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Abstract

Explaining in accurate and intelligible terms the
predictions made by classifiers is a key challenge
of eXplainable Artificial Intelligence (XAI). To
this end, an abductive explanation for the predicted
label of some data instance is a subset-minimal col-
lection of features such that the restriction of the
instance to these features is sufficient to determine
the prediction. However, due to cognitive limita-
tions, abductive explanations are often too large to
be interpretable. In those cases, we need to reduce
the size of abductive explanations, while still deter-
mining the predicted label with high probability. In
this paper, we show that finding such probabilistic
explanations is NP-hard, even for decision trees.
In order to circumvent this issue, we investigate
the approximability of probabilistic explanations
through the lens of supermodularity. We examine
both greedy descent and greedy ascent approaches
for supermodular minimization, whose approxi-
mation guarantees depend on the curvature of the
“unnormalized” error function that evaluates the
precision of the explanation. Based on various ex-
periments for explaining decision tree predictions,
we show that our greedy algorithms provide an ef-
ficient alternative to the state-of-the-art constraint
optimization method.

1 INTRODUCTION

Basically, the classification problem is to extrapolate from
a set of labeled data instances a hypothesis, or classifier,
that accurately predicts the labels of new, incoming data
instances. Decision trees, random forests, support vector
machines, and neural nets, are common examples of classi-
fiers for which theoretical properties have been extensively
studied in the machine learning literature (see e.g. Sayed

[2022] for a recent survey). The spectrum of applications for
these classifiers is wide, ranging from document and image
classification, to customer profiling and medical diagnosis.
However, with the increasing deployment of data-driven
learning models in our society comes the issue of explaining
predictions in human intelligible terms. As a key topic of
eXplainable Artificial Intelligence (XAI), this issue is ex-
acerbated in sensitive domains, such as cybersecurity and
healthcare, where explanations are crucial for building trust
and confidence in the classifier [Guidotti et al., 2019, Miller,
2019, Samek et al., 2019, Molnar, 2020].

Among the various types of explanations proposed in the
XAI literature, formal explanations are particularly interest-
ing, since their soundness can be mathematically validated
[Marques-Silva and Ignatiev, 2022]. Notably, when the clas-
sifier h is a Boolean function, a common explanation for
predicting the output h(x) of some data instance x is a
subset-minimal collection of features I such that the restric-
tion xI of x to I determines h(x). Such an abductive expla-
nation [Ignatiev et al., 2019], also called sufficient reason
[Darwiche and Hirth, 2020], is logically sound, because xI
can be viewed as a prime implicant of the hypothesis h that
covers the instance x [Shih et al., 2018]. Although finding
an abductive explanation is NP-hard in general, tractable
cases have been identified for various hypothesis classes
[Marques-Silva et al., 2020, Audemard et al., 2021, Huang
et al., 2021, Cooper and Marques-Silva, 2023].

However, the soundness of explanations is not the only crite-
rion for clarifying in intelligible terms the predictions made
by classifiers. The conciseness property is also important,
since an abductive explanation involving too many features
cannot be understood by human users. Indeed, in cognitive
psychology, it has long been recognized that there is an
upper limit on our ability to reason about simultaneously
interacting elements. As conjectured by Miller [1956], this
limit is seven plus or minus two elements and, since then,
it has been confirmed by many experiments in cognitive
science. Thus, restricting the size of explanations appears
as a constraint for ensuring their intelligibility.
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Based on these considerations, how can we reduce the size
of explanations while retaining much of their soundness?
This is where probabilistic explanations [Wäldchen et al.,
2021] come into the equation. Namely, suppose we are
given an abductive explanation I for a classifier h and some
instance x, together with a size limit k ≤ |I|. For any can-
didate subset S of I , let εh,x(S) denote the probability that
a random instance y covered by xS is classified differently
from x by h. In other words, εh,x(S) is the probability of
making an “explanation mistake” for inferring h(x), using
xS instead of x. With this notion in hand, the main problem
considered in this study is to find a probabilistic explanation
S ⊆ I of size at most k such that εh,x(S) is minimized.

Unfortunately, this optimization task is very expensive from
a computational viewpoint. Indeed, the problem of finding a
minimizer S of εh,x(·) subject to some cardinality constraint
|S| ≤ k is NPPP-hard for general classifiers [Wäldchen
et al., 2021], and NP-hard for decision trees [Arenas et al.,
2022]. As shown in the present study, this problem remains
NP-hard for decision trees even in the restricted case where
S is a subset of some given abductive explanation I .

In order to overcome such a computational barrier, this
paper investigates the approximability of probabilistic ex-
planations through the lens of supermodularity. As εh,x(S)
can be viewed as the number µh,x(S) of mistakes induced
from the choice of S, averaged over the number of instances
covered by xS , our results exploit two key properties: (i) the
unnormalized error function µh,x(·) is supermodular and
non-increasing, and (ii) the normalization factor is constant
for all subsets S with the same size. Thus, even if εh,x(·) is
not supermodular, we can still use approximation algorithms
for supermodular minimization, by coupling them with a
level-wise selection method, in order to derive probabilistic
explanations endowed with approximation guarantees.

To this point, it is well-known that the task of maximizing a
non-decreasing submodular function subject to a cardinality
constraint is (1− 1

e )-approximable [Nemhauser and Wolsey,
1978]. The situation is however different for minimizing
non-increasing supermodular functions: the problem is not
approximable to within a constant, unless P = NP [Mittal
and Schulz, 2013]. Still, approximation factors can be pro-
vided by taking into account the curvature of the objective
function [Il’ev, 2001, Sviridenko et al., 2017].

In this paper, we present two conceptually simple and easy-
to-implement algorithms, whose approximation factors de-
pend on the curvature c of the function µh,x(·). The first
algorithm is a greedy descent method that achieves a ep−1

p -
approximation, where p = c

1−c , and the second algorithm is
a greedy ascent method that achieves a 1

1−c -approximation.
The sizes of the greedy descent and greedy ascent solutions
are bounded by k and k ln

(
2e
c

)
, respectively.

Both algorithms are empirically compared with the
constraint-based approach suggested in [Arenas et al., 2022],

which aims at inferring optimal probabilistic explanations
for decision tree predictions. Experimental results indicate
that our greedy algorithms can efficiently find accurate ex-
planations and, unlike the constraint-based approach, they
are able to scale up on high-dimensional explanation tasks.

This paper is organized as follows. The main concepts re-
lating to probabilistic explanations and supermodular min-
imization are introduced in Section 2 and Section 3, re-
spectively. Our approximation algorithms are theoretically
analyzed in Section 4, and empirically validated in Section 5.
Finally, the related work and some perspectives of further
research are discussed in Section 6.

2 PROBABILISTIC EXPLANATIONS

In this section, we start with some background about proba-
bilistic explanations, and then, we examine some computa-
tional aspects related to their evaluation and optimization.

2.1 NOTATION AND PROBLEM FORMULATION

For a positive integer d, we use [d] to denote the set
{1, · · · , d}. The classifiers under consideration in this study
are hypotheses of the form h : {0, 1}d → {0, 1}. Thus,
any input of h is d-dimensional Boolean vector x, called
instance, and the output of h(x) is a Boolean value, classi-
fying x as a negative example or a positive one. A partial
instance is a vector z ∈ {0, 1, ∗}d, where zi = ∗ indicates
that the ith feature of z is left undefined. An instance x is
covered by z, if xi = zi for all features i ∈ [d] such that
zi 6= ∗. For a subset S ⊆ [d], the restriction of x to S, de-
noted xS , is the partial instance in {0, 1, ∗}d such that, for
each i ∈ [d], (xS)i = xi if i ∈ S, and (xS)i = ∗ otherwise.
Clearly, any instance y ∈ {0, 1}d is covered by xS if and
only if yS = xS .

Given a classifier h, and an instance x for which the predic-
tion h(x) must be explained, let εh,x : 2[d] → R denote the
error function given by

εh,x(S)=
|{y ∈ {0, 1}d : h(y) 6= h(x),yS = xS}|

|{y ∈ {0, 1}d : yS = xS}|
(1)

As indicated above, εh,x(S) can be thought as the probabil-
ity of making an “explanation mistake” when using the par-
tial instance xS instead of the complete instance x. Given
a precision parameter ε ∈ [0, 1], an explanation S is called
(1− ε)-probable if εh,x(S) ≤ ε. We say that S is abductive
if εh,x(S) = 0, and εh,x(S′) > 0 for every proper subset
S′ of S. Note that (1) can be rewritten as

εh,x(S) =
µh,x(S)

2d−|S|
(2)

where µh,x(S) is the number of mistakes induced from the
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Figure 1: The error εh,x(S) (in blue) and the number of
mistakes µh,x(S) (in magenta) for each S ⊆ [3], using the
classifier h given by (4) and the instance x = (1, 1, 1).

choice of S, that is,

µh,x(S) = |{y ∈ {0, 1}d : h(y) 6= h(x),yS = xS}| (3)

Example 1. Consider the classifier h : {0, 1}3 → {0, 1}
specified by the polynomial threshold function:

h(x) = 1⇔ x1x2x3 + x1x2 − x1 − x2 ≥ 0 (4)

Given the instance x = (1, 1, 1) for which we need to
explain h(x) = 1, and using the Hasse diagram in Figure 1,
it follows that {1, 2, 3} is the only abductive explanation
for h and x. Yet, {1, 2} and {3} are both subset-minimal
1
2 -probable explanations for h and x.

With these notions in hand, we are now in position to for-
mulate the main problem considered in this study.

Problem 1. Given a classifier h : {0, 1}d → {0, 1}, an
instance x ∈ {0, 1}d, a set I ⊆ [d] of features, a size limit
k ≤ |I|, find a subset S ⊆ I of size at most k such that
εh,x(S) is minimized.

2.2 EVALUATING EXPLANATION ERRORS

It is easy to see that the problem of evaluating εh,x(S)
is #P-hard in general. However, Izza et al. [2022a] have
shown that εh,x(S) can be computed in polynomial time,
when h is described by a decision tree. For completeness,
we show here that εh,x(S) can be evaluated in linear time
for decision trees, using the orthogonality of decision trees,
and the fact this property is closed under conditioning.

To this end, recall that a (Boolean) decision tree is a binary
tree T , each of whose internal nodes is labeled with one of
d Boolean variables from Xd = {x1, · · · , xd}, and whose
leaves are labeled 0 or 1. The value h(x) ∈ {0, 1} of a
hypothesis h described by T on an instance x is given by
the label of the leaf reached from the root of T as follows:
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Figure 2: A decision tree representation of (4).

at each node, go to the left or right child depending on
whether the input value of the corresponding variable is 0
or 1, respectively. The size of T , denoted |T |, is given by
the number of nodes in T . For illustration, a decision tree
representing the classifier (4) is given in Figure 2.

As usual, a literal overXd is a variable xi, or its negation xi.
The negation of a literal l is given by ¬l = xi if l = xi, and
¬l = xi if l = xi. A a term is a conjunction of literals, and a
Disjunctive Normal Form (DNF) formula is a disjunction of
terms. Here, DNF formulas are viewed as sets of terms, and
terms are viewed as sets of literals. A term is inconsistent if
includes a pair {l,¬l} of opposite literals. A DNF formula
F = {t1, · · · , tm} is orthogonal if ti ∪ tj is inconsistent
for all pairs i, j ∈ [m] such that i 6= j. The conditioning
[Darwiche, 1999] of F by a term t, denoted F | t, is the
formula obtained by removing from {t1 ∪ t, · · · , tm ∪ t}
any term that is inconsistent.

Proposition 1. Given a classifier h : {0, 1}d → {0, 1} rep-
resented by some decision tree T , an instance x ∈ {0, 1}d,
and a set of features S ⊆ [d], evaluating εh,x(S) can be
done in O(|S| · |T |) time.

Proof. It is well-known that T can be transformed in linear
time into an equivalent orthogonal DNF formula, denoted
DNF(T ), where each term corresponds to a path from the
root to a leaf labeled with 1. Given an instance x ∈ {0, 1}d
and a set S of features, let txS

be the term associated with
the partial instance xS , that is,

txS
=

d⋃
i=1

{xi : (xS)i = 1} ∪ {xi : (xS)i = 0}

By construction, DNF(T ) | txS
is orthogonal and hence,

for decision trees, (3) can simply be rewritten as:

µh,x(S) =

{∑
t∈DNF(T )|txS

2d−|t| if h(x) = 1

2d −
∑
t∈DNF(T )|txS

2d−|t| if h(x) = 0

The result follows from (2), together with the fact that
DNF(T ) | txS

can be derived in O(|S| · |T |) time.
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Figure 3: The decision tree T3 in the proof of Proposition 2.

2.3 MINIMIZING EXPLANATION ERRORS

The next result shows that the decision version of Problem 1
is generally hard to solve for decision trees, even when the
set I of candidate features is an abductive explanation.

Proposition 2. Given a classifier h represented by some
decision tree T , an instance x ∈ {0, 1}d, an abductive
explanation I ⊆ [d] for h and x, an integer k < |I|, and a
threshold ε ∈ (0, 12 ), the problem of finding a subset S ⊆ I
of size at most k satisfying εh,x(S) ≤ ε is NP-hard.

Proof. We consider three problems P1,P2 and P3, each
taking as input a decision tree representation T of some
classifier h, an instance x ∈ {0, 1}d, and two parameters k
and ε. The third problem is also given an abductive explana-
tion I for h and x. For P1, k ≤ [d] and ε ∈ (0, 12 ), for P2,
k ≤ [d] and ε ∈ ( 1

2 , 1), and for P3, k < |I| and ε ∈ (0, 12 ).
The corresponding tasks are given as follows:

P1: Find S ⊆ [d] such that |S| ≤ k and εh,x(S) ≤ ε;
P2: Find S ⊆ [d] such that |S| ≤ k and εh,x(S) ≥ ε;
P3: Find S ⊆ I such that |S| ≤ k and εh,x(S) ≤ ε.

By Theorem 2 in [Arenas et al., 2022], P1 is NP-hard.
Based on this result, we give here a chain of polynomial-
time reductions P1 �p P2 �p P3.

Given an instance (T1,x1, k1, ε1) of P1, we build an in-
stance (T2,x2, k2, ε2) of P2, where T2 is the negation of
T1, x2 = x1, k2 = k1 and ε2 = 1 − ε1. Note that T2 can
be constructed in polynomial time by simply switching the
label of each leaf in T1. Let h1 and h2 denote the hypotheses
associated with T1 and T2, respectively. Since by construc-
tion, εh2,x(S) = 1 − εh1,x(S), we have P1 �p P2, and
hence, P2 is NP-hard.

Now, consider an instance (T2,x2, k2, ε2) of P2. With-
out loss of generality, we assume here that x2 is the d-
dimensional all-ones vector 1, and h2(x) = 1 where h2
is the hypothesis associated with T2. We construct an in-
stance (T3,x3, I, k3, ε3) of P3 in the following way. Let
T3 be the decision tree defined according to Figure 3. The

root node of T3 is labeled with x0, the subtree rooted at
the left child of x0 is the negation of T2, and the subtree
rooted at the right child of x0 is the caterpillar encoding the
conjunction x1 ∧ · · · ∧ xd. Let x3 be the all-ones vector 1
over {0, 1, · · · , d}, and I = {0, 1, · · · , d}. The remaining
parameters are set to k3 = k2 and ε3 = 1− ε2.

Let h3 be the hypothesis associated with T3. For any
i ∈ {0, 1, · · · , d}, let yi←0 be the instance in {0, 1}d+1

obtained by flipping the value x3,i and leaving all other val-
ues of x3 unchanged. Since h3(x3) = 1, and h3(yi←0) = 0
for all i ∈ {0, 1, · · · , d}, it follows that I is an abductive
explanation for h3 and x3. Moreover, for any proper subset
S of I that includes the feature 0, we have

εh3,x3
(S) = 1− 1

2d+1−|S| ≥
1

2
> ε3

So, in order to solve P3, we need to identify a subset S ⊆ I
of size at most k3 that excludes the feature 0, while satisfy-
ing εh3,x3(S) ≤ ε3. But we can see that for any S ⊆ I\{0},

εh3,x3
(S)=

|{y∈{0, 1}d :h2(y)=h2(x2),yS=(x2)S}|
|{y ∈ {0, 1}d : yS=(x2)S}|

=1− εh2,x2(S)

Therefore, εh3,x3(S) ≤ ε3 if and only if εh2,x2(S) ≥ ε2. It
follows that, P2 �p P3, and hence, P3 is NP-hard.

3 SUPERMODULAR MINIMIZATION

The main idea of this study is to relax the requirement of
finding an optimal solution to Problem 1, and instead settle
for a solution that is “good enough”, using supermodular
minimization algorithms. In this section, we start with some
basic notions about supermodularity, and then, we examine
some useful properties of the mistake function.

3.1 SUPERMODULAR FUNCTIONS

Given a real-valued set function f : 2[d] → R, the quantities

Lf (i | S) = f(S \ {i})− f(S), and
Gf (i | S) = f(S ∪ {i})− f(S)

are respectively capturing the marginal loss of removing
an element i from a set S, and marginal gain of adding
an element i to a set S. A set function f is non-increasing
if Lf (i | S) ≥ 0 for all S ⊆ [d] and i ∈ S, and f is
non-decreasing if Gf (i | S) ≥ 0 for all S ⊆ [d] and
i ∈ [d] \ S. A set function f is supermodular if it satisfies
the diminishing loss condition

Lf (i | S) ≥ Lf (i | T )



for all S ⊆ T ⊆ [d] and i ∈ S. Dually, f is submodular if
it satisfies the diminishing gain condition

Gf (i | S) ≥ Gf (i | T )

for all S ⊆ T ⊆ [d] and i ∈ [d] \ T . Based on the fact that
Lf (i | S) = −Gf (i | S \ {i}) for all S ⊆ [d] and i ∈ S, f
is supermodular if and only if −f is submodular. Finally, f
is modular if it is both submodular and supermodular.

For a non-negative set function f and a nonempty subset
I ⊆ [d], the curvature of f over 2I is given by

c = 1−min
i∈I

Lf (i | I)

Lf (i | {i})
= 1−min

i∈I

Gf (i | I\{i})
Gf (i | ∅)

(5)

Clearly, c ∈ [0, 1] whenever f is non-decreasing and sub-
modular, or non-increasing and supermodular. Note that the
curvature coincides with the notion of “steepness” defined
in [Il’ev, 2001]. When I = [d], c is called the total curvature
of f [Conforti and Cornuéjols, 1984]. Notably, in the case
where f is non-increasing and supermodular, the condition
c < 1 is sufficient for ensuring that the task of minimizing f
subject to a cardinality constraint is approximable to within
a constant [Il’ev, 2001, Sviridenko et al., 2017].

3.2 MINIMIZING EXPLANATION MISTAKES

In light of Figure 1, we can see that the error function εh,x(·)
is generally not supermodular or submodular, and not non-
increasing or non-decreasing. However, if we instead focus
on the unnormalized version µh,x(·) given in (3), then the
following properties can be derived.

Proposition 3. Let h : {0, 1}d → {0, 1} be a classifier, x ∈
{0, 1}d be an instance, and I ⊆ [d] be any nonempty set of
features. Then, µh,x(·) is supermodular and non-increasing.
Furthermore, if I is an abductive explanation for h and x,
then the curvature c of µh,x(·) over 2I satisfies c < 1.

Proof. Let f be the function µh,x(·), and N be the set of in-
stances y ∈ {0, 1}d such that h(x) 6= h(y). For any subset
S ⊆ [d], let C(xS) denote the set of instances y ∈ {0, 1}d
covered by xS , and for any feature i ∈ S, let C(xS\{i})
denote the set C(xS\{i}) \ C(xS).

The fact that f is non-increasing directly follows from the
observation that Lf (i | S) = |C(xS\{i}) ∩ N | ≥ 0 for
any S ⊆ [d] and any i ∈ S. Now, given any superset T
of S, we have C(xT\{i}) ⊆ C(xS\{i}). It follows that
C(xT\{i})∩N ⊆ C(xS\{i})∩N , and hence, Lf (i | T ) ≤
Lf (i | S). Therefore, f is supermodular.

Finally, Lf (i | I) > 0 whenever I is a (non-empty) abduc-
tive explanation for h and x. This, together with the fact
that, by supermodularity, Lf (i | {i}) ≥ Lf (i | I) for any
i ∈ I , implies that c ∈ [0, 1).

4 APPROXIMATION ALGORITHMS

After providing an overview of probabilistic explanations
and supermodular minimization, we now present two greedy
approximation algorithms for Problem 1.

4.1 GREEDY DESCENT

A natural approach for minimizing a supermodular and
non-increasing function f subject to a cardinality constraint
|S| ≤ k is to start from the input set I of candidate features,
and to iteratively remove from the current solution S any
feature i that minimizes the marginal loss Lf (i | S), until
the desired size |S| = k is reached. As shown by Il’ev
[2001], this greedy method achieves a ep−1

p -approximation,
where p = c

1−c , and c is the curvature of f over 2I .

In the setting of our study, the error function εh,x(·) in (2)
is a normalized version of µh,x(·), which is supermodular
and non-increasing. Furthermore, the normalization factor
2d−|S| is constant for all subsets S with the same size. Based
on these properties, we can combine the above greedy de-
scent approach for f = µh,x(·), with a level-wise selection
method that stores the subsets S0, S1, · · · , Sk obtained for
each size j ∈ {0, 1, · · · , k}, and that returns from this se-
quence the best subset Sj with respect to εh,x(·). A formal
description is given in Algorithm 1.

Proposition 4. Let S∗ be an optimal solution to Problem 1,
let c be the curvature of µh,x(·) over 2I , and assume that I
is an abductive explanation for h and x. Then, the solution
SGD returned by Greedy Descent (GD) satisfies:

εh,x(SGD) ≤
(
ep − 1

p

)
εh,x(S∗) where p =

c

1− c
< 1

Proof. The fact that p < 1 follows from Proposition 3. Let
j∗ be the size of S∗, and let Sj∗ be the solution computed
by GD at the end of the step j = n − j∗ + 1. Note that
|S∗| = |Sj∗ |. So, by application of Corollary 4 in [Il’ev,
2001], we must have

µh,x(Sj∗) ≤
(
ep − 1

p

)
µh,x(S∗)

Since GD is returning a minimizer of εh,x(·) over the se-
quence S0, · · · , Sj∗ , · · · , Sk, it follows that

εh,x(SGD) ≤ εh,x(Sj∗) =
µh,x(Sj∗)

2d−j∗

≤
(
ep − 1

p

)
µh,x(S∗)

2d−j∗
=

(
ep − 1

p

)
εh,x(S∗)



Algorithm 1: Greedy Descent (GD)

Input: classifier h, instance x, feature set I , integer k

Set Sn = I , where n = |I|
For j = n downto 1 do

Let i∗ ∈ Argmini∈Sj
µh,x(Sj \ {i})

Set Sj−1 = Sj \ {i∗}
Let SGD ∈ ArgminS∈{S0,S1,··· ,Sk} εh,x(S)

Return SGD

4.2 GREEDY ASCENT

An alternative approach is to consider the objective function
f = −µh,x(·), which is submodular and non-decreasing.
Based on the well-known greedy method for submodular
maximization [Nemhauser and Wolsey, 1978], we could
start from S0 = ∅, and iteratively add to the current so-
lution Sj−1 any maximizer i ∈ I \ Sj−1 of the marginal
gain Gf (i | Sj−1) until |Sj | = k. Unfortunately, such a
method would fail here because f is non-positive. Yet, as
observed by Liberty and Sviridenko [2017], this issue can
be alleviated by slightly increasing the size limit k. More
precisely, given a parameter γ ∈ (0, 1), the greedy method
achieves a 1

1−γ -approximation, whenever it is allowed to im-
prove its solution Sj−1 until |Sj | = kdln (f(∅)/γf(Sj−1))e.
By coupling this idea with the level-wise selection method
suggested above, we get a greedy ascent algorithm for mini-
mizing εh,x(·), detailed in Algorithm 2.

Proposition 5. Under the conditions of Proposition 4, the
solution SGA returned by Greedy Ascent (GA) satisfies:

εh,x(SGA) ≤
(

1

1− c

)
εh,x(S∗), and

|SGA| ≤ k
(

1 +

⌈
ln
µh,x(∅)

µh,x(S∗)

⌉)
≤ k

⌈
ln

2e

c

⌉

Proof. The upper bound on εh,x(SGA) can be derived from
the following chain of inequalities:

εh,x(SGA) ≤ εh,x(Sj) =
µh,x(Sj)

2d−j
≤
(

1

1− c

)
µh,x(S∗)

2d−j

≤
(

1

1− c

)
µh,x(S∗)

2d−|S∗| =

(
1

1− c

)
εh,x(S∗)

where the first inequality uses the fact that SGA is a mini-
mizer of εh,x(·) over {S0, · · · , Sj}, the second inequality
follows from [Liberty and Sviridenko, 2017, Theorem 5]
and c ≤ γ, and the last inequality follows from |S∗| ≤ j.

The first upper bound on |SGA| simply follows from [Lib-
erty and Sviridenko, 2017, Theorem 5], and the fact that
γ ≥ 1

e . For the last bound on |SGA|, we know that
1
c = µh,x(∅) − mini∈I µh,x({i}), whenever I is an

Algorithm 2: Greedy Ascent (GA)

Input: classifier h, instance x, feature set I , integer k

Let c be the curvature of µh,x(·) over 2I

Set j = 0, S0 = ∅ and γ = max
{

1
e , c
}

Repeat
Let i∗ ∈ Argmini∈I\Sj−1

µh,x(Sj−1 ∪ {i})
Set Sj = Sj−1 ∪ {i∗}

Until j = k

⌈
ln

(
µh,x(∅)

γ · µh,x(Sj)

)⌉
Let SGA ∈ ArgminS∈{S0,S1,··· ,Sj} εh,x(S)

Return SGA

abductive explanation. This, together with the fact that
mini∈I µh,x({i}) ≤ 1

2µh,x(∅), yields µh,x(∅) ≤ 2
c .

4.3 APPLICATION TO DECISION TREES

The approximation bounds derived in Propositions 4 and 5
hold for any (Boolean) hypothesis class. However, in order
to ensure that GD and GA are computationally efficient,
each call to the value oracle µh,x(·) should run in polyno-
mial time. As emphasized in Section 2.2, this is the case
for decision trees. Namely, if the input classifier h of GD
is represented by a decision tree T , then by Proposition 1
and the fact that the number of calls to the value oracle is
quadratic in n = |I|, implies that GD runs inO(n3|T |) time.
For GA, the number of calls to the value oracle is bounded
by jn + n + 2, where j is the number of iterations of the
main loop, and n + 2 is the number of calls required to
compute c. So, GA runs in O(kn2(1 + ln 2/c)|T |) time.

5 EXPERIMENTS

In order to validate the effectiveness of our algorithms, we
have considered various instances of Problem 1, where the
input classifier is described by a decision tree. The code was
written using the Python language. All the experiments
have been conducted on a computer equipped with a 3.1
GHz Intel(R) Core i9-9900 CPU and 64 GiB of RAM.

5.1 EXPERIMENTAL SETUP

In our experiments, we have considered B = 50 datasets,
or benchmarks, from the standard repositories Kaggle,
OpenML and UCI. Notably, mnist38 and mnist49 are subsets
of the dataset mnist. Except for cnae, all datasets are binary
classification tasks with a number of attributes ranging from
101 to 105. The multi-label classification task cnae was
transformed into a binary classification task by considering
the dominant label versus all other labels.



Benchmark εh,x(S) |S| Time (s)

name acc d |I | GA GD SAT GA GD SAT SAT

meta-data 87.42 44 5.09 0.08 (±0.11) 0.08 (±0.11) 0.08 (±0.11) 3.10 3.10 3.10 12.14
glass 78.46 31 5.38 0.26 (±0.11) 0.26 (±0.11) 0.26 (±0.11) 2.14 2.14 2.14 2.36
student perf. 91.79 30 5.41 0.26 (±0.11) 0.26 (±0.11) 0.26 (±0.11) 2.00 2.00 2.00 2.16
primary tumor 84.31 23 6.23 0.09 (±0.09) 0.09 (±0.09) 0.09 (±0.08) 4.22 4.22 4.22 3.58
liver disorders 75.96 58 6.38 0.18 (±0.09) 0.18 (±0.08) 0.18 (±0.08) 4.00 4.00 4.00 27.33
schizophrenia 80.39 33 6.39 0.37 (±0.24) 0.37 (±0.24) 0.37 (±0.24) 1.27 1.27 1.27 4.79
hungarian 62.92 13 6.65 0.12 (±0.12) 0.12 (±0.12) 0.11 (±0.10) 3.58 3.56 3.56 1.68
horse colic 75.68 40 6.73 0.14 (±0.07) 0.13 (±0.07) 0.13 (±0.07) 4.03 4.06 4.06 11.56
indian liver 64.57 84 8.21 0.10 (±0.09) 0.10 (±0.09) 0.16 (±0.12) 5.08 4.89 6.12 176.28
pima indians 75.32 97 8.30 0.15 (±0.14) 0.15 (±0.14) 0.16 (±0.12) 5.85 5.84 6.58 484.6
loan eligibility 74.31 68 8.47 0.19 (±0.13) 0.18 (±0.13) 0.20 (±0.14) 5.60 5.70 6.82 42.87
patient treat. 66.01 10 8.92 0.05 (±0.09) 0.03 (±0.06) 0.03 (±0.08) 5.63 5.94 5.94 24.08
wine 69.58 11 9.03 0.09 (±0.10) 0.09 (±0.09) 0.09 (±0.12) 5.59 5.64 5.62 36.32
employee attr. 82.45 63 10.56 0.06 (±0.09) 0.06 (±0.09) 0.20 (±0.11) 6.41 6.39 6.98 1017.24
contraceptive 51.36 90 10.84 0.06 (±0.08) 0.06 (±0.08) 0.39 (±0.17) 4.27 4.26 5.95 1096.07
compas 67.60 40 10.95 0.03 (±0.07) 0.04 (±0.08) 0.05 (±0.09) 5.68 5.83 6.78 1082.32
fetal health 91.85 93 11.33 0.12 (±0.06) 0.12 (±0.06) 0.23 (±0.11) 5.59 5.59 6.00 930.61
dorothea 91.88 105 12.90 0.25 (±0.10) 0.25 (±0.10) − 6.70 6.70 − −
bank market. 89.49 882 13.11 0.29 (±0.08) 0.29 (±0.07) − 6.99 6.99 − −
mnist49 95.99 784 15.57 0.37 (±0.14) 0.37 (±0.14) − 6.97 6.89 − −
spambase 92.11 236 16.09 0.24 (±0.11) 0.23 (±0.09) − 6.87 6.87 − −
mnist38 96.42 784 17.89 0.37 (±0.13) 0.38 (±0.14) − 6.93 6.93 − −
cnae 92.59 856 19.07 0.32 (±0.25) 0.32 (±0.25) − 5.97 5.97 − −
gisette 94.10 5000 21.42 0.32 (±0.11) 0.32 (±0.11) − 6.88 6.88 − −
farm ads 80.78 54877 23.15 0.13 (±0.17) 0.13 (±0.17) − 6.31 6.31 − −

Table 1: Experimental results on 25 benchmarks for decision tree explanations, using k = 7.

For each benchmark b ∈ [B], an explanation task consists in
a tuple (T ,x, I, k) described as follows. T is the decision
tree representation of some classifier h, which is learned
from the training part of b. In our experiments, we have used
a Scikit-Learn implementation of the CART algorithm
for generating T . The predictive accuracy of h is measured
on the test part of b. By interpreting each internal node of
T as a Boolean feature, the instance x to be explained is
taken from the test part of b, and binarized according to
the d features occurring in T . The set I is given by the
collection of features occurring in the (single) root-to-leaf
path in T that is consistent with the instance x. Here, I is
often referred to as a path-explanation [Izza et al., 2022b],
or direct reason [Audemard et al., 2022a]. As observed in
[Izza et al., 2022b], I is not necessarily minimal with respect
to set inclusion. Finally, we have used k = 7 ± 2 for the
size limit. The performance of explanation algorithms on a
benchmark b is measured by drawing uniformly at random
m instances x from the test set of b, and averaging the
resulting error εh,x(S) and size |S| of the output S ⊆ I . In
our experiments, m was set to min{s, 150}, where s is the
size of the test set of b.

To compare the performance of GD and GA with an exact
solver, we have chosen the SAT-based approach in [Arenas
et al., 2022]. Namely, a SAT encoding was provided for the
following task: given as input a decision tree T for some

classifier h, an instance x, and two parameters k ≤ d and
ε ∈ [0, 1), return as output “yes” if there is a set of fea-
tures S satisfying both |S| ≤ k and εh,x(S) ≤ ε, and “no”
otherwise. In the setting of our experimental setup, S is a
subset of the path-explanation I for x. So, the above SAT
encoding was extended to the decision version of Problem 1,
by adding the clause

∨
{xi : (xI)i = 1}∨{xi : (xI)i = 0}.

For the original version of Problem 1, a binary search over
the interval (0, 1] was performed in order to find a minimizer
S of εh,x(·) with precision of 10−3, which requires at most
10 calls to the SAT solver. We used a Pysat implemen-
tation of GLUCOSE 4 for the solver, with a timeout of 30
minutes per explanation task.1

5.2 EXPERIMENTAL RESULTS

In Table 1 is reported an overview of our results on 25 of 50
benchmarks, for k = 7. The leftmost column gives the name
of the dataset b. The columns acc and d are respectively giv-
ing the accuracy and the number of features of the decision
tree. The rows are sorted according to the average size |I| of
the path-explanation. The fifth, sixth, and seventh columns
are reporting the results for the average error εh,x(S) of

1We mention in passing that an SMT-based approach was
recently proposed in [Izza et al., 2022a], but the code was not
available at the time of writing this paper.



the explanation S returned by GA, GD, and the SAT-based
approach, respectively. The next three columns are report-
ing the average size of S for these algorithms. Finally, the
last column gives the average run-times (in seconds) of the
SAT-based approach. Notably, for the 7 datasets in blue, the
SAT solver occasionally reaches the timeout before the end
of binary search, which results in a degradation of precision.
For the 8 datasets in magenta, the solver could not perform
a single run of binary search before reaching the timeout.
We have not reported the run-times of GA and GD, because
they could always find a solution in less than 0.1 seconds.

In light of these results, we can observe that the perfor-
mance of greedy algorithms for minimizing εh,x(·) is re-
markable, especially in comparison with the performance
of the SAT-based approach. For the benchmarks where the
SAT solver could return an optimal solution S∗, the dif-
ferences εh,x(SGD) − εh,x(S∗) and εh,x(SGA) − εh,x(S∗)
are most often negligible. Moreover, for high-dimensional
datasets such as dorothea, gisette and farm ads, both GA
and GD remain stable by providing explanations with com-
parable errors in a few tenths of a millisecond. Regarding
the conciseness of explanations, we can see that |SGD| is on
average smaller than |S∗|. Interestingly, |SGA| is on average
smaller than the size limit k = 7, which indicates that the
upper bound on |SGA| in Proposition 5 is rarely attained in
practice. Finally, GA and GD could efficiently reduce path-
explanations I which are not always abductive. In other
words, both algorithms are, in practice, robust enough to
handle some explanation tasks for which the curvature c of
the unnormalized error function is close to or equal to 1.

6 DISCUSSION

Related Work. Clarifying in a comprehensible way the
prediction h(x) made by some classifier h on an input data
instance x often takes the form of a set I of features which in
conjunction determine h(x) [Ribeiro et al., 2018]. Such an
explanation is abductive [Ignatiev et al., 2019], or sufficient
[Darwiche and Hirth, 2020], precisely when I is minimal
with respect to inclusion. The problem of finding abductive
explanations has been a subject of extensive research, re-
cently surveyed in [Marques-Silva and Ignatiev, 2022]. The
hypothesis classes which are tractable for computing abduc-
tive explanations include, among others, decision trees [Au-
demard et al., 2021, Huang et al., 2021, Izza et al., 2022b],
Naive Bayes classifiers [Marques-Silva et al., 2020], mono-
tone threshold functions [Cooper and Marques-Silva, 2023],
and Boolean functions compiled into deterministic Decom-
posable Negation Normal Form (dDNNF) [Audemard et al.,
2020, Huang et al., 2022]. Actually, even when the problem
of finding an abductive explanation is NP-hard, empirical
results indicate that it can often be solved in practice using
SAT-based approaches [Ignatiev and Silva, 2021, Izza and
Marques-Silva, 2021, Ignatiev et al., 2022].

However, due to cognitive limitations, a major weakness of
abductive explanations is their uncontrollable size. In order
to circumvent this issue, a common approach is to seek for
abductive explanations of minimum size. Unfortunately, the
corresponding optimization problem is NP-hard for deci-
sion trees [Barceló et al., 2020], and Σp2-hard in general
[Audemard et al., 2022b]. Furthermore, even if shortest ab-
ductive explanations could be found in a reasonable amount
of time, their size remains uncontrollable.

By capturing a natural trade-off between conciseness and
precision, probabilistic explanations have been a subject of
growing research in the past two years [Blanc et al., 2021,
Izza et al., 2021, Wäldchen et al., 2021, Wang et al., 2021,
Arenas et al., 2022, Izza et al., 2022a, Wäldchen, 2022]. Re-
call that a size-k (1−ε)-probable explanation for a classifier
h and an instance x is a subset S ⊆ [d] such that |S| ≤ k
and εh,x(S) ≤ ε. Finding such explanations is NPPP-hard
in general [Wäldchen et al., 2021, Wäldchen, 2022], and
NP-hard for decision trees [Arenas et al., 2022]. In the
present study, we have shown that this problem remains
NP-hard for decision trees, even under the assumption that
S is a subset of some given abductive explanation I .

Heuristic approaches to probabilistic explanations have been
considered in [Izza et al., 2021, 2022a]. The optimization
task is symmetric to that of Problem 1: given a hypothesis
h, an instance x, a set of features I and an error parameter
ε, the goal is to find a (1− ε)-probable explanation S ⊆ I
that minimizes |S|. For this task, the authors have proposed
a greedy algorithm that runs in polynomial time, when h is
described by a decision tree T , and I is a path-explanation
for x and T . However, this algorithm does not provide any
approximation guarantee with respect to the optimal size.

To the best of our knowledge, approximation approaches
to probabilistic explanations have only been investigated in
[Blanc et al., 2021]. Again, the problem under consideration
is to find a (1− ε)-probable explanation S that minimizes
|S|. Based on some results on implicit learning, the authors
gave a PAC-style polynomial-time algorithm that takes as
input a classifier h, an instance x, a confidence parameter δ,
and a precision parameter ε, and that returns as output a set
S ⊆ [d] with the following guarantees: (i) |S| is polynomial
in d, 1/δ and 1/ε, and (ii) if x is drawn uniformly at random
over {0, 1}d, then εh,x ≤ ε with probability at least (1− δ).
However, this algorithm is mainly of theoretical interest,
since |S| is in O

(
(1/δ)9(1/ε)12

)
and, more importantly, the

instances to be explained in practical applications are rarely
picked at random according to the uniform distribution.

Perspectives. In our study, probabilistic explanations
have been examined through the prism of supermodular
minimization. Inspired from results in [Il’ev, 2001, Liberty
and Sviridenko, 2017], we have proposed two greedy ap-
proximation algorithms for minimizing explanation errors
subject to a cardinality constraint, whose performance es-



sentially depends on the curvature c of the unnormalized
error function µh,x(·). Importantly, our approximation re-
sults hold for any (Boolean) hypothesis class, and hence,
our greedy algorithms are computationally efficient when-
ever µh,x(·) can be evaluated in polynomial time. Beyond
decision trees, which have been examined in this paper,
(ordered) binary decision diagrams [Hu et al., 2022] and
dDNNF representations [Huang et al., 2022] are examples
of classifiers satisfying this condition.

This work leaves open several questions. Notably, (i) what
is the optimal approximation factor for minimizing the error
of probabilistic reasons under a cardinality constraint? A
partial answer might come from Sviridenko et al. [2017],
who gave a near-optimal algorithm for minimizing a non-
increasing supermodular function subject to a matroid con-
straint. But this method is mainly of theoretical interest,
as its computational complexity is prohibitive. So, (ii) can
we find alternative, near-optimal approximation algorithms
which are computationally efficient? Finally, (iii) using sam-
pling methods, can we extend approximation algorithms
to hypothesis classes for which the problem of evaluating
µh,x(·) is intractable?
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