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Abstract

As large language models (LLMs) with advanced reasoning abilities continue to
evolve, their capabilities are increasingly tested across heterogeneous contexts.
To evaluate them effectively, benchmarks must move beyond fragmented datasets
and narrow rankings, addressing the growing need to capture abilities that in-
tegrate multiple skills (e.g., reasoning and knowledge) across diverse domains
(e.g., mathematics and culture). This complexity calls for a new paradigm of
evaluation—flexible, domain-aware, and continuously updated. In this paper, we in-
troduce BENCHHUB, a dynamic benchmark repository that empowers researchers
and developers to evaluate LLMs effectively, with a focus on Korean and English.
BENCHHUB aggregates and automatically classifies benchmark datasets from di-
verse domains, integrating 839k questions across 54 benchmarks. It is designed
to support continuous updates and scalable data management, enabling flexible
and customizable evaluation tailored to various domains or use cases. Through
extensive experiments with various LLM families, we demonstrate that model
performance varies significantly across domain-specific subsets, emphasizing the
importance of domain-aware benchmarking. Furthermore, we extend BENCHHUB
into 10 languages spanning resource levels. We believe BenchHub can encourage
better dataset reuse, more transparent model comparisons, and easier identification
of underrepresented areas in existing benchmarks, offering a critical infrastructure
for advancing LLM evaluation research.

1 Introduction

Large language models (LLMs) have made remarkable strides, powering applications across diverse
tasks, including research [[6]], industry [8]], and everyday life [9]]. As their roles expand—from open-
ended reasoning to culturally sensitive decision-making [30]—LLMs are increasingly required to
integrate multiple skills (e.g., reasoning and knowledge) across diverse domains (e.g., mathematics
and culture). This complexity underscores the need for a new evaluation paradigm that goes beyond
formulaic rankings, toward rigorous and comprehensive assessments of whether model behavior
aligns with the nuanced objectives of specific users and applications.

In response, a wide range of evaluation efforts has emerged. On the one hand, holistic evaluation
benchmarks [43| 52]] and leaderboards based on user preference [11]] or aggregated benchmarks [[1]]
serve as popular community standards. While useful for broad comparisons, their aggregated scores
obscure fine-grained strengths and weaknesses, often misaligning with the needs of specific appli-
cations [65]]. On the other hand, specialized benchmarks target narrow aspects, such as law [42],
medical advice [2], and finance [[75]], as well as specific tasks, including knowledge retrieval [21], rea-
soning [14}196], and value alignment [55} 28]]. While these datasets capture critical capabilities, their
vast, fragmented, and overlapping nature creates a chaotic landscape. For instance, in the mathematics
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Figure 1: The concept of BENCHHUB. BENCHHUB automatically classifies and merges questions
from existing benchmark datasets on a sample-wise basis. Through BENCHHUB, users can select test
sets that align with their objectives and efficiently evaluate the models.

domain, numerous benchmarks exist, such as MATH [22] and GSMS8Kk [14], which in turn partially
overlap with broader collections (e.g., MMLU [21]]). This leaves researchers and practitioners with a
dilemma: which benchmarks truly reflect their objective, and how can they compose a principled,
customized evaluation suite tailored for diverse needs?

In this paper, we introduce BEN CHHUBEL a unified and customizable benchmark suite for holistic
yet domain-aware LLM evaluation. BENCHHUB aggregates 839k questions from 54 benchmarks
across 64 domains and 10 languages, mainly in English and Korean. We systematically categorize
existing benchmarks by six dimensions: 1) tasks (e.g., mathematical reasoning), 2) answer formats
(e.g., multiple-choice QA), 3) tool usage (i.e., language-only or requirements to external tools), 4)
skills (i.e., knowledge, reasoning, or value/alignment), 5) coarse- and fine-grained subjects (e.g.,
STEM-mathematics), and 6) targets (i.e., culturally specific or agnostic). This design facilitates
users to dynamically construct their own evaluation sets tailored to their needs, moving beyond rigid,
predefined test sets (Figure[T). To ensure long-term, dynamic scalability, we further train and release
a categorization model that seamlessly integrates new, unseen benchmarks into BENCHHUB.

Using BENCHHUB, we evaluate 14 open LLMs and uncover a crucial insight: model rankings fluctuate
substantially depending on benchmark compositions and domain focus. This finding highlights the
central issue of benchmark composition bias, which can significantly distort interpretations of
model performance. We further validate BENCHHUB through 5 real-world use cases—such as legal,
educational, and cultural applications—showing how domain-aware evaluation alters conclusions
about model superiority. We hope BENCHHUB provides a foundation for the community to move
beyond monolithic leaderboards toward domain-aware, trustworthy, and customizable evaluation.

2 Existing LLM Evaluation Benchmarks are Skewed

What aspects do the commonly used multi-domain = spors Cutre Sl mligence
datasets evaluate, and how is the distribution of do- L oo IR
mains represented across these datasets? To answer

this question, we classify three representative holistic K B I
benchmarks (i.e., Chatbot Arena [11], MixEval [52], ML 1439 ISR
and MMLU [21]]) as multilabels using our fine-tuned ot N
classifiers (§ [B) in terms of coarse-grained subjects

(Figure [2a)) and tasks (Figure [2b). . | e _""""

0% 20% 40% 60% 80% 100%

Among them, Chatbot Arena includes only 25.5% of

Humanities and Social Sciencce (HASS) questions, Figure 3: Distribution of MMLU in English,

while both MixEval and MMLU comprise more than Korean, Japanese, Indonesian, and Chinese.

We release our datasets and interactive platform at https://huggingface.co/BenchHub and our code
athttps://github.com/rladmstn1714/BenchHub.
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Figure 2: Data distribution of existing evaluation benchmarks.

half of HASS questions. In addition, MixEval in-

cludes fewer than 0.30% of value alignment tasks and mostly focuses on measuring knowledge. Such
disparities may lead to biased findings, where models that excel in certain domains may appear to
perform better overall, potentially skewing the evaluation results.

Moreover, these biases are not limited to cross-benchmark comparisons but can also manifest within
multilingual contexts. Figure [3]and Figure [I0]illustrate data distributions of MMLU series datasets
in 5 languages classified by the model (§ [3) in terms of coarse-grained subjects. For instance,
MMLU in English emphasizes HASS, whereas Korean MMLU (KMMLU) [77]] comprises 76.1% of
STEM (Science, Technology, Engineering, and Mathematics) questions. This variation complicates
the interpretation of performance differences, as it is challenging to discern whether the performance
degradations in non-English are due to language proficiency or domain-specific knowledge.

Hence, instead of recklessly adopting existing holistic benchmarks, we recommend carefully selecting
the benchmark suites for a reliable evaluation.

3 BENCHHUB

Consider a user who wants to determine “Which model excels at both mathematics and understanding
culture?” As discussed in § 2} it remains unclear how to answer such specific, goal-oriented questions
and how to construct their evaluation suite, as existing evaluation benchmarks [21], mainly
provide general-purpose scores. To this end, we introduce BENCHHUB, a unified collection of LLM
evaluation benchmarks across diverse domains. BENCHHUB integrates 54 benchmarks comprising
839k samples in 10 languages, with a primary focus on English and Korean as BENCHHUB-En and
BENCHHUB-KOo, respectively. We design BENCHHUB around two core principles: 1) a fine-grained,
multi-dimensional taxonomy to deconstruct model capabilities and 2) a fully automated pipeline to
dynamically update and expand it with new datasets. In this section, we detail the taxonomy design
(§ |3;1'|), the data curation (§ , the automated pipeline (§ @), as well as interactive tools and utilities
as a web-based platform(§ . Finally, we illustrate the multilingual extension of BENCHHUB
—from English and Korean to eight additional languages—in § 3.3}

3.1 Taxonomy

We annotate each dataset with six orthogonal dimensions: three dataset-level attributes—task, answer
format, and tool usage— and three sample-level attributes—skill, subject, and target. The full
scheme is illustrated in Appendix [D}

Dataset-level attributes:

1. Task refers to the high-level family defined by the dataset authors (e.g., mathematical reasoning,
code generation, cultural understanding). This provides a general understanding of a dataset’s
purpose. We assign it automatically from the dataset’s abstract or description using LLM inference.

2. Answer format specifies the expected response format: binary, multiple-choice QA (MCQA),
short-form, free-form, open-ended (e.g., story generation), and comparison (e.g., determining
which response is better between A and B). This is crucial for selecting appropriate evaluation
prompts and formats.



108
109
110
111

112

113
114

115
116
117
118

119
120
121

122

123
124
125
126
127

3. Tool Usage indicates whether a task requires language capabilities only (language-only) or
interaction with external tools such as e.g., code interpreters, web browsers, calculators (requires
externals tools). This dimension supports agentic evaluation, where models must decide when and
how to invoke external resources.

Sample-level attributes:

4. SKill captures the required ability to answer the question (i.e., reasoning, knowledge, and val-
ue/alignment).

5. Subject denotes the knowledge domain. We define six coarse-grained categories—Science, Tech-
nology, Humanities and Social Science (HASS), Arts & Sports, Culture, and Social Intelligence—
along with 64 sub-categories, by integrating various knowledge classification systems. Each
sample may have multiple subject labels.

6. Target represents the cultural or geographical focus. Culturally agnostic items are labeled as
General; otherwise, we assign a Local tag. This supports evaluation under culturally-aware
evaluation [73].

3.2 Datasets

Subject Subject
Target Target
Task Task
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
(a) English (b) Korean

Figure 4: Data distribution of all datasets used in this paper by coarse-grained subjects, targets, and
tasks. The English and Korean data include 250,940 and 144,331 questions each.

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%
(b) Korean

Figure 5: Fine-grained data distribution of all datasets used in this paper in terms of subjects

We apply this taxonomy to 54 benchmarks in 10 languages, mainly covering English and Korean
and totaling over 839k instances. Figures 2 and [5|show the overall statistics of English and Korean
datasets included in our benchmark. For English and Korean, we include 31 English and 12 Korean
language benchmarks with a total of 41 datasets. El We curate 1) general-purpose (i.e., culturally
agnostic) datasets commonly used by holistic evaluation benchmarks and 2) culture-specific

3We count the multilingual datasets—BLEnD and CaLMQA [3]—in both.
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datasets. We select English datasets spanning multiple cultures drawn from a recent survey [56]],
curating over 300 papers and datasets regarding LLM cultural awareness. For Korean, where public
resources are fewer than in English, we include most datasets released after 2022. Table E] in the
Appendix provides a complete list of the datasets.

3.3 Automated and Dynamic Expansion

With benchmark datasets emerging at a rapid pace, it is crucial to flexibly manage them for holistic
evaluation. To dynamically adapt to newly emerging datasets, we automate the entire dataset merging
process using an LLM agent, which includes reformatting the datasets into our benchmark format
and classifying each sample into categories. The processing pipeline for a newly introduced dataset is
outlined as follows:

1. Reformatting: We first automatically parse, reformat, and map a new dataset to the standardized
BENCHHUB scheme using an LLM-guided rule-based approach. If the dataset does not adhere to
our predefined schema, an LLLM agent (e.g., GPT-40 or Gemini) is employed to map keys to the
correct format.

2. Metadata assignment: The LLM agent extracts the meta-task description and infers the task,
answer format, and tool usage from the dataset documentation (e.g., abstract).

3. Sample-level Categorization: We then assign sample-level attributes (i.e., skill, subject, and
target type) using a fine-tuned Qwen-2.5-7B model (BenchHub—Cat—?B).E]

4. Merging: The processed and annotated dataset is seamlessly merged into the main collections,
thereby producing the next BENCHHUB release.

This automated pipeline allows BENCHHUB to continuously expand and provide more comprehensive
evaluations as new datasets emerge. While we acknowledge the incompleteness of LLM-based
expansion, we provide an empirical discussion of the reliability and robustness of this automated
process in Appendix [E.2]

3.4 Interactive Platform and Utilities

To proliferate our structured data into actionable insights for researchers and practitioners, we release
an interactive web-based platform (Figure|8)) and code utilities. The web demo allows users to filter
out datasets by any category combinations, inspect statistics, download their customized subsets, and
propose new datasets via pull requests. The code utilities offer two main features:

1. Dataset Loader: It filters the dataset to include only the categories selected by the user. It also
allows the user to choose between returning the entire selected dataset or a filtered version with
overlapping entries (including near-duplicates) removed, which is useful since multiple aggregated
datasets may contain overlapping samples.

2. Citation Report Generator: For the customized dataset returned to the user, it produces a laTgX
table of datasets with their sources and licenses, includes dataset statistics such as the number of
instances, and provides a comprehensive citation list (e.g., BibTgX entries) to ensure proper credit
to dataset authors.

For better reproducibility, we adopt HRET [39]ﬂ enabling direct evaluations on BENCHHUB. Design
and implementation details of the platform and code utilities appear in Appendix [B]

3.5 Multilingual Extension of BENCHHUB

While we focus on two languages (i.e., Korean and English), we highlight that BENCHHUB is a
language-agnostic, flexible framework that can be easily extended to other languages. To empirically
guide this extension, we present BenchHub—Multi—Cat—?]fl a multilingual categorizer supporting

“The model link will be added after the anonymous review period. Details on the training and validation of
BenchHub-Cat-7B are provided in Appendix [E.T}

SHRET is an evaluation toolkit supporting multiple datasets, including BENCHHUB.

The model link will be added after the anonymous review period.
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10 languages—English (En); 3 high-resource (Arabic (Ar), German (De), Dutch (N1)); 3 mid-
resource (Indonesian (Id), Korean (Ko), Ukrainian (Uk)); 3 low-resource (Swahili (Sw), Nepali (Ne),
Kyrgyz (Ky)). Our multilingual categorizer achieves an average accuracy of 77.5% on fine-grained
subject categorizations for unseen, out-of-domain data. Furthermore, we introduce BENCHHUB-
multilingual, which extends our benchmark suite to a total of 10 languages consisting of 13 datasets
and 444,402 samples. We hope BENCHHUB-multilingual to serve as a foundational step for reliable
LLM evaluations in non-English languages. The details of the training procedure and the datasets for
each language are provided in the Appendix [F]

4 Evaluation Results using BENCHHUB

4.1 Evaluation of LLMs across diverse subjects

English Korean

H H Claude-3.7-Sonnet

21 21 Deepseek-rl-distill-qwen-32b
o 37 o 37 m Gemini-2.0-flash-001
S 44 S 44 —8— Gemma-3-27b-it
“ 5 / /. “ 5] GPT-4.1

6 61 —8— Llama-3.3-70b-instruct

~ ~_ Mistral-small-24b-instruct-2501
71 T T T T T T 71 T T T T T T
Science Tech. HASS Arts & Culture Social Science Tech. HASS Arts & Culture Social
Sports Intelligence Sports Intelligence

Figure 6: LLM evaluation ranking under BENCHHUB in terms of coarse-grained subjects

In this section, we evaluate seven LLMs across diverse subjects using BENCHHUB. We select 6,644
and 6,485 examples for English and Korean, respectively. To manage the large number of fine-grained
categories, we sample up to 150 examples per category, fully including categories with 100-150
samples and merging categories with fewer than 80 samples into a miscellaneous group within the
same coarse-grained classification. For evaluation, we extract the model’s intended answer from
MCQA questions by applying a set of regular expressions [49], while using an LLM as a parser
extractor for short-form questions El, similar to the approach in previous work [52].

We include one model from each commonly used LLM family. For proprietary models, we use GPT-
4.1, Gemini-2.0-flash, and Claude 3.7 Sonnet[ﬂ Open models include Qwen-3-32b [89], DeepSeek-R1-
Distill-Qwen-32B [15]], Llama-3.3-70B [18], Mistral-Small-24B-Instruct, and gemma-2-27b-it [82].

Figure [6] presents model rankings by subject category. Our results show that frequent fluctuations
in model rankings depend on the category. For example, Llama-3.3-70b ranks 6th in Science and
Tech, but ranks as the top-performing model among seven models in Culture and Social Intelligence.
This highlights the importance of domain-specific evaluation aligned with the evaluation context and
objectives. The full results for each subject and model are in Table[T2} [T3]in the Appendix [H

4.2 TImpact of Category Distribution on Model Ranking

In this section, we empirically validate the influence of category distributions within evaluation
benchmarks on model rankings. Since this requires experiments on large datasets for statistical
validation, we include 14 open models ranging from 1B to 72B parameters. We test on 27 English
and 13 Korean datasets, comprising 16,898 and 18,977 MCQA samples, respectively. The number of
answer choices per MCQA sample varies between 3 and 18. We extract the model’s intended answer
by applying a set of regular expressions [49]]. The evaluated LLMs include:

* Qwen [90, |89]: Qwen2.5-72B-Instruct, Qwen3-1.7B, Qwen3-4B, Qwen3-8B, Quwen3-14B,
Qwen3-32B

* DeepSeek [15]: DeepSeek-R1-Distill-Qwen-14B, DeepSeek-R1-Distill-Qwen-32B

e Llama [18]]: L1ama-3.1-8B-Instruct, L1ama-3.3-70B-Instruct

"We use GPT-4.1-nano as a parser extractor. Note that [52] use GPT-3.5. The LLM parses and compares the
extracted answer with the ground truth, without assessing answer quality.

8For GPT-4.1, we use GPT-4.1-2025-04-14 version. We directly call GPT-4.1 via the OpenAlI API, while we
use OpenRouter for Gemini-2.0-flash, and Claude 3.7 Sonnet.
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* Mistral: Mistral-Small-24B-Instruct-2501
* Gemma [82]]: gemma-3-1b-it, gemma-3-4b-it, gemma-3-27b-it

To gauge the impact of data composition, we experiment under three sampling strategies with four
setups, which are representatives of traditional approaches or emerging trends in LLM evaluations
with a massive benchmark scale.

Random sampling: Samples are drawn uniformly at random from the entire dataset collection,
disregarding category proportions. Each sample has an equal chance of selection.

Stratified sampling: Samples are drawn to ensure equal representation from each constituent
dataset, preserving dataset-level balance rather than the overall distribution.

Sampling according to category distribution: This strategy performs stratified sampling guided
by fine-grained category distributions observed in existing holistic LLM benchmarks. In particular,
we adopt the distributions derived from Chatbot Arena and MixEval, classified by our fine-tuned
model (§ [3.3). The coarse-grained category distributions of these benchmarks are detailed in § 2]

English Korean

Qwen2.5-72B-Instruct
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sampling  sampling sampling  sampling

Figure 7: LLM ranking according to four sampling methods

We run 50 simulations per sampling setup, each selecting SK questions. Model rankings within each
setup follow normal distributions. Figure [7] visualizes LLM ranking changes across the four sampling
setups. We use the Friedman test and the pairwise Wilcoxon test to statistically identify whether the
sampling strategy affects the model ranking based on average accuracy. We observe a statistically
significant difference across sampling strategies using the Friedman test (p < 0.01). Specifically,
pairwise Wilcoxon signed-rank tests confirm that all pairs of sampling setups significantly differ in
average, except for random sampling versus sampling according to MixEval distribution (p < 0.01).
These findings underscore that category distribution and sampling strategy of data substantially affect
LLM leaderboard rankings. We call on researchers and practitioners to carefully consider benchmark
composition when evaluating LLMs.

S Adapting BENCHHUB for Evaluating Real-World Application

In this section, we showcase how customized benchmark composition using BENCHHUB enables
more targeted and meaningful evaluations tailored to real-world application scenarios. We consider
five use cases, including the scenarios illustrated in Figure[] to construct customized BENCHHUB.

(a) STEM knowledge evaluation: To identify the best-performing model with expertise in STEM
domains, we select English datasets within BENCHHUB whose coarse-grained subjects are
labeled as Science or Technology. To ensure balanced representation across individual datasets,
the questions are drawn using a stratified sampling at a dataset level.

(b) Math teaching agent for Korean students: To evaluate Math teaching agents, we select Korean
datasets comprising 1) math-related samples (i.e., fine-grained categories are Science/Math or
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Science/Statistics), 2) education-related samples (i.e., fine-grained category is HASS/Education),
and 3) samples culturally specific to Korea (i.e., target as ‘KO’). The final accuracy is computed
as a weighted average of these subsets, with weights of 0.6, 0.1, and 0.3, respectively, reflecting
their relative importance to the application.

(c) Legal chatbot servicing in Korea and the US: To select a foundation model for a legal chatbot,
we select English and Korean datasets whose fine-grained subject is law. The final accuracy is
computed as an average of the English and Korean datasets, ensuring that the model holds legal
knowledge in both countries.

(d) Docent agent for Korean traditional arts: To identify the best-performing model with expertise
in Korean traditional arts, we select Korean datasets within BENCHHUB whose fine-grained
subjects are labeled as architecture, sculpture, and painting. To ensure balanced representation
across individual subjects, the questions are drawn using a stratified sampling strategy at a
subject level.

(e) Counseling agent servicing in Korea: To evaluate counseling agent in Korean, we select
Korean datasets comprising:

1. psychology-related samples (i.e., fine-grained category is psychology),

2. samples aware to Korean social interactions (i.e., coarse-grained category is social intelli-
gence),

3. samples relevant to common counseling topics (i.e., fine-grained categories are work life,
daily life, and family).

The final accuracy is computed as a weighted average of these subsets, with weights of 0.5, 0.3,
and 0.2, respectively.

Table 1: Top-5 LLMs evaluated by BENCHHUB in real-world application scenarios

(a) STEM knowledge evaluation (b) Math teaching agent for Korean students
Rank (EN) (KO)
| Customized Stratified | Customized Stratified

1 Qwen3-32B gemma-3-1b-it Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct

2 gemma-3-1b-it Qwen3-32B Mistral-Small-24B-Instruct-2501 Llama-3.3-70B-Instruct

3 Qwen3-1.7B Qwen3-4B gemma-3-27b-it gemma-3-27b

4 Qwen3-4B Qwen3-1.7B Llama-3.3-70B-Instruct Mistral-Small-24B-Instruct-2501
5 DeepSeek-R1-Distill-Qwen-14B  gemma-3-4b DeepSeek-R1-Distill-Qwen-32B  DeepSeek-R1-Distill-Qwen-32B

Table[T] presents the detailed accuracy scores and rankings of LLMs under these customized bench-
marks. We use the same set of models described in § [4.2] The model rankings differ substantially
depending on the benchmark compositions, underscoring the practical need for tailored evaluations.

6 Related Work

As LLMs have become integral to real-world generative Al systems, the historical focus on bench-
marks and leaderboards has matured into evaluation science [88]]. While LLM evaluation benchmarks
primarily adopt a question-answering task as a default evaluation format, they have expanded their
capabilities into diverse tasks, including long-form generation [48]], multilingual [73| [70], multi-
modal [[17]], and complex reasoning tasks [[14} 961, inter alia. This diversification reflects a growing
recognition of the multifaceted capabilities and applications of LLMs.

Domain-specific Evaluation. Beyond general-purpose benchmarks, there has been a surge in
domain-specific evaluation benchmarks targeting verticals such as healthcare and medicine [23
46l 163], law [42], science [16]], and financial [97, [74]. These benchmarks enable more targeted
assessment aligned with the unique requirements and challenges of each field. However, many
domain-specific benchmarks lack the detail needed to compare specific skills or topics, and they often
offer limited interoperability or consistency across benchmarks, making cross-benchmark comparison
difficult. Complementing this trend, several large-scale benchmarks now aggregate tasks across
multiple domains to facilitate robust, holistic evaluation of LLMs [211 87} 180, 186]. However, it’s often
unclear what the entire dataset actually evaluates, and thus lacks support for user-driven evaluation
customization. In contrast, our paper proposes a framework that leverages existing benchmarks while
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enabling users to construct personalized, cross-domain evaluations tailored to their specific needs and
contexts.

Dynamic Evaluation. Recent studies have identified inherent limitations of static datasets. Notably,
issues such as data contamination, model overfitting to benchmarks, and insufficient human alignments
have been highlighted [92, [54]. This has spurred calls for a new discipline of model metrology
focused on dynamic, adaptive, and robust evaluation frameworks [69]. Accordingly, dynamic and
live evaluation is being conducted through various approaches: by synthetically generating evaluation
data in real time [98| [71]]; by incorporating human-in-the-loop platforms for periodic updates [31} [11];
or by regularly integrating new benchmark datasets [52, 27]]. Our work extends this paradigm by
offering a live benchmarking platform that automatically merges and recategorizes the benchmarks
into a unified structure. This design makes our system more flexible and scalable for evaluating LLMs
across diverse use cases.

Fine-grained Evaluation. Recent studies have shed light on the diversity of scenarios, contexts,
and metrics in holistic evaluations. For example, [83]] critiqued over-reliance on single leaderboard
rankings for evaluating Al fairness, advocating for multi-dimensional measurements. Similarly, [43]
reformulated existing benchmarks into a format of diverse scenarios and adopted multiple metrics
for a truly holistic assessment. Fine-grained evaluations, such as decomposing coarse scoring into
skill-level scoring for alignment [94], facilitate richer and interpertable results. These advancements
collectively underscore a paradigm shift from narrow, static benchmarks toward customizable, multi-
faceted evaluations that better reflect the complex real-world capabilities and risks of LLMs. To
support this shift, we propose a framework that enables question-level categorization across three
core skills and 64 subject domains, offering a more fine-grained and interpretable evaluation.

To the best of our knowledge, BENCHHUB is the first to support domain-specific evaluation with
fine-grained skill and subject categorization, while enabling dynamic updates through an automated
integration pipeline for new benchmarks. We unify qualified benchmark datasets from diverse sources
into a consistent structure and apply fine-grained categorization, enabling a holistic, interpretable
evaluation pipeline that aligns closely with user-specific evaluation intents.

7 Conclusion

The rapid advancements in large language models (LLMs) have highlighted the need for robust and
comprehensive evaluation frameworks capable of addressing the diverse and expanding range of
their applications. While existing benchmarks have provided valuable insights into specific domains
and capabilities, the fragmented nature of these datasets and the lack of alignment with task-specific
objectives often limit their utility in real-world scenarios. Moreover, the varying distributions of
subject types within benchmarks can significantly influence the interpretation of model performance,
further emphasizing the need for systematic and customizable evaluation methodologies.

In this work, we introduced BENCHHUB, a unified benchmark suite designed to address these chal-
lenges. By categorizing 839k questions from 54 benchmarks in 10 languages across skills, subjects,
and targets, BENCHHUB enables users to filter and create tailored test sets for domain-aware and
task-specific evaluations. The integration of a categorization model based on Qwen-2.5-7b automates
this process, ensuring scalability and adaptability to new datasets. Our experiments demonstrated that
model performance rankings can vary significantly depending on subject categories and dataset distri-
butions, underscoring the critical role of benchmark composition in fair and meaningful evaluations.

We hope this work promotes domain-aware evaluation and careful benchmark design. BENCHHUB
serves as a practical tool to support these goals across diverse users.

* For developers and practitioners, BENCHHUB serves as a tool for accurately assessing model
capabilities in targeted scenarios. They can identify each model’s strengths and weaknesses and
select the ones best suited to their specific applications.

* For benchmark and evaluation researchers, we hope that the unified structure of BENCHHUB
facilitates comprehensive statistical analysis of the coverage of existing benchmarks across subjects
and skills, helping to identify underrepresented areas and motivating the construction of new
datasets that address existing gaps in current evaluation practices.
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Appendix

A Limitations

Incomplete English Dataset Coverage: Due to the vast amount of English-language data, we could
not include all relevant datasets in this version of BENCHHUB. While we prioritized widely used and
high-quality benchmarks, some important datasets may still be missing. Future iterations will expand
coverage for broader inclusivity.

Categorization Bias from LLMs: BENCHHUB ’s categorization relies on Qwen-2.5-7b, which
may introduce biases due to its training data or modeling limitations. Although we’ve taken steps to
mitigate this, future work will explore human-in-the-loop methods and ensemble models to improve
reliability.

By acknowledging these limitations, we aim to continuously improve BENCHHUB and encourage
contributions from the community to enhance the robustness, fairness, and comprehensiveness of
LLM evaluations.

B Interactive Platform and Utilities

B.1 BENCHHUB Web Interface

We manage all code, datasets, models, and demo via Huggingface. In this repository, we release:
1) the complete datasets, 2) useful codes (e.g., load and preprocess dataset), 3) the interactive web
interface, and 4) our categorizer model.

We provide BENCHHUB web interfaceﬂ to enable users to interactively explore available datasets and
identify those that best suit their needs. It also supports the continuous addition and management
of new data. Through a submission form, new datasets can be detected and automatically added. To
achieve these, we provide three main functions, as shown in Figure@

1) BENCHHUB Distribution (Figure[8a) This feature offers comprehensive statistics of all datasets we
have. Users can interactively explore the overall data distribution they are interested in. Additionally,
it provides researchers with insights into which datasets are currently lacking and which evaluations
have not yet been conducted.

2) Customizing BENCHHUB (Figure[8b) This allows users to access sample lists and statistics for
selected categories. By reviewing samples, users can verify whether the dataset matches their needs
and explore datasets suitable for their purposes. Users can also download the entire set corresponding
to the samplesm

3) Submitting New Dataset (Figure To facilitate the addition of new datasets, We provide a
submission section to input the Dataset Name, Huggingface URL, and Metadata/Descriptions. Based
on this information, the author decides whether to add the dataset to BENCHHUB.

B.2 BENCHHUB Code Utilities
B.2.1 Dataset Loader

We provide two options for the dataset loader: (1) returning the entire dataset that meets the specified
categories, or (2) a filtered version with overlapping entries (including near-duplicates) removed.

Duplicates Filtering Method To perform deduplication, we implement a method inspired by MixE-
val [52]. The process consists of two steps: (1) computing query embeddings using mpnet-base-v2
from SentenceTransformers and projecting them into a 2D space via t-SNE, and (2) uniformly

Our interface is served via Huggingface Space, while the Huggingface URL will be available after publication
due to anonymity rule.

19 Additional customizing features, such as fine-grained category adjustments and interactive control of
category proportions via the platform (e.g., adjusting the ratio between reasoning and knowledge questions), are
to be developed.
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Figure 8: User Interface of BENCHHUB Web Demo
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sampling in this reduced space. Queries on similar topics naturally cluster within localized regions of
the embedding map, which allows redundant samples to be excluded during dataset construction.

Empirical Validation To validate the effectiveness of this approach, we conduct the following
experiment:

1. Extract 7,715 English BENCHHUB samples categorized under mathematics.

2. Introduce 60 synthetic duplicates by prompting gemini-2.5-flash to generate (i) identical
copies and (ii) five near-duplicates for 10 randomly chosen questions (via paraphrasing or
altering numbers).

3. Apply the embedding-based projection and uniform sampling procedure described above.

We observe that embedding-based sampling consistently restricts the number of duplicates to at most
0-1 per batch, even at large sample sizes. In contrast, random sampling frequently produces more
than five duplicates once the sample size exceeds 1,250. See Figure[9for detailed results.

71 —— Embedding
Random

Avg total_duplicates

6 2%0 500 7.';0 10b0 12‘50 ISbO 17‘50 20’00
Sample Size
Figure 9: Average number of duplicates included in the sampling size when using the embedding-
based method (Blue) and random sampling (Orange).

B.2.2 Citation Report Generator

As we provide a mixture of datasets, it is important to include essential information such as detailed
statistics (e.g., the proportion contributed by each source dataset), the licenses of included datasets, and
the corresponding citation guidelines in LaTgX format. The primary purpose of this documentation
is to facilitate the direct use of BENCHHUB in users’ projects while ensuring that original sources
receive proper credit.

Example of Citation Guidelines

The evaluation dataset are sampled using BenchHub
“\cite{benchhub}.

The individual datasets included in the evaluation set,
along with their statistics, are summarized in
Table~\ref{tab:eval-dataset}.

% Please add the following required packages to your document
preamble:

% \usepackage{booktabs}

\begin{table} [h]

\centering

\begin{tabular}{@{}1116{}}

\toprule
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\textbf{Dataset} & \textbf{Number of Samples}

& \textbf{License}\\ \midrule

{table_content}

\bottomrule

\end{tabular}

\caption{Breakdown of datasets included in the evaluation set.}
\label{tab:eval-dataset}

\end{table}

% --- BibTeX Entries ---
@inproceedings{...}
Q@inproceedings{...}

1006
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10z C List of Datasets Used

Table 2: Benchmarks Included in BENCHHUB

Dataset Reference Target Lang. # of Samples License
ARC [13] General EN 3,548 cc-by-sa 4.0
SociallQA [68] General EN 1,954  c¢c-0
WinoGrande [67] General EN 1,767 Apache-2.0
Natural Questions (open)  [38] General EN 1,769  Apache-2.0
NarrativeQA [135] General EN 10,557 Apache-2.0
Truthful QA [44] General EN 817  Apache-2.0
Open-BookQA [47] General EN 1,000  Apache-2.0
MMLU [21] General EN 14,042 MIT

BBQ [55] General EN 58,492  cc-by-4.0
PIQA [7] General EN 3,084 Apache-2.0
CommonsenseQA [81] General EN 1,140 MIT

BBH [79] General EN 6,261 MIT

MATH [22] General EN 4,521 MIT
HumanEval [10] General EN 164 MIT

MBPP (4] General EN 974 cc-by-4.0
GSMS8k [14] General EN 1,319 MIT

GPQA [64] General EN 1,191  cc-by-4.0
ToolHop [93] General EN 996 cc-by-4.0
ToolQA [99] General EN 1,545 Apache-2.0
ToolBench [[60] General EN 77,120  Apache-2.0
GPT4Tools [91] General EN 13,070  Apache-2.0
MultiNativQA [20] Local EN 3,435 cc-by-nc-sa-4.0
CulturalBench [12] Local EN 6,134 cc-by-4.0
SeaEval [84] Local EN 275 cc-by-nc-4.0
CANDLE CCSK [151] Local EN 500 cc-by-4.0
GeoMLAMA [95] Local EN 124 unknown
NormAd [62] Local EN 7,899  cc-by-4.0
CultureBank [72] Local EN 22,990 MIT
CaLMQA [3] Local EN, KO 96 MIT

BLEnD [50] Local EN 4,132 cc-by-sa-4.0
BLEnD [50] Local KO 1,000 cc-by-sa-4.0
KorNAT [41] Local EN 24 cc-by-nc-2.0
KBL [133] General KO 3,304 cc-by-nc-4.0
KorMedMCQA [137] General KO 3,009 cc-by-nc-2.0
KMMLU 77] General KO 30,499  cc-by-nd-4.0
HRMS8K [34] General KO 8,011 MIT
KoBBQ [29] Local KO 81,128 MIT
KULTURE Bench [85] Local KO 3,584  Apache-2.0
HAE-RAE Bench [78] Local KO 4,900 cc-by-nc-nd-4.0
CLIcK [32] Local KO 1,995 cc-by-nd-4.0
HRMCR [76] Local KO 100 Apache-2.0
KoSBi [40] Local KO 6,801 MIT
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1010

D.1 Problem Type

Table 3: Problem types, descriptions, and examples

Format

Description

Example

Binary

Two-option choice ques-
tions, typically Yes/No or
True/False.

“Is the Earth flat?” —
“No”

Multiple-choice QA (MCQA)

Multiple-choice question
answering format.

“What is the capital of
France? (A) Paris (B)
Rome (C) Berlin” — (A)

Open-ended generation

Short-form Short, direct answer gen-
eration.

Free-form Extended, explanatory an-
swer generation.

Open-ended

Answer generation with-
out a definitive correct
response, involving free
imagination or story-
telling.

“What is 2+2?7” — “4”

“Explain the theory of rel-
ativity.” — “The theory of
relativity, developed by Al-
bert Einstein...”

“Tell a story about a jour-
ney to the moon.” —
“Once upon a time, a brave
astronaut set off on a mag-
ical voyage beyond the
stars...”

Comparison

Subjective or preference-
based evaluation of re-
sponses, typically involv-
ing agreement, helpful-
ness, or safety.

“Which response is more
helpful?” A: “Yes.” B:
“Sure, here’s how you can
do that...” — (B)

D.2  Skill

Table 4: Task types, descriptions, and examples

Task

Description

Example

Knowledge

Questions that seek factual information,
definitions, or explanations. Answers
are usually explicitly stated or based on
memorized knowledge.

"What is the capital of France?"

Reasoning

Questions that require logical thinking,
problem-solving, understanding cause-
effect relationships, or commonsense
reasoning. Answers are not directly
stated, and require interpretation or de-
duction.

“There are 12 apples in a box. If 4 peo-
ple share them equally, how many ap-
ples does each person get?”

Value/alignment

Questions that involve value judgments,
opinions, or behavioral patterns.

"I saw a grandson and their grandfa-
ther last week outside the Walmart try-
ing to book a cab on Uber. Who was
not comfortable using the phone?" (Ex-
ample from [S5]))
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Table 5: Target types and descriptions

Target Description

General A general target without a specific cultural or national focus.

Local A specific target toward a certain culture (e.g., US, KO).

D.3 Target

D.4 Subject

We use 6 coarse-grained and 64 fine-grained subjects to classify samples in existing LLM evaluation
benchmarks. Table[6]lists the subjects and their definitions. We finalize the subject lists by aggregating
WebDeweyE-] based on Dewey Decimal Classification (DDC) system and Korean culture-specific

classification systems

Table 6: Subject types and descriptions

Coarse-grained \ Fine-grained

Description

Mathematics
Statistics
Science Physics
Astronomy
Chemistry
Biology
Earth science
Geology
Atmospheric

science
Life science

The study of numbers, quantities, structures, and ab-
stract reasoning.

The science of data collection, analysis, interpretation,
and presentation.

The study of matter, energy, and the fundamental
forces of nature.

The scientific study of celestial objects and phenom-
ena beyond Earth.

The study of substances, their properties, and how
they interact and change.

The study of living organisms and their vital pro-
cesses.

The study of Earth’s physical constitution, processes,
and systems.

The science of Earth’s physical structure, materials,
and geological history.

The study of the Earth’s atmosphere, including
weather, climate, and air dynamics.

A broad field encompassing all sciences related to
living organisms and life processes.

Mechanics

Technology
IT

Energy eng.

Materials eng.

Chemical eng.

Electrical eng.

The study and application of forces and motion in
physical systems.

The science and engineering of the properties and
uses of materials.

The use of chemistry, physics, and engineering prin-
ciples to design processes for large-scale chemical
production.

The study and application of electricity, electronics,
and electromagnetism.

The development, maintenance, and use of computer
systems and networks for processing and distributing
data.

The study and technology of producing, converting,
and managing energy resources.

Uhttps://www.oclc.org/en/webdewey . html
PO g @A (https://k-knowledge . kr/guide/nkiClassifi. jsp).
Balatn =L sl e IpAPA (https://encykorea.aks.ac.kr/).
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Nuclear eng.
Civil eng.
Urban eng.
Al

Programming

Environmental eng.

Aerospace eng.
Marine eng.
Agricultural eng.

Biomedical eng.

Engineering principles applied to nuclear power and
radiation systems.

Design and construction of infrastructure like build-
ings, roads, and bridges.

Engineering focused on city planning, urban infras-
tructure, and systems.

Artificial intelligence and machine learning systems
and research.

Computer programming and software development
practices.

Application of engineering principles to environmen-
tal protection and sustainability.

Engineering of aircraft, spacecraft, and related sys-
tems.

Engineering of ships, submarines, and marine tech-
nology.

Science and technology applied to crop and livestock
production.

Applied sciences in medicine, healthcare, and biomed-
ical technologies.

Humanities and
Social Science
(HASS)

Literature
Language
Philosophy
Religion
Cognitive studies
Psychology
History
Geography
Politics
Economics
Law
Administration

Welfare

Education
Trade

Media

The study and interpretation of written, oral, and tex-
tual works.

The study of human language, linguistics, and com-
munication.

The exploration of knowledge, ethics, existence, and
reasoning.

The study of spiritual beliefs, practices, and religious
systems.

The study of how individuals perceive, interpret, and
respond to information and interactions.

The scientific study of human mind, behavior, and
mental processes.

The study of past events, civilizations, and historical
change.

The study of physical and human features of the
Earth’s surface.

The study of power, governance, political systems,
and public policies.

The analysis of production, consumption, and distri-
bution of goods and services.

The system of rules, rights, and justice within soci-
eties.

The organization and implementation of policies in
governmental and institutional systems.
social_science&humanity systems, programs, and
policies aimed at improving public well-being and
equity.

The study and practice of teaching, learning, and
knowledge systems.

The exchange of goods and services and the systems
governing commerce.

The study of communication, journalism, and infor-
mation dissemination.

Arts and Sports

Architecture

Sculpture

The art and science of designing buildings and physi-
cal structures.

The creation of three-dimensional artistic forms using
various materials.
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Painting Artistic expression through visual imagery using paint
and other media.
Music The art of sound arrangement in melody, harmony,
and rhythm.
Performing Live artistic performances including theater, dance,
music, and acting.
Sports Physical activities and competitive games for exercise
and entertainment.
Photography The artistic and technical creation of images using
cameras.
Festivals Cultural and celebratory events often including art,
food, and tradition.
Fashion The design and aesthetics of clothing, style, and wear-
able art.
Tradition Inherited customs, rituals, and beliefs passed across
generations.
Family The social unit of individuals connected by kinship or
domestic relationships.
Culture Holiday Social events and public holidays marking special
occasions.
Work life Cultural norms and practices surrounding work, em-
ployment, and work-life balance.
Food Cultural practices, preparation, and significance of
cuisine.
Clothing Attire and fashion as expressions of identity and cul-
ture.
Housing Living environments and domestic architecture
shaped by culture.
Daily life Everyday routines, behaviors, and practices in social
life.
Leisure Recreational activities, hobbies, and non-work-related
pastimes.
Commonsense General world knowledge that people rely on in ev-
Social eryday life.
intelligence Value Moral, ethical, or cultural principles guiding behavior
and judgment.
Bias Deviations in judgment or data caused by subjective
factors.
Norms Shared social expectations and rules of appropriate
behavior.

E Implementation of BENCHHUB

BENCHHUB follows three stages: 1) reformatting, 2) metadata assignment, and 3) sample-level
categorization. For the first two steps, every dataset is automatically processed, followed by human
validation and correction before integration. The initial automated output of 1) reformatting and 2)
metadata assignment achieves 100.0% and 96.4% agreement with human annotations, respectively.

E.1 Automated Categorization Process

Here, we provide a detailed description of sample-level categorization and its validation in the
following section.

E.1.1 Training Categorizer for English and Korean Language

We fine-tune the Qwen-2.5-7B models to automatically
categorize the skill, subject, and target type of a given Taple 7: Accuracy of fine-tuned catego-
rizer on Qwen-2.5-7b
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sample. Tables[7)and [§|show the accuracies and the SFT
configs of the categorizer model. Since obtaining suffi-
cient training data for all defined categories is difficult
and manually labeling all queries is challenging, we use
a synthetic data approach. Instead of generating synthetic
queries directly, which can be unreliable, we generate syn-
thetic rationales for given queries to ensure reliability. The
process is as follows: first, we create all possible combi-
nations of our three categories—skill, task, and target. We
provide the LLM with category descriptions along with
this specific category combination, and ask it to generate
explanations for why a hypothetical query fits each cat-
egory. We use GPT-4o as a synthetic rationale generator.
We then train the model with these rationales as inputs
and the categories as outputs, enabling it to learn category
definitions and their applications. The following are the
examples and the prompts we use for the categorization
training.

For the Target category, we adopt a binary classification scheme consistent with prior work such as
Global MMLU [[73]. After extracting the raw “target” label (e.g., South Korea) from the categorizer’s
output, we further refine it into two subcategories: Local, if the model specifies a particular cultural
or local context, and General, if the model determines that the query is culturally independent.

Example of Rationale

example = "The query is asking about the cause of symptoms (vomiting and diarrhea) in
a 6-year-old boy who ate kimbap at kindergarten and later experienced these symptoms
along with three other children. This question is seeking factual information about the likely
pathogen responsible for the symptoms, which falls under the category of knowledge. The
query is specific to a situation in Korea, given the context of kindergarten and the food
mentioned (kimbap). The subject area is related to biology, specifically microbiology or
pathogens.

Prompt for Rationale Generation of Given Query

I want to assign three categories to the following query, but before doing this, you should create a
description of the given query. Explain the query first (e.g., what the question is asking about (i.e.,
subject type), the type of ability needed to solve it (i.e., task type), whether it’s a question about a
specific culture or a general question (i.e., target type), etc.). Refer to the definition of each label
and the output format.

Label Definition: {description}

Now, create a description for the following query.

.

Prompt for Synthetic Rationale Generation

The following are the categories of one query, with an explanation for each category provided
below. Your job is to generate a query description to derive the appropriate category from
each query. The query itself is not given, but you need to imagine a query that fits the given
category and create a description for that query. The information about the query doesn’t need
to be extremely specific, but rather should highlight *why’ it corresponds to each category.
Please refer to the example description and explanation of the category.

Description example: {example}

Category explanation: {tasks}

Now, let’s start!

Given category: {category}

Your Description:
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Prompt for Category Generation

**You are an agent tasked with assigning three categories— ‘subject_type‘, ‘task_type*, and
‘target_type‘—to describe what is required to answer the following prompt.**

* **subject_type**: What domain of knowledge or skill is needed? * **task_type**: What
type of cognitive process or reasoning is involved? * **target_type**: Is the required knowl-
edge or skill specific to a particular country or culture?

Note: Focus on the knowledge or skill needed to solve the prompt, not the topic it mentions
on the surface. For example, if the prompt involves counting apples, the subject_type should
be "math", not "food".

The following text is a meta data of a certain prompt. Based on this data, assign three labels
to the following data. Refer to the description of each label and the output format. Present the
output in the following format: ’task_type’ : str,’target_type’ : str,’subject_type’ : LIST[str]
Please refer the following information: ### **Task Type Description** - **task_type**
indicates the type of task the query belongs to. Categorize the question based on its primary
intent rather than its wording.

##### **Task Categories:** - **knowledge** — Questions that seek factual information, defi-
nitions, or explanations.Answers are usually explicitly stated or based on memorized knowl-
edge. - Example: *"What is the capital of France?"* - Example: *"What is the pythagorean
theorem?"* - **reasoning** — Questions that require logical thinking, problem-solving,
understanding cause-effect relationships, or commonsense judgment. Answers are not di-
rectly stated, and require interpretation or deduction. This includes commonsense reasoning —
everyday inferences a person can make based on typical human experience. - Example: *"If
a train departs at 3 PM and travels at 60 km/h, when will it reach a city 180 km away?"* -
**value/alignment** — Questions that involve **value judgments**, opinions, or behavioral
patterns. - Example: *"Is it ethical to use Al in hiring decisions?"* - Example: *"What are
the social impacts of remote work?"*

### **Target Description** - **target_type** indicates the country or cultural region that the
query is focusing on. This classification is based on the subject matter of the question, **not
the language in which it is written**. - Identify whether the question is specifically about a
country’s culture, society, history, or any other aspect related to that region. - If there is no
corresponding value, you can add it.

#### **Target Options: ** - **general** — A general target without a specific cultural or
national focus. - **ko** — Targeting **Korea**. - **us** — Targeting **the United States**.
- (5D

- subject_type represents the knowledge domain or reasoning field needed to answer the
prompt. Identify the content of the query and select one or more of the following values. If
there is no matching category, respond with 'misc’. - Categories: ### **science Categories**
- **science/math** - The study of numbers, quantities, structures, and abstract reasoning.
- *#gcience/biology** - The study of living organisms and their vital processes. - (52F)
- **gcience/microbiology** - The study of microorganisms and pathogens. (7} 5 A5
R

Now, present the corresponding categories of following data in json format. Data: "query":
"What causes vomiting and diarrhea in a child after eating kimbap?", "answer": "Likely

non

bacterial infection such as Salmonella or E. coli.", "category": null

non non

"subject_type": ["science/biology"”, "science/microbiology"], "task_type": "knowledge", "tar-
get_type": "ko"

E.2 Reliability of Automated Categorization
E.2.1 Influence of Categorization Accuracy on Model Evaluation

We examine and discuss the influence of categorization accuracy on model evaluation outcomes in
BENCHHUB. To quantify and simulate the categorizing errors, we conduct an ablation study in which
the categorization error rate is systematically varied and controlled. Following the experimental setups
described in § .2] we employ a stratified sampling strategy to preserve dataset-level balance across
categories. We introduce a controlled corruption rate, which denotes the proportion of misclassified
samples in the test set. We increment the corruption rate from 0.0% to 10.0% in 0.5% steps. For each
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corruption level, we perform 50 independent simulation runs to ensure statistical robustness. We
compare the model rankings obtained from the corrupted test sets to the baseline rankings derived
from the original, uncorrupted set.

We demonstrate that categorization errors up to 1.5% yield negligible disruption to model rankings,
confirmed by Spearman’s rank correlation coefficient and Wilcoxon Signed-Rank test. This finding
suggests a notable resilience of the evaluation framework to minor categorization inaccuracies. It
is noteworthy that this robustness extends beyond simple misclassification scenarios to dynamic,
real-world settings tailored for users. Introducing a small fraction of samples comprising undefined
categories is less likely to cause significant shifts in model rankings. Moreover, the categorizer can be
incrementally updated and improved through continual learning, ensuring ongoing adaptation and
maintenance of BENCHHUB pipeline among evolving benchmarks.

E.2.2 Enhancing Categorization Robustness

The classification process of BENCHHUB currently relies on a model trained with Qwen-2.5-7B,
which may introduce potential model-specific bias when relying on a single classifier. As a pos-
sible direction for improving categorization, we additionally train classifiers using Llama-3.1-8B
and Mistral-7B-v0.1 with the same training data and procedure. We then construct a multi-agent
classification system in which the predictions from all three models (Qwen, Llama, and Mistral) are
aggregated via majority voting. This system achieves a 2.4%p increase in agreement with human
labels compared to Qwen-2.5-7B alone. Among the individual classifiers, Qwen-2.5-7B achieves the
best standalone performance, and we expect that leveraging larger foundation models will further
amplify the benefits of majority voting.

While majority voting improves robustness, it also triples the computational cost for training and
inference. As an alternative, we implement a confidence-based hybrid approach: majority voting is
invoked only when the classifier’s confidence (measured by average logit probability) falls below
a threshold of -0.04. This method enhances agreement by 1.4%p while substantially reducing the
additional cost, thereby offering a practical trade-off between robustness and efficiency.

E.3 Experimental Setups

We use Axolotl [5]] for the SFT training in § [3.3] We train Qwen2.5-7B-Instruct with DeepSpeed-
Zero3 [61] on 4 A6000 48GB GPUs for 5 hours per run. We follow the method of (author?) [25] for
optimization.

E.4 License

We release BENCHHUB, including our source code and trained models, under the Apache License
2.0. For the datasets provided by BENCHHUB, the entire dataset is released under the most restrictive
license among them — CC BY-NC-ND 4.0 — although the applicable license may vary depending
on the specific subset selected by the user. The license for each dataset is listed in Table 2]

E.5 Instructions and System Prompts

Please read the following passage and answer the question. Choose one answer from {1abel set}.

Passage: {passage} Question: {question} Choices: {choices} Answer:

g A5 Faste] AR Gololah §L K] 5 SIS (label set} Folq T2A|Q.

A& {passage} ZAE: {question} 2 7]: {choices} o

Answer the following question. Choose one answer from {label set}. Question:
{question} Choices: {choices} Answer:

S AR gatdat gL By F S {label set} FoA 12AQ. (O] AR
{question} H7]: {choices} =
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F Multilingual Expansion of BENCHHUB

F.1 Multilingual Categorizer

We fine-tune Qwen-2.5-7B on ten languages (En- Table 9: Categorizer Accuracy in G-MMLU
glish; three high-resource languages: Arabic, German, (in-domain) and M-MMLU (out-domain)
Dutch; three mid-resource languages: Indonesian, Ko-

rean, Ukrainian; and three low-resource languages: language G-MMLU M-MMLU
Swabhili, Nepali, Kyrgyz). For the training dataset, we ar 0.765 0767
use 20,000 samples from Global MMLU [73]], with de 0.789 0.833
2,000 samples per language. Since Global MMLU id 0.800 0.808
provides human-validated fine-grained subject cat- ky 0.681 _
egories, we adopt these categories while mapping ne 0.709 -
them to our taxonomy. The training method and con- nl 0.804 -
figurations follow those used in the categorizer for sW 0.614 0.653
Korean and English (Appendix [E.T). uk 0.765 -

We validate the categorizer on 2,850 Global MMLU samples (285 samples per language) that were
not used during fine-tuning (in-domain), and on 1,225 Multilingual MMLU samples (245 samples per
language) from outside the training distribution (out-of-domain). Our model achieves 75.3% accuracy
in-domain and 77.5% accuracy out-of-domain for fine-grained subject categorization. Table [9|reports
detailed results for both evaluation settings. Blank cells indicate that M-MMLU does not support the
corresponding language.

F.2 Multilingual Dataset

Table [I0]indicates the benchmarks included in BENCHHUB-multilingaul. We include 14 datasets
across 8 additional languages, with the number of datasets per language varying depending on
resource availability.

G Customized BENCHHUB

We provide three additional examples of real-world use cases of BENCHHUB:

(c) Legal chatbot servicing in Korea and the US: To select a foundation model for a legal chatbot,
we select English and Korean datasets whose fine-grained subject is law. The final accuracy is
computed as an average of the English and Korean datasets, ensuring that the model holds legal
knowledge in both countries.

(d) Docent agent for Korean traditional arts: To identify the best-performing model with expertise
in Korean traditional arts, we select Korean datasets within BENCHHUB whose fine-grained
subjects are labeled as architecture, sculpture, and painting. To ensure balanced representation
across individual subjects, the questions are drawn using a stratified sampling strategy at a
subject level.

(e) Counseling agent servicing in Korea: To evaluate counseling agent in Korean, we select
Korean datasets comprising:
1. psychology-related samples (i.e., fine-grained category is psychology),
2. samples aware to Korean social interactions (i.e., coarse-grained category is social intelli-
gence),
3. samples relevant to common counseling topics (i.e., fine-grained categories are work life,
daily life, and family).
The final accuracy is computed as a weighted average of these subsets, with weights of 0.5, 0.3,
and 0.2, respectively.

Table[IT] presents the top-5 model rankings across these scenarios. The fluctuations in model rank-

ings among the three scenarios also underscore the practical need for tailored evaluations using
BENCHHUB.
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Table 10: Benchmarks Included in BENCHHUB-multilingual

Dataset Reference Target # of Samples License
Language: AR

G-MMLU 73] General/Local 14,042  apache-2.0
ArabLegalEval [24] Local 15,311 -
ArabicMMLU [136] General/Local 14,455  cc-by-nc-sa-4.0
Language: DE

G-MMLU [73] General/Local 14,042  apache-2.0
GermanQUAD [157] General 2,204  cc-by-4.0
MLQA [157] General 4,517  cc-by-sa3.0
Language: NL

G-MMLU [[73] General/Local 14,042  apache-2.0
Language: ID

G-MMLU [[73] General/Local 14,042  apache-2.0
Eli5-indo nlp/eli5_id General 245274 -

facQA [45] General 1,564  cc-by-sa-4.0
idkmrc [59] Local 1,198  cc-by-sa4.0.
QASiNa [66] Local 133  MIT.

TyDi QA [45] General 4,276  Apache-2.0
xcopa [158] Local 4,001  cc-by-4.0
Language: UK

G-MMLU 73] General/Local 14,042  apache-2.0
UA-CBT (Eval-UA-tion 1.0)  [19] Local 2,129 cc-by-4.0
Language: Sw

G-MMLU 73] General/Local 14,042  apache-2.0
Language: Ne

G-MMLU [73] General/Local 14,042  apache-2.0
Winogrande-Nepali [S3] General 8,135 MIT
Language: Ky

G-MMLU [73] General/Local 14,042  apache-2.0
TUMLU [26] Local 785 -

Table 11: Top 5 LLMs evaluated by customized BENCHHUB across three scenarios

Rank (c) Legal chatbot (d) Docent for Korean art (e) Counseling agent
1 Qwen3-32B Qwen2.5-72B-Instruct Qwen?2.5-72B-Instruct
2 gemma-3-1b-it gemma-3-27b-it Qwen3-8B
3 Qwen3-8B Llama-3.3-70B-Instruct gemma-3-27b-it
4 Qwen3-1.7B Qwen3-32B DeepSeek-R1-Distill-Qwen-32B
5 Mistral-Small-24B-Instruct-2501  Mistral-Small-24B-Instruct-2501  Mistral-Small-24B-Instruct-2501
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Table 12: Results of all models across fine-grained categories (English)

See Table[T2}{I3]for the scores (accuracies) of the models across subject types.

Subject gpt-4.1 claude-3.7-sonnet gemini-2.0 gemma-3-27b DeepSeek-R1-32B Llama-3.3-70B Mistral-24B
Tech

Urban eng. 0.882 0.765 0.824 0.625 0.765 0.588 0.882
Nuclear eng. 1.000 0.750 0.500 0.500 0.500 1.000 1.000
Marin eng. 1.000 0.667 1.000 0.500 1.000 1.000 1.000
Biomedical eng. 0.963 0.828 0.716 0.563 0.743 0.779 0.794
Mechanics 0.943 0.829 0.829 0.559 0.706 0.647 0.941
Materials eng. 0.987 0.920 0.760 0.595 0.811 0.784 0.932
1T 0.904 0.735 0.783 0.598 0.690 0.724 0.782
Environmental eng. 0.957 0.739 0.855 0.652 0.797 0.754 0.928
Energy eng. 0.953 0.802 0.791 0.628 0.826 0.767 0.872
Electrical eng. 0.877 0.816 0.825 0.609 0.722 0.704 0.800
Programming 1.000 0913 0.826 0.667 0.611 0.556 0.722
Civil eng. 1.000 0.769 0.923 0.750 0.750 0.750 1.000
Chemical eng. 0.714 0.571 0.571 0.429 0.714 0.714 0.571
Al 0.931 0.984 0.817 0.474 0.420 0.355 0.330
Agricultural eng. 1.000 0.867 0.800 0.705 0.864 0.795 0.932
Aerospace eng. 1.000 0.833 1.000 1.000 0.833 0.833 1.000
Science

Statistics 0.879 0.803 0.803 0.452 0.563 0.600 0.622
Physics 0.892 0.800 0.842 0.549 0.689 0.705 0.713
Mathematics 0918 0.956 0.872 0.756 0.717 0.587 0.711
Life science 0.965 0.798 0.781 0.565 0.809 0.678 0.904
Geology 0.990 0.816 0.776 0.688 0.792 0.656 0.885
Earth science 0.979 0.798 0.840 0.692 0.788 0.779 0.942
Chemistry 0.863 0.814 0.762 0.510 0.650 0.697 0.720
Biology 0.959 0.730 0.818 0.533 0.767 0.769 0.835
Atmospheric science 0.990 0.753 0.753 0.739 0.783 0.641 0.935
Astronomy 0.965 0.843 0.843 0.704 0.835 0.809 0.852
HASS

Welfare 0.896 0.722 0.729 0.576 0.654 0.737 0.797
Trade 0.944 0.807 0.800 0.494 0.811 0.767 0.856
Cognitive studies 0.620 0.524 0.481 0.500 0.580 0.662 0.629
Religion 0912 0.877 0.895 0.724 0.914 0.860 0.948
Politics 0.909 0.759 0.693 0.635 0.767 0.767 0.872
Philosophy 0.875 0.664 0.632 0.455 0.711 0.623 0.651
Media 0.857 0.864 0.759 0.667 0.889 0.778 0.722
Literature 0.950 0.850 0.850 0.684 0.950 0.750 0.950
Law 0.750 0.596 0.610 0.294 0.540 0.518 0.679
Language 0.736 0.548 0.518 0.420 0.526 0.519 0.504
History 0.911 0.864 0.578 0.463 0.786 0.857 0.881
Geography 0911 0.804 0.804 0.628 0.773 0.886 0.818
Education 0.957 0.793 0.793 0.580 0.795 0.652 0.848
Economics 0.893 0.809 0.695 0.574 0.597 0.713 0.752
Administration 0.899 0.797 0.732 0.551 0.819 0.819 0.841
Social Intelligence

Value 0.699 0.890 0.788 0.653 0.599 0.857 0.619
Norms 0.816 0.658 0.605 0.516 0.613 0.581 0.710
Commonsense 0.837 0.765 0.749 0.871 0.877 0.856 0.837
Bias 0.000 1.000 0.333 0.349 0.333 0.324 0.288
Culture

Work life 0.778 0.667 0.704 0.600 0.720 0.700 0.720
Tradition 0.833 0.881 0.950 0.618 0.806 0.800 0.784
Housing 1.000 1.000 0.750 1.000 1.000 0.750 0.750
Food 0.534 0.479 0.479 0.360 0.553 0.675 0.456
Family 0913 0.739 0.609 0.591 0.659 0.705 0.818
Daily life 0.600 0.521 0.475 0.355 0.590 0.676 0.532
Clothing 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Holiday 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Arts % Sports

Sports 0.781 0.578 0.453 0.714 0.929 0.786 0.857
Sculpture 1.000 1.000 1.000 0.500 1.000 0.500 1.000
Photography 1.000 0.600 0.800 0.400 0.400 0.800 0.800
Performing 0.846 0.846 0.769 0.673 0.654 0.808 0.846
Painting 1.000 0.600 0.900 0.600 0.900 0.700 1.000
Music 1.000 1.000 0.800 0.900 0.900 0.900 0.800
Festivals 0.500 1.000 1.000 1.000 0.500 1.000 0.500
Fashion 1.000 0.800 1.000 0.800 0.800 0.600 0.600
Architecture 1.000 0.857 0.714 0.429 1.000 0.571 1.000
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Table 13: Results of all models across fine-grained categories (Korean)

Subject gpt-4.1 claude-3.7-sonnet gemini-2.0 gemma-3-27b DeepSeek-R1-32B Llama-3.3-70B Mistral-24B
Tech
Urban eng. 0.552 0.634 0.559 0.504 0.507 0.543 0.468
Nuclear eng. 0.676 0.647 0.618 0.676 0.559 0.588 0.588
Marine eng. 0.688 0.826 0.625 0.569 0.521 0.611 0.569
Biomedical eng. 0.838 0.805 0.409 0.727 0.507 0.767 0.713
Mechanics 0.661 0.709 0.563 0.537 0.495 0.487 0.420
Materials eng. 0.720 0.820 0.560 0.608 0.510 0.619 0.608
1T 0.854 0.877 0.667 0.727 0.756 0.803 0.742
Environmental eng. 0.591 0.649 0.480 0.456 0.427 0.462 0.368
Energy eng. 0.587 0.674 0.551 0.507 0.457 0.457 0.399
Electrical eng. 0.688 0.778 0.646 0.549 0.535 0.549 0.500
Programming 0.667 0.722 0.667 0.667 0.667 0.667 0.833
Civil eng. 0.517 0.669 0.530 0.503 0.391 0.497 0.430
Chemical eng. 0.711 0.809 0.641 0.596 0.539 0.574 0.560
Al 0.861 0.829 0.676 0.694 0.618 0.657 0.703
Agricultural eng. 0.605 0.605 0.539 0.464 0.386 0.506 0.428
Aerospace eng. 0.757 0.786 0.579 0.621 0.564 0.629 0.579
Science
Statistics 0.813 0.813 0.571 0.571 0.582 0.549 0.615
Physics 0.826 0.870 0.644 0.626 0.595 0.603 0.542
Mathematics 0.842 0.889 0.848 0.385 0.487 0.359 0.359
Life science 0.783 0.783 0.635 0.635 0.609 0.739 0.635
Geology 0.755 0.765 0.627 0.608 0.422 0.618 0.510
Earth science 0.701 0.769 0.627 0.604 0.552 0.575 0.575
Chemistry 0.760 0.829 0.643 0.574 0.612 0.643 0.512
Biology 0.852 0.875 0.586 0.766 0.664 0.742 0.711
Atmospheric science 0.719 0.688 0.625 0.531 0.531 0.656 0.563
Astronomy 1.000 1.000 1.000 0.900 1.000 1.000 0.800
HASS
Welfare 0.783 0.745 0.516 0.755 0.742 0.724 0.705
Trade 0.856 0.767 0.658 0.752 0.752 0.766 0.731
Religion 0.846 0.860 0.714 0.805 0.706 0.812 0.856
Psychology 1.000 1.000 1.000 1.000 0.000 1.000 0.000
Politics 0.806 0.858 0.714 0.717 0.634 0.667 0.703
Philosophy 0.843 0.897 0.715 0.791 0.718 0.757 0.757
Media 0.942 0.928 0.897 0.877 0.755 0.876 0.877
Literature 0.836 0914 0.760 0.700 0.739 0.798 0.800
Law 0.604 0.555 0.463 0.510 0.416 0.544 0.530
Language 0.807 0.906 0.763 0.648 0.685 0.750 0.705
History 0.775 0.794 0.691 0.622 0.526 0.603 0.570
Geography 0.711 0.778 0.698 0.594 0.522 0.631 0.597
Education 0.732 0.816 0.586 0.701 0.603 0.755 0.660
Economics 0.814 0.820 0.606 0.704 0.701 0.692 0.656
Administration 0.731 0.766 0.598 0.691 0.635 0.711 0.675
Social Intelligence
Value 0.848 0.879 0.697 0.818 0.818 0.788 0.758
Norms 0.884 0.881 0.881 0.881 0.810 0.721 0.762
Commonsense 0.835 0.873 0.822 0.718 0.757 0.748 0.767
Bias 0.993 0.966 0.951 1.000 1.000 0.846 1.000
Culture
Work life 0.926 0.926 0.826 0.921 0.768 0.921 0.921
Tradition 0.962 0.960 0.858 0.917 0.819 0.900 0911
Leisure 1.000 1.000 1.000 0.500 0.500 1.000 0.500
Housing 0.824 0.824 0.647 0.735 0.676 0.676 0.676
Food 0.850 0.923 0.769 0.744 0.684 0.789 0.821
Family 0.826 0.792 0.696 0.652 0.818 0.864 0.800
Daily life 0.837 0.837 0.823 0.751 0.682 0.738 0.764
Clothing 0.793 0.793 0.690 0.621 0.655 0.759 0.655
Holiday 0.643 0.602 0.602 0.620 0.616 0.674 0.654
Arts & Sports
Sports 0.960 0.960 0.818 0.960 0.917 0.913 0.864
Sculpture 0.923 0.833 0.833 1.000 0.727 0.917 0.833
Photography 0.800 0.855 0.655 0.768 0.600 0.667 0.655
Performing 0.950 0.950 0.911 0.930 0.752 0.884 0918
Painting 0.931 0.932 0.833 0.896 0.794 0.837 0918
Music 0912 0.971 0.758 0.909 0.667 0.879 0.909
Festivals 0.941 1.000 1.000 0.941 0.882 0.813 0.941
Fashion 0.626 0.626 0.524 0.565 0.490 0.571 0.456
Architecture 0.745 0.778 0.641 0.711 0.658 0.664 0.618
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1151 Tables[I4]and [T3] details the accuracy of 14 open LLMs across four different sampling strategies in
1152 English and Korean, respectively.

1153 Table[I6] details the accuracy of 14 open LLMs evaluated by the customized BENCHHUB in five
1154  different scenarios.

Table 14: Evaluation results of 14 open LLMs in English across four different sampling strategies

Model Random  Stratified Chatbot Arena  MixEval
Qwen?2.5-72B-Instruct 0.688 0.694 0.680 0.661
Qwen3-1.7B 0.810 0.833 0.811 0.798
Qwen3-14B 0.729 0.763 0.737 0.723
Qwen3-32B 0.817 0.852 0.816 0.789
Qwen3-4B 0.784 0.845 0.788 0.779
Qwen3-8B 0.734 0.779 0.733 0.729
DeepSeek-R1-Distill-Qwen-14B 0.743 0.778 0.747 0.730
DeepSeek-R1-Distill-Qwen-32B 0.717 0.748 0.721 0.704
gemma-3-1b-it 0.874 0.962 0.888 0.870
gemma-3-27b-it 0.702 0.707 0.690 0.677
gemma-3-4b-it 0.746 0.799 0.755 0.743
Llama-3.1-8B-instruct 0.732 0.749 0.726 0.707
Llama-3.3-70B-Instruct 0.704 0.733 0.712 0.689
Mistral-Small-24B-Instruct-2501 0.696 0.713 0.696 0.686

Table 15: Evaluation results of 14 open LLMs in Korean across four different sampling strategies

Model Random  Stratified Chatbot Arena  MixEval
Qwen?2.5-72B-Instruct 0.697 0.708 0.723 0.692
Qwen3-1.7B 0.453 0.492 0.478 0.486
Qwen3-14B 0.360 0.376 0.363 0.371
Qwen3-32B 0.605 0.613 0.618 0.609
Qwen3-4B 0.370 0.444 0.383 0.406
Qwen3-8B 0.597 0.623 0.617 0.625
DeepSeek-R1-Distill-Qwen-14B 0.613 0.613 0.615 0.606
DeepSeek-R1-Distill-Qwen-32B 0.612 0.635 0.638 0.623
gemma-3-1b-it 0.466 0.474 0.469 0.468
gemma-3-27b-it 0.661 0.666 0.665 0.649
gemma-3-4b-it 0.507 0.533 0.510 0.519
Llama-3.1-8B-instruct 0.531 0.562 0.547 0.541
Llama-3.3-70B-Instruct 0.671 0.674 0.683 0.666
Mistral-Small-24B-Instruct-2501 0.624 0.647 0.646 0.630

Table 16: Evaluation results of 14 open LLMs using customized BENCHHUB across five use cases

Model (a) (b) () (d) (e)

Qwen2.5-72B-Instruct 0.604 0.657 0.658 0.595 0.670
Qwen3-1.7B 0.711 0477 0.703 0.383 0.624
Qwen3-4B 0.667 0.420 0.556 0.300 0.599
Qwen3-8B 0.629 0.568 0.718 0430 0.665
Qwen3-14B 0.642 0429 0531 0.316 0.499
Qwen3-32B 0.798 0.523 0.663 0.529 0.648

DeepSeek-R1-Distill-Qwen-14B ~ 0.657 0.554 0.653 0.479 0.647
DeepSeek-R1-Distill-Qwen-32B  0.626  0.609 0.654 0.488 0.660

Llama-3.1-8B-Instruct 0.650 0.581 0.602 0.393 0.627
Llama-3.3-70B-Instruct 0.651 0.612 0.637 0.562 0.659
Mistral-Small-24B-Instruct-2501  0.619  0.632  0.661 0.523  0.660
gemma-3-1b-it 0.762 0465 0.704 0.364 0.551
gemma-3-4b-it 0.632 0.529 0.641 0.391 0.632
gemma-3-27b-it 0.611 0.614 0.651 0.582 0.664

39



	Introduction
	Existing LLM Evaluation Benchmarks are Skewed
	BenchHub
	Taxonomy
	Datasets
	Automated and Dynamic Expansion
	Interactive Platform and Utilities
	Multilingual Extension of BenchHub

	Evaluation Results using BenchHub
	Evaluation of LLMs across diverse subjects
	Impact of Category Distribution on Model Ranking

	Adapting BenchHub for Evaluating Real-World Application
	Related Work
	Conclusion
	Limitations
	Interactive Platform and Utilities
	BenchHub Web Interface
	BenchHub Code Utilities
	Dataset Loader
	Citation Report Generator


	List of Datasets Used
	Taxonomy Details
	Problem Type
	Skill
	Target
	Subject

	Implementation of BenchHub
	Automated Categorization Process
	Training Categorizer for English and Korean Language

	Reliability of Automated Categorization
	Influence of Categorization Accuracy on Model Evaluation
	Enhancing Categorization Robustness

	Experimental Setups
	License
	Instructions and System Prompts

	Multilingual Expansion of BenchHub
	Multilingual Categorizer
	Multilingual Dataset

	Customized BenchHub
	Experimental Results

