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Abstract

In-context learning, a capability that enables a
model to learn from input examples on the fly
without necessitating weight updates, is a defin-
ing characteristic of large language models. In
this work, we follow the setting proposed in (Garg
et al., 2022) to better understand the generality
and limitations of in-context learning from the
lens of the simple yet fundamental task of linear
regression. The key question we aim to address is:
Are transformers more adept than some natural
and simpler architectures at performing in-context
learning under varying distribution shifts? To
compare transformers, we propose to use a simple
architecture based on set-based Multi-Layer Per-
ceptrons (MLPs). We find that both transformers
and set-based MLPs exhibit in-context learning
under in-distribution evaluations, but transformers
more closely emulate the performance of ordinary
least squares (OLS). Transformers also display
better resilience to mild distribution shifts, where
set-based MLPs falter. However, under severe dis-
tribution shifts, both models’ in-context learning
abilities diminish.

1. Introduction

Transformers (Vaswani et al., 2017) form the backbone of
modern large language models (LLMs) including the likes
of GPT-3 (Brown et al., 2020) and GPT-4 (OpenAl, 2023).
These LLMs demonstrate remarkable capabilities, such as
in-context learning and natural language-based algorithmic
reasoning. However, we are only beginning to understand
the origins, limitations, and generality of these capabilities,
which is essential for developing safe and reliable LLMs.

In-context learning (ICL) refers to a model’s capability to
acquire knowledge on the fly from examples provided at test
time without requiring any weight updates. This ability is
especially useful when the model has to adapt to new tasks
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from a few demonstrations in the test prompt, for example,
adapting a model to drive in a new region with few demon-
strations. Understanding ICL for LLMs such as GPT-3
trained on raw text data is particularly challenging. In (Garg
et al., 2022), the authors propose an insightful training setup,
which abstracts away the raw nature of text data. In their
work, transformer models from GPT-2 family are trained
on prompts comprising of input, label demonstrations and
shown to emulate the ordinary least squares (OLS) algo-
rithm. Certain natural questions arise at this point. What
specifics of the transformer are responsible for the emer-
gence of this behvavior? Can simpler architectures exhibit
the same capabilities? How resilient is ICL to distribution
shifts? These are the questions that motivate our work.

To compare with transformers, we propose a natural baseline
that is based on set-based MLPs (Zaheer et al., 2017; Lopez-
Paz et al., 2017) that exploit the permutation-invariant nature
of the task. Depending on the distribution of test prompts,
we categorize in-context learning into in-distribution ICL
(ID-ICL) and out-of-distribution ICL (OOD-ICL). Under
ID-ICL, the train distribution of the prompt is identical to
the test distribution of the prompt. Under OOD-ICL, the test
distribution of prompt sequence is different from the train
distribution. When evaluating OOD-ICL, we are particularly
interested in the case when the test distribution of prompts
is centered on the tail of the train distribution of prompts.
We summarize our key contributions below.

* First, we derive conditions under which the the opti-
mal model that predicts the label for the current query
based on the prompt coincide with the OLS or ridge
regression. These are based on known arguments, yet
it is important to provide them for completeness.

* Despite set-based MLPs being particularly suited for
this permutation-invariant task, we find that transform-
ers (GPT-2 family) exhibit better ID-ICL abilities.

¢ Under mild distribution shifts, we find that transform-
ers degrade more gracefully than set-based MLPs. Un-
der more severe distribution shifts, both transformers
and set-based MLPs do not exhibit ICL abilities.

e ID-ICL performance is not predictive of OOD-ICL
performance for both architecture choices.
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Moving forward, several questions need to be answered.
Why are transformers better than set-based MLPs at ICL?
How can we improve the OOD-ICL abilities of these archi-
tectures?

2. Related Works

Recent studies have offered intriguing insights into in-
context learning (ICL). Olsson et al. (2022) propose that the
formation of “induction heads”, which allow models to copy
in-context information, is key to ICL. Building on (Garg
et al., 2022)’s work, several researchers (Akyiirek et al.,
2022; von Oswald et al., 2022; Dai et al., 2022) demon-
strated that transformer model’s ability to implicitly execute
gradient descent steps during inference could also be central
to ICL, supporting their claims with empirical evidence. Li
et al. (2023) explore this setup further by analyzing gener-
alization bounds for the learnability of algorithms. Lastly,
Xie et al. (2021) focus on data sampled from hidden Markov
model and interpret in-context learning through the lens of
implicit Bayesian inference. They go on to provide con-
ditions under which models can perform ICL even when
prompts have low probability under the training distribution.

Chan et al. (2022) studied the impact of inductive bias of
pretraining the model on ICL. The authors showed that pre-
trained transformers exhibit rule-based generalization, while
those trained from scratch use exemplar-based generaliza-
tion, i.e., leverage information from the examples provided
in-context to carry out ICL. Kirsch et al. (2022b) find that
among factors determining the inductive bias of the model,
state-size is a more crucial parameter than the model size for
ICL abilities. More recently, Wei et al. (2023) showed that
model size can be a crucial parameter as well. In particular,
they show that sufficiently large models such as PaLM-540B
are capable of overriding semantic priors if needed, while
smaller counterparts are unable to do so.

3. In-context Learning under Distribution
Shifts

We start with some standard notation. Inputs and labels are
denoted as » € R? and y € R respectively. Each prompt
p is a sequence of independent and identically distributed
(i.i.d.) input, label pairs, denoted as p = {(x;,y;)}r ;.
Each prompt p is sampled independently as follows

[~ Py,
x; ~ Py € P Vie{l, -k}, €))
Yi <;f(xl)%>€17vz € {17 ak}7

where the labeling function f, which is fixed for the en-
tire prompt p, is sampled from a distribution Py, inputs

x; are sampled independently from P,, y; is generated
by adding some noise ¢; to the labeling function’s out-
put f(z;). For the prompt p, we define its prefix as
pj = ((x1,91), (¥2,92), -+ ,x;), where j € {1,--- k}.
Define the support of prefix p; as P;.

Define the risk for model M as R(M) =
Z?Zl E[¢(M(pj),y;)]., where ¢ is the loss, M(p;)
looks at the prefixes p; and makes the prediction, the loss is
computed w.r.t the true label y;, E[-] is the expectation over
the joint distribution of (p;, y;). We want to find a model

that minimizes the risk R(M) i.e.,
M* € argmin R(M) 2)
M

For the results to follow, we make some standard regular-
ity assumptions that we state as follows. The probability
measure associated with p; is absolutely continuous w.r.t
Lebesgue measure. The conditional expectation and vari-
ance exists, i.e., |E[y;|p;]| < oo and Var[y,|p;] < oo for
all p; € Pj.

Lemma 3.1. If (¢ is the square loss, then the
solution to equation (2) satisfies, M*(p;) =
Ely;|p;|, almost everywhere in P;, ¥j € {1,--- ,k}.

While the above lemma is stated for square loss, an equiva-
lent statement holds for cross-entropy loss. We now turn to
our case study, i.e., linear labeling functions f. Each prompt
p is sampled as follows

B~ N(0,%), where ¥ € R4 is invertible
x; ~Py,e; ~ N(0,0%),Vi€ {1, -k} A3)
Yi < /BTxi +<€Z‘,VZ' S {17 T 7k}

where (3 is drawn from a normal distribution with mean zero
and covariance ¥ and noise ¢; is sampled from a normal
distribution with mean zero and variance 2. We break
down prefix p; into a matrix X ; € RU-1xd and vector
Y, € R7~! that stacks the first j—1 2;’s and y;’s observed in
the prompt up to query ;. The tuple (X ;,y;,x ;) captures
all the relevant information from p; for predicting ;. Since
p1 has no inputs to look at in the past, we set X 1, y; to zero.
To better understand the notation, consider the following

example, p = {(z1,y1), (x2,y2), (z3,y3)}. Prefix p; =

Y

T
{($17y1)7(3?27?42)7333},X3= x; y Y = yl . Next, we

derive the optimal models M™*(p;) for the data distribution
in equation (3). The theorems derived below follows from
standard results on linear regression (See Dicker (2016);
Richards et al. (2021)). We still state and derive these for
completeness.
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Theorem 3.2. [f{ is the square loss and prompt generation
follows equation (3), then the optimal model from equation
(2) satisfies,

M) = o] (X] X, +0*27) 7 Xy,
almost everywhere in P;,¥j € {1,--- , k}.

If ¥ is identity, then the above solution coincides with ridge
regression (Hoerl & Kennard, 1970) using o2 as the ridge
penalty. We now study the noiseless setting. To analyze
the noiseless case, we will look at the ridge solutions in the
limit of o going to zero.

Theorem 3.3. If / is the square loss and prompt generation
follows equation (3) with ¥ as identity, ' then in the limit of
o — 0 the optimal model from equation (2) satisfies

M*(p;) = f;rX;_yj

almost everywhere in P;,¥j € {1,--- ,k}, where Xj' is
the Moore-Penrose pseudo-inverse of X ;.

In the above results (Lemma 3.1, Theorem 3.2, and Theorem
3.3) we do not use the fact that inputs z;’s are drawn inde-
pendently. In Theorem 3.2, and Theorem 3.3, we assumed
that 3 is drawn from a normal distribution. For distributions
beyond normal, we now argue that if we restrict the search
space of models, then the same results continue to hold.

Constraint 3.4. M (p;) = x;rm(Xj)yj'

The above constraint restricts the model to be linear in test
query and also to be linear in the label seen up to that point.
We do not impose any restrictions on m(-). In the absence of
this constraint, the risk R(M) depends on moments beyond
the second order moments of the distribution of 3. Thus
the optimal model in the absence of this constraint may not
coincide with OLS or ridge regression.

Theorem 3.5. Suppose { is the square loss, s and x;’s are
drawn from an arbitrary distribution with a finite mean and
invertible covariance, rest of the prompt generation follows
equation (3). In this setting, the solution to equation (2)
under Constraint 3.4 satisfies

M*(pj) = 2] (X] X; +0°571) ' Xy,
almost everywhere in Pj, ¥j € {1,--- | k}.

So far, we have characterized different conditions under
which the optimal model emulates the OLS or the ridge
regression on the support of training distribution of the
prompts. The study by Garg et al. (2022) demonstrated that
transformers, when trained with sufficient data, can emulate
OLS regression. Theorem 3.2, 3.3 suggest that sufficiently

'If ¥ is not identity, then the limit may or may not coincide
with OLS; see the Appendix for further discussion.

high capacity models (that can handle input data of varying
lengths) trained on sufficient amount of data should behave
as well as transformers on the prompts sampled from the
same distribution as the train distribution. We test this hy-
pothesis in the experiments section. Outside the support
of the training distribution of prompts, performance is not
guaranteed to be good, and it depends on the inductive bi-
ases — architecture, optimizer, and the loss function. Our
experiments will examine the bias from the architecture. We
now propose a natural architecture for the task in question.

A natural baseline for the above task We revisit the
data generation in equation (1) and parametrize the labeling
function. Say the labeling process now is y; « f(z;, 8)+€i,
where /3 is sampled from some distribution. E[y;|z;, 5] =
f(x;, B). Our model will first estimate 3 from the given set
of samples X ;, y;. The estimation of 3 does not depend on
the order of inputs and thus estimation should be invariant
w.r.t. to the order of inputs. Further, we want to work with
architectures that are capable of handling inputs of variable
length. For this purpose, the most natural architecture are
the ones that accept sets as inputs. We revisit the Theorem
2 in (Zaheer et al., 2017). The theorem states

Theorem. (Zaheer et al., 2017) A function operating on a
set A having elements from a countable universe is a valid
set function iff it can be expressed as p( YA qﬁ(ai)).

The aforementioned theorem is stated for elements from a
countable universe, with its extension to uncountable sets
provided in (Zaheer et al., 2017), albeit for fixed-length sets.
Since functions of the form p( D aicA ¢(a;)) are uninver-
sal representers of set-based functions we use them as the
basis for our architecture. We pick both p and ¢ as Mul-
tilayer Perceptrons (MLPs), and we use these to estimate
the parameter 8. The output from these MLPs is then input
into another MLP together with the query ;. The final ar-

chitecture takes the form (p(jll ST o), xj> ,

where (x;,y;) are input, label pairs seen up to z;. To
manage sequences of variable length, we incorporate a
normalization term %1 Consider the noisy label sce-
nario that we studied in Theorem 3.3, where the optimal
model is defined by 2] (X | X; + 0?5 71) "1 X [ y,. Here,
p(j%1 Zf;ll ¢(x;,y;)) aims to output the best estimate for
3, which is B(Xj,yj) = (X;I—Xj + 022*1)*1X;—yj;
note how B(X s yj) is permutation-invariant. As per (Za-
heer et al., 2017), sufficiently expressive p and ¢ should be
capable of expressing /5’ (X, yj). The final MLP, v, must
approximate a linear map. Next, we delve into the distribu-
tion shifts we consider and their underlying rationale.

Distribution shifts for ICL. In both regression and clas-
sification problems, the concept of covariate shift (Shi-
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Figure 1. Comparison of MLP-set and transformers for noiseless setting, i.e., 0 = 0. a) ID-ICL (¢ = 0), b) OOD-ICL (Mild distribution
shift with 4 = 2 - 1), ¢) OOD-ICL (Severe distribution shift with = 4 - 1).
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Figure 2. Comparison of MLP-set and transformers for noisy setting, i.e., 0 = 1. a) ID-ICL (1 = 0), b) OOD-ICL (Mild distribution shift
with 4 = 2 - 1), ¢) OOD-ICL (Severe distribution shift with yp = 4 - 1).

modaira, 2000) is well-understood. Covariate shift refers
to the situation where the distribution of the input features,
denoted as IP,,, changes between training and testing phases,
but the conditional distribution of the target variable given
the features remains invariant. This idea can be applied to
the prompts p. When the distribution over prompts changes,
but the conditional distribution of the target variable (or
response) given the prompt remains invariant, this is re-
ferred to as “covariate shift over prompts”. This is a par-
ticularly important setting to test, as it helps us understand
the model’s ability to learn from novel types of prompts or
demonstrations at test time.

Consider two examples that leverage equation (3) as the un-
derlying data generation process. Suppose at train time, we
generate prompt sequences with inputs x;’s that are mostly
positive and then test on prompts comprised of negative
inputs. If between train and test we do not alter the label
generation process, then this setting qualifies as covariate
shift over prompts. On the other hand, consider the setting,
where the only difference from train to test is that during
label generation at test time is noisy. In this case, the prompt
distribution changes but the conditional distribution of the
target conditional on the prompt also changes (E[y|p] at
train time is the OLS solution and at test time it is the ridge
regression solution). As a result, this type of shift does
not qualify as covariate shift over prompts. We want to re-
mark that the difference between two models that perfectly

minimize the expected loss in equation (2) is not apparent
under all types of covariate shifts but those that put much
more weight on input sequences that are very low probabil-
ity at train time. This is one aspect in which our choice of
distribution shifts differs from (Garg et al., 2022).

4. Experiments

In this section, we experiment with the set-based MLPs
detailed earlier and transformers from (Garg et al., 2022).
We generate data in line with the equation (3). The inputs
x}s at train time are sampled from N (0, I;), where I is
the d dimensional identity matrix, and at test time they are
sampled from N (u, I). In one case, we set 4 = 2 - 1 and
refer to it as a mild distribution shift, and in another case
we set 1 = 4 - 1 as severe distribution shift, where 1 is a
d dimensional vector of all ones. The results are presented
for d = 10. The covariance of (3, i.e., X is identity. We
present results for both noiseless labels and noisy labels
with o2 = 1. For the set-based MLPs, which we refer to as
MLP-set, we compare the performance of MLP-set under
varying depths, {4,5,10,17,26} (indexed from 0 to 4 in
the increasing order of depth). The width was same for all
the layers at 500. We trained the MLP-set model with the
Adam optimizer and a learning rate of 0.001 except for the
case of depth 26, where we had to lower the learning rate to
0.0001 to enable learning. We used ReL.U activations and
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batch norm between any two hidden layers. For training the
transformer model, we adopt the same architecture used in
(Garg et al., 2022), which belongs to the GPT-2 family, and
we include performances at two depths - 12 (Transformer 1)
and 16 (Transformer 2).

With this experimental setup we ask these key questions: ex-
isting works studying this ICL framework from (Garg et al.,
2022) focused on transformers exhibiting this capabiltiy.
Can this ability exist in other models such as the set-based
MLPs? How do the two architectures differ under distribu-
tion shifts? In Figure 1, 2, we compare the two architectures
for the noiseless and noisy setting respectively. We describe
our key findings below

* We find that set-based MLPs exhibit ID-ICL capabili-
ties but do not match the performance of transformers;
see Figure 1a, 2a. This is inspite of choosing an archi-
tecture that is well suited for the task.

* Under mild distribution shifts; see Figure 1b, 2b, trans-
formers exhibit a more graceful degradation as opposed
set-based MLPs that become more erratic.

* Under more severe distribution shifts; see Figure Ic,
2c, both the transformers and the set-based MLPs do
not exhibit OOD-ICL abilities.

* Finally, the ranking of ID-ICL performance of either
the set-based MLPs or the transformers is not predic-
tive of their OOD-ICL abilities.

5. Discussion

This research reveals that transformers outperform natural
baselines in approximating OLS and ridge regression algo-
rithms under mild distribution shifts. The question remains,
why are transformers superior? Further investigation is re-
quired to theorize why transformers when optimized with
familiar optimizers like stochastic gradient descent (SGD),
can achieve better approximations of algorithms than set-
based MLPs. Additionally, it’s crucial to explore if these
comparisons hold up for a broader set of algorithms (be-
yond OLS), architectures (beyond set-based MLPs, (Kirsch
& Schmidhuber, 2021; Kirsch et al., 2022a)), and under-
stand why. Some important steps towards these inquiries
have been made by Liu et al. (2022).
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A. Appendix
Lemma. [Restatement of Lemma 3.1] If { is the square loss, then the solution to equation (2) satisfies, M*(p;) =
Ely;|p;|, almost everywhere in P;, ¥j € {1,--- ,k}.

Proof. We write

where R;(M) =E {K(M(pj), yj)} . We simplify R;(M) below

Ry(M)
= E[E(M(Pj%yj)] = Ep, By, 1p, {(M(Pj) - yj)z}

= BBy, | (4(0) ~ Ellps] + Bl ] ~ )’

— By, By, | (03) = B l0l)”| + BBy |05~ B )] + 280, B, | (00005) ~ Blysoa]) (s ~ Bl

= E;Dj |:(M(pj) - E[yj |pj])2] + Epj [Var[yj ‘ij
“4)

Observe that R;(M) > E, [Var[y;|p,]] and thus R(M) > Z?:l E,, [Var[y,|p;]]. If M* is a minimizer of R(M), then it
also has to minimize R;(M). If that were not the case, then M* could be strictly improved by replacing M* for the j th

query with the better model, thus leading to a contradiction. Consider the model M (p;) = E[y;|p;] for all p; € P;,Vj €
{1,--+,k}. This model M minimizes R(M) and each R;(M). Observe that R;(M) = E,,, [Var[y,|p;]]. Therefore, for

any minima M*, R;(M*) = E,, [Var[y;|p;]]. From equation (4), we obtain that |, [(M*(p]) —Ely, |pj])2] = 0. From
Theorem 1.6.6 in (Ash & Doléans-Dade, 2000), it follows that M *(p;) = E[y;|p;] almost everywhere in P;. O

Theorem. [Restatement of Theorem 3.2.] If { is the square loss and prompt generation follows equation (3), then the
optimal model from equation (2) satisfies,

M*(p;) = 2] (X] X; + 0?2717 1X [y,
almost everywhere in P;,¥j € {1,--- , k}.
Proof. From Lemma 3.1, we know that M*(p;) = E[y;|p,] almost everywhere in P;. We now simplify E[y; |p;] for the

data generation provided in equation (3). We follow standard steps of computing the posterior in Bayesian linear regression
to obtain the posterior of 3 conditioned on prefix p;

log (p(Blp;)) =logp(B1X;,y,,2;) =logp(8|X;,y,)
=log (p(X,y;18)) + log(p(B)) + ¢

1 1 _ 5
:_ﬁ||XjB_yj”2_§ﬂTz "B+c )

1 S
—5(/3 —w) TSN (B—p) +c
where i = inTyj and & = (XJ-TXJ» + 2% 1) 71, Therefore, 3 conditioned on p; is a Gaussian distribution with mean
[1 and covariance 3. Recall
yj =B"x; +¢;

7
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From the linearity of expectation and the expression above for the posterior, it follows
Ely;lp;] = Ely; | X, ;. 25] = E[B 25| X, y;, 5] = i
This completes the proof. ]

Theorem. [Restatement of Theorem 3.3] If £ is the square loss and prompt generation follows equation (3) with 3 as
identity, then in the limit of 0 — 0 the optimal model from equation (2) satisfies

_ Tyt
M*(pj) =Z; Xj Y,
almost everywhere in P;,¥j € {1,--- , k}, where X;' is the Moore-Penrose pseudo-inverse of X ;.

Proof. For clarity, in this case we make the dependence of M*(p;) on o explicit and instead write it as M*(p;,0) We
calculate the limit of the ridge regression predictor as o goes to zero. We obtain

. x T Ty o 2yv-1\—1ywT, _ T+
;%M (pj,0) =z ;%(Xij—&—aE )Xy, =1 X[y

In the simplification above, we used X is identity and also used the standard limit definition of Moore-Penrose pseudo-inverse
(Albert, 1972).

O

Implications for Theorem 3.3 when X is not identity Now consider the more general case when Y is not identity.
In this case, suppose the inverse of X ]TX ;j exists, which can happen when the rank of X ]TX j is d. In this case,

1im0H0(X;Xj + 022_1)_1XjT = X?. To see why this is the case, observe that the map M*(p;, o) is well defined for

all o including that at zero and it is also continuous in o. If the inverse of X ;r X ;j does not exist, then the limit may not
converge to the Moore-Penrose pseudo-inverse. Consider the following example.

Let X; = [(1) 8] and X! = {Z ﬂ , where ¥ is invertible and ¢ # 0.

1 c0
Ty o 2y—1y—1xT _
X X)X = O e~ ) [b 0] ®)

o—0

lim (X X, + 0’27 )7 ' X] = { 1b 00]

Thus, lim,,o(X | X; + 0?07 1)71X [ # X7
Theorem. [Restatement of Theorem 3.5] Suppose { is the square loss, B’s and x;’s are drawn from an arbitrary distribution

with a finite mean and invertible covariance, rest of the prompt generation follows equation (3). In this setting, the solution
to equation (2) under Constraint 3.4 satisfies

M*(pj) =2 (X] X;+ 0’2711 X [y,
almost everywhere in Pj, ¥Vj € {1,---  k}.

Proof. Recall that R(M) = Y=, R;(M), where R;(M) = E[(M (p;) — y;)?]. Let us simplify one of the terms R, (M).

Rj(M)=E _(M(pj) - yj)z}

— 5| 0(05) - 12| = 2| (4(3) ~ 87,?] + 7 -

| (m(x )y, - ﬁ%—)ﬂ o
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A Closer Look at In-Context Learning Under Distribution Shifts

Suppose the covariance of x; is A. We write A? to denote the symmetric positive definite square root of A (Such a square
root always exists, see Theorem 3 in ). We use this to simplify the above expression in equation (7) as follows

Rj(M) =E|(m(X )y, — ﬁij)z} +0?

—E[|A (m(X,)y, _5)||2} o2 ®

[ 1 2 12
= E|[[A* (m(X)y,)] } +E[||A%5|| ] QE[ijm(Xj)TAﬁ} to?
Let us simplfify the first and the third term in the above.

E ||A%<m<Xj>yj>||2] =E[y}m<xj>TAm<Xj>yj}
C)
=FE [ﬁTXij(Xj)TAm(Xj)XJﬂ] + 0’E[Trace[m(X ;) " Am(X )]

In the last simplification above, we use the fact that y; = X ;8 + €;, where X ; € RU—1Dxd stacks first j — 1 x;’s and
ej € RI71 stacks first j — 1 ¢;’s, and that each component of noise is independent and zero mean.

Define ©! = E[X;rm(Xj)TAf(Xj)Xj} and ©2 = m(X;)"Am(X,). Since X; is independent of 3 the above
expression simplifies to

E[ﬂ—'—Glﬂ] + 02 Trace[@?] = Z 6,}_’1'21'7]' + 0*Trace[©?] (10)
2%
Now let us consider the third term in equation (9).
E[y;m(Xj)TAﬂ} = E[BTXJTm(Xj)TAﬁ (11)
DefineI' = X ;rm(X ;) TA. Since X ; is independent of 3 the above expression simplifies to
]E{ﬂTFB} Y (12)
2%

From the above simplifications it is clear that the loss depends on prior on /3 through its mean and covariance only. Therefore,
if we use a Gaussian prior with same mean and covariance we obtain the same loss. As a result, we can assume that prior is
Gaussian with same mean and covariance and leverage the previous result, i.e., Theorem 3.2. This completes the proof. [

2https ://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect7.pdf
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