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Abstract

Children acquiring English make systematic
errors on subject control sentences (Chomsky,
1969) possibly due to heuristics based on se-
mantic roles (Maratsos, 1974). Given the ad-
vanced fluency of large generative language
models, we ask what kinds of generalizations
these models make on object and subject con-
trol clauses. We find broad differences between
models, with many models adopting positional
heuristics that succeed on subject control but
fail on object control. This result is surprising,
given that object control is orders of magnitude
more frequent in text data.

1 Introduction

Normally-developing children learning English
have been found to struggle with subject control
clauses long after they have successfully acquired
the components to understand them (Chomsky,
1969; Cromer, 1970; Maratsos, 1974; Sherman and
Lust, 1993). In a subject control clause, the latent
subject of an embedded infinitival clause (usually
written as PRO) is coindexed with the subject rather
than the object of the matrix (main) clause. For
example, in the sentence, “Cole promised Joe to
call” the complement “fo call” has a subject not
expressed overtly (Cole). This is typically written:

[Cole]np; promised [Joe]np; PRO; to call (1)

where subscripts indicate the noun phrase (NP)
“Cole” is the subject of “to call”. 1 can be contrasted
with the more common case of object control; for
example, if the matrix verb “promised” is swapped
with “fold”, then the coreferrent of PRO changes:

[Cole]np; told [Joe]lxp; PRO; to call  (2)

Chomsky (1969) finds that children ages 5 to 10
regularly misinterpreted subject control (1) for ob-
ject control (2) while correctly interpreting ob-
ject control clauses. Chomsky proposes that chil-
dren are following the Minimal Distance Principal

(MDP), choosing the linearly closest noun phrase
(NP) to govern PRO. Cromer (1970) highlights the
systematicity with which children mistake subject
control for object control and provides evidence for
the MDP. However, Maratsos (1974) argues against
the MDP; while his results support the observation
that children struggle with subject control, they do
not support the MDP, favoring an alternative based
on semantic roles. Maratsos changes the subject
and object order through passivization:

“Joenp; was told by Colenp, PRO; to call” (3)

finding that children correctly coindex PRO with
the (further away) object, violating the MDP.
Recently, large pre-trained language models
(PLMs) have shown an impressive ability not only
to produce fluent text, but also to perform tasks in
zero- and few-shot settings via prompting, espe-
cially for question answering (QA) (Brown et al.,
2020; Raffel et al., 2020; Sanh et al., 2021). In
light of the difficulty children have in acquiring
subject control constructions, we explore whether
the outputs of PLMs are consistent with adult or
child strategies for coindexing PRO. We examine
this question in the zero-shot setting, treating each
model as a sort of experimental subject. Our ini-
tial hypothesis is that model outputs will be con-
sistent with child strategies, i.e. the models will
perform well on object control examples, but mis-
interpret subject control for object control. This is
informed by two factors: object control is orders
of magnitude more frequent than subject control
(cf. Appendix D.1), and active object control (i.e.
(2)) requires resolving a shorter dependency than
subject control. We instead find that the PLMs
tested fall into three behavioural groups, with the
majority in fact producing responses that mistake
subject control for object control — the opposite
of what children do. We show that this behaviour
is sensitive to semantic roles, mirroring Maratsos
(1974)’s findings. We will release our code and
prompts at http://anonymous_url.com.



2 Methods

Subject and Object Control While PLMs used
for QA are often given a few “training” prompts
(few-shot setting) before answering a “test” prompt,
in our main experiments, to avoid learning effects
that might result from few-shot prompting (as one
would with human subjects), we focus on the zero-
shot setting. The prompts used in Section 3 are
made of an instruction sentence, a context (like
(1)-(3)), a question (e.g. “Who called?”), and an
answer continuation. Examples of all prompts are
given in D.2. We take the max over two instruction
types (long and short) in our analyses. While we do
not do “prompt hacking” with training questions
about object in subject control, we do experiment
with adding QA information to the prompt to raise
the salience of agents and patients (e.g. “Q: Who
told someone to call? A: Cole” for (2).)

Since the models examined can be sensitive
to specific tokens, we cover 9 embedding verbs
for object control: “told”, “ordered”, “called
upon”, “urged”, ‘“asked”, “persuaded”’, ‘“con-
vinced”, “forced”, and “pushed”. These verbs are
presented both in the active (object control exper-
iments) and passive (passive object control exper-
iments). For subject control, we follow previous
work (Chomsky, 1969; Maratsos, 1974) and fo-
cus on “promise” In our main experiments, we use
names as NPs; we also report results in Appendix B
using common professions to ensure that the trends
observed with names hold. We chose 2 male names,
2 female names, and 2 gender-neutral names; these
were chosen by taking the top 2 names in each re-
ported gender category in US Social Security data
from 1970 to 2019.! We run the same prompt with
each name combination in both orders, to avoid
possible biases the model may have towards partic-
ular names. When the names are included in the
instruction, we add an example with the name order
swapped. Finally, for the action infinitive (i.e. the
embedded verb) we chose the first 5 coherent verbs
(i.e. intransitive infinitives) from a frequency list of
English verbs (Yu et al., 2020; Sharov, 2020). This
process yields 1500 sentences for object control
and 150 for subject control (3000 and 300 when
names are swapped).

Semantic Proto-Role Experiments Following
Maratsos (1974)’s hypothesis that the observed mis-
takes children make on subject control sentences
is driven by semantic roles, in Section 3 we exam-

'https://www.ssa.gov/oact /babynames/

ine the relationship between a model’s ability to
perform zero-shot object and subject control and
its accuracy on identifying attributes commonly as-
sociated with agents and patients. Since querying
language models using fixed semantic role ontolo-
gies may be difficult we instead measure the mod-
els ability to perform semantic proto-roles labeling
(SPRL) for the volition and change of state prop-
erties. We use the SPRL data provided in the Uni-
versal Decompositional Semantics (UDS) dataset
introduced by White et al. (2020). These proper-
ties, first proposed by Dowty (1991), were found
to be strongly prototypical of agents and patients,
respectively (Reisinger et al., 2015).> By design,
SPR inferences are elicited with simple prompts,
circumventing brittle and complicated ontologies.
Indeed, the UDS dataset was created by asking an-
notators questions like “How likely is it that ARG
chose to be involved in the PRED?” with crowd-
workers giving scalar ratings normalized to [—3, 3].

To construct a dataset of SPRL prompts, we first
filter the UDS dataset for sentences with < 35
tokens. We then eliminate examples with scalar an-
notations € (—1, 1), keeping only examples with
strong inferences about the properties. The anno-
tations are binarized (> 1 = “Yes”) and balanced
across “Yes” and “No”. Two QA templates are
used for each property (cf. Appendix D.3).

In Section 3 we are interested in the raw ability
of the model to perform the SPRL labeling task,
and so we allow for prompt hacking. Accordingly,
we stratify the annotations into 4 stages; the bot-
tom stage always forms the “test” prompt, with the
answer blank. The remaining 3 stages are added
for increasing levels of prompting with “training’
QA pairs. We ensure that none of the annotations
is used more than once, and that all test annotations
are the across prompting settings, allowing them
to be paired, resulting in 118 change-of-state test
prompts and 168 volition prompts.

Models We explore both autoregressive mod-
els and text-to-text (T2T) models.  Autore-
gressive models are optimized by minimizing
— log(P(w;|w—;)) for words w1, ... wy in a par-
ticular context. These models have just an en-
coder. T2T models are encoder-decoder models,
optimized to reconstruct a noised version of the
input via the decoder.

)

“While instigation and stationarity were slightly more pre-
dictive of agency and patienthood, they were deemed to be
more difficult to re-frame as a prompt.
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Figure 1: Zero-shot accuracy on object control, passive
object control, and subject control. Black line represents
random performance (50% accuracy).

The autoregressive models (parameters in Bil-
lions) considered are GPT-3 Davinci (~ 175B
params), GPT-Neo (1.3B and 2.7B), GPT-J (6B),
Jurassic Large (7.5B), and Jurassic Jumbo (178B).
Details about training data can be found in Ap-
pendix C. The T2T models are: T5 finetuned for
QA (220 million)* and TOpp (11B). We access
non-API models via the Transformers library (Wolf
et al., 2020); due to computational constraints, they
are run on single GPUs at 1/2 precision.

Metrics Online APIs make forced decoding very
costly (Shin and Van Durme, 2021). Rather than
comparing logits for a restricted output vocab, we
allow the model to freely generate tokens, letting
the model produce a larger variety of answers.
However, this method requires heuristics to classify
the output strings into categories. In Appendix A.1
we validate our heuristics, verifying that for locally-
run models the trends are similar when using logits
associated with the correct answer. A full descrip-
tion of the heuristics is given in Appendix A. If the
extraction function fails to find any valid answer
strings, the example is skipped in evaluation rather
than counted as wrong. We measure significance in
model differences with McNemar’s test (McNemar,
1947), following Dietterich (1998).

3 Results and Analysis

In Fig. 1, we see that model classes have different

results; we further classify models into 3 groups:

1. GPT-Neo and Jurassic Jumbo are better on sub-
ject and passive object control than object con-
trol. This is consistent with use of a positional
heuristic, namely to take the first NP in the ma-
trix clause (i.e. Max Distance Principle).*

*Note that because of fine-tuned nature of the “T5 for
QA” model, the expected prompt format is different (cf. Ap-
pendix D.2). Prompt hacking cannot be done on this version
of TS5, so it is only used in the first experiment.

*Jurassic Large is not included in this group since its per-
formance is poor for all 3 settings.
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Figure 2: Accuracy on object control, passive object
control, and subject control after prompting with agent
and patient questions. Accuracy changes to Fig. 1 are
generally consistent within heuristic groups.

2. TS5 and TO are consistent with the observations
in Maratsos (1974); both models do better on
object control (active and passive) than subject
control. This contradicts the MDP but is consis-
tent with a heuristic choosing the matrix patient.

3. GPT-3 stands alone, performing well on object
control and nearly perfectly on subject control.
However, poor performance on passive object
control suggests a positional heuristic (take the
second NP) being used for object control verbs,
rather than an agency-based heuristic.

We make the following hypotheses for how
prompting with questions about agents and patients
will affect each group. For Group 1, if the models
are following positional heuristics, the additional
prompts will provide evidence inconsistent with
the heuristic. This could lead to the heuristic being
dropped; in that case, we would expect to see a
drop in performance in passive object control and
subject control (where the heuristic is beneficial)
and an increase in performance in object control
(where the heuristic is not beneficial). In Group
2, since the model outputs are already consistent
with a semantic role-based explanation, we do not
expect much change. However, in Group 3, we
posit the existence of a heuristic for object control
(to take the first NP) which has negative effects on
performance for passive object control. Thus, as
in Group 1, we expect that evidence against the
heuristic in the form of prompts will boost perfor-
mance in passive object control, while reducing
performance on active object control.

Fig. 2 shows the results after applying prompts
with questions about agents and patients. Here, we
see that for Group 1 (GPT-neo and Jurassic Jumbo)
the performance does decrease for subject control
and passive object control. This decrease is sig-
nificant for all models and settings except Jurassic
Jumbo in subject control. At the same time, all
object control performance increases significantly



for Group 1. These results confirm our hypotheses,
supporting the notion that these models follow a po-
sitional rather than semantic heuristic. For Group 2
(TO), we find a slight but significant decrease in per-
formance on both object control types, and no sig-
nificant difference for subject control. Finally, for
Group 3 (GPT-3) we see the opposite of what we
expected: GPT-3’s performance on object control
goes close to ceiling after prompting with agent-
patient questions, while the passive performance
drops to 0. Note that the passive performance drop
is from a lack of parseable strings being produced,
rather than incorrect predictions.

Further observations Even within model fam-
ilies, there are measurable differences: although
GPT-3 and Jurassic Jumbo are roughly the same
size and share a general architecture, and are os-
tensibly trained on similar data, the changes made
by Lieber et al. (2021) seem to have a measurable
impact, with Jurassic Jumbo performing signifi-
cantly worse on zero-shot object control examples
(active and passive). Similarly, GPT-3 differs from
GPT-Neo-1.3B on active object control, and from
GPT-Neo-2.7B and GPT-J on both forms of object
control, despite sharing an architecture. Further
analysis is impeded by a lack of clarity on the train-
ing data used for GPT-3 and Jurassic Jumbo.

We observe also that larger models tend to have
higher performance: GPT-J is significantly better
on all settings than GPT-Neo-1.3B and 2.7B, and
Jurassic Jumbo is significantly better than Jurassic
Large on passive object control. That said, some
larger models are also slightly worse than their
smaller counterparts (e.g. Jurassic Jumbo on ob-
ject control). This last result suggests that perhaps
larger models are more prone to following heuris-
tics, even when they are wrong; however, additional
evidence is needed.

SPR labeling Table 1 shows the accuracy on bi-
nary semantic proto-role labeling of all models with
performance significantly above a random baseline.
For change of state, only GPT-3 performs above
chance, while for volition, GPT-3, GPT-J, and TO
perform above chance. TO’s lower performance is
surprising, as the performance of TO in Fig. 1 is
more consistent with an role-based heuristic. How-
ever, these are separate tasks — thus, it is possi-
ble for GPT-3 and GPT-J to follow non-role-based
heuristics in one task while still encoding informa-
tion about agent and patient properties. Finally, we
note that in both Fig. 1 and Fig. 2, GPT-3 performs

Setting Model # shots Acc. # valid
AState  GPT-3 1 0.61 118
GPT-3 3 0.77 168
Volition GPT-J 0 0.69 111
TO 0 0.60 168

Table 1: Accuracy on change-of-state and volition for
models significantly above random baseline.

well on both subject control and object control in
the active, which is consistent with it containing
information about agency and patienthood.
Limitations A major limitation is the use of fixed
prompts: all models tested were found to be sen-
sitive to the prompt format, and while a relatively
large number of prompts were explored by varying
instructions, names, verbs, and actions, it is pos-
sible that there are more optimal prompts for the
task. In addition, the work is limited by the use
of open generation. While open-ended generation
allows for more flexibility than constrained decod-
ing, it also introduces the challenge of interpreting
the model outputs. We validate the use of open
generation in Appendix A.1. We also note that
both these limitations are also common in human
subject research.

4 Related Work

Generally, the knowledge contained in such models
has been measured with frozen models, in a prob-
ing setup using cloze-style prompts (Schick and
Schiitze, 2021). Large models (generative and non-
generative) have been probed for diverse knowl-
edge, including syntax (Futrell et al., 2019), sym-
bolic reasoning (Talmor et al., 2020), and common-
sense knowledge (Petroni et al., 2019; Kassner
and Schiitze, 2020; Sakaguchi et al., 2020). With
PLMs, this has often been done by recasting bench-
mark examples into text, either with zero exam-
ples (Sanh et al., 2021) or in the form of prompt
hacking (Brown et al., 2020; Raffel et al., 2020).
Ettinger (2020) present a suite of comparisons be-
tween PLMs and psycholinguistic experiments.

5 Conclusion

The results in Fig. 1 indicate that differences be-
tween models are not merely of degree, but of kind,
with groups of models following wholly different
strategies, some of which are inconsistent with the
dominance of object control in English. This un-
derscores the need for transparency in the reporting
of model details, and especially of training data.



References

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

C. Chomsky. 1969. The Acquisition of Syntax in Chil-
dren from 5 to 10. Research monograph series. MIT
Press.

Richard F Cromer. 1970. "Children are nice to un-
derstand": Surface structure clues for the recovery
of a deep structure. British Journal of Psychology,
61(3):397-408.

Thomas G Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learning
algorithms. Neural computation, 10(7):1895-1923.

David Dowty. 1991. Thematic proto-roles and argument
selection. Language, 67(3):547-619.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34—48.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 32-42.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800Gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Nora Kassner and Hinrich Schiitze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811-7818, Online. Asso-
ciation for Computational Linguistics.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
Technical report, AI21 Labs.

Michael P Maratsos. 1974. How preschool children
understand missing complement subjects. Child De-
velopment, pages 700-706.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153-157.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin
Van Durme. 2015. Semantic proto-roles. Transac-
tions of the Association for Computational Linguis-
tics, 3:475-488.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2020. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732-8740.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269.

S Sharov. 2020. Know thy corpus! robust methods
for digital curation of web corpora. In Proceedings
of the 12th Conference on Language Resources and

Evaluation (LREC 2020). Leeds.


https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Janet Cohen Sherman and Barbara Lust. 1993. Children
are in control. Cognition, 46(1):1-51.

Richard Shin and Benjamin Van Durme. 2021. Few-
shot semantic parsing with language models trained
on code. arXiv preprint arXiv:2112.08696.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743-758.

Aaron Steven White, Elias Stengel-Eskin, Siddharth
Vashishtha, Venkata Subrahmanyan Govindarajan,
Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi,
Sheng Zhang, Francis Ferraro, Rachel Rudinger,
et al. 2020. The universal decompositional seman-
tics dataset and decomp toolkit. In Proceedings of
the 12th Language Resources and Evaluation Con-
Sference, pages 5698-5707.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Charles Yu, Ryan Sie, Nicolas Tedeschi, and Leon
Bergen. 2020. Word frequency does not predict gram-
matical knowledge in language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4040-4054, Online. Association for Computational
Linguistics.


https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-main.331
https://doi.org/10.18653/v1/2020.emnlp-main.331
https://doi.org/10.18653/v1/2020.emnlp-main.331

Object control Passive object control Subject control

s gpt-neo-1.3b
mmm gpt-neo-2.7b

. gptj t5 = t0

Figure 3: Accuracy of logit-scored model, taking the
max across instruction types.

A Metrics

The heuristics extract single word answers as well
as answers like “The answer is: NAME”. For some
models and settings, the model re-generates the
entire prompt before answering. Levenshtein dis-
tance is used to check whether the prompt has been
regenerated; if it has, it is removed and the first
string following the prompt is checked for answer
strings. The extraction function returns the first
valid answer that is produced by the model.

A.1 Validating Logits

Fig. 3 shows the zero-shot accuracy of the best in-
structions using logit scoring, for the models for
which we have access to the full output distribu-
tion (all models run in Huggingface Transformers).
Comparing the results to Fig. 1, we see similar
but less pronounced trends. As before, GPT-based
models perform better on subject control and pas-
sive object control, while T2T models perform bet-
ter on object control and passive object control.
This validates our choice to use heuristics rather
than logits for the remaining results.

B Profession Results

Zero-shot, Long instructions
Passive object control

Object control Subject control

mmm gpt-neo-1.3b
mmm gpt-neo-2.7b

. gpt-j
. gpt3

B jurassic-large t5
W jurassic-jumbo . t0

Figure 4: Accuracy of long instruction template on
names.

C Models

* GPT-3 Davinci: this model is only available
through the OpenAl API, and its exact training
details are unclear. It is based on the GPT-3
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mmm gpt-neo-1.3b
B gpt-neo-2.7b

. gptj
. gpt3
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Figure 5: Accuracy of long instruction template on
professions. Performance follows similar trends to com-
parable results with names (Fig. 4).

model (Brown et al., 2020) which was trained
on Common Crawl (Raffel et al., 2020) with
175B (billion) parameters.

* GPT-Neo: this is an open-source replication
of GPT-3 introduced by Black et al. (2021),
trained on The Pile (Gao et al., 2020), a 800Gb
dataset of text intended for pre-training. GPT-
Neo has 3 sizes: 1.3B, 2.7B, and 6B parame-
ters (GPT-J).

* Jurassic: Jurassic Large (7.5B parame-
ters) and Jurassic Jumbo (178B parameters)
(Lieber et al., 2021) are also accessible only
through an API. The training data is based
on Common Crawl, though similar to GPT-
3 Davinci, the details are unclear. Relevant
differences to GPT-3 are in the tokenization
(which includes multi-word expressions) and
use of fewer, wider layers.

The T2T models we consider are:

* TS5 for QA: A T5-base T2T model (220-
million parameters) (Raffel et al., 2020) pre-
trained on cleaned Common Crawl data (C4)
and fine-tuned on SQuaD QA data (Rajpurkar
et al., 2016).

* TOpp: presented by Sanh et al. (2021), TOPP
is an 11B parameter TS model pre-trained on
C4, finetuned specifically for zero-shot QA on
the P3 dataset of NLP benchmark data recast
into prompts.

D Data

D.1 Frequency of Subject and Object Control

In Section 1, we claimed that object control is more
frequent that subject control. To qualify this claim
in the context of PLMs, we conduct a search of a
subset of the C4 dataset (Raffel et al., 2020) for
sentences fitting subject control and object control
templates. While there are many types of subject
and object control, we focus on infinitival com-
plements, searching with templates similar to the



You will be given a context and a question. Answer
the question with either " Casey " or " Avery “.\n
Context: Avery told Casey to come.\n

Question:
Answer:

Who came, Casey or Avery ?\n

Figure 6: Zero-shot probe for object control. Colors
indicate names, which are swapped.

You will be given a context and a question. Answer the
question with either "Avery " or " Casey".\n

Context: Avery told Casey to come.\n
Question: Who was told to come, Avery or
Answer: Casey \n

Question: Who told someone to come, Avery or Casey ?\n
Answer: Avery\n

Casey ?\n

Question:
Answer:

Who came, Avery or Casey ?\n

Figure 7: A prompt-hacked example for object control,
with long-form instructions.

sentences in examples 2 and 1. For object control,
we use the same verb list as in Section 2. For sub-
ject control, we only use promise, as in Section 2.
We sub-sample the first 1, 000, 000 sentences of C4
and search it with the templates, finding that object
control occurs 10, 435 times, while subject control
occurs only 160 times, i.e. object control is ~ 65
times more frequent.

D.2 Control Prompts

An example prompt for zero-shot object control can
be seen in Fig. 6. The colors indicate the names,
which can be swapped out for other names. In
this example, the long-form instructions are used
and the order of the names has been swapped from
the original order, which is the same order as the
names in the context clause. In the short-form
instructions, the phrase “Answer the question with
either <namel> or <name2>" is removed, and
the “<namel> or <name2>” clause is removed
from the question line.

Fig. 7 shows an example prompt with prompt
hacking to increase the salience of agents and pa-
tients. The additional questions do not provide any
direct example of how to answer the test question,
but they do identify the agent and patient in the
matrix clause, raising the salience of the semantic
roles.

D.3 SPRL Prompts

Fig. 8 shows an example prompt for change of state,
with a single prompting example preceding the test

Answer this yes-no question about the following
sentence.\n

Sentence: "Hundreds of people are feared dead in
Mississippi , and the Louisiana city of New
Orleans is badly flooded .”\n

Question: In the event "flooded", does the
participant "city" change in state?\n

Answer: Yes\n

Sentence: "They have unbeatable price in town and
deliver on time .”\n

Question: In the event "have", does the
participant "They" change in state?\n

Answer:

Figure 8: Prompt for eliciting SPRL judgments, shown
here with one prompting example (1-shot).

example. For change of state, we experiment with
two question formats. The first is shown above,
the second asks, “In the event PRED, does state of
the participant ARG change?”. For volition, the
questions read: “In the event PRED, does the par-
ticipant ARG act with volition?” and “In the event
PRED, does the participant ARG act on purpose?”

D.4 Licensing

All data and code is released under an MIT license.



