt &
Robinson, 2007; Mirjalili, 2019), or updating whole weights of the model with the mutation and
the crossover, instead of using backpropagation (Montana & Davis, 1989). However, these genetic
crossovers occur only in the alternation of generations in the process of biological evolution. In
contrast, we apply the transplantation of weights periodically and alternately after some steps of the
training with backpropagation, as organisms acquire the ability during lifetime and leave a legacy to
the next generation.

6 CONCLUSION

We have proposed the concept to “transplant” cells in the perceptron, as neuronal cells in the brain
are replaced for the purpose of therapy in the field of neurobiology. We have theoretically analyzed
how the performance of the model behaves when we apply transplantation. We have also obtained
the experimental feedback to support the theoretical analysis. Finally, we have shown that the idea
of “transplant”, which is cybernetically inspired, can improve the neural networks that contain at
least one perceptron layer.

Ethics statement: We do not have any ethics issues.

9

Under review as a conference paper at ICLR 2024

REFERENCES

R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. A reference vector guided evolutionary algorithm
for many-objective optimization. In IEEE Transactions on Evolutionary Computation. 2016.

A.K. Churchland, R. Kiani, R. Chaudhuri, X.J. Wang, A. Pouget, and M.N. Shadlen. Variance as a
signature of neural computations during decision-making. In Neuron. 2011.

P.S. Churchland and T.J. Sejnowski. Perspectives on cognitive neuroscience. In Science. 1988.

S. Falkner, S. Grade, L. Dimou, K.K. Conzelmann, T. Bonhoeffer, M. Götz, and M. Hübener. Trans-
planted embryonic neurons integrate into adult neocortical circuits. In Nature. 2016.

C. Fan, J. Li, X. Ao, F. Wu, Y. Meng, and X. Sun. Layer-wise model pruning based on mutual
information. In Conference on Empirical Methods in Natural Language Processing. 2021.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. In Biological Cybernetics. 1980.

S. Grade and M. Götz. Tneuronal replacement therapy: previous achievements and challenges
ahead. In npj Regenerative Medicine. 2017.

M. Götz and R. Bocchi. Current opinion in neurobiology. In Nature Communications. 2021.

D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick. Neuroscience-inspired artificial in-
telligence. In Neuron. 2017.

D.O. Hebb. In The Organization of Behavior. Wiley, 1949.

G.E. Hinton, J.L. McClelland, and D.E. Rumelhart. Distributed representations. In Explorations in
the microstructure of cognition. 1984.

J.J. Hopfield. Neural networks and physical systems with emergent collective computation alabili-
ties. In Proc. Natl. Acad. Sci. USA. 1982.

S. Katoch, S.S. Chauhan, and V. Kumar. A review on genetic algorithm: past, present, and future.
In Multimed Tools. 2021.

A. Krizhevsky. Learning multiple layers of features from tiny images. In Tech. rep. 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE. 1998.

W. Lemeng, B. Liu, P. Stone, and Q. Liu. Firefly neural architecture descent: a general approach for
growing neural networks. In Advances in Neural Information Processing Systems. 2020.

G. H. Lincoff. Mushroom records drawn from the audubon society field guide to north american
mushrooms. 1981.

A. Livnat, C. Papadimitriou, N. Pippenger, and M. W. Feldman. Sex and mixability, and modularity.
In Proceedings of the National Academy of Sciences. 2010.

W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. In The
bulletin of mathematical biophysics. 1943.

S. Mirjalili. In Evolutionary Algorithms and Neural Networks. 2019.

D.J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In
International Joint Conference on Artificial Intelligence. 1989.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. In Psychological Review. 1958.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back-propagating
errors. In Nature. 1986.

10

Under review as a conference paper at ICLR 2024

K. Sastry, D. Goldberg, and D. Kendall. Genetic algorithms. In Search Methodologies. 2005.

G. Sokar, R. Agarwal, P. Samuel C., and U. Evci. The dormant neuron phenomenon in deep rein-
forcement learning. In Proceedings of the 40th International Conference on Machine Learning.
2023.

N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. In Journal of Machine Learning Research. 2014.

A.M. Turing. Computing machinery and intelligence. In Mind. 1950.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, A.N. Gomez L. Jones, and L. Kaiser. Attention
is all you need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017.

J.A. Vrugt and B.A. Robinson. Improved evolutionary optimization from genetically adaptive mul-
timethod search. In Applied Mathematics. 2007.

L. Waschke, N.A. Kloosterman, J. Obleser, and D.D. Garrett. Behavior needs neural variability. In
Neuron. 2021.

N. Wiener. In Cybernetics. Technology Press, 1948.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: A novel image dataset for benchmarking machine
learning algorithms. In arXiv. 2017.

D. Xiaoliang, H. Yin, and N.K. Jha. Nest: A neural network synthesis tool based on a grow-and-
prune paradigm. In IEEE Transactions on Computers. 2019.

G.P. Yost. In Lectures on probability and statistics. 1984.

B. Zhu, J. Eom, and R.F. Hunt. Transplanted interneurons improve memory precision after traumatic
brain injury. In Nature Communications. 2019.

A APPENDIX

A.1 CHANGE OF EACH CELL’S INPUT AND OUTPUT

Original Transplant

Figure 12: Scatter plots of input and output of each cell of 3-layer MLP with/without transplant.

11

	Introduction
	Formulation of Transplant
	Algorithm of Transplant
	Memory-efficient way to calculate the Activeness

	Theoretical Analysis
	Experiments
	Results of Transplant
	Results in Multiple Architectures
	Results on different datasets

	Related work
	Conclusion
	Appendix
	Change of each cell's input and output

