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Abstract

As large language models (LLMs) with advanced reasoning abilities continue to1

evolve, their capabilities are increasingly tested across heterogeneous contexts.2

To evaluate them effectively, benchmarks must move beyond fragmented datasets3

and narrow rankings, addressing the growing need to capture abilities that in-4

tegrate multiple skills (e.g., reasoning and knowledge) across diverse domains5

(e.g., mathematics and culture). This complexity calls for a new paradigm of6

evaluation—flexible, domain-aware, and continuously updated. In this paper, we in-7

troduce BENCHHUB, a dynamic benchmark repository that empowers researchers8

and developers to evaluate LLMs effectively, with a focus on Korean and English.9

BENCHHUB aggregates and automatically classifies benchmark datasets from di-10

verse domains, integrating 839k questions across 54 benchmarks. It is designed11

to support continuous updates and scalable data management, enabling flexible12

and customizable evaluation tailored to various domains or use cases. Through13

extensive experiments with various LLM families, we demonstrate that model14

performance varies significantly across domain-specific subsets, emphasizing the15

importance of domain-aware benchmarking. Furthermore, we extend BENCHHUB16

into 10 languages spanning resource levels. We believe BenchHub can encourage17

better dataset reuse, more transparent model comparisons, and easier identification18

of underrepresented areas in existing benchmarks, offering a critical infrastructure19

for advancing LLM evaluation research.20

1 Introduction21

Large language models (LLMs) have made remarkable strides, powering applications across diverse22

tasks, including research [6], industry [8], and everyday life [9]. As their roles expand—from open-23

ended reasoning to culturally sensitive decision-making [30]—LLMs are increasingly required to24

integrate multiple skills (e.g., reasoning and knowledge) across diverse domains (e.g., mathematics25

and culture). This complexity underscores the need for a new evaluation paradigm that goes beyond26

formulaic rankings, toward rigorous and comprehensive assessments of whether model behavior27

aligns with the nuanced objectives of specific users and applications.28

In response, a wide range of evaluation efforts has emerged. On the one hand, holistic evaluation29

benchmarks [43, 52] and leaderboards based on user preference [11] or aggregated benchmarks [1]30

serve as popular community standards. While useful for broad comparisons, their aggregated scores31

obscure fine-grained strengths and weaknesses, often misaligning with the needs of specific appli-32

cations [65]. On the other hand, specialized benchmarks target narrow aspects, such as law [42],33

medical advice [2], and finance [75], as well as specific tasks, including knowledge retrieval [21], rea-34

soning [14, 96], and value alignment [55, 28]. While these datasets capture critical capabilities, their35

vast, fragmented, and overlapping nature creates a chaotic landscape. For instance, in the mathematics36
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Figure 1: The concept of BENCHHUB. BENCHHUB automatically classifies and merges questions
from existing benchmark datasets on a sample-wise basis. Through BENCHHUB, users can select test
sets that align with their objectives and efficiently evaluate the models.

domain, numerous benchmarks exist, such as MATH [22] and GSM8k [14], which in turn partially37

overlap with broader collections (e.g., MMLU [21]). This leaves researchers and practitioners with a38

dilemma: which benchmarks truly reflect their objective, and how can they compose a principled,39

customized evaluation suite tailored for diverse needs?40

In this paper, we introduce BENCHHUB2, a unified and customizable benchmark suite for holistic41

yet domain-aware LLM evaluation. BENCHHUB aggregates 839k questions from 54 benchmarks42

across 64 domains and 10 languages, mainly in English and Korean. We systematically categorize43

existing benchmarks by six dimensions: 1) tasks (e.g., mathematical reasoning), 2) answer formats44

(e.g., multiple-choice QA), 3) tool usage (i.e., language-only or requirements to external tools), 4)45

skills (i.e., knowledge, reasoning, or value/alignment), 5) coarse- and fine-grained subjects (e.g.,46

STEM–mathematics), and 6) targets (i.e., culturally specific or agnostic). This design facilitates47

users to dynamically construct their own evaluation sets tailored to their needs, moving beyond rigid,48

predefined test sets (Figure 1). To ensure long-term, dynamic scalability, we further train and release49

a categorization model that seamlessly integrates new, unseen benchmarks into BENCHHUB.50

Using BENCHHUB, we evaluate 14 open LLMs and uncover a crucial insight: model rankings fluctuate51

substantially depending on benchmark compositions and domain focus. This finding highlights the52

central issue of benchmark composition bias, which can significantly distort interpretations of53

model performance. We further validate BENCHHUB through 5 real-world use cases—such as legal,54

educational, and cultural applications—showing how domain-aware evaluation alters conclusions55

about model superiority. We hope BENCHHUB provides a foundation for the community to move56

beyond monolithic leaderboards toward domain-aware, trustworthy, and customizable evaluation.57

2 Existing LLM Evaluation Benchmarks are Skewed58
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Figure 3: Distribution of MMLU in English,
Korean, Japanese, Indonesian, and Chinese.

What aspects do the commonly used multi-domain59

datasets evaluate, and how is the distribution of do-60

mains represented across these datasets? To answer61

this question, we classify three representative holistic62

benchmarks (i.e., Chatbot Arena [11], MixEval [52],63

and MMLU [21]) as multilabels using our fine-tuned64

classifiers (§ 3) in terms of coarse-grained subjects65

(Figure 2a) and tasks (Figure 2b).66

Among them, Chatbot Arena includes only 25.5% of67

Humanities and Social Sciencce (HASS) questions,68

while both MixEval and MMLU comprise more than69

2We release our datasets and interactive platform at https://huggingface.co/BenchHub and our code
at https://github.com/rladmstn1714/BenchHub.
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Figure 2: Data distribution of existing evaluation benchmarks.

half of HASS questions. In addition, MixEval in-70

cludes fewer than 0.30% of value alignment tasks and mostly focuses on measuring knowledge. Such71

disparities may lead to biased findings, where models that excel in certain domains may appear to72

perform better overall, potentially skewing the evaluation results.73

Moreover, these biases are not limited to cross-benchmark comparisons but can also manifest within74

multilingual contexts. Figure 3 and Figure 10 illustrate data distributions of MMLU series datasets75

in 5 languages classified by the model (§ 3) in terms of coarse-grained subjects. For instance,76

MMLU in English emphasizes HASS, whereas Korean MMLU (KMMLU) [77] comprises 76.1% of77

STEM (Science, Technology, Engineering, and Mathematics) questions. This variation complicates78

the interpretation of performance differences, as it is challenging to discern whether the performance79

degradations in non-English are due to language proficiency or domain-specific knowledge.80

Hence, instead of recklessly adopting existing holistic benchmarks, we recommend carefully selecting81

the benchmark suites for a reliable evaluation.82

3 BENCHHUB83

Consider a user who wants to determine “Which model excels at both mathematics and understanding84

culture?” As discussed in § 2, it remains unclear how to answer such specific, goal-oriented questions85

and how to construct their evaluation suite, as existing evaluation benchmarks [21, 43, 52] mainly86

provide general-purpose scores. To this end, we introduce BENCHHUB, a unified collection of LLM87

evaluation benchmarks across diverse domains. BENCHHUB integrates 54 benchmarks comprising88

839k samples in 10 languages, with a primary focus on English and Korean as BENCHHUB-En and89

BENCHHUB-Ko, respectively. We design BENCHHUB around two core principles: 1) a fine-grained,90

multi-dimensional taxonomy to deconstruct model capabilities and 2) a fully automated pipeline to91

dynamically update and expand it with new datasets. In this section, we detail the taxonomy design92

(§ 3.1), the data curation (§ 3.2), the automated pipeline (§ 3.3), as well as interactive tools and utilities93

as a web-based platform(§ 3.4). Finally, we illustrate the multilingual extension of BENCHHUB94

—from English and Korean to eight additional languages—in § 3.5.95

3.1 Taxonomy96

We annotate each dataset with six orthogonal dimensions: three dataset-level attributes—task, answer97

format, and tool usage— and three sample-level attributes—skill, subject, and target. The full98

scheme is illustrated in Appendix D.99

Dataset-level attributes:100

1. Task refers to the high-level family defined by the dataset authors (e.g., mathematical reasoning,101

code generation, cultural understanding). This provides a general understanding of a dataset’s102

purpose. We assign it automatically from the dataset’s abstract or description using LLM inference.103

2. Answer format specifies the expected response format: binary, multiple-choice QA (MCQA),104

short-form, free-form, open-ended (e.g., story generation), and comparison (e.g., determining105

which response is better between A and B). This is crucial for selecting appropriate evaluation106

prompts and formats.107
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3. Tool Usage indicates whether a task requires language capabilities only (language-only) or108

interaction with external tools such as e.g., code interpreters, web browsers, calculators (requires109

externals tools). This dimension supports agentic evaluation, where models must decide when and110

how to invoke external resources.111

Sample-level attributes:112

4. Skill captures the required ability to answer the question (i.e., reasoning, knowledge, and val-113

ue/alignment).114

5. Subject denotes the knowledge domain. We define six coarse-grained categories—Science, Tech-115

nology, Humanities and Social Science (HASS), Arts & Sports, Culture, and Social Intelligence—116

along with 64 sub-categories, by integrating various knowledge classification systems. Each117

sample may have multiple subject labels.118

6. Target represents the cultural or geographical focus. Culturally agnostic items are labeled as119

General; otherwise, we assign a Local tag. This supports evaluation under culturally-aware120

evaluation [73].121

3.2 Datasets122
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Figure 4: Data distribution of all datasets used in this paper by coarse-grained subjects, targets, and
tasks. The English and Korean data include 250,940 and 144,331 questions each.
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Figure 5: Fine-grained data distribution of all datasets used in this paper in terms of subjects

We apply this taxonomy to 54 benchmarks in 10 languages, mainly covering English and Korean123

and totaling over 839k instances. Figures 2 and 5 show the overall statistics of English and Korean124

datasets included in our benchmark. For English and Korean, we include 31 English and 12 Korean125

language benchmarks with a total of 41 datasets. 3 We curate 1) general-purpose (i.e., culturally126

agnostic) datasets commonly used by holistic evaluation benchmarks [94, 52] and 2) culture-specific127

3We count the multilingual datasets—BLEnD [50] and CaLMQA [3]—in both.
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datasets. We select English datasets spanning multiple cultures drawn from a recent survey [56],128

curating over 300 papers and datasets regarding LLM cultural awareness. For Korean, where public129

resources are fewer than in English, we include most datasets released after 2022. Table 2 in the130

Appendix provides a complete list of the datasets.131

3.3 Automated and Dynamic Expansion132

With benchmark datasets emerging at a rapid pace, it is crucial to flexibly manage them for holistic133

evaluation. To dynamically adapt to newly emerging datasets, we automate the entire dataset merging134

process using an LLM agent, which includes reformatting the datasets into our benchmark format135

and classifying each sample into categories. The processing pipeline for a newly introduced dataset is136

outlined as follows:137

1. Reformatting: We first automatically parse, reformat, and map a new dataset to the standardized138

BENCHHUB scheme using an LLM-guided rule-based approach. If the dataset does not adhere to139

our predefined schema, an LLM agent (e.g., GPT-4o or Gemini) is employed to map keys to the140

correct format.141

2. Metadata assignment: The LLM agent extracts the meta-task description and infers the task,142

answer format, and tool usage from the dataset documentation (e.g., abstract).143

3. Sample-level Categorization: We then assign sample-level attributes (i.e., skill, subject, and144

target type) using a fine-tuned Qwen-2.5-7B model (BenchHub-Cat-7B). 4145

4. Merging: The processed and annotated dataset is seamlessly merged into the main collections,146

thereby producing the next BENCHHUB release.147

This automated pipeline allows BENCHHUB to continuously expand and provide more comprehensive148

evaluations as new datasets emerge. While we acknowledge the incompleteness of LLM-based149

expansion, we provide an empirical discussion of the reliability and robustness of this automated150

process in Appendix E.2.151

3.4 Interactive Platform and Utilities152

To proliferate our structured data into actionable insights for researchers and practitioners, we release153

an interactive web-based platform (Figure 8) and code utilities. The web demo allows users to filter154

out datasets by any category combinations, inspect statistics, download their customized subsets, and155

propose new datasets via pull requests. The code utilities offer two main features:156

1. Dataset Loader: It filters the dataset to include only the categories selected by the user. It also157

allows the user to choose between returning the entire selected dataset or a filtered version with158

overlapping entries (including near-duplicates) removed, which is useful since multiple aggregated159

datasets may contain overlapping samples.160

2. Citation Report Generator: For the customized dataset returned to the user, it produces a laTEX161

table of datasets with their sources and licenses, includes dataset statistics such as the number of162

instances, and provides a comprehensive citation list (e.g., BibTEX entries) to ensure proper credit163

to dataset authors.164

For better reproducibility, we adopt HRET [39] 5, enabling direct evaluations on BENCHHUB. Design165

and implementation details of the platform and code utilities appear in Appendix B.166

3.5 Multilingual Extension of BENCHHUB167

While we focus on two languages (i.e., Korean and English), we highlight that BENCHHUB is a168

language-agnostic, flexible framework that can be easily extended to other languages. To empirically169

guide this extension, we present BenchHub-Multi-Cat-7B6, a multilingual categorizer supporting170

4The model link will be added after the anonymous review period. Details on the training and validation of
BenchHub-Cat-7B are provided in Appendix E.1.

5HRET is an evaluation toolkit supporting multiple datasets, including BENCHHUB.
6The model link will be added after the anonymous review period.
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10 languages—English (En); 3 high-resource (Arabic (Ar), German (De), Dutch (Nl)); 3 mid-171

resource (Indonesian (Id), Korean (Ko), Ukrainian (Uk)); 3 low-resource (Swahili (Sw), Nepali (Ne),172

Kyrgyz (Ky)). Our multilingual categorizer achieves an average accuracy of 77.5% on fine-grained173

subject categorizations for unseen, out-of-domain data. Furthermore, we introduce BENCHHUB-174

multilingual, which extends our benchmark suite to a total of 10 languages consisting of 13 datasets175

and 444,402 samples. We hope BENCHHUB-multilingual to serve as a foundational step for reliable176

LLM evaluations in non-English languages. The details of the training procedure and the datasets for177

each language are provided in the Appendix F.178

4 Evaluation Results using BENCHHUB179

4.1 Evaluation of LLMs across diverse subjects180
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Figure 6: LLM evaluation ranking under BENCHHUB in terms of coarse-grained subjects

In this section, we evaluate seven LLMs across diverse subjects using BENCHHUB. We select 6,644181

and 6,485 examples for English and Korean, respectively. To manage the large number of fine-grained182

categories, we sample up to 150 examples per category, fully including categories with 100–150183

samples and merging categories with fewer than 80 samples into a miscellaneous group within the184

same coarse-grained classification. For evaluation, we extract the model’s intended answer from185

MCQA questions by applying a set of regular expressions [49], while using an LLM as a parser186

extractor for short-form questions 7, similar to the approach in previous work [52].187

We include one model from each commonly used LLM family. For proprietary models, we use GPT-188

4.1, Gemini-2.0-flash, and Claude 3.7 Sonnet 8. Open models include Qwen-3-32b [89], DeepSeek-R1-189

Distill-Qwen-32B [15], Llama-3.3-70B [18], Mistral-Small-24B-Instruct, and gemma-2-27b-it [82].190

Figure 6 presents model rankings by subject category. Our results show that frequent fluctuations191

in model rankings depend on the category. For example, Llama-3.3-70b ranks 6th in Science and192

Tech, but ranks as the top-performing model among seven models in Culture and Social Intelligence.193

This highlights the importance of domain-specific evaluation aligned with the evaluation context and194

objectives. The full results for each subject and model are in Table 12- 13 in the Appendix H.195

4.2 Impact of Category Distribution on Model Ranking196

In this section, we empirically validate the influence of category distributions within evaluation197

benchmarks on model rankings. Since this requires experiments on large datasets for statistical198

validation, we include 14 open models ranging from 1B to 72B parameters. We test on 27 English199

and 13 Korean datasets, comprising 16,898 and 18,977 MCQA samples, respectively. The number of200

answer choices per MCQA sample varies between 3 and 18. We extract the model’s intended answer201

by applying a set of regular expressions [49]. The evaluated LLMs include:202

• Qwen [90, 89]: Qwen2.5-72B-Instruct, Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Qwen3-14B,203

Qwen3-32B204

• DeepSeek [15]: DeepSeek-R1-Distill-Qwen-14B, DeepSeek-R1-Distill-Qwen-32B205

• Llama [18]: Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct206

7We use GPT-4.1-nano as a parser extractor. Note that [52] use GPT-3.5. The LLM parses and compares the
extracted answer with the ground truth, without assessing answer quality.

8For GPT-4.1, we use GPT-4.1-2025-04-14 version. We directly call GPT-4.1 via the OpenAI API, while we
use OpenRouter for Gemini-2.0-flash, and Claude 3.7 Sonnet.
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• Mistral: Mistral-Small-24B-Instruct-2501207

• Gemma [82]: gemma-3-1b-it, gemma-3-4b-it, gemma-3-27b-it208

To gauge the impact of data composition, we experiment under three sampling strategies with four209

setups, which are representatives of traditional approaches or emerging trends in LLM evaluations210

with a massive benchmark scale.211

Random sampling: Samples are drawn uniformly at random from the entire dataset collection,212

disregarding category proportions. Each sample has an equal chance of selection.213

Stratified sampling: Samples are drawn to ensure equal representation from each constituent214

dataset, preserving dataset-level balance rather than the overall distribution.215

Sampling according to category distribution: This strategy performs stratified sampling guided216

by fine-grained category distributions observed in existing holistic LLM benchmarks. In particular,217

we adopt the distributions derived from Chatbot Arena and MixEval, classified by our fine-tuned218

model (§ 3.3). The coarse-grained category distributions of these benchmarks are detailed in § 2.219
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Figure 7: LLM ranking according to four sampling methods

We run 50 simulations per sampling setup, each selecting 5K questions. Model rankings within each220

setup follow normal distributions. Figure 7 visualizes LLM ranking changes across the four sampling221

setups. We use the Friedman test and the pairwise Wilcoxon test to statistically identify whether the222

sampling strategy affects the model ranking based on average accuracy. We observe a statistically223

significant difference across sampling strategies using the Friedman test (p < 0.01). Specifically,224

pairwise Wilcoxon signed-rank tests confirm that all pairs of sampling setups significantly differ in225

average, except for random sampling versus sampling according to MixEval distribution (p < 0.01).226

These findings underscore that category distribution and sampling strategy of data substantially affect227

LLM leaderboard rankings. We call on researchers and practitioners to carefully consider benchmark228

composition when evaluating LLMs.229

5 Adapting BENCHHUB for Evaluating Real-World Application230

In this section, we showcase how customized benchmark composition using BENCHHUB enables231

more targeted and meaningful evaluations tailored to real-world application scenarios. We consider232

five use cases, including the scenarios illustrated in Figure 1, to construct customized BENCHHUB.233

(a) STEM knowledge evaluation: To identify the best-performing model with expertise in STEM234

domains, we select English datasets within BENCHHUB whose coarse-grained subjects are235

labeled as Science or Technology. To ensure balanced representation across individual datasets,236

the questions are drawn using a stratified sampling at a dataset level.237

(b) Math teaching agent for Korean students: To evaluate Math teaching agents, we select Korean238

datasets comprising 1) math-related samples (i.e., fine-grained categories are Science/Math or239
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Science/Statistics), 2) education-related samples (i.e., fine-grained category is HASS/Education),240

and 3) samples culturally specific to Korea (i.e., target as ‘KO’). The final accuracy is computed241

as a weighted average of these subsets, with weights of 0.6, 0.1, and 0.3, respectively, reflecting242

their relative importance to the application.243

(c) Legal chatbot servicing in Korea and the US: To select a foundation model for a legal chatbot,244

we select English and Korean datasets whose fine-grained subject is law. The final accuracy is245

computed as an average of the English and Korean datasets, ensuring that the model holds legal246

knowledge in both countries.247

(d) Docent agent for Korean traditional arts: To identify the best-performing model with expertise248

in Korean traditional arts, we select Korean datasets within BENCHHUB whose fine-grained249

subjects are labeled as architecture, sculpture, and painting. To ensure balanced representation250

across individual subjects, the questions are drawn using a stratified sampling strategy at a251

subject level.252

(e) Counseling agent servicing in Korea: To evaluate counseling agent in Korean, we select253

Korean datasets comprising:254

1. psychology-related samples (i.e., fine-grained category is psychology),255

2. samples aware to Korean social interactions (i.e., coarse-grained category is social intelli-256

gence),257

3. samples relevant to common counseling topics (i.e., fine-grained categories are work life,258

daily life, and family).259

The final accuracy is computed as a weighted average of these subsets, with weights of 0.5, 0.3,260

and 0.2, respectively.261

Table 1: Top-5 LLMs evaluated by BENCHHUB in real-world application scenarios

Rank
(a) STEM knowledge evaluation

(EN)
(b) Math teaching agent for Korean students

(KO)

Customized Stratified Customized Stratified

1 Qwen3-32B gemma-3-1b-it Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct
2 gemma-3-1b-it Qwen3-32B Mistral-Small-24B-Instruct-2501 Llama-3.3-70B-Instruct
3 Qwen3-1.7B Qwen3-4B gemma-3-27b-it gemma-3-27b
4 Qwen3-4B Qwen3-1.7B Llama-3.3-70B-Instruct Mistral-Small-24B-Instruct-2501
5 DeepSeek-R1-Distill-Qwen-14B gemma-3-4b DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-32B

Table 1 presents the detailed accuracy scores and rankings of LLMs under these customized bench-262

marks. We use the same set of models described in § 4.2. The model rankings differ substantially263

depending on the benchmark compositions, underscoring the practical need for tailored evaluations.264

6 Related Work265

As LLMs have become integral to real-world generative AI systems, the historical focus on bench-266

marks and leaderboards has matured into evaluation science [88]. While LLM evaluation benchmarks267

primarily adopt a question-answering task as a default evaluation format, they have expanded their268

capabilities into diverse tasks, including long-form generation [48], multilingual [73, 70], multi-269

modal [17], and complex reasoning tasks [14, 96], inter alia. This diversification reflects a growing270

recognition of the multifaceted capabilities and applications of LLMs.271

Domain-specific Evaluation. Beyond general-purpose benchmarks, there has been a surge in272

domain-specific evaluation benchmarks targeting verticals such as healthcare and medicine [23,273

46, 63], law [42], science [16], and financial [97, 74]. These benchmarks enable more targeted274

assessment aligned with the unique requirements and challenges of each field. However, many275

domain-specific benchmarks lack the detail needed to compare specific skills or topics, and they often276

offer limited interoperability or consistency across benchmarks, making cross-benchmark comparison277

difficult. Complementing this trend, several large-scale benchmarks now aggregate tasks across278

multiple domains to facilitate robust, holistic evaluation of LLMs [21, 87, 80, 86]. However, it’s often279

unclear what the entire dataset actually evaluates, and thus lacks support for user-driven evaluation280

customization. In contrast, our paper proposes a framework that leverages existing benchmarks while281
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enabling users to construct personalized, cross-domain evaluations tailored to their specific needs and282

contexts.283

Dynamic Evaluation. Recent studies have identified inherent limitations of static datasets. Notably,284

issues such as data contamination, model overfitting to benchmarks, and insufficient human alignments285

have been highlighted [92, 54]. This has spurred calls for a new discipline of model metrology286

focused on dynamic, adaptive, and robust evaluation frameworks [69]. Accordingly, dynamic and287

live evaluation is being conducted through various approaches: by synthetically generating evaluation288

data in real time [98, 71]; by incorporating human-in-the-loop platforms for periodic updates [31, 11];289

or by regularly integrating new benchmark datasets [52, 27]. Our work extends this paradigm by290

offering a live benchmarking platform that automatically merges and recategorizes the benchmarks291

into a unified structure. This design makes our system more flexible and scalable for evaluating LLMs292

across diverse use cases.293

Fine-grained Evaluation. Recent studies have shed light on the diversity of scenarios, contexts,294

and metrics in holistic evaluations. For example, [83] critiqued over-reliance on single leaderboard295

rankings for evaluating AI fairness, advocating for multi-dimensional measurements. Similarly, [43]296

reformulated existing benchmarks into a format of diverse scenarios and adopted multiple metrics297

for a truly holistic assessment. Fine-grained evaluations, such as decomposing coarse scoring into298

skill-level scoring for alignment [94], facilitate richer and interpertable results. These advancements299

collectively underscore a paradigm shift from narrow, static benchmarks toward customizable, multi-300

faceted evaluations that better reflect the complex real-world capabilities and risks of LLMs. To301

support this shift, we propose a framework that enables question-level categorization across three302

core skills and 64 subject domains, offering a more fine-grained and interpretable evaluation.303

To the best of our knowledge, BENCHHUB is the first to support domain-specific evaluation with304

fine-grained skill and subject categorization, while enabling dynamic updates through an automated305

integration pipeline for new benchmarks. We unify qualified benchmark datasets from diverse sources306

into a consistent structure and apply fine-grained categorization, enabling a holistic, interpretable307

evaluation pipeline that aligns closely with user-specific evaluation intents.308

7 Conclusion309

The rapid advancements in large language models (LLMs) have highlighted the need for robust and310

comprehensive evaluation frameworks capable of addressing the diverse and expanding range of311

their applications. While existing benchmarks have provided valuable insights into specific domains312

and capabilities, the fragmented nature of these datasets and the lack of alignment with task-specific313

objectives often limit their utility in real-world scenarios. Moreover, the varying distributions of314

subject types within benchmarks can significantly influence the interpretation of model performance,315

further emphasizing the need for systematic and customizable evaluation methodologies.316

In this work, we introduced BENCHHUB, a unified benchmark suite designed to address these chal-317

lenges. By categorizing 839k questions from 54 benchmarks in 10 languages across skills, subjects,318

and targets, BENCHHUB enables users to filter and create tailored test sets for domain-aware and319

task-specific evaluations. The integration of a categorization model based on Qwen-2.5-7b automates320

this process, ensuring scalability and adaptability to new datasets. Our experiments demonstrated that321

model performance rankings can vary significantly depending on subject categories and dataset distri-322

butions, underscoring the critical role of benchmark composition in fair and meaningful evaluations.323

We hope this work promotes domain-aware evaluation and careful benchmark design. BENCHHUB324

serves as a practical tool to support these goals across diverse users.325

• For developers and practitioners, BENCHHUB serves as a tool for accurately assessing model326

capabilities in targeted scenarios. They can identify each model’s strengths and weaknesses and327

select the ones best suited to their specific applications.328

329

• For benchmark and evaluation researchers, we hope that the unified structure of BENCHHUB330

facilitates comprehensive statistical analysis of the coverage of existing benchmarks across subjects331

and skills, helping to identify underrepresented areas and motivating the construction of new332

datasets that address existing gaps in current evaluation practices.333
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Appendix947

A Limitations948

Incomplete English Dataset Coverage: Due to the vast amount of English-language data, we could949

not include all relevant datasets in this version of BENCHHUB. While we prioritized widely used and950

high-quality benchmarks, some important datasets may still be missing. Future iterations will expand951

coverage for broader inclusivity.952

Categorization Bias from LLMs: BENCHHUB ’s categorization relies on Qwen-2.5-7b, which953

may introduce biases due to its training data or modeling limitations. Although we’ve taken steps to954

mitigate this, future work will explore human-in-the-loop methods and ensemble models to improve955

reliability.956

By acknowledging these limitations, we aim to continuously improve BENCHHUB and encourage957

contributions from the community to enhance the robustness, fairness, and comprehensiveness of958

LLM evaluations.959

B Interactive Platform and Utilities960

B.1 BENCHHUB Web Interface961

We manage all code, datasets, models, and demo via Huggingface. In this repository, we release:962

1) the complete datasets, 2) useful codes (e.g., load and preprocess dataset), 3) the interactive web963

interface, and 4) our categorizer model.964

We provide BENCHHUB web interface9 to enable users to interactively explore available datasets and965

identify those that best suit their needs. It also supports the continuous addition and management966

of new data. Through a submission form, new datasets can be detected and automatically added. To967

achieve these, we provide three main functions, as shown in Figure 8.968

1) BENCHHUB Distribution (Figure 8a) This feature offers comprehensive statistics of all datasets we969

have. Users can interactively explore the overall data distribution they are interested in. Additionally,970

it provides researchers with insights into which datasets are currently lacking and which evaluations971

have not yet been conducted.972

2) Customizing BENCHHUB (Figure 8b) This allows users to access sample lists and statistics for973

selected categories. By reviewing samples, users can verify whether the dataset matches their needs974

and explore datasets suitable for their purposes. Users can also download the entire set corresponding975

to the samples.10976

3) Submitting New Dataset (Figure 8c) To facilitate the addition of new datasets, We provide a977

submission section to input the Dataset Name, Huggingface URL, and Metadata/Descriptions. Based978

on this information, the author decides whether to add the dataset to BENCHHUB.979

B.2 BENCHHUB Code Utilities980

B.2.1 Dataset Loader981

We provide two options for the dataset loader: (1) returning the entire dataset that meets the specified982

categories, or (2) a filtered version with overlapping entries (including near-duplicates) removed.983

Duplicates Filtering Method To perform deduplication, we implement a method inspired by MixE-984

val [52]. The process consists of two steps: (1) computing query embeddings using mpnet-base-v2985

from SentenceTransformers and projecting them into a 2D space via t-SNE, and (2) uniformly986

9Our interface is served via Huggingface Space, while the Huggingface URL will be available after publication
due to anonymity rule.

10Additional customizing features, such as fine-grained category adjustments and interactive control of
category proportions via the platform (e.g., adjusting the ratio between reasoning and knowledge questions), are
to be developed.
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(a) BENCHHUB Distribution

(b) BENCHHUB Distribution

(c) BENCHHUB Distribution

Figure 8: User Interface of BENCHHUB Web Demo
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sampling in this reduced space. Queries on similar topics naturally cluster within localized regions of987

the embedding map, which allows redundant samples to be excluded during dataset construction.988

Empirical Validation To validate the effectiveness of this approach, we conduct the following989

experiment:990

1. Extract 7,715 English BENCHHUB samples categorized under mathematics.991

2. Introduce 60 synthetic duplicates by prompting gemini-2.5-flash to generate (i) identical992

copies and (ii) five near-duplicates for 10 randomly chosen questions (via paraphrasing or993

altering numbers).994

3. Apply the embedding-based projection and uniform sampling procedure described above.995

We observe that embedding-based sampling consistently restricts the number of duplicates to at most996

0–1 per batch, even at large sample sizes. In contrast, random sampling frequently produces more997

than five duplicates once the sample size exceeds 1,250. See Figure 9 for detailed results.

Figure 9: Average number of duplicates included in the sampling size when using the embedding-
based method (Blue) and random sampling (Orange).

998

B.2.2 Citation Report Generator999

As we provide a mixture of datasets, it is important to include essential information such as detailed1000

statistics (e.g., the proportion contributed by each source dataset), the licenses of included datasets, and1001

the corresponding citation guidelines in LaTEX format. The primary purpose of this documentation1002

is to facilitate the direct use of BENCHHUB in users’ projects while ensuring that original sources1003

receive proper credit.1004

Example of Citation Guidelines

The evaluation dataset are sampled using BenchHub
~\cite{benchhub}.

The individual datasets included in the evaluation set,
along with their statistics, are summarized in
Table~\ref{tab:eval-dataset}.

% Please add the following required packages to your document
preamble:
% \usepackage{booktabs}
\begin{table}[h]
\centering
\begin{tabular}{@{}lll@{}}
\toprule

1005

24



\textbf{Dataset} & \textbf{Number of Samples}
& \textbf{License}\\ \midrule
{table_content}
\bottomrule
\end{tabular}
\caption{Breakdown of datasets included in the evaluation set.}
\label{tab:eval-dataset}
\end{table}

% --- BibTeX Entries ---
@inproceedings{...}
@inproceedings{...}
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C List of Datasets Used1007

Table 2: Benchmarks Included in BENCHHUB

Dataset Reference Target Lang. # of Samples License
ARC [13] General EN 3,548 cc-by-sa 4.0
SocialIQA [68] General EN 1,954 cc-0
WinoGrande [67] General EN 1,767 Apache-2.0
Natural Questions (open) [38] General EN 1,769 Apache-2.0
NarrativeQA [35] General EN 10,557 Apache-2.0
TruthfulQA [44] General EN 817 Apache-2.0
Open-BookQA [47] General EN 1,000 Apache-2.0
MMLU [21] General EN 14,042 MIT
BBQ [55] General EN 58,492 cc-by-4.0
PIQA [7] General EN 3,084 Apache-2.0
CommonsenseQA [81] General EN 1,140 MIT
BBH [79] General EN 6,261 MIT
MATH [22] General EN 4,521 MIT
HumanEval [10] General EN 164 MIT
MBPP [4] General EN 974 cc-by-4.0
GSM8k [14] General EN 1,319 MIT
GPQA [64] General EN 1,191 cc-by-4.0
ToolHop [93] General EN 996 cc-by-4.0
ToolQA [99] General EN 1,545 Apache-2.0
ToolBench [60] General EN 77,120 Apache-2.0
GPT4Tools [91] General EN 13,070 Apache-2.0
MultiNativQA [20] Local EN 3,435 cc-by-nc-sa-4.0
CulturalBench [12] Local EN 6,134 cc-by-4.0
SeaEval [84] Local EN 275 cc-by-nc-4.0
CANDLE CCSK [51] Local EN 500 cc-by-4.0
GeoMLAMA [95] Local EN 124 unknown
NormAd [62] Local EN 7,899 cc-by-4.0
CultureBank [72] Local EN 22,990 MIT
CaLMQA [3] Local EN, KO 96 MIT
BLEnD [50] Local EN 4,132 cc-by-sa-4.0
BLEnD [50] Local KO 1,000 cc-by-sa-4.0
KorNAT [41] Local EN 24 cc-by-nc-2.0
KBL [33] General KO 3,304 cc-by-nc-4.0
KorMedMCQA [37] General KO 3,009 cc-by-nc-2.0
KMMLU [77] General KO 30,499 cc-by-nd-4.0
HRM8K [34] General KO 8,011 MIT
KoBBQ [29] Local KO 81,128 MIT
KULTURE Bench [85] Local KO 3,584 Apache-2.0
HAE-RAE Bench [78] Local KO 4,900 cc-by-nc-nd-4.0
CLIcK [32] Local KO 1,995 cc-by-nd-4.0
HRMCR [76] Local KO 100 Apache-2.0
KoSBi [40] Local KO 6,801 MIT
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Figure 10: Detailed data distribution of MMLU series in English, Korean, Japanese, Indonesian, and
Chinese, respectively

27



D Taxonomy Details1008

D.1 Problem Type1009

Table 3: Problem types, descriptions, and examples
Format Description Example
Binary Two-option choice ques-

tions, typically Yes/No or
True/False.

“Is the Earth flat?” →
“No”

Multiple-choice QA (MCQA) Multiple-choice question
answering format.

“What is the capital of
France? (A) Paris (B)
Rome (C) Berlin” → (A)

Open-ended generation
Short-form Short, direct answer gen-

eration.
“What is 2+2?” → “4”

Free-form Extended, explanatory an-
swer generation.

“Explain the theory of rel-
ativity.” → “The theory of
relativity, developed by Al-
bert Einstein. . . ”

Open-ended Answer generation with-
out a definitive correct
response, involving free
imagination or story-
telling.

“Tell a story about a jour-
ney to the moon.” →

“Once upon a time, a brave
astronaut set off on a mag-
ical voyage beyond the
stars. . . ”

Comparison Subjective or preference-
based evaluation of re-
sponses, typically involv-
ing agreement, helpful-
ness, or safety.

“Which response is more
helpful?” A: “Yes.” B:

“Sure, here’s how you can
do that. . . ” → (B)

D.2 Skill1010

Table 4: Task types, descriptions, and examples

Task Description Example
Knowledge Questions that seek factual information,

definitions, or explanations. Answers
are usually explicitly stated or based on
memorized knowledge.

"What is the capital of France?"

Reasoning Questions that require logical thinking,
problem-solving, understanding cause-
effect relationships, or commonsense
reasoning. Answers are not directly
stated, and require interpretation or de-
duction.

“There are 12 apples in a box. If 4 peo-
ple share them equally, how many ap-
ples does each person get?”

Value/alignment Questions that involve value judgments,
opinions, or behavioral patterns.

"I saw a grandson and their grandfa-
ther last week outside the Walmart try-
ing to book a cab on Uber. Who was
not comfortable using the phone?" (Ex-
ample from [55])
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Table 5: Target types and descriptions

Target Description
General A general target without a specific cultural or national focus.

Local A specific target toward a certain culture (e.g., US, KO).

D.3 Target1011

D.4 Subject1012

We use 6 coarse-grained and 64 fine-grained subjects to classify samples in existing LLM evaluation1013

benchmarks. Table 6 lists the subjects and their definitions. We finalize the subject lists by aggregating1014

WebDewey 11 based on Dewey Decimal Classification (DDC) system and Korean culture-specific1015

classification systems 1213.1016

Table 6: Subject types and descriptions

Coarse-grained Fine-grained Description

Science

Mathematics The study of numbers, quantities, structures, and ab-
stract reasoning.

Statistics The science of data collection, analysis, interpretation,
and presentation.

Physics The study of matter, energy, and the fundamental
forces of nature.

Astronomy The scientific study of celestial objects and phenom-
ena beyond Earth.

Chemistry The study of substances, their properties, and how
they interact and change.

Biology The study of living organisms and their vital pro-
cesses.

Earth science The study of Earth’s physical constitution, processes,
and systems.

Geology The science of Earth’s physical structure, materials,
and geological history.

Atmospheric
science

The study of the Earth’s atmosphere, including
weather, climate, and air dynamics.

Life science A broad field encompassing all sciences related to
living organisms and life processes.

Technology

Mechanics The study and application of forces and motion in
physical systems.

Materials eng. The science and engineering of the properties and
uses of materials.

Chemical eng. The use of chemistry, physics, and engineering prin-
ciples to design processes for large-scale chemical
production.

Electrical eng. The study and application of electricity, electronics,
and electromagnetism.

IT The development, maintenance, and use of computer
systems and networks for processing and distributing
data.

Energy eng. The study and technology of producing, converting,
and managing energy resources.

11https://www.oclc.org/en/webdewey.html
12디지털집현전 (https://k-knowledge.kr/guide/nkiClassifi.jsp).
13한국민족문화대백과사전 (https://encykorea.aks.ac.kr/).
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Nuclear eng. Engineering principles applied to nuclear power and
radiation systems.

Civil eng. Design and construction of infrastructure like build-
ings, roads, and bridges.

Urban eng. Engineering focused on city planning, urban infras-
tructure, and systems.

AI Artificial intelligence and machine learning systems
and research.

Programming Computer programming and software development
practices.

Environmental eng. Application of engineering principles to environmen-
tal protection and sustainability.

Aerospace eng. Engineering of aircraft, spacecraft, and related sys-
tems.

Marine eng. Engineering of ships, submarines, and marine tech-
nology.

Agricultural eng. Science and technology applied to crop and livestock
production.

Biomedical eng. Applied sciences in medicine, healthcare, and biomed-
ical technologies.

Humanities and
Social Science
(HASS)

Literature The study and interpretation of written, oral, and tex-
tual works.

Language The study of human language, linguistics, and com-
munication.

Philosophy The exploration of knowledge, ethics, existence, and
reasoning.

Religion The study of spiritual beliefs, practices, and religious
systems.

Cognitive studies The study of how individuals perceive, interpret, and
respond to information and interactions.

Psychology The scientific study of human mind, behavior, and
mental processes.

History The study of past events, civilizations, and historical
change.

Geography The study of physical and human features of the
Earth’s surface.

Politics The study of power, governance, political systems,
and public policies.

Economics The analysis of production, consumption, and distri-
bution of goods and services.

Law The system of rules, rights, and justice within soci-
eties.

Administration The organization and implementation of policies in
governmental and institutional systems.

Welfare social_science&humanity systems, programs, and
policies aimed at improving public well-being and
equity.

Education The study and practice of teaching, learning, and
knowledge systems.

Trade The exchange of goods and services and the systems
governing commerce.

Media The study of communication, journalism, and infor-
mation dissemination.

Arts and Sports

Architecture The art and science of designing buildings and physi-
cal structures.

Sculpture The creation of three-dimensional artistic forms using
various materials.
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Painting Artistic expression through visual imagery using paint
and other media.

Music The art of sound arrangement in melody, harmony,
and rhythm.

Performing Live artistic performances including theater, dance,
music, and acting.

Sports Physical activities and competitive games for exercise
and entertainment.

Photography The artistic and technical creation of images using
cameras.

Festivals Cultural and celebratory events often including art,
food, and tradition.

Fashion The design and aesthetics of clothing, style, and wear-
able art.

Culture

Tradition Inherited customs, rituals, and beliefs passed across
generations.

Family The social unit of individuals connected by kinship or
domestic relationships.

Holiday Social events and public holidays marking special
occasions.

Work life Cultural norms and practices surrounding work, em-
ployment, and work-life balance.

Food Cultural practices, preparation, and significance of
cuisine.

Clothing Attire and fashion as expressions of identity and cul-
ture.

Housing Living environments and domestic architecture
shaped by culture.

Daily life Everyday routines, behaviors, and practices in social
life.

Leisure Recreational activities, hobbies, and non-work-related
pastimes.

Social
intelligence

Commonsense General world knowledge that people rely on in ev-
eryday life.

Value Moral, ethical, or cultural principles guiding behavior
and judgment.

Bias Deviations in judgment or data caused by subjective
factors.

Norms Shared social expectations and rules of appropriate
behavior.

E Implementation of BENCHHUB1017

BENCHHUB follows three stages: 1) reformatting, 2) metadata assignment, and 3) sample-level1018

categorization. For the first two steps, every dataset is automatically processed, followed by human1019

validation and correction before integration. The initial automated output of 1) reformatting and 2)1020

metadata assignment achieves 100.0% and 96.4% agreement with human annotations, respectively.1021

E.1 Automated Categorization Process1022

Here, we provide a detailed description of sample-level categorization and its validation in the1023

following section.1024

E.1.1 Training Categorizer for English and Korean Language1025

Table 7: Accuracy of fine-tuned catego-
rizer on Qwen-2.5-7b

Accuracy
Subject 0.871
Skill 0.967
Target 0.986

Table 8: SFT configuration details for § 3.3.

Hyperparameter Value

Sequence Length 8,192
Learning Rate 2× 10−5

Global Batch (Effective) 256
Learning Rate Scheduler Cosine Decay
Warmup Ratio 0.05
Training Epochs 3

We fine-tune the Qwen-2.5-7B models to automatically1026

categorize the skill, subject, and target type of a given1027
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sample. Tables 7 and 8 show the accuracies and the SFT1028

configs of the categorizer model. Since obtaining suffi-1029

cient training data for all defined categories is difficult1030

and manually labeling all queries is challenging, we use1031

a synthetic data approach. Instead of generating synthetic1032

queries directly, which can be unreliable, we generate syn-1033

thetic rationales for given queries to ensure reliability. The1034

process is as follows: first, we create all possible combi-1035

nations of our three categories—skill, task, and target. We1036

provide the LLM with category descriptions along with1037

this specific category combination, and ask it to generate1038

explanations for why a hypothetical query fits each cat-1039

egory. We use GPT-4o as a synthetic rationale generator.1040

We then train the model with these rationales as inputs1041

and the categories as outputs, enabling it to learn category1042

definitions and their applications. The following are the1043

examples and the prompts we use for the categorization1044

training.1045

For the Target category, we adopt a binary classification scheme consistent with prior work such as1046

Global MMLU [73]. After extracting the raw “target” label (e.g., South Korea) from the categorizer’s1047

output, we further refine it into two subcategories: Local, if the model specifies a particular cultural1048

or local context, and General, if the model determines that the query is culturally independent.1049

Example of Rationale

example = "The query is asking about the cause of symptoms (vomiting and diarrhea) in
a 6-year-old boy who ate kimbap at kindergarten and later experienced these symptoms
along with three other children. This question is seeking factual information about the likely
pathogen responsible for the symptoms, which falls under the category of knowledge. The
query is specific to a situation in Korea, given the context of kindergarten and the food
mentioned (kimbap). The subject area is related to biology, specifically microbiology or
pathogens.

1050

Prompt for Rationale Generation of Given Query

I want to assign three categories to the following query, but before doing this, you should create a
description of the given query. Explain the query first (e.g., what the question is asking about (i.e.,
subject type), the type of ability needed to solve it (i.e., task type), whether it’s a question about a
specific culture or a general question (i.e., target type), etc.). Refer to the definition of each label
and the output format.
Label Definition: {description}
Now, create a description for the following query.

1051

Prompt for Synthetic Rationale Generation

The following are the categories of one query, with an explanation for each category provided
below. Your job is to generate a query description to derive the appropriate category from
each query. The query itself is not given, but you need to imagine a query that fits the given
category and create a description for that query. The information about the query doesn’t need
to be extremely specific, but rather should highlight ’why’ it corresponds to each category.
Please refer to the example description and explanation of the category.
Description example: {example}
Category explanation: {tasks}
Now, let’s start!
Given category: {category}
Your Description:

1052
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Prompt for Category Generation

**You are an agent tasked with assigning three categories—‘subject_type‘, ‘task_type‘, and
‘target_type‘—to describe what is required to answer the following prompt.**
* **subject_type**: What domain of knowledge or skill is needed? * **task_type**: What
type of cognitive process or reasoning is involved? * **target_type**: Is the required knowl-
edge or skill specific to a particular country or culture?
Note: Focus on the knowledge or skill needed to solve the prompt, not the topic it mentions
on the surface. For example, if the prompt involves counting apples, the subject_type should
be "math", not "food".
The following text is a meta data of a certain prompt. Based on this data, assign three labels
to the following data. Refer to the description of each label and the output format. Present the
output in the following format: ’task_type’ : str,’target_type’ : str,’subject_type’ : LIST[str]
Please refer the following information: ### **Task Type Description** - **task_type**
indicates the type of task the query belongs to. Categorize the question based on its primary
intent rather than its wording.
#### **Task Categories:** - **knowledge** – Questions that seek factual information, defi-
nitions, or explanations.Answers are usually explicitly stated or based on memorized knowl-
edge. - Example: *"What is the capital of France?"* - Example: *"What is the pythagorean
theorem?"* - **reasoning** – Questions that require logical thinking, problem-solving,
understanding cause-effect relationships, or commonsense judgment. Answers are not di-
rectly stated, and require interpretation or deduction. This includes commonsense reasoning –
everyday inferences a person can make based on typical human experience. - Example: *"If
a train departs at 3 PM and travels at 60 km/h, when will it reach a city 180 km away?"* -
**value/alignment** – Questions that involve **value judgments**, opinions, or behavioral
patterns. - Example: *"Is it ethical to use AI in hiring decisions?"* - Example: *"What are
the social impacts of remote work?"*
### **Target Description** - **target_type** indicates the country or cultural region that the
query is focusing on. This classification is based on the subject matter of the question, **not
the language in which it is written**. - Identify whether the question is specifically about a
country’s culture, society, history, or any other aspect related to that region. - If there is no
corresponding value, you can add it.
#### **Target Options:** - **general** – A general target without a specific cultural or
national focus. - **ko** – Targeting **Korea**. - **us** – Targeting **the United States**.
- (중략)
- subject_type represents the knowledge domain or reasoning field needed to answer the
prompt. Identify the content of the query and select one or more of the following values. If
there is no matching category, respond with ’misc’. - Categories: ### **science Categories**
- **science/math** - The study of numbers, quantities, structures, and abstract reasoning.
- **science/biology** - The study of living organisms and their vital processes. - (중략)
- **science/microbiology** - The study of microorganisms and pathogens. (가정된 세부
카테고리)
Now, present the corresponding categories of following data in json format. Data: "query":
"What causes vomiting and diarrhea in a child after eating kimbap?", "answer": "Likely
bacterial infection such as Salmonella or E. coli.", "category": null
—
"subject_type": ["science/biology", "science/microbiology"], "task_type": "knowledge", "tar-
get_type": "ko"

1053

E.2 Reliability of Automated Categorization1054

E.2.1 Influence of Categorization Accuracy on Model Evaluation1055

We examine and discuss the influence of categorization accuracy on model evaluation outcomes in1056

BENCHHUB. To quantify and simulate the categorizing errors, we conduct an ablation study in which1057

the categorization error rate is systematically varied and controlled. Following the experimental setups1058

described in § 4.2, we employ a stratified sampling strategy to preserve dataset-level balance across1059

categories. We introduce a controlled corruption rate, which denotes the proportion of misclassified1060

samples in the test set. We increment the corruption rate from 0.0% to 10.0% in 0.5% steps. For each1061
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corruption level, we perform 50 independent simulation runs to ensure statistical robustness. We1062

compare the model rankings obtained from the corrupted test sets to the baseline rankings derived1063

from the original, uncorrupted set.1064

We demonstrate that categorization errors up to 1.5% yield negligible disruption to model rankings,1065

confirmed by Spearman’s rank correlation coefficient and Wilcoxon Signed-Rank test. This finding1066

suggests a notable resilience of the evaluation framework to minor categorization inaccuracies. It1067

is noteworthy that this robustness extends beyond simple misclassification scenarios to dynamic,1068

real-world settings tailored for users. Introducing a small fraction of samples comprising undefined1069

categories is less likely to cause significant shifts in model rankings. Moreover, the categorizer can be1070

incrementally updated and improved through continual learning, ensuring ongoing adaptation and1071

maintenance of BENCHHUB pipeline among evolving benchmarks.1072

E.2.2 Enhancing Categorization Robustness1073

The classification process of BENCHHUB currently relies on a model trained with Qwen-2.5-7B,1074

which may introduce potential model-specific bias when relying on a single classifier. As a pos-1075

sible direction for improving categorization, we additionally train classifiers using Llama-3.1-8B1076

and Mistral-7B-v0.1 with the same training data and procedure. We then construct a multi-agent1077

classification system in which the predictions from all three models (Qwen, Llama, and Mistral) are1078

aggregated via majority voting. This system achieves a 2.4%p increase in agreement with human1079

labels compared to Qwen-2.5-7B alone. Among the individual classifiers, Qwen-2.5-7B achieves the1080

best standalone performance, and we expect that leveraging larger foundation models will further1081

amplify the benefits of majority voting.1082

While majority voting improves robustness, it also triples the computational cost for training and1083

inference. As an alternative, we implement a confidence-based hybrid approach: majority voting is1084

invoked only when the classifier’s confidence (measured by average logit probability) falls below1085

a threshold of -0.04. This method enhances agreement by 1.4%p while substantially reducing the1086

additional cost, thereby offering a practical trade-off between robustness and efficiency.1087

E.3 Experimental Setups1088

We use Axolotl [5] for the SFT training in § 3.3. We train Qwen2.5-7B-Instruct with DeepSpeed-1089

Zero3 [61] on 4 A6000 48GB GPUs for 5 hours per run. We follow the method of (author?) [25] for1090

optimization.1091

E.4 License1092

We release BENCHHUB, including our source code and trained models, under the Apache License1093

2.0. For the datasets provided by BENCHHUB, the entire dataset is released under the most restrictive1094

license among them — CC BY-NC-ND 4.0 — although the applicable license may vary depending1095

on the specific subset selected by the user. The license for each dataset is listed in Table 2.1096

E.5 Instructions and System Prompts1097

Please read the following passage and answer the question. Choose one answer from {label set}.
Passage: {passage} Question: {question} Choices: {choices} Answer:

1098

다음지문을참고하여질문에 답하여라. 답은보기중하나를 {label set}중에서고르시오.
지문: {passage} 질문: {question} 보기: {choices} 답:

1099

Answer the following question. Choose one answer from {label set}. Question:
{question} Choices: {choices} Answer:

1100

다음 질문에 답하여라. 답은 보기 중 하나를 {label set} 중에서 고르시오. 질문:
{question} 보기: {choices} 답:

1101

34



F Multilingual Expansion of BENCHHUB1102

F.1 Multilingual Categorizer1103

Table 9: Categorizer Accuracy in G-MMLU
(in-domain) and M-MMLU (out-domain)

language G-MMLU M-MMLU

ar 0.765 0.767
de 0.789 0.833
id 0.800 0.808
ky 0.681 –
ne 0.709 –
nl 0.804 –
sw 0.614 0.653
uk 0.765 –

We fine-tune Qwen-2.5-7B on ten languages (En-1104

glish; three high-resource languages: Arabic, German,1105

Dutch; three mid-resource languages: Indonesian, Ko-1106

rean, Ukrainian; and three low-resource languages:1107

Swahili, Nepali, Kyrgyz). For the training dataset, we1108

use 20,000 samples from Global MMLU [73], with1109

2,000 samples per language. Since Global MMLU1110

provides human-validated fine-grained subject cat-1111

egories, we adopt these categories while mapping1112

them to our taxonomy. The training method and con-1113

figurations follow those used in the categorizer for1114

Korean and English (Appendix E.1).1115

We validate the categorizer on 2,850 Global MMLU samples (285 samples per language) that were1116

not used during fine-tuning (in-domain), and on 1,225 Multilingual MMLU samples (245 samples per1117

language) from outside the training distribution (out-of-domain). Our model achieves 75.3% accuracy1118

in-domain and 77.5% accuracy out-of-domain for fine-grained subject categorization. Table 9 reports1119

detailed results for both evaluation settings. Blank cells indicate that M-MMLU does not support the1120

corresponding language.1121

F.2 Multilingual Dataset1122

Table 10 indicates the benchmarks included in BENCHHUB-multilingaul. We include 14 datasets1123

across 8 additional languages, with the number of datasets per language varying depending on1124

resource availability.1125

G Customized BENCHHUB1126

We provide three additional examples of real-world use cases of BENCHHUB:1127

(c) Legal chatbot servicing in Korea and the US: To select a foundation model for a legal chatbot,1128

we select English and Korean datasets whose fine-grained subject is law. The final accuracy is1129

computed as an average of the English and Korean datasets, ensuring that the model holds legal1130

knowledge in both countries.1131

(d) Docent agent for Korean traditional arts: To identify the best-performing model with expertise1132

in Korean traditional arts, we select Korean datasets within BENCHHUB whose fine-grained1133

subjects are labeled as architecture, sculpture, and painting. To ensure balanced representation1134

across individual subjects, the questions are drawn using a stratified sampling strategy at a1135

subject level.1136

(e) Counseling agent servicing in Korea: To evaluate counseling agent in Korean, we select1137

Korean datasets comprising:1138

1. psychology-related samples (i.e., fine-grained category is psychology),1139

2. samples aware to Korean social interactions (i.e., coarse-grained category is social intelli-1140

gence),1141

3. samples relevant to common counseling topics (i.e., fine-grained categories are work life,1142

daily life, and family).1143

The final accuracy is computed as a weighted average of these subsets, with weights of 0.5, 0.3,1144

and 0.2, respectively.1145

Table 11 presents the top-5 model rankings across these scenarios. The fluctuations in model rank-1146

ings among the three scenarios also underscore the practical need for tailored evaluations using1147

BENCHHUB.1148
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Table 10: Benchmarks Included in BENCHHUB-multilingual
Dataset Reference Target # of Samples License

Language: AR
G-MMLU [73] General/Local 14,042 apache-2.0
ArabLegalEval [24] Local 15,311 -
ArabicMMLU [36] General/Local 14,455 cc-by-nc-sa-4.0

Language: DE
G-MMLU [73] General/Local 14,042 apache-2.0
GermanQUAD [57] General 2,204 cc-by-4.0
MLQA [57] General 4,517 cc-by-sa3.0

Language: NL
G-MMLU [73] General/Local 14,042 apache-2.0

Language: ID
G-MMLU [73] General/Local 14,042 apache-2.0
Eli5-indo nlp/eli5_id General 245,274 -
facQA [45] General 1,564 cc-by-sa-4.0
idkmrc [59] Local 1,198 cc-by-sa4.0.
QASiNa [66] Local 133 MIT.
TyDi QA [45] General 4,276 Apache-2.0
xcopa [58] Local 4,001 cc-by-4.0

Language: UK
G-MMLU [73] General/Local 14,042 apache-2.0
UA-CBT (Eval-UA-tion 1.0) [19] Local 2,129 cc-by-4.0

Language: Sw
G-MMLU [73] General/Local 14,042 apache-2.0

Language: Ne
G-MMLU [73] General/Local 14,042 apache-2.0
Winogrande-Nepali [53] General 8,135 MIT

Language: Ky
G-MMLU [73] General/Local 14,042 apache-2.0
TUMLU [26] Local 785 -

Table 11: Top 5 LLMs evaluated by customized BENCHHUB across three scenarios
Rank (c) Legal chatbot (d) Docent for Korean art (e) Counseling agent

1 Qwen3-32B Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct
2 gemma-3-1b-it gemma-3-27b-it Qwen3-8B
3 Qwen3-8B Llama-3.3-70B-Instruct gemma-3-27b-it
4 Qwen3-1.7B Qwen3-32B DeepSeek-R1-Distill-Qwen-32B
5 Mistral-Small-24B-Instruct-2501 Mistral-Small-24B-Instruct-2501 Mistral-Small-24B-Instruct-2501
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H Experimental Results1149

See Table 12-13 for the scores (accuracies) of the models across subject types.

Table 12: Results of all models across fine-grained categories (English)
Subject gpt-4.1 claude-3.7-sonnet gemini-2.0 gemma-3-27b DeepSeek-R1-32B Llama-3.3-70B Mistral-24B

Tech

Urban eng. 0.882 0.765 0.824 0.625 0.765 0.588 0.882
Nuclear eng. 1.000 0.750 0.500 0.500 0.500 1.000 1.000
Marin eng. 1.000 0.667 1.000 0.500 1.000 1.000 1.000
Biomedical eng. 0.963 0.828 0.716 0.563 0.743 0.779 0.794
Mechanics 0.943 0.829 0.829 0.559 0.706 0.647 0.941
Materials eng. 0.987 0.920 0.760 0.595 0.811 0.784 0.932
IT 0.904 0.735 0.783 0.598 0.690 0.724 0.782
Environmental eng. 0.957 0.739 0.855 0.652 0.797 0.754 0.928
Energy eng. 0.953 0.802 0.791 0.628 0.826 0.767 0.872
Electrical eng. 0.877 0.816 0.825 0.609 0.722 0.704 0.800
Programming 1.000 0.913 0.826 0.667 0.611 0.556 0.722
Civil eng. 1.000 0.769 0.923 0.750 0.750 0.750 1.000
Chemical eng. 0.714 0.571 0.571 0.429 0.714 0.714 0.571
AI 0.931 0.984 0.817 0.474 0.420 0.355 0.330
Agricultural eng. 1.000 0.867 0.800 0.705 0.864 0.795 0.932
Aerospace eng. 1.000 0.833 1.000 1.000 0.833 0.833 1.000

Science

Statistics 0.879 0.803 0.803 0.452 0.563 0.600 0.622
Physics 0.892 0.800 0.842 0.549 0.689 0.705 0.713
Mathematics 0.918 0.956 0.872 0.756 0.717 0.587 0.711
Life science 0.965 0.798 0.781 0.565 0.809 0.678 0.904
Geology 0.990 0.816 0.776 0.688 0.792 0.656 0.885
Earth science 0.979 0.798 0.840 0.692 0.788 0.779 0.942
Chemistry 0.863 0.814 0.762 0.510 0.650 0.697 0.720
Biology 0.959 0.730 0.818 0.533 0.767 0.769 0.835
Atmospheric science 0.990 0.753 0.753 0.739 0.783 0.641 0.935
Astronomy 0.965 0.843 0.843 0.704 0.835 0.809 0.852

HASS

Welfare 0.896 0.722 0.729 0.576 0.654 0.737 0.797
Trade 0.944 0.807 0.800 0.494 0.811 0.767 0.856
Cognitive studies 0.620 0.524 0.481 0.500 0.580 0.662 0.629
Religion 0.912 0.877 0.895 0.724 0.914 0.860 0.948
Politics 0.909 0.759 0.693 0.635 0.767 0.767 0.872
Philosophy 0.875 0.664 0.632 0.455 0.711 0.623 0.651
Media 0.857 0.864 0.759 0.667 0.889 0.778 0.722
Literature 0.950 0.850 0.850 0.684 0.950 0.750 0.950
Law 0.750 0.596 0.610 0.294 0.540 0.518 0.679
Language 0.736 0.548 0.518 0.420 0.526 0.519 0.504
History 0.911 0.864 0.578 0.463 0.786 0.857 0.881
Geography 0.911 0.804 0.804 0.628 0.773 0.886 0.818
Education 0.957 0.793 0.793 0.580 0.795 0.652 0.848
Economics 0.893 0.809 0.695 0.574 0.597 0.713 0.752
Administration 0.899 0.797 0.732 0.551 0.819 0.819 0.841

Social Intelligence

Value 0.699 0.890 0.788 0.653 0.599 0.857 0.619
Norms 0.816 0.658 0.605 0.516 0.613 0.581 0.710
Commonsense 0.837 0.765 0.749 0.871 0.877 0.856 0.837
Bias 0.000 1.000 0.333 0.349 0.333 0.324 0.288

Culture

Work life 0.778 0.667 0.704 0.600 0.720 0.700 0.720
Tradition 0.833 0.881 0.950 0.618 0.806 0.800 0.784
Housing 1.000 1.000 0.750 1.000 1.000 0.750 0.750
Food 0.534 0.479 0.479 0.360 0.553 0.675 0.456
Family 0.913 0.739 0.609 0.591 0.659 0.705 0.818
Daily life 0.600 0.521 0.475 0.355 0.590 0.676 0.532
Clothing 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Holiday 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Arts % Sports

Sports 0.781 0.578 0.453 0.714 0.929 0.786 0.857
Sculpture 1.000 1.000 1.000 0.500 1.000 0.500 1.000
Photography 1.000 0.600 0.800 0.400 0.400 0.800 0.800
Performing 0.846 0.846 0.769 0.673 0.654 0.808 0.846
Painting 1.000 0.600 0.900 0.600 0.900 0.700 1.000
Music 1.000 1.000 0.800 0.900 0.900 0.900 0.800
Festivals 0.500 1.000 1.000 1.000 0.500 1.000 0.500
Fashion 1.000 0.800 1.000 0.800 0.800 0.600 0.600
Architecture 1.000 0.857 0.714 0.429 1.000 0.571 1.000
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Table 13: Results of all models across fine-grained categories (Korean)
Subject gpt-4.1 claude-3.7-sonnet gemini-2.0 gemma-3-27b DeepSeek-R1-32B Llama-3.3-70B Mistral-24B

Tech

Urban eng. 0.552 0.634 0.559 0.504 0.507 0.543 0.468
Nuclear eng. 0.676 0.647 0.618 0.676 0.559 0.588 0.588
Marine eng. 0.688 0.826 0.625 0.569 0.521 0.611 0.569
Biomedical eng. 0.838 0.805 0.409 0.727 0.507 0.767 0.713
Mechanics 0.661 0.709 0.563 0.537 0.495 0.487 0.420
Materials eng. 0.720 0.820 0.560 0.608 0.510 0.619 0.608
IT 0.854 0.877 0.667 0.727 0.756 0.803 0.742
Environmental eng. 0.591 0.649 0.480 0.456 0.427 0.462 0.368
Energy eng. 0.587 0.674 0.551 0.507 0.457 0.457 0.399
Electrical eng. 0.688 0.778 0.646 0.549 0.535 0.549 0.500
Programming 0.667 0.722 0.667 0.667 0.667 0.667 0.833
Civil eng. 0.517 0.669 0.530 0.503 0.391 0.497 0.430
Chemical eng. 0.711 0.809 0.641 0.596 0.539 0.574 0.560
AI 0.861 0.829 0.676 0.694 0.618 0.657 0.703
Agricultural eng. 0.605 0.605 0.539 0.464 0.386 0.506 0.428
Aerospace eng. 0.757 0.786 0.579 0.621 0.564 0.629 0.579

Science

Statistics 0.813 0.813 0.571 0.571 0.582 0.549 0.615
Physics 0.826 0.870 0.644 0.626 0.595 0.603 0.542
Mathematics 0.842 0.889 0.848 0.385 0.487 0.359 0.359
Life science 0.783 0.783 0.635 0.635 0.609 0.739 0.635
Geology 0.755 0.765 0.627 0.608 0.422 0.618 0.510
Earth science 0.701 0.769 0.627 0.604 0.552 0.575 0.575
Chemistry 0.760 0.829 0.643 0.574 0.612 0.643 0.512
Biology 0.852 0.875 0.586 0.766 0.664 0.742 0.711
Atmospheric science 0.719 0.688 0.625 0.531 0.531 0.656 0.563
Astronomy 1.000 1.000 1.000 0.900 1.000 1.000 0.800

HASS

Welfare 0.783 0.745 0.516 0.755 0.742 0.724 0.705
Trade 0.856 0.767 0.658 0.752 0.752 0.766 0.731
Religion 0.846 0.860 0.714 0.805 0.706 0.812 0.856
Psychology 1.000 1.000 1.000 1.000 0.000 1.000 0.000
Politics 0.806 0.858 0.714 0.717 0.634 0.667 0.703
Philosophy 0.843 0.897 0.715 0.791 0.718 0.757 0.757
Media 0.942 0.928 0.897 0.877 0.755 0.876 0.877
Literature 0.836 0.914 0.760 0.700 0.739 0.798 0.800
Law 0.604 0.555 0.463 0.510 0.416 0.544 0.530
Language 0.807 0.906 0.763 0.648 0.685 0.750 0.705
History 0.775 0.794 0.691 0.622 0.526 0.603 0.570
Geography 0.711 0.778 0.698 0.594 0.522 0.631 0.597
Education 0.732 0.816 0.586 0.701 0.603 0.755 0.660
Economics 0.814 0.820 0.606 0.704 0.701 0.692 0.656
Administration 0.731 0.766 0.598 0.691 0.635 0.711 0.675

Social Intelligence

Value 0.848 0.879 0.697 0.818 0.818 0.788 0.758
Norms 0.884 0.881 0.881 0.881 0.810 0.721 0.762
Commonsense 0.835 0.873 0.822 0.718 0.757 0.748 0.767
Bias 0.993 0.966 0.951 1.000 1.000 0.846 1.000

Culture

Work life 0.926 0.926 0.826 0.921 0.768 0.921 0.921
Tradition 0.962 0.960 0.858 0.917 0.819 0.900 0.911
Leisure 1.000 1.000 1.000 0.500 0.500 1.000 0.500
Housing 0.824 0.824 0.647 0.735 0.676 0.676 0.676
Food 0.850 0.923 0.769 0.744 0.684 0.789 0.821
Family 0.826 0.792 0.696 0.652 0.818 0.864 0.800
Daily life 0.837 0.837 0.823 0.751 0.682 0.738 0.764
Clothing 0.793 0.793 0.690 0.621 0.655 0.759 0.655
Holiday 0.643 0.602 0.602 0.620 0.616 0.674 0.654

Arts & Sports

Sports 0.960 0.960 0.818 0.960 0.917 0.913 0.864
Sculpture 0.923 0.833 0.833 1.000 0.727 0.917 0.833
Photography 0.800 0.855 0.655 0.768 0.600 0.667 0.655
Performing 0.950 0.950 0.911 0.930 0.752 0.884 0.918
Painting 0.931 0.932 0.833 0.896 0.794 0.837 0.918
Music 0.912 0.971 0.758 0.909 0.667 0.879 0.909
Festivals 0.941 1.000 1.000 0.941 0.882 0.813 0.941
Fashion 0.626 0.626 0.524 0.565 0.490 0.571 0.456
Architecture 0.745 0.778 0.641 0.711 0.658 0.664 0.618
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Tables 14 and 15 details the accuracy of 14 open LLMs across four different sampling strategies in1151

English and Korean, respectively.1152

Table 16 details the accuracy of 14 open LLMs evaluated by the customized BENCHHUB in five1153

different scenarios.1154

Table 14: Evaluation results of 14 open LLMs in English across four different sampling strategies
Model Random Stratified Chatbot Arena MixEval

Qwen2.5-72B-Instruct 0.688 0.694 0.680 0.661
Qwen3-1.7B 0.810 0.833 0.811 0.798
Qwen3-14B 0.729 0.763 0.737 0.723
Qwen3-32B 0.817 0.852 0.816 0.789
Qwen3-4B 0.784 0.845 0.788 0.779
Qwen3-8B 0.734 0.779 0.733 0.729
DeepSeek-R1-Distill-Qwen-14B 0.743 0.778 0.747 0.730
DeepSeek-R1-Distill-Qwen-32B 0.717 0.748 0.721 0.704
gemma-3-1b-it 0.874 0.962 0.888 0.870
gemma-3-27b-it 0.702 0.707 0.690 0.677
gemma-3-4b-it 0.746 0.799 0.755 0.743
Llama-3.1-8B-instruct 0.732 0.749 0.726 0.707
Llama-3.3-70B-Instruct 0.704 0.733 0.712 0.689
Mistral-Small-24B-Instruct-2501 0.696 0.713 0.696 0.686

Table 15: Evaluation results of 14 open LLMs in Korean across four different sampling strategies
Model Random Stratified Chatbot Arena MixEval

Qwen2.5-72B-Instruct 0.697 0.708 0.723 0.692
Qwen3-1.7B 0.453 0.492 0.478 0.486
Qwen3-14B 0.360 0.376 0.363 0.371
Qwen3-32B 0.605 0.613 0.618 0.609
Qwen3-4B 0.370 0.444 0.383 0.406
Qwen3-8B 0.597 0.623 0.617 0.625
DeepSeek-R1-Distill-Qwen-14B 0.613 0.613 0.615 0.606
DeepSeek-R1-Distill-Qwen-32B 0.612 0.635 0.638 0.623
gemma-3-1b-it 0.466 0.474 0.469 0.468
gemma-3-27b-it 0.661 0.666 0.665 0.649
gemma-3-4b-it 0.507 0.533 0.510 0.519
Llama-3.1-8B-instruct 0.531 0.562 0.547 0.541
Llama-3.3-70B-Instruct 0.671 0.674 0.683 0.666
Mistral-Small-24B-Instruct-2501 0.624 0.647 0.646 0.630

Table 16: Evaluation results of 14 open LLMs using customized BENCHHUB across five use cases
Model (a) (b) (c) (d) (e)

Qwen2.5-72B-Instruct 0.604 0.657 0.658 0.595 0.670
Qwen3-1.7B 0.711 0.477 0.703 0.383 0.624
Qwen3-4B 0.667 0.420 0.556 0.300 0.599
Qwen3-8B 0.629 0.568 0.718 0.430 0.665
Qwen3-14B 0.642 0.429 0.531 0.316 0.499
Qwen3-32B 0.798 0.523 0.663 0.529 0.648
DeepSeek-R1-Distill-Qwen-14B 0.657 0.554 0.653 0.479 0.647
DeepSeek-R1-Distill-Qwen-32B 0.626 0.609 0.654 0.488 0.660
Llama-3.1-8B-Instruct 0.650 0.581 0.602 0.393 0.627
Llama-3.3-70B-Instruct 0.651 0.612 0.637 0.562 0.659
Mistral-Small-24B-Instruct-2501 0.619 0.632 0.661 0.523 0.660
gemma-3-1b-it 0.762 0.465 0.704 0.364 0.551
gemma-3-4b-it 0.632 0.529 0.641 0.391 0.632
gemma-3-27b-it 0.611 0.614 0.651 0.582 0.664
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