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ABSTRACT

Deep-learning models are commonly trained on large annotated corpora, often in a
specific domain. Generalization to another domain without annotated data is usu-
ally challenging. In this paper, we address such unsupervised domain adaptation
based on the teacher–student learning paradigm. For improved efficacy in the tar-
get domain, we propose to exploit cross-version scenarios, i.e., corresponding data
pairs assumed to obtain the same yet unknown labels. More specifically, our idea
is to compare teacher annotations across versions and use only consistent annota-
tions as labels to train the student model. Examples of cross-version data include
the same text by different speakers (in speech recognition) or the same character
by different writers (in handwritten text recognition). In our case study on mu-
sic audio, versions are different recorded performances of the same composition,
aligned with music synchronization techniques. Taking multi-pitch estimation
(a multi-label classification task) as an example, we show that exploiting cross-
version information in student training helps to improve the transfer from a source
domain (piano) to unseen and more complex target domains (singing/orchestra).

1 INTRODUCTION

Annotating large amounts of real-world data is usually tedious. To alleviate neural network training
from extensive annotation works, unsupervised domain adaptation (UDA) tries to adapt models
trained on source domains (e. g., synthetic data) to non-annotated target domains (e. g., complex real-
world data), see Liu et al. (2022). Over the years, various methods have been proposed to tackle the
UDA problem including encoder–decoder techniques (Wang & Deng, 2018), adversarial learning
(Sankaranarayanan et al., 2018; He et al., 2020), and self-training (Liu et al., 2021). A possible
method for UDA is teacher–student learning (Hu et al., 2022) where pseudo-labels predicted by the
teacher model are used for training the student model in the target domain. For example, Amosy &
Chechik (2020) proposed a regularization step to enforce consistency between teacher and student
representations. Koh & Fernando (2022) and Scherer et al. (2022) explore consistency regularization
by modelling inter-pixel relationships between model outputs under different perturbations.

2 PROPOSED STRATEGY

Our work is based on this teacher–student learning paradigm. Rather than exploiting cross-domain
consistency, we explore the use of cross-version consistency for improving domain adaptation. We
consider the case of having access to pairs of versions in the target domain. Examples of versions
are different handwritings of the same text, different photographs of the same scene, or different
performances of the same composition, which we need to align to obtain locally corresponding
pairs. Given labelled data from the teacher (source) domain {XT,yT} and unlabelled data from
the student (target) domain {Xa

S ,X
b
S}, where a and b are versions, our task is to adapt a teacher

model fT : XT → yT trained on the teacher domain to a student model fS : XS → yS for the
student domain. We estimate pseudo-labels for the student domain examples using the teacher
model by yS = fT(XS). Since different versions should have the same predictions at semantically
corresponding positions, we only use consistent pseudo-labels for training the student network and
discard inconsistent pairs. With this strategy (Figure 1), we aim for obtaining more reliable labels to
train the student model, which we hypothesize to improve model efficacy in the student domain.
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Figure 1: Domain adaptation pipeline using cross-version consistency.
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Figure 2: Average-Precision (AP) scores on the two student domain test sets for different strategies.

3 A CASE STUDY ON MUSIC AUDIO TRANSCRIPTION

Our case study on music audio is based on a music transcription sub-task denoted as framewise
transcription or multi-pitch estimation (Benetos et al., 2019)—a multi-label classification task, which
predicts active pitches (quantized, like “piano keys”) for a given time frame of a polyphonic music
recording. We consider a domain shift scenario from one specific instrumentation in the teacher
domain to other instrumentations in the student domain. Concretely, our teacher domain are piano
performances, where target labels can be easily obtained using pianos with key sensors. We use
such data from the MAESTRO dataset (Hawthorne et al., 2019) and test transfer to two student
domains: 19th century Lieder (art songs, i. e., piano with expressive singing) using the Schubert
Winterreise dataset (SWD) (Weiß et al., 2021), and late Romantic opera (large orchestra with highly
expressive singing) using the Wagner Ring dataset (WRD) (Weiß et al., 2023). Compared to the
subtle domain shift between performances, these shifts are substantially more challenging due to the
different acoustic properties (timbre, vibrato, etc.) of voices and instruments. Both SWD and WRD
have pitch labels—allowing us to compare with supervised training—and different versions of the
same compositions (9 versions in SWD, 16 in WRD), from which we sample version pairs.

We compare five different configurations on the student domain: Sup: Supervised training using
ground-truth labels of SWD or WRD; T: Teacher model without domain adaptation; TS: Vanilla
teacher–student learning, where the student model is trained using pseudo-labels generated by the
teacher model; TSCV: Cross-version teacher–student learning, where the student model is trained
using only those cross-version consistent pseudo-labels generated by the teacher model; and TSCV2:
Cross-version TS, using all version pairs by interpolating inconsistent pseudo-labels.

We use the convolutional ResNet by Weiß & Peeters (2022) both as teacher and student model (same
size, 4.8M parameters, achieving an average precision (AP) score of 89.9% in the teacher domain).
We split the student datasets into training, validation, and test sets in a way that they neither overlap
regarding work parts (song or act) nor versions. Figure 2 shows the student domain results (AP).
Compared to supervised training (Sup), the teacher’s efficacy on the student domain is substantially
worse without adaptation (T), which we expect due to the different input signals. Vanilla teacher–
student learning (TS) only sometimes has a positive effect when adapting to the student domain. In
contrast, adding the consistency constraint (TSCV) leads to a stable improvement over both (T) and
(TS). We observe comparable efficacy for TSCV2 where we replace consistency filtering by pseudo-
label interpolation. The expressive operas in WRD lead to worse results, especially for the domain
transfer. In such complex scenarios, where high-quality annotations are hard to obtain, cross-version
information has a stronger positive effect, which is encouraging for applying this strategy in the wild.

4 CONCLUSION

This study explores cross-version scenarios for domain adaptation in the teacher–student learning
paradigm. We verify the usefulness of cross-version information in a case study on framewise music
transcription where we adapt a model trained on solo piano music to more complex instrumentations.
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REPRODUCIBILITY

For reproducibility purposes, we release our experimental code at: https://github.com/cheriell/Cross-
Version-MPE. The datasets used for our study are publicly available (Hawthorne et al.,
2019; Weiß et al., 2021; 2023). The pre-trained models’ weights are available at
https://zenodo.org/records/10936492.
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A APPENDIX

A.1 CROSS-VERSION CONSISTENCY CALCULATION

We use a music synchronization algorithm (Müller et al., 2021) based on dynamic time warping to
align two music performances of the same composition and use the aligned time frames as a data
pair from the student domain. We then calculate and compare the teacher annotations for the aligned
data pair.

Cross-Version Strategy 1. As our first strategy, denoted as TSCV in the main text, we only consider
consistent version pairs. We then include both Xa

S and Xb
S for training with pseudo-labels

yS = ya
S = yb

S := fT(X
a
S ) = fT(X

b
S) (1)

and simply discard other version pairs (see Figure 1). Since this strategy may substantially reduce
the amount of training data, we also test relaxed variants where we (1) alleviate the consistency
calculation from minor differences between the pseudo-labels and (2) allow for a certain tolerance
in the alignment. In our reported results, we allow for a maximum of 2 pitch differences between
version pairs and ±2 time frames in the alignment error.

Cross-Version Strategy 2. As an alternative strategy, denoted as TSCV2, we aim for resolving the
conflicting pseudo-labels in inconsistent version pairs. To this end, we update the pseudo-labels by
interpolating them across versions

yS = ya
S = yb

S :=
1

2
·
(
fT(X

a
S ) + fT(X

b
S)
)
. (2)

Please note that the output of the teacher model fT is binarized. As a result, the resulting activation
of a pitch is 0 or 1 (for consistent pairs regarding this pitch) or 0.5 (in case of inconsistence).

A.2 TRAINING CONFIGURATIONS

We use the same training configurations across teacher and student models (also for the supervised
learning model). During training, we use a learning rate of 0.0002, a batch size of 25, and the
AdamW optimizer (Loshchilov & Hutter, 2019) We use the binary cross-entropy loss for the la-
belling task. We perform early stopping if the validation loss does not decrease over twelve epochs.

4



Published as a Tiny Paper at ICLR 2024

Table 1: Detailed results on the student domains.

Schubert Winterreise Dataset Wagner Ring Dataset
Model Run P R F AP Run P R F AP

Sup 1 54.7 85.8 66.5 75.3 1 53.6 46.7 49.8 50.5
2 62.3 81.4 70.2 78.0 2 52.1 51.5 51.6 51.2
3 65.9 78.4 71.2 78.0 3 55.0 43.7 48.6 50.6

T – 72.3 56.0 62.0 67.2 – 45.2 29.6 35.3 34.0

TS 1 70.5 57.2 62.2 66.4 1 44.0 36.0 39.1 34.9
2 66.9 61.5 63.1 66.5 2 46.6 32.2 37.5 35.8
3 67.5 63.1 64.4 67.5 3 44.5 35.7 39.2 34.5

TSCV 1 71.9 58.3 63.5 68.1 1 48.3 32.1 38.1 37.3
2 71.9 58.6 63.8 68.8 2 46.1 36.9 40.7 38.1
3 73.1 54.9 61.8 67.4 3 48.2 33.1 38.9 37.9

TSCV2 1 72.5 61.5 65.9 70.2 1 51.2 27.3 35.2 38.1
2 70.0 63.6 66.0 68.9 2 50.8 26.4 34.3 37.4
3 65.5 65.9 65.1 67.3 3 49.1 30.4 37.2 37.8

For each training configuration (except for the teacher model T), we repeat the experiment three
times (runs) to account for randomization effects in our evaluation.

When training the teacher model, we use the original train/validation/test split provided with the
MAESTRO dataset (v3.0.0). For the training on the student domain, we use a split where neither
versions nor work parts overlap between subsets (neither-split). For the SWD, we use five versions
for training, two for validation and two for testing; for the WRD, we use nine versions for training,
three versions for validation and the remaining three for testing.1

A.3 DETAILED RESULTS

More detailed results on the repeating runs and different evaluation metrics can be found in Table 1.
For evaluation, we use a threshold of 0.4 as in Thickstun et al. (2018) to calculate the precision
(P), recall (R) and F-score (F). We first average measures over time frames for each test piece and
secondly over pieces in the test set. This prevents longer work parts from being weighted more in
the evaluation. Since P, R, and F are directly influenced by the choice of the threshold, we report
the average precision score (AP , the area under the Precision–Recall curve), which is invariant to
the threshold. We also reported this metric in the main text. We used the AP scores of the repeating
runs to plot Figure 2; the ordered results of the repeating runs correspond to the upper bound, middle
line, and lower bound of the box plots.

1For practical reasons (re-using an internal prior version of the WRD), the set of versions slightly deviates
from the ones published in Weiß et al. (2023) with two additional and three missing versions.
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