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Abstract

Learning policies for Ad Hoc Teamwork (AHT) is challenging. Most standard
methods choose a specific distribution over training partners, which is assumed to
mirror the distribution over partners after deployment. Moreover, they offer limited
guarantees over worst-case performance. To tackle the issue, we propose using a
worst-case prior distribution by adapting ideas from minimax-Bayes analysis to
AHT. We thereby explicitly account for our uncertainty about the partners at test
time. Extensive experiments, including evaluations on coordination tasks from the
Melting Pot suite, show our method’s superior robustness compared to self-play,
fictitious play, and best response learning w.r.t. policy populations. This highlights
the importance of selecting an appropriate training distribution over teammates to
achieve robustness in AHT.

1 Introduction

Domain generalisation is often crucial in Reinforcement Learning (RL) and is typically assessed by
placing an agent in novel environments (Cobbe et al., 2019). Likewise, in Multi-Agent Reinforcement
Learning (MARL), generalisation to new agents can be evaluated by pairing a trained policy with
unseen actors (Barrett et al., 2011; Hu et al., 2020; Leibo et al., 2021; Agapiou et al., 2023). While
zero-shot domain adaptation is a valuable property (Higgins et al., 2017; Schäfer, 2022), it is equally
important to ensure proper transfer to new behaviours in multi-agent settings, especially in situations
where undesired interactions may arise (Gleave et al., 2019). More specifically, Ad Hoc Teamwork
(AHT) occurs when multiple agents, initially unfamiliar with each other, must collaborate to achieve
a common goal. In a world where autonomous agents are being progressively introduced in such
tasks, cooperation with humans is becoming a major concern (Stone et al., 2010; Ji et al., 2023).

Efforts in AHT have primarily focused on learning and inferring models of teammates’ behaviours
(Barrett et al., 2011; Albrecht et al., 2015; Barrett et al., 2017; Chen et al., 2020; Muglich et al., 2022b),
adapting to behaviour shifts (Ravula et al., 2019), and enhancing generalisation by encouraging
diversity in partners during training (Jaderberg et al., 2019; Hu et al., 2020; Charakorn et al., 2020;
Lupu et al., 2021; Strouse et al., 2021). However, these methods provide limited guarantees regarding
worst-case AHT performance.

A multi-agent system can encompass numerous and diverse scenarios, each characterised by its
actors. For example, autonomous cars operate alongside various human drivers and other autonomous
vehicles. Similarly, in a surgical setting, a robot may need to cooperate with surgeons who have a
wide range of habits and expertise levels. In each of these scenarios, we can adopt the perspective that
the focal actors are controlled by the learner, whereas the other actors are viewed as fixed, forming
the background of the task (Leibo et al., 2021; Agapiou et al., 2023). These scenarios can be viewed
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as distinct single-agent environments, as each combination of background actors induces different
transition dynamics and reward functions. A common practice involves constructing representative
scenarios and training a policy on a uniform distribution over them (Strouse et al., 2021; Lupu et al.,
2021). However, this only ensures good performance for that specific distribution.

Recent studies in zero-shot domain transfer showed that selecting an appropriate prior over training
environments is key to learning robust policies (Pinto et al., 2017; Dennis et al., 2020; Garcin et al.,
2023; Jiang et al., 2021; Buening et al., 2023). Intuitively, this insight should apply to the AHT
setting as well, suggesting that choosing a specific prior over scenarios/partners may improve the
robustness of learned policies. Assuming that no information is available about the teammates at test
time (and their distribution), we consider the worst possible prior over the set of partners given our
policy, an idea adopted from the minimax-Bayes concept (Berger, 1985).

Contributions. We make the following contributions:

1. We adapt Minimax-Bayes Reinforcement Learning (MBRL) (Buening et al., 2023) to the AHT
setting, reasoning about uncertainty with respect to partners rather than environments (Section 4).

2. We examine the advantages of using utility and regret to measure performance in the AHT setting,
and propose algorithms to target either metric (Section 5).

3. We adapt a Gradient Descent-Ascent (GDA) (Lin et al., 2020) based algorithm, in conjunction with
policy-gradient methods, and discuss its convergence guarantees for softmax policies (Section 6).

4. We conduct extensive experiments to evaluate our approach. We test learned policies on both seen
and held-out scenarios for various cooperative problems, including partially observable games
such as environments from the Melting Pot suite (Leibo et al., 2021; Agapiou et al., 2023). We
compare our approach against Self-Play (SP), Fictitious Play (FP)(Brown, 1951; Heinrich et al.,
2015) as well as learning a policy on a fixed uniform distribution over scenarios (Lupu et al.,
2021), which is closely related to Fictitious Co-Play (FCP) (Strouse et al., 2021), as both learn the
best response to population of policies (Section 7).

5. Our results confirm the theory and empirically demonstrate that our approach leads to the most
robust solutions for both simple and deep RL coordination tasks, even when teammates are
adaptive. This highlights the importance of choosing an appropriate distribution over training
scenarios to develop policies that better transfer to new teammates.

2 Related Work

Ad Hoc Teamwork. In AHT, we are interested in developing agents capable of cooperating with
other unfamiliar agents without any form of prior coordination (Rovatsos and Wolf, 2002; Stone et al.,
2010; Barrett et al., 2011, 2017). Popular approaches usually involve some form of Population Play
(PP), where policies forming a population are learning by interacting with each other (Lupu et al.,
2021; Muglich et al., 2022a; Leibo et al., 2021; Agapiou et al., 2023). Key strategies for ensuring
generalisation to new partners include promoting policy diversity within the training population
(Charakorn et al., 2020) and preventing overfitting to training partners (Lanctot et al., 2017). Both
Lupu et al. (2021) and Strouse et al. (2021) previously showed that learning a best response to a more
diverse population leads to improved generalisation. Additionally, Jaderberg et al. (2019) showed the
effectiveness of PP when diversity is encouraged through evolving pseudo-rewards. However, PP still
struggles with producing policies that are robustly collaborative with new partners and sometimes
exhibits overfitting (Carroll et al., 2019; Leibo et al., 2021; Agapiou et al., 2023).

To push the boundaries of AHT further, many studies use inference on teammate models to maintain
a belief about ad hoc partners based on previous interactions within an episode (Barrett et al., 2011;
Albrecht et al., 2015). Efforts have also been made to improve the learning and generalisation of such
models to new partners (Barrett and Stone, 2015; Barrett et al., 2017; Muglich et al., 2022b).

An alternative approach proposed by Li et al. (2019) involves a robust formulation of deep determin-
istic policy gradients, assuming worst-case teammates. Unlike our setup, they train a joint policy that
remains consistent throughout learning, and design their algorithm specifically for deep deterministic
policy gradients, while our approach is compatible with any policy-gradient algorithm.

Even though the aforementioned methods attempt at improving cooperative robustness, they always
assume specific distributions for the partners. Jaderberg et al. (2019) used a distribution favoring the
matchmaking of policies of similar levels under the intuition that the reward signal is stronger in
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those cases, it does not provide any insights on its eventual effects on AHT robustness. As such, the
actual impact of training partner distribution on robustness is left under-explored and represents a
component that can be further exploited in conjunction with other AHT mechanisms.

Zero-shot Domain Transfer. Robustness to unknown partners can be seen as a form of zero-shot
domain transfer. Each possible team composition involving the agent of interest can be considered
a different environment. In the single agent setting, Jiang et al. (2021) demonstrated that adapting
the training environment distribution by prioritising environments with higher prediction loss (a
measure of the policy’s lack of knowledge) leads to improved sample efficiency and generalisation.
Building on this idea, Garcin et al. (2023) prioritised environments where the mutual information
between the learning policy’s internal representation and the environment identity was lower, using
information theory to achieve similar results. The idea of tempering with the environment distribution
was also explored by Pinto et al. (2017), who employed a maximin utility formulation to choose
continuous adversarial environment perturbations throughout learning. Instead of utility, Dennis
et al. (2020) stressed the advantages of using regret by proposing a training environment sampling
scheme avoiding entirely unsolvable and uninformative environments. Most interestingly, Buening
et al. (2023) conducted a study over worst-case priors (for both utility and regret) over training
environments, and proved that worst-case distributions are a good fit for domain transfer. Finally,
there exist works on domain transfer in the MARL setting (Schäfer, 2022), but this differs from
our focus on transferring to new partners. This related work is consistently in favor of caring about
environment distributions for robustness, providing strong motivation to bring this concern to AHT.

3 Problem Formulation

3.1 Preliminaries

An m-player Partially Observable Markov Game (POMG) is given by a tuple µ =
⟨S,X ,A,O, P, ρ, T ⟩ defined on finite sets of states S, observations X and actions A. The ob-
servation function O : S × {1, . . . ,m} → X provides a state space view for each player. In each
state, each player i chooses an action ai ∈ A. Following their joint action a = (a1, . . . , am) ∈ Am,
the state is updated according to the transition function P : S × Am → ∆(S). After a transition,
each player receives a reward defined by ρ : S × Am × {1, . . . ,m} → R. The game ends after T
transitions. Permuting player indices does not have any effect on µ.

A policy π : X ×A×X ×A× · · · × X → ∆(S) is a probability distribution over a single agent’s
actions, conditioned on that agent’s history of observations and actions. We denote Π the set of all
policies and ΠD ⊂ Π the set of deterministic policies.

3.2 Scenarios

Let a scenario σc
b be defined by its number of focal players c, and its background players πb =

(πb
1, . . . , π

b
m−c) ∈ Πm−c. We say we deploy a policy πf in scenario σc

b if the c focal players are set
to copies of πf . Hence, in addition to the m − c many background policies πb, there are c many
focal policies πf = (πf , . . . , πf ). We sometimes use σ as a shorthand notation for σc

b for simplicity.
We also denote af ∈ Ac and ab ∈ Am−c the joint actions of the focal and background players,
respectively. A background population B ⊂ Π is a finite set of policies, to which we assign a set of
scenarios:

Σ(B) ∆
= {σc

b | 1 < c ≤ m,πb ∈ Bm−c}.
A scenario σc

b on µ can be viewed as its own c-player POMG, through the marginalisation of the
policies of its background players.1 We denote µ(σ) = ⟨S,X ,A,Oσ, Pσ, ρσ, γ, T ⟩ the POMG
induced by scenario σ, where Oσ : S × {1, . . . , c} → X is the corresponding observation function,
Pσ : S ×Ac → ∆(S) the transition function given by

Pσ(s
′ | s,af ) =

{
P (s′ | s,af ), c = m∑

ab

(
P (s′ | s,af ,ab)

∏
i π

b
i (a

b
i | hi)

)
, c < m

1Each scenario can be seen as a decentralized partially observable Markov decision process (Oliehoek, 2012)
constrained by the fact that the c players are copies.
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and ρσ : S ×Ac × {1, . . . , c} → R the induced reward function with:

ρσ(s,a
f , i) =

{
ρ(s,af , i), c = m∑

ab

(
ρ(s,af ,ab, i)

∏
i π

b
i (a

b
i |hi)

)
, c < m

where hi is the history of observations and actions of the i-th policy and abi its action in ab. We denote
the scenario that only involves copies of the focal policy, i.e. the universalisation scenario (Leibo
et al., 2021), by σSP = σm

∅ .

3.3 Evaluation

The expected utility of a policy in scenario σ is the mean return of the focal policies given by the
expected focal-per-capita return (Leibo et al., 2021; Agapiou et al., 2023):

U(π, σ)
∆
=

T∑
t=1

1

c

c∑
i=1

Eπ
µ(σ)[ρσ(st,a

f
t , i)]. (1)

U∗(σ)
∆
= maxπ∈Π U(π, σ) denotes the maximal utility achievable in scenario σ. This definition for

utility represents the need for autonomous agents to always maximise the mean joint rewards of its
copies, regardless of the scenario. We can further define the notion of regret incurred by deploying
some policy π on scenario σ, as the gap between the maximal utility and the utility of π on σ:

R(π, σ)
∆
= U∗(σ)− U(π, σ). (2)

To assess a learning method in terms of AHT, we use the evaluation protocol of Leibo et al. (2021).
This has two phases:

1. Training phase: A test background population Btest is kept hidden. The policy learner has access
to the game µ with no restriction, beside accessing Btest. For example, the learner is free to use a
modified instance µ′ of µ, where O could be changed to include observations of other players, or
again where ρ could be tweaked to return the joint rewards rather than individual rewards.

2. Testing phase: The obtained policy is frozen and cannot be trained any further. We compute the
performance of the policy on µ by taking its average expected utility across a series of held-out
test scenarios Σtest ⊂ Σ(Btest). In addition to performance, we consider two metrics related to
robustness, worst-case utility and worst-case regret:

p(π,Σ) =
1

|Σ|
∑
σ∈Σ

U(π, σ), U−(π,Σ) = min
σ∈Σ

U(π, σ), R+(π,Σ) = max
σ∈Σ

R(π, σ). (3)

Maximising U− is typically preferable when falling below a certain utility threshold must be
avoided at all costs; for instance minimising casualties in a surgical context. Conversely, minimis-
ing R+ avoids decisions that lead to significantly worse outcomes than the best-case.

The end objective is to design a learning process outputting a policy that reliably maximises its
expected utility (focal-per-capita return) on possibly unseen scenarios.

3.4 Assumptions

To ensure our setting aligns with the AHT literature, we must adhere to three assumptions (Mirsky
et al., 2022): a) the absence of prior coordination. The learner must be capable of cooperating with
the team on-the-fly, without relying on previously established collaboration strategies, even between
copies of the learner’s agent. b) There is no control over teammates, the learner can control its
own copies but not other agents in the configuration. c) All agents are assumed to share a common
objective. Nonetheless, their reward function may be different, reflecting varying preferences. In
this work, we choose to address this last point by assuming a class of possible reward functions for
the background players. In an attempt to model realistic situations, we formalise this diversity by
considering various levels of prosociality λ (Peysakhovich and Lerer, 2017) and risk-aversion δ for
each policy. To illustrate with an example, in a setting where company coworkers have to realise a
project, there might be workers that have a high preference over their own contribution (with a better
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chance to get promoted later), while there may be others that are inclined to delegate their work for
things they are unsure about to the team:

ρsocial+risk(s,a, i) = ρ+social(s,a, i)− δiρ
−
social(s,a, i),

with ρsocial defined as

ρsocial(s,a, i) = λiρ(s,a, i) + (1− λi)

m∑
j=1

ρ(s,a, j),

where f+ and f− are the positive and negative parts of f , and (λi, δi) are the levels of prosociality
and risk-aversion for agent i. Combining values of prosociality and risk-aversion allows for the
consideration of behaviours with a wide range of preferences.

4 Achieving Robust AHT

To learn a policy able to cooperate with new partners, a straightforward idea is to reconstruct scenarios
that would likely be encountered in nature. A roadblock to this approach however is that it requires
two main ingredients: a) a diverse pool of partners, and b) a prior distribution over them. The prior,
often neglected, is important as it captures our uncertainty about the true partners observed in nature.

In Section 4.1, we reflect on motivating previous work on diverse behaviour generation, before
describing our own adopted approach. Section 4.2 then introduces the Minimax-Bayes idea to AHT,
by stating the existing connections of the setting with MBRL’s.

4.1 Constructing Training Scenarios

Prior to learning any robust policy, we need to construct diverse scenarios. A background population
that encompasses a wide range of behaviours is needed. Previous work on AHT tackled the issue
in various manners, such as using genetic algorithms (Muglich et al., 2022b), rule-based policies
generated with MAP Elites (Canaan et al., 2023), SP policies (Strouse et al., 2021), explicit behavior
diversification through regularisation (Lupu et al., 2021), or through evolved pseudo-rewards (Jader-
berg et al., 2019). Based on real-life examples and aiming to thoroughly assess the effects of partner
priors, we adopt the following approach:

• Each background policy has unique preferences (λi, δi).
• Policies are organized into sub-populations B =

⋃
k Bk of varying sizes, simulating different

communities.
• Each sub-populations are separately trained using PP. Given the diverse preferences and varying

sizes of these sub-populations, distinct habits, common practices, and established conventions will
emerge within each group, effectively mimicking various cultures.

This choice for constructing scenarios is rather arbitrary and is not the main focus of our work.
Nevertheless, a rigorous generation procedure is important to bring forward the effects of various
scenario priors on AHT robustness.

4.2 Minimax-Bayes AHT

In the standard single-agent Bayesian RL setting, the learner selects a subjective belief β over
candidate Markov Decision Processes (MDPs) M for the unknown, true environment µ∗ ∈ M.
The learner’s objective is to maximise its expected expected utility with respect to the chosen prior
U(π, β) =

∫
M U(π, µ) dβ(µ), i.e. finding the Bayes-optimal policy. In MBRL, Buening et al. (2023)

proposed considering the worst possible prior for the agent, without knowledge of the policy that
will be chosen. This approach can be interpreted as nature playing the minimising player against the
policy learner in a simultaneous-move zero-sum normal-form game. Learning against a worst-case
prior intuitively makes the learner more robust, as it prepares for the worst outcomes.

To transfer this idea to our setting, we remark that any finite population B provides a finite set of
POMGs MB = {µ(σ)|σ ∈ Σ(B)}. The difference here is the use of POMGs rather than MDPs. We
extend the notion of expected utility with respect to a prior over scenarios, i.e. when β ∈ ∆(Σ(B)):

U(π, β)
∆
= Eσ∼β [U(π, σ)] =

∑
σ

U(π, σ)β(σ).
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Figure 1: Comprehensive illustration of the framework used in this paper. Prior to training the
focal policy π, background policies with different preferences (λi, δi) learn by interacting within
sub-populations of varying sizes. These sub-populations are then combined to form a background
population, Btrain, used as a common ‘train dataset’ for all algorithms.
Our primary focus is on the training phase, where the main policy π is learned alongside the
distribution β over scenarios. These scenarios mix copies of π with policies from Btrain, where the
self-play scenario σSP has the policy interacting only with copies of itself.

This allows us to formulate the following maximin game:

max
π∈Π

min
β∈∆(Σ(B))

U(π, β). (4)

Similarly to Buening et al. (2023), we are interested in knowing whether such a game has a solution
(i.e., a value), assuming that nature and the agent play simultaneously without knowledge of each
other’s move. This is relevant in our setting because the policy learner does not know the true
distribution of partners available in nature, while the effective nature’s distribution of scenarios should
not depend on the agent’s policy. Fortunately, (4) has a value when B is finite.

Corollary 1. For an m-player POMG µ in a finite state-action space, with a known reward function
and a finite horizon, and a finite background population B, the maximin game (4) has a value:

max
π∈Π

min
β∈∆(Σ(B))

U(π, β) = min
β∈∆(Σ(B))

max
π∈Π

U(π, β). (5)

Proof. First, observe that for any stochastic policy π ∈ Π, there exists a distribution over deterministic
policies ϕ ∈ ∆(ΠD) such that π(at|ht) =

∑
d∈ΠD d(at|ht)ϕ(d). Consequently, we can rewrite the

utility as U(π, β) =
∑

d∈ΠD

∑
σ∈Σ(B) U(d, σ)ϕ(d)β(σ). This demonstrates that U is bilinear in ϕ

and β, which allows us to apply the minimax theorem, thus proving the result.

Importantly, prior work that chooses an arbitrarily fixed prior is limited in terms of robustness
guarantees: it only ensures maximal utility for their specific prior. In contrast, a policy π∗

U solving
the maximin utility problem (4) has its expected utility lower-bounded on Σ(B):

∀β ∈ ∆(Σ(B)), U(π∗
U , β) ≥ U(π∗

U , β
∗
U ), (6)

where β∗
U is the worst-case prior for π∗

U . Simply put, π∗
U performs the worst when the prior is its

worst-case β∗
U , but can only improve when the prior deviates from β∗

U . Additionally, it is also optimal
on the worst-case prior:

∀π ∈ Π, U(π∗
U , β

∗
U ) ≥ U(π, β∗

U ). (7)

Note that is is entirely different from the best response to the fixed worst-case prior
argmaxπ U(π, β∗

U ), which once again, only has a guaranteed optimal utility on β∗
U .
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5 Utility or Regret?

Optimising for the worst-case utility (4) might be problematic. Nature could resort to only picking
scenarios where the focal players achieve the worst possible score. Then, the prior trivially minimises
utility for any chosen policy. Buening et al. (2023) addresses this issue by instead considering the
regret of a policy. The difference is that ‘impossible’ scenarios will always yield zero regret for any
policy, thus becoming irrelevant for a regret-maximising nature. Letting L(π, β)

∆
=

∑
σ R(π, µ)β(σ)

be the Bayesian regret with respect to a prior β, we now formulate the following minimax regret
game:

min
π∈Π

max
β∈∆(Σ(B))

L(π, β). (8)

One can also prove that this above game has a value. Additionally, a solution (π∗
R, β

∗
R) solving (8)

has similar properties to (6) and (7) with respect to regret: π∗
R has its Bayesian regret upper bounded

by L(π∗
R, β

∗
R) on Σ(B) and is optimal on β∗

R.

Should utility or regret be used as an objective? Exploiting Regret ensures that scenarios from which
you can learn the most from are sampled more often. It also ensures that degenerate scenarios get
discarded as their regret is always zero. However, it demands the calculation of best responses for
each scenario, which becomes taxing as the number of scenarios or problem complexity grows. To
reduce the computational burden, we can approximate those best responses, or subsample the set of
scenarios. An alternative way is to make use of the utility notion under some additional conditions:

Definition 1 (Non-degenerative population). A background population of policies B ⊂ Π is non-
degenerative ⇐⇒ ∀σ ∈ Σ(B),∃π1, π2 ∈ Π, π1 ̸= π2 and U(π1, σ) ̸= U(π2, σ).

Lemma 1. If a population B is non-degenerative, then ∀σ ∈ Σ(B),∃π ∈ Π, R(π, σ) > 0.

Proof. B is non-degenerative, for any scenario σ ∈ Σ(B) there must exist two policies π1 and π2

such that U(π1, σ) > U(π2, σ). We have by definition U∗(σ) ≥ U(π1, σ), hence R(π2, σ) > 0.

Making the assumption that a background population is non-degenerative is in general realistic for
cooperative tasks. This translates into only considering reasonable behaviors for the background
population, or tasks where teammates cannot completely cancel out the actions of the focal players.
Under the assumption of a non-degenerative population, no distribution can deadlock the policy
learner into a stale scenario. For the remainder of the paper, background populations are assumed to
be non-degenerative.

6 Computing Solutions

We desire to calculate the solution pairs for both the maximin utility (4) and minimax regret (8) games.
Buening et al. (2023) theoretically proved that GDA has convergence guarantees when the game is
played between a policy learned with softmax parameterization and nature learning its distribution
over a finite set of MDPs. These results apply if all scenarios induce single-agent POMGs, as partial
observability does not interfere with proving the required properties. However, when the focal policy
is deployed in a scenario with c > 1 copies, the game is no longer single-agent.

To approximate the reduction of these multi-agent POMGs to single-agent POMGs during training,
we propose using delayed versions πt−d of the focal policy πt for the c− 1 remaining copies. This
common practice smooths the behavior of the copies and favors proper convergence by treating the
copies as fixed policies. An implementation of GDA for our setting is provided in Appendix A.

7 Experiments

The aim of our experiments is to highlight the importance of partner distribution in the learning
process. To achieve this, we evaluate our proposed strategies, Maximin Utility (MU) and Minimax
Regret (MR), on two distinct problems. First, we consider the fully known and observable repeated
Prisoner’s Dilemma to validate the theoretical results. Following this, we test our approaches on
a deep-learning task, the Collaborative Cooking (Overcooked) game (Carroll et al., 2019; Strouse
et al., 2021; Leibo et al., 2021; Agapiou et al., 2023). Throughout our experiments, we benchmark
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Table 1: Scores on the repeated Prisoner’s Dilemma. A higher value is desired for performance (p,
average utility) and worst-case utility (U−), while a lower worst-case regret (R+) is better. p(β)
corresponds to the utility w.r.t. a specific distribution β, rather than the average as in (3).

Σ(Btrain) Σ(Btest)

p p(β∗
U ) p(β∗

R) U− R+ p U− R+

MU 6.82 3.00 8.10 3.00 8.92 8.65 3.08 8.92
MR 9.14 0.92 11.25 0.92 2.11 7.54 0.99 8.45
PBR 10.0 1.96 10.66 1.96 3.00 7.74 1.99 10.46
FP 9.69 0.14 11.89 0.14 2.95 7.10 0.17 10.53
SP 9.69 0.46 11.99 0.46 3.00 7.21 0.47 10.70
TfT 10.0 2.00 11.73 2.00 3.00 7.60 2.01 10.65
CuD 10.0 2.00 11.73 2.00 3.00 7.85 2.01 9.92
Random 8.10 1.50 10.10 1.5 4.5 8.00 2.52 4.5

MU and MR against other distribution management strategies: SP which fixes the prior as the Dirac
distribution βSP(σSP) = 1, FP which is similar to SP but has the versions of the copies sampled
uniformly from the full history of policies π0, . . . , πt, and Population Best-Response (PBR) which
learns the best response to the training background population by maintaining a uniform prior
βPBR = U(Σ(Btrain)). Approaches are consistently evaluated on their training background population,
as well as on a separate test set, in order to evaluate their AHT capabilities.

7.1 Repeated Prisoner’s Dilemma

In these experiments, all computations can be exact. This includes the gradient calculation for the
prior, as well as for the agent’s policies. We focus on the repeated Prisoner’s Dilemma, where two
players play the matrix game repeatedly for T = 3 rounds.

Experimental Setup. In the repeated Prisoner’s Dilemma, players receive and observe rewards based
on their chosen actions: players receive a reward of 1 if both defect, 4 if both cooperate, 5 and 0 if
the first defects while the second cooperates. The game has one state, and the outcomes observed are
enough to determine the joint actions, making it fully observable.

We use softmax, fully adaptive policies, where actions depend on the entire history of observations
and actions. During training, the learner has access to a background population containing a pure
cooperative policy, a pure defective policy, and two popular strategies for the game: Tit-for-Tat (TfT),
which mimics the partner’s previous action and starts with a cooperate action, and Cooperate-until-
Defected (CuD), which defects if any defection was observed in the past, otherwise cooperating. A
separate test population Btest is generated beforehand by randomly sampling 32 stochastic policies.

Results. Table 1 presents scores on the training and test sets. The results on the training set confirm
most expectations: PBR is the best under the uniform prior (p), MU has the highest worst-case utility
(U−), and MR has the lowest worst-case regret (R+). However, MR is not optimal on the worst-case
prior β∗

R, likely due to the approximate self-play. On the test set, the best performance is achieved by
MU, rather than PBR. MU also has the highest worst-case utility. Lastly, the random strategy excels
in terms of worst-case regret on the test set, likely because it avoids fully committing to defecting or
cooperating. Besides the random strategy, MR has the most respectable worst-case regret, closely
followed by MU. These results indicate that learning the best response to populations does not ensure
the best robustness to new partners. We also remark that SP and FP agents seem to overfit to their
own established conventions, resulting in poor transferability to training and test policies.

7.2 Robust Cooperation in Deep RL Tasks

For this section, we tackle the Collaborative Cooking game (Agapiou et al., 2023), where two players
act as chefs in a gridworld kitchen, working together to deliver as many tomato soup dishes as
possible within a set time. To do so, they have to collect tomatoes, cook them, prepare dishes, and
deliver the soup. Successful deliveries reward both players equally. Players must navigate the kitchen,
interact with objects in the right order, and coordinate with each other. Each player has an egocentric,
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Table 2: Scores on the Collaborative Cooking environment training set. The standard error is taken
over three random seeds. The scores are aggregated over kitchen layouts.

Σ(Btrain)

p p(β∗
U ) p(β∗

R) U− R+

MU 266.9± 4.3 23.1± 0.7 24.5± 0.8 225.3± 11.5 266.0± 7.9
MR 232.0± 18.6 19.9± 1.6 20.2± 1.4 144.3± 14.4 230.7± 28.2
PBR 209.7± 23.9 20.0± 1.7 18.4± 3.1 96.8± 13.4 357.6± 16.1
FP 129.9± 13.9 7.9± 0.7 12.0± 1.1 0.2± 0.1 483.5± 16.1
SP 124.8± 26.4 9.4± 2.8 11.8± 3.2 15.7± 10.5 460.8± 21.7
Random 42.8± 0.0 6.7± 0.0 4.2± 0.0 0.0± 0.0 505.4± 0.0

Table 3: Scores on the Collaborative Cooking environment test sets.

Σ(Btest) ΣMelting Pot

p U− R+ p U− R+

MU 195.7± 6.2 66.0± 6.8 266.4± 10.1 273.8± 4.9 224.9± 7.1 118.0± 7.1
MR 172.2± 15.4 65.1± 16.0 248.2± 28.4 206.8± 12.6 148.7± 9.1 187.1± 13.0
PBR 151.4± 19.5 33.6± 5.9 327.1± 14.0 171.8± 21.1 106.3± 9.3 228.1± 5.8
FP 152.2± 16.8 16.7± 11.7 369.7± 19.7 121.5± 15.7 40.7± 16.3 294.8± 10.7
SP 117.4± 12.5 6.7± 3.5 367.5± 11.6 101.2± 17.8 29.0± 17.4 293.4± 14.5
PP-ACB n/a n/a n/a 82.4± 0.0 0.0± 0.0 307.3± 0.0
PP-OPRE n/a n/a n/a 102.3± 0.0 14.6± 0.0 292.7± 0.0
PP-VMPO n/a n/a n/a 78.6± 0.0 36.1± 0.0 306.7± 0.0
Random 32.2± 0.0 0.0± 0.0 445.0± 0.0 60.6± 0.0 0.0± 0.0 307.3± 0.0

partial RGB view of the environment. All of our policies in this section are using deep recurrent
(LSTM) neural networks.

Experimental Setup. Two separate background populations, Btrain and Btest, are generated according
to Section 4.1. Both populations are trained with an identical setup, differing only in their seed. Each
is partitioned into four sub-populations of sizes 2, 3, and 5, totaling 10 policies. Prosociality and
risk-aversion are sampled uniformly in [−0.2, 1.2] and [0.1, 2] respectively. The same populations
are used throughout three random seeds.

For a fair comparison and to focus on scenario distribution learning, we assume that Btrain is readily
available to all approaches, which can be exploited for a maximum of 4× 107 environment steps to
learn a policy with PPO (Schulman et al., 2017). We evaluate the approaches on two different kitchen
layouts: Circuit and Cramped (Agapiou et al., 2023).

Additionally, we assess the learned policies on the Melting Pot benchmark scenarios, comparing them
against the scores of the baselines reported in the original paper (Agapiou et al., 2023): an Actor-Critic
Baseline (ACB), V-MPO (Song et al., 2019), and OPRE (Vezhnevets et al., 2020). Note that these
three baselines were trained through PP without our background policies, for 109 environment steps.

Results. The results in Table 2 and Table 3 clearly show that MU marginally outperforms all other
evaluated methods. Looking at the robustness metrics, MU has the best worst-case utilities (U−) and
the best worst-case regret (R+) on the Melting Pot scenarios. MR also performs better than any other
benchmarked method overall, securing the lowest worst-case regrets on both the training and test sets.
In terms of performance (p), MU and MR are consistently the best and second-best, respectively,
which is particularly notable on the training set where PBR was expected to perform the best.

One hypothesis for MR performing worse than MU globally is that the estimations of the maximal
utilities for training scenarios are too approximate. Another hypothesis for why MU and MR
marginally outperform PBR and other approaches is that the distributions learned during training
have a similar effect to curriculum learning, introducing indirect exploration in behaviours compared
to fixed distributions.
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8 Conclusion

We investigated how to obtain robust adaptive policies in an AHT setting. Leveraging work on
Minimax-Bayes RL, we proposed a method to find worst-case distributions over background popu-
lations, which led to consistently robust policies compared to simply training policies on uniform
distributions. In addition, we have found the unexpected results that these distributional choices
significantly accelerate learning. For future work, we believe that adapting our methods for a partner
distribution-based curriculum-learning could be highly promising. This approach has the potential to
strongly enhance sample efficiency, asymptotic performance, and robustness.
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Appendix

A Algorithms

We provide implementations for solving the minimax regret problem with (Algorithm 1) or without
(Algorithm 2) full knowledge of the game. Updating the belief with the rule

βt+1 = P(βt − ηβ∇βU(πθt , βt)) (9)

solves the maximin utility problem instead.

Algorithm 1 Background-Focal GDA

1: Input set of background policies B, and learning rates (ηπ , ηβ).
2: Initialize randomly the main policy parameters θ0
3: Initialize the belief as the uniform distribution over possible scenarios β0 = U(Σ(B))
4: for t = 0, . . . , N − 1 do
5: Compute U(πθt , σ) for all σ ∈ Σ(B)
6: Compute U(πθt , βt) =

∑
σ U(πθt , σ)βt(σ)

7: Compute R(πθt , σ) = U∗(σ)− U(πθt , σ) for all σ ∈ Σ(B)
8: Obtain L(πθt , βt) =

∑
σ R(πθt , σ)βt(σ)

9: Update belief βt+1 = P(βt + ηβ∇βL(πθt , βt)) (projection onto the simplex)
10: Update policy parameters θt+1 = θt + ηθ∇θU(πθt , βt)
11: end for
12: return θ∗, β∗ uniformly at random from {(θ1, β1), . . . , (θN , βN )}

Algorithm 2 Background-Focal SGDA

1: Input set of background policies B, batch size B, learning rates (ηπ , ηβ)
2: Initialize randomly the main policy parameters θ0
3: Initialize the belief as the uniform distribution over possible scenarios β0 = U(Σ(B))
4: for t = 0, . . . , N − 1 do
5: Sample B scenarios σ1, . . . , σB ∼ βt

6: Estimate Û(πθt , σi) by deploying πθt on σi, for i = 1, . . . , B

7: Compute Û(πθt , βt) =
1

B

∑B
i=1 Û(πθt , σi)

8: Compute R̂(πθt , σi) = U∗(σi)− Û(πθt , σi) for each i = 1, . . . , B

9: Compute L̂(πθt , βt) =
1

B

∑B
i=1 R̂(πθt , σi)

10: Update belief βt+1 = P(βt + ηβ∇βL̂(πθt , βt)) (projection onto the simplex)
11: Update policy parameters θt+1 = θt + ηθ∇θÛ(πθt , βt)
12: end for
13: return θ∗, β∗ uniformly at random from {(θ1, β1), . . . , (θN , βN )}

B Additional experimental results

B.1 Robust Cooperation in Deep RL Tasks

We provide learning curves for the Collaborative Cooking game. For both kitchen layouts, the curves
in Figures 2 and 3 uncover the fact that both the minimax regret and maximin utility formulations
significantly speed up learning. The prior curves provided in Figures 4 and 5, highly smoothed for
interpretability, show how different distributions are learned with utility and regret.
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(a) Performance. (b) Worst-case utility.

Figure 2: Learning curves of the average and worst-case utility metrics over the training set of the
Collaborative Cooking Cramped environment. The standard error is taken over three random seeds.

(a) Performance. (b) Worst-case utility.

Figure 3: Learning curves of the average and worst-case utility metrics over the training set of the
Collaborative Cooking Circuit environment. The standard error is taken over three random seeds.

(a) Maximin Utility. (b) Minimax Regret.

Figure 4: Learning curves of the prior over the training scenarios, for the Collaborative Cooking
Cramped environment. The standard error is taken over three random seeds.
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(a) Maximin Utility. (b) Minimax Regret.

Figure 5: Learning curves of the prior over the training scenarios, for the Collaborative Cooking
Circuit environment. The standard error is taken over three random seeds.

C Additional experimental details

C.1 Robust Cooperation in Deep RL Tasks

To facilitate the training of our policies in Collaborative Cooking, we used a shaping pseudo-reward
of 1 when tomatoes were placed in the cooking pot. For the background policies, we further altered
the reward function to restrict delivery rewards to the player that delivered. Combining this new
reward function with varying levels of prosociality and risk-aversion helped the background policies
adopt diversified ways to solve the game.

The architecture for the agents consisted of a convolutional network with two layers, having 16 and
32 output channels, kernel shapes of 8 and 4, and strides of 8 and 1, respectively. The output of the
convNet was concatenated with the previous action taken before being passed into a dense layer of
size 256 and an LSTM with 256 units. Policy and baseline (for the critic) were produced by linear
layers connected to the output of the LSTM.

We chose PPO to train our policies, using the Adam optimizer with a learning rate of 2 × 10−4,
a discount factor of 0.99, a GAE lambda of 0.95, a KL coefficient of 1.0 with a KL target of
0.01, and a PPO clipping parameter of 0.3. Gradients were clipped at 4.0. We did not employ
entropy regularization. PPO was set to run 2 epochs per batch, each containing 64000 samples, with
minibatches of 1000 samples each. Finally, the unroll length for the LSTM was set at 20.

For the prior, we used a learning rate of 0.4. We also constrained the prior to keep a probability of
5e− 2 to sample a random scenario in order to allow constant exploration.
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