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Abstract

Children acquiring English make systematic001
errors on subject control sentences (Chomsky,002
1969) possibly due to heuristics based on se-003
mantic roles (Maratsos, 1974). Given the ad-004
vanced fluency of large generative language005
models, we ask what kinds of generalizations006
these models make on object and subject con-007
trol clauses. We find broad differences between008
models, with many models adopting positional009
heuristics that succeed on subject control but010
fail on object control. This result is surprising,011
given that object control is orders of magnitude012
more frequent in text data.013

1 Introduction014

Normally-developing children learning English015

have been found to struggle with subject control016

clauses long after they have successfully acquired017

the components to understand them (Chomsky,018

1969; Cromer, 1970; Maratsos, 1974; Sherman and019

Lust, 1993). In a subject control clause, the latent020

subject of an embedded infinitival clause (usually021

written as PRO) is coindexed with the subject rather022

than the object of the matrix (main) clause. For023

example, in the sentence, “Cole promised Joe to024

call” the complement “to call” has a subject not025

expressed overtly (Cole). This is typically written:026

[Cole]NPi promised [Joe]NPj PROi to call (1)027

where subscripts indicate the noun phrase (NP)028

“Cole” is the subject of “to call”. 1 can be contrasted029

with the more common case of object control; for030

example, if the matrix verb “promised” is swapped031

with “told”, then the coreferrent of PRO changes:032

[Cole]NPi told [Joe]NPj PROj to call (2)033

Chomsky (1969) finds that children ages 5 to 10034

regularly misinterpreted subject control (1) for ob-035

ject control (2) while correctly interpreting ob-036

ject control clauses. Chomsky proposes that chil-037

dren are following the Minimal Distance Principal038

(MDP), choosing the linearly closest noun phrase 039

(NP) to govern PRO. Cromer (1970) highlights the 040

systematicity with which children mistake subject 041

control for object control and provides evidence for 042

the MDP. However, Maratsos (1974) argues against 043

the MDP; while his results support the observation 044

that children struggle with subject control, they do 045

not support the MDP, favoring an alternative based 046

on semantic roles. Maratsos changes the subject 047

and object order through passivization: 048

“JoeNPj was told by ColeNPi PROj to call” (3) 049

finding that children correctly coindex PRO with 050

the (further away) object, violating the MDP. 051

Recently, large pre-trained language models 052

(PLMs) have shown an impressive ability not only 053

to produce fluent text, but also to perform tasks in 054

zero- and few-shot settings via prompting, espe- 055

cially for question answering (QA) (Brown et al., 056

2020; Raffel et al., 2020; Sanh et al., 2021). In 057

light of the difficulty children have in acquiring 058

subject control constructions, we explore whether 059

the outputs of PLMs are consistent with adult or 060

child strategies for coindexing PRO. We examine 061

this question in the zero-shot setting, treating each 062

model as a sort of experimental subject. Our ini- 063

tial hypothesis is that model outputs will be con- 064

sistent with child strategies, i.e. the models will 065

perform well on object control examples, but mis- 066

interpret subject control for object control. This is 067

informed by two factors: object control is orders 068

of magnitude more frequent than subject control 069

(cf. Appendix D.1), and active object control (i.e. 070

(2)) requires resolving a shorter dependency than 071

subject control. We instead find that the PLMs 072

tested fall into three behavioural groups, with the 073

majority in fact producing responses that mistake 074

subject control for object control – the opposite 075

of what children do. We show that this behaviour 076

is sensitive to semantic roles, mirroring Maratsos 077

(1974)’s findings. We will release our code and 078

prompts at http://anonymous_url.com. 079
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2 Methods080

Subject and Object Control While PLMs used081

for QA are often given a few “training” prompts082

(few-shot setting) before answering a “test” prompt,083

in our main experiments, to avoid learning effects084

that might result from few-shot prompting (as one085

would with human subjects), we focus on the zero-086

shot setting. The prompts used in Section 3 are087

made of an instruction sentence, a context (like088

(1)-(3)), a question (e.g. “Who called?”), and an089

answer continuation. Examples of all prompts are090

given in D.2. We take the max over two instruction091

types (long and short) in our analyses. While we do092

not do “prompt hacking” with training questions093

about object in subject control, we do experiment094

with adding QA information to the prompt to raise095

the salience of agents and patients (e.g. “Q: Who096

told someone to call? A: Cole” for (2).)097

Since the models examined can be sensitive098

to specific tokens, we cover 9 embedding verbs099

for object control: “told”, “ordered”, “called100

upon”, “urged”, “asked”, “persuaded”, “con-101

vinced”, “forced”, and “pushed”. These verbs are102

presented both in the active (object control exper-103

iments) and passive (passive object control exper-104

iments). For subject control, we follow previous105

work (Chomsky, 1969; Maratsos, 1974) and fo-106

cus on “promise” In our main experiments, we use107

names as NPs; we also report results in Appendix B108

using common professions to ensure that the trends109

observed with names hold. We chose 2 male names,110

2 female names, and 2 gender-neutral names; these111

were chosen by taking the top 2 names in each re-112

ported gender category in US Social Security data113

from 1970 to 2019.1 We run the same prompt with114

each name combination in both orders, to avoid115

possible biases the model may have towards partic-116

ular names. When the names are included in the117

instruction, we add an example with the name order118

swapped. Finally, for the action infinitive (i.e. the119

embedded verb) we chose the first 5 coherent verbs120

(i.e. intransitive infinitives) from a frequency list of121

English verbs (Yu et al., 2020; Sharov, 2020). This122

process yields 1500 sentences for object control123

and 150 for subject control (3000 and 300 when124

names are swapped).125

Semantic Proto-Role Experiments Following126

Maratsos (1974)’s hypothesis that the observed mis-127

takes children make on subject control sentences128

is driven by semantic roles, in Section 3 we exam-129

1https://www.ssa.gov/oact/babynames/

ine the relationship between a model’s ability to 130

perform zero-shot object and subject control and 131

its accuracy on identifying attributes commonly as- 132

sociated with agents and patients. Since querying 133

language models using fixed semantic role ontolo- 134

gies may be difficult we instead measure the mod- 135

els ability to perform semantic proto-roles labeling 136

(SPRL) for the volition and change of state prop- 137

erties. We use the SPRL data provided in the Uni- 138

versal Decompositional Semantics (UDS) dataset 139

introduced by White et al. (2020). These proper- 140

ties, first proposed by Dowty (1991), were found 141

to be strongly prototypical of agents and patients, 142

respectively (Reisinger et al., 2015).2 By design, 143

SPR inferences are elicited with simple prompts, 144

circumventing brittle and complicated ontologies. 145

Indeed, the UDS dataset was created by asking an- 146

notators questions like “How likely is it that ARG 147

chose to be involved in the PRED?” with crowd- 148

workers giving scalar ratings normalized to [−3, 3]. 149

To construct a dataset of SPRL prompts, we first 150

filter the UDS dataset for sentences with < 35 151

tokens. We then eliminate examples with scalar an- 152

notations ∈ (−1, 1), keeping only examples with 153

strong inferences about the properties. The anno- 154

tations are binarized (> 1 = “Yes”) and balanced 155

across “Yes” and “No”. Two QA templates are 156

used for each property (cf. Appendix D.3). 157

In Section 3 we are interested in the raw ability 158

of the model to perform the SPRL labeling task, 159

and so we allow for prompt hacking. Accordingly, 160

we stratify the annotations into 4 stages; the bot- 161

tom stage always forms the “test” prompt, with the 162

answer blank. The remaining 3 stages are added 163

for increasing levels of prompting with “training” 164

QA pairs. We ensure that none of the annotations 165

is used more than once, and that all test annotations 166

are the across prompting settings, allowing them 167

to be paired, resulting in 118 change-of-state test 168

prompts and 168 volition prompts. 169

Models We explore both autoregressive mod- 170

els and text-to-text (T2T) models. Autore- 171

gressive models are optimized by minimizing 172

− log(P (wi|w−i)) for words w1, . . . wN in a par- 173

ticular context. These models have just an en- 174

coder. T2T models are encoder-decoder models, 175

optimized to reconstruct a noised version of the 176

input via the decoder. 177

2While instigation and stationarity were slightly more pre-
dictive of agency and patienthood, they were deemed to be
more difficult to re-frame as a prompt.
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Figure 1: Zero-shot accuracy on object control, passive
object control, and subject control. Black line represents
random performance (50% accuracy).

The autoregressive models (parameters in Bil-178

lions) considered are GPT-3 Davinci (∼ 175B179

params), GPT-Neo (1.3B and 2.7B), GPT-J (6B),180

Jurassic Large (7.5B), and Jurassic Jumbo (178B).181

Details about training data can be found in Ap-182

pendix C. The T2T models are: T5 finetuned for183

QA (220 million)3 and T0pp (11B). We access184

non-API models via the Transformers library (Wolf185

et al., 2020); due to computational constraints, they186

are run on single GPUs at 1/2 precision.187

Metrics Online APIs make forced decoding very188

costly (Shin and Van Durme, 2021). Rather than189

comparing logits for a restricted output vocab, we190

allow the model to freely generate tokens, letting191

the model produce a larger variety of answers.192

However, this method requires heuristics to classify193

the output strings into categories. In Appendix A.1194

we validate our heuristics, verifying that for locally-195

run models the trends are similar when using logits196

associated with the correct answer. A full descrip-197

tion of the heuristics is given in Appendix A. If the198

extraction function fails to find any valid answer199

strings, the example is skipped in evaluation rather200

than counted as wrong. We measure significance in201

model differences with McNemar’s test (McNemar,202

1947), following Dietterich (1998).203

3 Results and Analysis204

In Fig. 1, we see that model classes have different205

results; we further classify models into 3 groups:206

1. GPT-Neo and Jurassic Jumbo are better on sub-207

ject and passive object control than object con-208

trol. This is consistent with use of a positional209

heuristic, namely to take the first NP in the ma-210

trix clause (i.e. Max Distance Principle).4211

3Note that because of fine-tuned nature of the “T5 for
QA” model, the expected prompt format is different (cf. Ap-
pendix D.2). Prompt hacking cannot be done on this version
of T5, so it is only used in the first experiment.

4Jurassic Large is not included in this group since its per-
formance is poor for all 3 settings.
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Figure 2: Accuracy on object control, passive object
control, and subject control after prompting with agent
and patient questions. Accuracy changes to Fig. 1 are
generally consistent within heuristic groups.

2. T5 and T0 are consistent with the observations 212

in Maratsos (1974); both models do better on 213

object control (active and passive) than subject 214

control. This contradicts the MDP but is consis- 215

tent with a heuristic choosing the matrix patient. 216

3. GPT-3 stands alone, performing well on object 217

control and nearly perfectly on subject control. 218

However, poor performance on passive object 219

control suggests a positional heuristic (take the 220

second NP) being used for object control verbs, 221

rather than an agency-based heuristic. 222

We make the following hypotheses for how 223

prompting with questions about agents and patients 224

will affect each group. For Group 1, if the models 225

are following positional heuristics, the additional 226

prompts will provide evidence inconsistent with 227

the heuristic. This could lead to the heuristic being 228

dropped; in that case, we would expect to see a 229

drop in performance in passive object control and 230

subject control (where the heuristic is beneficial) 231

and an increase in performance in object control 232

(where the heuristic is not beneficial). In Group 233

2, since the model outputs are already consistent 234

with a semantic role-based explanation, we do not 235

expect much change. However, in Group 3, we 236

posit the existence of a heuristic for object control 237

(to take the first NP) which has negative effects on 238

performance for passive object control. Thus, as 239

in Group 1, we expect that evidence against the 240

heuristic in the form of prompts will boost perfor- 241

mance in passive object control, while reducing 242

performance on active object control. 243

Fig. 2 shows the results after applying prompts 244

with questions about agents and patients. Here, we 245

see that for Group 1 (GPT-neo and Jurassic Jumbo) 246

the performance does decrease for subject control 247

and passive object control. This decrease is sig- 248

nificant for all models and settings except Jurassic 249

Jumbo in subject control. At the same time, all 250

object control performance increases significantly 251
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for Group 1. These results confirm our hypotheses,252

supporting the notion that these models follow a po-253

sitional rather than semantic heuristic. For Group 2254

(T0), we find a slight but significant decrease in per-255

formance on both object control types, and no sig-256

nificant difference for subject control. Finally, for257

Group 3 (GPT-3) we see the opposite of what we258

expected: GPT-3’s performance on object control259

goes close to ceiling after prompting with agent-260

patient questions, while the passive performance261

drops to 0. Note that the passive performance drop262

is from a lack of parseable strings being produced,263

rather than incorrect predictions.264

Further observations Even within model fam-265

ilies, there are measurable differences: although266

GPT-3 and Jurassic Jumbo are roughly the same267

size and share a general architecture, and are os-268

tensibly trained on similar data, the changes made269

by Lieber et al. (2021) seem to have a measurable270

impact, with Jurassic Jumbo performing signifi-271

cantly worse on zero-shot object control examples272

(active and passive). Similarly, GPT-3 differs from273

GPT-Neo-1.3B on active object control, and from274

GPT-Neo-2.7B and GPT-J on both forms of object275

control, despite sharing an architecture. Further276

analysis is impeded by a lack of clarity on the train-277

ing data used for GPT-3 and Jurassic Jumbo.278

We observe also that larger models tend to have279

higher performance: GPT-J is significantly better280

on all settings than GPT-Neo-1.3B and 2.7B, and281

Jurassic Jumbo is significantly better than Jurassic282

Large on passive object control. That said, some283

larger models are also slightly worse than their284

smaller counterparts (e.g. Jurassic Jumbo on ob-285

ject control). This last result suggests that perhaps286

larger models are more prone to following heuris-287

tics, even when they are wrong; however, additional288

evidence is needed.289

SPR labeling Table 1 shows the accuracy on bi-290

nary semantic proto-role labeling of all models with291

performance significantly above a random baseline.292

For change of state, only GPT-3 performs above293

chance, while for volition, GPT-3, GPT-J, and T0294

perform above chance. T0’s lower performance is295

surprising, as the performance of T0 in Fig. 1 is296

more consistent with an role-based heuristic. How-297

ever, these are separate tasks – thus, it is possi-298

ble for GPT-3 and GPT-J to follow non-role-based299

heuristics in one task while still encoding informa-300

tion about agent and patient properties. Finally, we301

note that in both Fig. 1 and Fig. 2, GPT-3 performs302

Setting Model # shots Acc. # valid

∆State GPT-3 1 0.61 118

Volition
GPT-3 3 0.77 168
GPT-J 0 0.69 111

T0 0 0.60 168

Table 1: Accuracy on change-of-state and volition for
models significantly above random baseline.

well on both subject control and object control in 303

the active, which is consistent with it containing 304

information about agency and patienthood. 305

Limitations A major limitation is the use of fixed 306

prompts: all models tested were found to be sen- 307

sitive to the prompt format, and while a relatively 308

large number of prompts were explored by varying 309

instructions, names, verbs, and actions, it is pos- 310

sible that there are more optimal prompts for the 311

task. In addition, the work is limited by the use 312

of open generation. While open-ended generation 313

allows for more flexibility than constrained decod- 314

ing, it also introduces the challenge of interpreting 315

the model outputs. We validate the use of open 316

generation in Appendix A.1. We also note that 317

both these limitations are also common in human 318

subject research. 319

4 Related Work 320

Generally, the knowledge contained in such models 321

has been measured with frozen models, in a prob- 322

ing setup using cloze-style prompts (Schick and 323

Schütze, 2021). Large models (generative and non- 324

generative) have been probed for diverse knowl- 325

edge, including syntax (Futrell et al., 2019), sym- 326

bolic reasoning (Talmor et al., 2020), and common- 327

sense knowledge (Petroni et al., 2019; Kassner 328

and Schütze, 2020; Sakaguchi et al., 2020). With 329

PLMs, this has often been done by recasting bench- 330

mark examples into text, either with zero exam- 331

ples (Sanh et al., 2021) or in the form of prompt 332

hacking (Brown et al., 2020; Raffel et al., 2020). 333

Ettinger (2020) present a suite of comparisons be- 334

tween PLMs and psycholinguistic experiments. 335

5 Conclusion 336

The results in Fig. 1 indicate that differences be- 337

tween models are not merely of degree, but of kind, 338

with groups of models following wholly different 339

strategies, some of which are inconsistent with the 340

dominance of object control in English. This un- 341

derscores the need for transparency in the reporting 342

of model details, and especially of training data. 343
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Figure 3: Accuracy of logit-scored model, taking the
max across instruction types.

A Metrics490

The heuristics extract single word answers as well491

as answers like “The answer is: NAME”. For some492

models and settings, the model re-generates the493

entire prompt before answering. Levenshtein dis-494

tance is used to check whether the prompt has been495

regenerated; if it has, it is removed and the first496

string following the prompt is checked for answer497

strings. The extraction function returns the first498

valid answer that is produced by the model.499

A.1 Validating Logits500

Fig. 3 shows the zero-shot accuracy of the best in-501

structions using logit scoring, for the models for502

which we have access to the full output distribu-503

tion (all models run in Huggingface Transformers).504

Comparing the results to Fig. 1, we see similar505

but less pronounced trends. As before, GPT-based506

models perform better on subject control and pas-507

sive object control, while T2T models perform bet-508

ter on object control and passive object control.509

This validates our choice to use heuristics rather510

than logits for the remaining results.511

B Profession Results512
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Figure 4: Accuracy of long instruction template on
names.

C Models513

• GPT-3 Davinci: this model is only available514

through the OpenAI API, and its exact training515

details are unclear. It is based on the GPT-3516
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Figure 5: Accuracy of long instruction template on
professions. Performance follows similar trends to com-
parable results with names (Fig. 4).

model (Brown et al., 2020) which was trained 517

on Common Crawl (Raffel et al., 2020) with 518

175B (billion) parameters. 519

• GPT-Neo: this is an open-source replication 520

of GPT-3 introduced by Black et al. (2021), 521

trained on The Pile (Gao et al., 2020), a 800Gb 522

dataset of text intended for pre-training. GPT- 523

Neo has 3 sizes: 1.3B, 2.7B, and 6B parame- 524

ters (GPT-J). 525

• Jurassic: Jurassic Large (7.5B parame- 526

ters) and Jurassic Jumbo (178B parameters) 527

(Lieber et al., 2021) are also accessible only 528

through an API. The training data is based 529

on Common Crawl, though similar to GPT- 530

3 Davinci, the details are unclear. Relevant 531

differences to GPT-3 are in the tokenization 532

(which includes multi-word expressions) and 533

use of fewer, wider layers. 534

The T2T models we consider are: 535

• T5 for QA: A T5-base T2T model (220- 536

million parameters) (Raffel et al., 2020) pre- 537

trained on cleaned Common Crawl data (C4) 538

and fine-tuned on SQuaD QA data (Rajpurkar 539

et al., 2016). 540

• T0pp: presented by Sanh et al. (2021), T0PP 541

is an 11B parameter T5 model pre-trained on 542

C4, finetuned specifically for zero-shot QA on 543

the P3 dataset of NLP benchmark data recast 544

into prompts. 545

D Data 546

D.1 Frequency of Subject and Object Control 547

In Section 1, we claimed that object control is more 548

frequent that subject control. To qualify this claim 549

in the context of PLMs, we conduct a search of a 550

subset of the C4 dataset (Raffel et al., 2020) for 551

sentences fitting subject control and object control 552

templates. While there are many types of subject 553

and object control, we focus on infinitival com- 554

plements, searching with templates similar to the 555
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You	will	be	given	a	context	and	a	question.	Answer	
the	question	with	either	"						"	or	"						“.\n
Context:								told								to	come.\n

Question:		Who	came,							or							?\n
Answer:	

Avery Casey
Casey Avery

Casey Avery

Figure 6: Zero-shot probe for object control. Colors
indicate names, which are swapped.

You	will	be	given	a	context	and	a	question.	Answer	the	
question	with	either	"						"	or	"						".\n

Context:								told								to	come.\n

Question:	Who	was	told	to	come,							or								?\n
Answer:							\n
Question:	Who	told	someone	to	come,							or							?\n
Answer:						\n

Question:		Who	came,							or							?\n
Answer:	

Avery Casey

CaseyAvery

CaseyAvery

Casey
Casey

Avery

Avery Casey
Avery

Figure 7: A prompt-hacked example for object control,
with long-form instructions.

sentences in examples 2 and 1. For object control,556

we use the same verb list as in Section 2. For sub-557

ject control, we only use promise, as in Section 2.558

We sub-sample the first 1, 000, 000 sentences of C4559

and search it with the templates, finding that object560

control occurs 10, 435 times, while subject control561

occurs only 160 times, i.e. object control is ∼ 65562

times more frequent.563

D.2 Control Prompts564

An example prompt for zero-shot object control can565

be seen in Fig. 6. The colors indicate the names,566

which can be swapped out for other names. In567

this example, the long-form instructions are used568

and the order of the names has been swapped from569

the original order, which is the same order as the570

names in the context clause. In the short-form571

instructions, the phrase “Answer the question with572

either <name1> or <name2>” is removed, and573

the “<name1> or <name2>” clause is removed574

from the question line.575

Fig. 7 shows an example prompt with prompt576

hacking to increase the salience of agents and pa-577

tients. The additional questions do not provide any578

direct example of how to answer the test question,579

but they do identify the agent and patient in the580

matrix clause, raising the salience of the semantic581

roles.582

D.3 SPRL Prompts583

Fig. 8 shows an example prompt for change of state,584

with a single prompting example preceding the test585

Answer	this	yes-no	question	about	the	following	
sentence.\n
Sentence:	"Hundreds	of	people	are	feared	dead	in	
Mississippi	,	and	the	Louisiana	city	of	New	
Orleans	is	badly	flooded	.”\n
Question:	In	the	event	"flooded",	does	the	
participant	"city"	change	in	state?\n
Answer:	Yes\n
Sentence:	"They	have	unbeatable	price	in	town	and	
deliver	on	time	.”\n
Question:	In	the	event	"have",	does	the	
participant	"They"	change	in	state?\n
Answer:	

Figure 8: Prompt for eliciting SPRL judgments, shown
here with one prompting example (1-shot).

example. For change of state, we experiment with 586

two question formats. The first is shown above, 587

the second asks, “In the event PRED, does state of 588

the participant ARG change?”. For volition, the 589

questions read: “In the event PRED, does the par- 590

ticipant ARG act with volition?” and “In the event 591

PRED, does the participant ARG act on purpose?” 592

D.4 Licensing 593

All data and code is released under an MIT license. 594
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