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ABSTRACT

While ML systems for Individual Treatment Effect (ITE) estimation have advanced
healthcare decision-making, conventional methods require substantial amounts
of costly training data for each intervention under consideration. In this work,
we present a novel framework, based on causal transformers, for collaborative
learning of heterogeneous ITE estimators across disparate data sources. Our
approach can be deployed across distributed institutions (such as hospitals) via
Federated Learning, enabling training on a large and diverse dataset (without
sharing sensitive health data), and the same framework can be applied locally when
multiple heterogeneous data sources exist within a single institution, breaking down
data silos. The proposed method is flexible to handle diverse patient populations
and non-identical patient measurements (covariates) across different data sources,
while allowing for the estimation of treatment effects of disparate treatments being
administered across these sources. Moreover, this framework can be utilized to
predict the effects of novel and unseen treatments by utilizing available treatment
level information. Thorough experimental evaluation on real-world clinical trial
and widely-used research datasets demonstrates that our method surpasses existing
baselines. Furthermore, analysis of our model’s attention mechanisms reveals
clinically meaningful disease and treatment-related patterns validated by domain
expertise, demonstrating the interpretability and clinical relevance of our approach.

1 INTRODUCTION

Understanding the impact of an intervention on the outcome, also known as the treatment effect,
is essential for identifying causation and treatment selection in clinical decision-making. Since
interventions often produce different effects on different individuals, determining the extent to which
diverse individuals respond to interventions, known as Individual Treatment Effects (ITE) estimation,
is an important problem. Methodologically, ITE estimation relies on counterfactual analysis, which
predicts the outcomes for individuals who have undergone a treatment (factual) under different
exposure scenarios (counterfactual) that they haven’t actually encountered (Neyman, 1923; Rubin,
2005).

In recent years, several data-driven machine learning approaches have been extensively utilized for
this purpose (Johansson et al., 2016; Shalit et al., 2017; Curth & van der Schaar, 2021a;b; Bica
& van der Schaar, 2022a; Curth & Van Der Schaar, 2023; Guo et al., 2023; Xue et al., 2023).
However, these methods face limitations in practice as estimating individual treatment effects from
a single data source is constrained by insufficient sample sizes per intervention, especially for rare
conditions or treatments. This necessitates leveraging multiple data sources, but since clinical trials
and observational studies are designed and conducted independently, each with distinct research
objectives, inclusion criteria, and measurement protocols, there are significant challenges.

First, when data exists across institutions, privacy regulations and data sharing restrictions prevent
centralization. Federated Learning (FL) (McMahan et al., 2017) offers a potential solution by
enabling organizations to collaborate while maintaining local data privacy. Second, and more
fundamental, is the substantial heterogeneity inherent in multi-source data, whether across institutions
or within a single institution’s disparate systems. This heterogeneity manifests through differences in
patient populations, measurement protocols, variable definitions, and treatment practices, creating
inconsistent feature and treatment spaces. For example, Hospital 1 might administer Treatment A and
collect variables {age, blood pressure, biomarker P} while Hospital 2 uses Treatment B and records
{age, weight, biomarker R}. This heterogeneity creates partially overlapping but fundamentally
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Figure 1: An overview of the setting with N locations, where each location has some overlap with the
other locations in their non-identical feature as well as the treatment space.

incompatible data sources, as illustrated in Figure 1, posing a challenge for conventional FL. Previous
approaches to federated ITE estimation (Vo et al., 2022; Xiong et al., 2023) inadequately address
this complexity, as they predominantly assume identical treatments and feature spaces across data
sources, assumptions that rarely hold in real-world settings. Notably, similar heterogeneity challenges
can also arise within single institutions where legacy systems, departmental divisions, or acquisition
histories have created internal data silos with inconsistent variable definitions and treatment records.

In this work, we propose Federated Transformers for Treatment Effects Estimation (FedTransTEE),
an end-to-end framework for ITE estimation across institutions that addresses the challenges of
heterogeneous feature, treatment, and outcome spaces. FedTransTEE constructs personalized solu-
tions for each institution while leveraging shared data patterns across sites. The framework employs
a transformer-based covariate encoder to learn a common representation space for covariates, ac-
commodating non-identical feature sets across institutions. Intervention embeddings, capturing
intervention-specific features, are learned separately and combined with patient embeddings via a
cross-attention transformer. A personalized predictor then estimates the ITE for interventions unique
to each site. Moreover, by incorporating intervention-specific features or descriptions, the framework
enables generalization to unseen interventions in zero-shot settings, making it capable of reliably
forecasting the effects of newly designed therapies.

To the best of our knowledge, this is the first work that specifically addresses federated treatment
effects estimation across multiple institutions under heterogeneous covariate, treatment, and outcome
spaces. Our key contributions are:

1. We propose FedTransTEE, a novel causal transformer-based framework for ITE estimation
that systematically accommodates heterogeneous covariates, treatments, and outcome spaces,
to enable learning across disparate data sources, whether unifying internal data silos within
a single institution or connecting distributed institutions via federated learning, making a
significant advancement in treatment effect estimation for healthcare.

2. The framework also introduces a zero-shot ITE estimation capability, allowing for the
prediction of treatment effects for previously unseen therapies. This advancement opens
new possibilities for novel therapy evaluation and clinical trial planning.

3. Explainable and actionable insights are provided through attention mechanisms, enabling
interpretable treatment decisions and enhancing trust in clinical applications. These insights
are validated by a domain expert (specialized in stroke), emphasizing their clinical relevance.

4. We validate the framework on several research and real-world clinical trial datasets, demon-
strating its robustness to heterogeneity and superior performance compared to state-of-the-art
baselines. These evaluations highlight the practical utility of FedTransTEE in addressing
complex, real-world challenges in healthcare.

2 BACKGROUND

The ITE estimation problem refers to prediction of the effects of different interventions on individual
subjects. A specific intervention data is denoted as D = (X ,Y, T ), where X encodes the pre-
intervention covariate vectors of the subjects, T encodes the intervention (or treatmment), and Y
denotes the outcome corresponding to the intervention. Without loss of generality, we consider a
K intervention setting, wherein T ∈ {0, 1, . . .K} with T = 0 denoting no intervention and T = j
denoting use of the jth intervention. We use notation Y(0) to record the outcome under placebo or
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Figure 2: The above figure illustrates the FedTransTEE framework, with N site locations on the left;
as depicted, the covariate encoder, the treatment encoder and the cross-attention module are shared
across locations but the predictor is personalised for each location. A detailed view of the model
architecture with specifics of each component is shown on the right side.

standard-of-care intervention and Y(j) to record the outcome under the jth intervention. For each
subject in the population, we only see one of the outcomes associated with the intervention that was
used on the subject. The probability of the intervention assignment or the propensity score is denoted
by π(x, j) = P(T = j|X = x). The Neyman-Rubin (Neyman, 1923; Rubin, 2005) framework for
causal inference suggests designing a separate potential outcome function for each intervention that
can be applied on individual subjects, µj(x) = E(Y|X = x, T = j). These functions are then used
to predict the effect of the treatment j.

The framework operates under three common causal inference assumptions - Stable Unit Treatment
Value Assumption (SUTVA), unconfoundedness, and stochasticity. Under these assumptions, the
ITE of an intervention j is approximated by the Conditional Average Treatment Effect (CATE),
τj(x) = µj(x) − µ0(x). A learning model estimates the CATE by predicting µ̂j(x) and µ̂0(x),
denoted by τ̂j(x) = µ̂j(x)− µ̂0(x). Additional details on assumptions are provided in Appendix B.

Now, consider an FL setting with N clients (institutions or hospitals). Each client m maintains a local
dataset Dm = (Xm,Ym, T m) with nm subjects, dm-dimensional covariates, multiple interventions
T m, and corresponding factual outcomes Ym. The heterogeneity manifests in three critical ways: non-
IID population distributions (P(Xm) ̸= P(X l)), disparate interventions (T m ̸= T l), and different
accessible variables (dm ̸= dl) across clients, while outcomes (Ym) may be identical or different.
While we discuss FL across institutions in this paper, the same technical approach can be applied
within single institutions to unify heterogeneous internal data sources where similar challenges of
non-identical covariates and treatments exist.

3 METHODOLOGY

In this section we present the details of the proposed framework - FedTransTEE. The right side of Fig-
ure 2 shows the workflow of our method used at each site, which includes the following components -
i) the covariate encoder that takes the individual subject (patient) features to create a subject-level
latent representation (embedding), ii) the treatment encoder that encodes the specific intervention
into another latent representation, iii) the cross attention module that models the interaction between
the covariate embedding and the treatment embedding, and iv) a predictor that is used to predict the
outcome of the treatment. This architecture is carefully designed to handle heterogeneity in covariate
and treatment spaces, the need for robust causal relationship modeling and personalization to adapt
local variations while leveraging shared knowledge.

3.1 COVARIATE ENCODER

At different healthcare sites, patient data is recorded using varied protocols, leading to differences in
the types of features collected and how these features are represented. To address this variability, we’ve
designed a covariate encoder that can work with these diverse feature sets for collaboratively learning
across sites. Transformers have exhibited remarkable proficiency in learning representations and
processing inputs of varying lengths, making them well-suited as the core module for representation
learning in the covariate encoder. Each patient covariate vector undergoes processing (discussed in
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next section) to generate a sequence of tokens which is fed through a learnable embedder to convert it
into a sequence of 256-dimensional embeddings. This sequence of embeddings then proceed through
a transformer containing k layers of multi-headed self-attention modules. The entire transformer
module enables the acquisition of an effective patient representation, which is then outputted by the
covariate encoder. The input-processing unit and the transformer module are collectively known as
the covariate encoder and are denoted by ϕ. Below, we specify the particulars of the input processing
and the transformer based representation learning.

Input Processing The input processing module takes in the names and values of each covariate for
every patient along with the specifications indicating whether the information in each covariate is
numerical or categorical and outputs a joint embedded vector (containing the sequence of embeddings)
that includes all the patient level features. If x = [x1, x2, . . . xdm ] is a covariate vector at the mth

site, the processed vector, x′ = f(x) = [h1(x1), h2(x2), . . . hdm(xdm)], is obtained by applying an
input processing function hi : xi → Rd on each of the xi’s. If xi is a categorical feature, the name
of the feature is concatenated with the value of the feature to create a sequence of tokens, which is
then tokenized and passed through an embedder to get embeddings. If xi is a numerical feature, the
embedding is obtained for the name of the feature and the embedding is multiplied by the value of xi
to generate the final embedding. The embedder employs a learnable 256-dimensional embedding for
each token in the vocabulary and is accessed via a lookup table. Each feature’s embedding is then
concatenated to obtain x′ and a special learnable [CLS] token is prepended to x′ to obtain the final
embedding of x, e(x) = [[CLS] , h1(x1), h2(x2), . . . hdm(xdm)]. This method of processing the input
helps in capturing the semantic meaning of the covariates.

Representation Learning The initial sequence of embeddings, e(x), of the covariates are then passed
through a transformer network consisting of k-layers where each layer is composed of a multi-head
self attention module followed by a multi-layer perceptron with residual connection in between and
layer normalization at the end. The attention mechanisms encoded in the attention matrix allows
the model to focus on different parts of the inputs for learning a better representation and multiple
attention heads are used to allow it to attend to different parts of the input sequence simultaneously.
We use a 8-head self-attention network in our architecture.

3.2 TREATMENT ENCODER

The treatment encoder (ψ) is used to convert specific treatments into 256-dimensional embeddings,
denoted by ψ(j) for treatment j. This component includes an optional treatment information encoder,
which processes information like textual descriptions or drug compositions about the treatments to
create a representation of the treatment in a high-dimensional space. Following this, there’s a learnable
two-layer MLP (multi-layer perceptron) with a ReLU activation function in between. If additional
details about a treatment are provided, the details are fed into the information encoder and its output
is given to the MLP to generate the final 256-dimensional treatment embedding. Alternatively, if no
additional information is available, the MLP takes a one-hot representation of the 1-of-K treatments
used on specific subjects as input to generate the final embedding. In our experiments (wherever
mentioned), we consider the textual descriptions of the treatments from clinicaltrials.gov website
as the supplementary information, and utilize pre-trained language models like GPT, BERT, etc.
for encoding these descriptions. Other specialized off-the-shelf or pre-trained encoders capable of
interpreting specific treatment level information can be plugged in for use in our framework. This
treatment information encoder proves particularly valuable in zero-shot scenarios, as it predicts
the outcomes of newly introduced and distinct treatments by leveraging existing similarities with
treatments already seen by the model, as demonstrated in our experiments later on.

3.3 CROSS ATTENTION MODULE AND PREDICTOR

The cross-attention module, g(), takes in the treatment and the patient embeddings and learns the
interaction between them through a cross-attention transformer block. As opposed to self-attention,
the cross attention uses the treatment embedding as the query and the sequence of feature embeddings
in the patient embedding as the keys and values. Multiple cross-attentions are employed to facilitate
information exchange between parallel treatment and patient representations. We use a transformer
block of single layer with 8 attention heads for the cross-attention encoder. Finally, a predictor
constructed from a two-layer MLP with ReLU activation non-linearity is used to predict the observed
(factual) outcome for the given treatment and the covariate vector, ŷ = fm(g(ψ(j), ϕ(x))) for the
mth site. Employing a separate predictor allows for personalized modeling within the FL framework.
This approach enables collaborative learning of joint treatment and patient embeddings across all
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sites, while keeping the prediction head independent to handle diverse outcomes measured across
these sites.

3.4 LOCAL OPTIMIZATION AND COLLABORATION

The overall training process consists of E communication rounds between the clients and e local
training epochs on individual clients. In each communication round, the globally aggregated covariate
encoder (ϕ̄), treatment encoder (ψ̄), and the cross-attention module (ḡ) are broadcasted to all the
clients. The clients initialize their corresponding local modules with the obtained global modules and
train the entire local model for e epochs, at the end of which the locally trained models are sent to the
server where they are again aggregated.

The local optimization at each client involves an alternate minimization procedure where the predictor
and the representation learning modules are optimized alternatively on the mean squared error loss
between the prediction and the true outcome of the treatment on the given patient. Specifically, at
each client m, the optimization procedure first updates the predictor fm by

f∗m = argmin
f

E(x,t,y)∼Dm

[(
f(ḡ(ψ̄(t), ϕ̄(x)))− y

)2]
,

and then uses the optimized predictor to learn the other components

{ψ∗
m, ϕ

∗
m, g

∗
m} = argmin

{ψm,ϕm,gm}
E(x,t,y)∼Dm

[(
f∗m(gm(ψm(t), ϕm(x)))− y

)2]
.

The optimized {ψ∗
m, ϕ

∗
m, g

∗
m} are uploaded on the server and aggregated parameter-wise where the

parameters of the clients are weighted according to the number of data points present on each client.
The global aggregated versions of the models are obtained in the following way -

ψ̄ =

N∑
i=1

ni∑N
i′=1 ni′

ψi; ϕ̄ =

N∑
i=1

ni∑N
i′=1 ni′

ϕi; ḡ =

N∑
i=1

ni∑N
i′=1 ni′

gi.

The aggregated parameters are sent to the clients again for the next round of training, and the entire
procedure continues for a total E number of communication rounds.

4 EXPERIMENTAL EVALUATION

In this section, we demonstrate the experimental evaluation of our method and compare it with
various baseline approaches. Additionally, we also aim to explore additional questions related to the
zero-shot learning capability of the framework, and the interpretability of the approach.

4.1 EXPERIMENTAL SETTING

Datasets and Heterogenity Our experimental design systematically evaluates model performance
across varied datasets with different sizes and varying degrees of heterogeneity - i) Minimal Het-
erogeneity: We utilize three prevalent semi-synthetic datasets: the Infant Health and Development
Program (IHDP) Shalit et al. (2017), 2016 Atlantic Causal Inference Conference (ACIC-2016) Com-
petition Dorie et al. (2017), and Twins Almond et al. (2005) dataset. The experimentation protocol
based on semi-synthetic datasets serves two critical purposes: a) the presence of ground-truth data
for both factual and counterfactual outcomes enables precise calculation of treatment effects and
evaluation across metrics such as PEHE and ATE, and b) their binary treatment and identical covariate
setting renders them suitable for fair baseline comparisons; ii) Moderate Heterogeneity: We evalu-
ate on real-world data collected from three randomized clinical trials for intracerebral hemorrhage
(ICH) therapy development: ATACHII (NCT01176565), MISTIEIII (NCT01827046), and ERICH
(NCT01202864) Ling et al. (2024). This dataset exhibits inherent non-identical covariate spaces
across the three locations where these data was obtained, with quantifiable heterogeneity: total unique
covariates |A ∪M ∪ E| = 45, common covariates |A ∩M ∩ E| = 13, with various partial overlaps
(|(A∩E)\M | = 18, |(M∩E)\A| = 2, |M \(A∩E)| = 2, |A\(M∩E)| = 7, |E\(A∩M)| = 3);
iii) High Heterogeneity: We use the CPAD dataset containing Alzheimer’s disease or mild cognitive
impairment data from 38 Phase II/III randomized clinical trials across 19 distinct study locations with
7 different treatments. This represents extreme heterogeneity: 144 total unique covariates across sites
with zero common covariates shared across all 19 sites. More detailed dataset statistics are included
in Table 5 in Appendix C.
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Multi-site Simulation To simulate decentralized federated learning, we partition datasets into
multiple clients. The semi-synthetic datasets are partitioned to maintain identical covariate spaces and
treatments across clients (for comparisons with baselines) while introducing population heterogeneity
through varying treatment/control ratios. The IHDP dataset is divided into 3 sites (240 samples/site),
ACIC-16 into 5 sites (960 samples/site), and Twins into 10 sites (1140 samples/site). The real-world
ICH dataset naturally divides into three parts corresponding to different hospital locations, each
implementing a unique treatment reflecting how this data was actually collected. Similarly, the CPAD
dataset encompasses 19 sites reflecting data from distinct study locations. Each client’s data is split
into training, validation, and test sets (70 : 15 : 15). This design also allows us to evaluate robustness
across varying dataset sizes.

Baselines We compare FedTransTEE against different baseline methods in three categories - i)
Federated ITE estimation methods: iFedTree Tan et al. (2022) and FedCI Xiong et al. (2023) (note
that iFedTree only predicts factual outcomes), ii) State-of-the-art ITE estimation methods using
CATENets package (Curth). Since these methods don’t inherently support multiple sources, we train
them in two configurations - a) Local training: Individual models trained separately on each site
without collaboration, b) Centralized training: A hypothetical setting where all data is collected at a
single site (included for comparative purposes only, not possible in real-world scenarios), to compare
against our method.

Metrics Given the unavailability of ground-truth treatment effects in real-world data, directly evaluat-
ing ITE estimation methods is challenging. Consequently, we employ two distinct sets of metrics for
experiments conducted on semi-synthetic datasets and real-world datasets. With the semi-synthetic
datasets where both the factual and the counterfactual outcomes are available, we measure and
report the Root Mean Squared Error on the factual outcome (RMSE-F), the Error in the Average
Treatment Effect (ATEϵ), and the Precision in the Estimation of Heterogeneous Effects (PEHE). And
for the real-world datasets when only the factual outcome is available we report the RMSE-F, and the
difference in Average Treatment on Treated (ATTϵ). These metrics are defined in Appendix D.

Training parameters All experiments were conducted over 5 repetitions with evaluation on held-out
test data. Our architecture employs a covariate encoder with 2 transformer layers (8 attention heads
each) and a cross-attention module with 1 transformer layer (8 attention heads), all with hidden
dimension 256. For treatment encoding, we utilize BERT encoder Devlin et al. (2019) to generate 786-
dimensional embeddings of treatment descriptions when available; otherwise without the information,
treatments are represented using one-hot encoding. The federated training process runs for 200
communication rounds with 5 local training epochs per site and early stopping patience of 20 epochs.
We use Adam optimizer with learning rate 5e-3 and batch size 128. All hyperparameters for both our
method and baselines were tuned on validation sets, and models were trained on a 4-GPU machine
with GeForce RTX 3090 GPUs (24GB memory per GPU).

4.2 RESULTS

For semi-synthetic datasets (minimal heterogeneity), we report results in Table 1 which shows
FedTransTEE significantly outperforms other federated baselines on all semi-synthetic datasets.
Secondly, the results in the centralized setting benchmark our method against centralized baselines
and serve as an upper bound on achievable performance if all data were available in a single location
(impractical scenario), where we observe that the proposed method outperforms all the other methods
suggesting its efficiency in predicting ITE on the collective data source as well. Comparing federated
versus local training results (Table 1 and 7) demonstrates consistent performance gains through
federation, confirming effective knowledge transfer between sites while preserving privacy. For
real-world datasets (moderate to high heterogeneity), Table 2 demonstrates FedTransTEE’s superior
performance on datasets with heterogeneous covariate and treatment spaces. In this scenario, the
single-source baselines have to operate in the local learning setting and other FL baselines are
inapplicable due to their inability to accommodate multiple treatments across sites. Notably, our
method not only exhibits superior average performance but also demonstrates lower variance. This
reduced variance is particularly valuable in clinical settings, indicating more reliable performance
across diverse institutional contexts regardless of local data limitations.

FedTransTEE maintains consistent effectiveness across varying client dataset sizes (IHDP: 240,
ACIC-16: 960, Twins: 1140) and heterogeneity levels. While transformer architectures traditionally
require large datasets, our federated approach effectively mitigates data scarcity challenges through
collaborative knowledge sharing. The model’s strong performance across all experimental conditions,
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from minimal to high heterogeneity and from small to large datasets, confirms its versatility for
real-world healthcare applications.

Table 1: The table shows performance comparison between our method and the related ITE prediction
methods on the held-out test dataset for the semi-synthetic datasets averaged over 5 runs.

Method
IHDP ACIC-16 Twins

(PEHE) (ATEϵ) (RMSE-F) (PEHE) (ATEϵ) (RMSE-F) (PEHE) (ATEϵ) (RMSE-F)

FedCI 1.33 ± 0.20 0.65 ± 0.14 2.59 ± 0.09 2.3±0.04 1.14±0.19 1.64±0.02 0.34 ± 0.01 0.052 ± 0.01 0.56 ± 0.1
iFedTree - - 2.0±0.15 - - 2.53±0.1 - - 0.09±0.001
FedTransTEE (Ours) 1.02 ± 0.01 0.26 ± 0.06 1.77 ± 0.5 0.78 ± 0.1 0.326 ± 0.02 0.728 ± 0.01 0.32 ± 0.01 0.01 ± 0.002 0.09±0.01

(Central)
S-Learnerc 0.93 ± 0.005 3.7 ± 0.001 1.22 ± 0.02 2.6 ± 0.009 3.4 ± 0.002 0.61 ± 0.003 0.32 ± 0.01 0.01 ± 0.001 0.08 ± 0.02
T-Learnerc 1.22 ± 0.02 3.6 ± 0.01 1.23 ± 0.04 3.8 ± 0.01 3.46 ± 0.001 0.56 ± 0.005 0.33 ± 0.01 0.02 ± 0.001 0.09 ± 0.003
TARNetc 1.19 ± 0.002 3.9 ± 0.01 1.26 ± 0.02 2.94 ± 0.01 3.54 ± 0.001 0.41 ± 0.001 0.32 ± 0.001 0.02 ± 0.001 0.09 ± 0.005
FlexTENetc 1.19 ± 0.005 3.9 ± 0.05 1.2 ± 0.01 2.83 ± 0.01 3.5 ± 0.001 0.34 ± 0.001 0.32 ± 0.001 0.015 ± 0.001 0.085 ± 0.001
HyperITEc (S-Learner) 0.91 ± 0.001 3.9 ± 0.01 1.19 ± 0.02 2.6 ± 0.01 3.5 ± 0.01 0.44 ± 0.01 0.32 ± 0.002 0.02 ± 0.001 0.085 ± 0.01
HyperITEc (TARNet) 1.08 ± 0.04 3.8 ± 0.003 1.26 ± 0.009 2.9 ± 0.02 3.5 ± 0.02 0.6 ± 0.01 0.32 ± 0.01 0.02 ± 0.001 0.089 ± 0.02
FedTransTEEc (Ours) 0.90 ± 0.01 0.14 ± 0.1 0.97 ± 0.01 0.78 ± 0.01 0.37 ± 0.10 0.45 ± 0.04 0.30 ± 0.01 0.01 ± 0.004 0.08 ± 0.002

Table 2: The table presents a performance comparison between our method and related ITE prediction
methods for real-world datasets. The reported metrics in these results are averaged across all clients
for each run.

Method
ICH CPAD

(RMSE-F) (ATTϵ) (RMSE-F) (ATTϵ)

S-Learnerl 1.32 ± 0.35 0.22 ± 0.01 7.4 ± 3.8 10.1 ± 0.01
T-Learnerl 1.34±0.41 0.24 ± 0.02 6.9 ± 3.2 9.8 ± 0.02
TARNetl 1.33 ± 0.44 0.23 ± 0.01 7.1 ± 3.04 9.5 ± 0.01
FlexTENetl 1.33 ± 0.38 0.23 ± 0.03 5.6 ± 0.45 8.1 ± 0.89
HyperITEl (S-Learner) 1.30 ± 0.32 0.22 ± 0.01 7.45 ± 3.58 13.4 ± 1.6
HyperITEl (TARNet) 1.32 ± 0.28 0.22 ± 0.01 7.2± 2.7 11.2 ± 2.1
FedTransTEE (Ours) 1.19 ± 0.09 0.10 ± 0.02 4.6 ± 0.06 10.2 ± 0.02

4.2.1 ZERO-SHOT ITE ESTIMATION

We further evaluate the performance of the proposed method in zero-shot testing scenarios. This
entails situations where there is no historical data available for a newly designed treatment, or when a
new site that seeks to estimate the effects of its treatments is introduced. In such cases, we explore
how the proposed framework can be utilized for estimating the effects of the unseen treatments. To
enable zero-shot learning, we obtain additional information like a description (or a set of features) for
the unseen treatment, and use this information to generate an embedding of the treatment, and pass it
to our proposed framework (which was trained on the data and descriptions of the other treatments).
To assess this capability, we set up an experiment where we exclude data related to a specific treatment
(ATACH-II or MISTIE-III) from the ICH training dataset. We then train the model solely on data
from the other two treatments, using treatment descriptions obtained from clinicaltrials.gov (excerpts
of which are shown in Table 6). The model is subsequently tested on the data corresponding to the
excluded treatment (ATACH-II or MISTIE-III). The results of this zero-shot performance evaluation
are presented in Table 3. For comparison, we also include metrics for the same test dataset when it
was part of the training procedure, shown under the supervised performance column in Table 3. These
results validate that zero-shot capability is achievable within our framework, demonstrating that our
encoders effectively capture meaningful relationships both between patient covariates and treatments,
as well as among different treatments themselves. This empirical demonstration underscores our
framework’s effectiveness and reveals promising avenues for its practical application across diverse
healthcare settings.

4.2.2 INTERPRETABILITY ANALYSIS

Important covariates for outcome prediction. We investigate the self-attention mechanism of
the covariate encoder to uncover interpretable patterns in the relationships among covariates for
predicting outcomes in ICH therapy trials. By examining the attention weights, we identify the
features deemed most important by the model for its predictions. The attention weights are calculated
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by averaging the attention activations over all patients. In the ICH dataset, four self-attention heads
displayed distinguishable patterns of attention weights, as detailed below. Attention Head 1: The
final embedding ([CLS] token) heavily attends to a patient’s prior history, particularly racial group
(being White or not) and type 2 diabetes. This finding aligns with established clinical knowledge
that race and diabetes comorbidity significantly impact outcomes such as functional independence,
measured by the mRS score, after ICH onset (Zheng et al., 2018; Woo et al., 2022). Attention Head
2: A strong connection is observed between prior vascular conditions and hematoma pathology. Key
variables such as intraventricular hemorrhage volume, anticoagulant use, Asian race, prior history of
heart failure, and hematoma location are strongly attended to by the final embedding. This suggests
that Attention Head 2 captures the pathology of hematoma development and progression, which is a
direct therapy target in ICH treatment. Attention Head 3: A clear relationship emerges between the
final embedding and the Glasgow Coma Scale (GCS), which measures the level of consciousness
after a brain injury. This connection is consistent with clinical knowledge, as the GCS score is a
critical indicator of brain injury severity and functional independence after ICH onset (Rost et al.,
2008). Attention Head 4: This head predominantly attends to the NIH Stroke Scale (NIHSS),
which indicates stroke severity. The strong focus on the NIHSS score underscores its significance in
predicting functional independence after ICH onset. Both GCS and NIHSS are well-known predictors
of clinical outcomes following ICH (Hemphill III et al., 2001). Attention matrices corresponding to
the two most prominent self-attention heads are visualized in Figure 4 and Figure 5.

Table 3: Test RMSE-F on ICH dataset under the zero-shot training protocol.

Treatment Name Supervised Performance Zero-shot Performance ∆

ATACH-II 1.21±0.01 1.30±0.06 ∼0.1
MISTIE-III 0.82±0.05 1.02±0.04 ∼0.2

Important covariates for each treatment. We also investigated the cross-attention between the
covariate and treatment encoders to identify which covariates are important for outcome prediction
under each treatment. Specifically, we analyzed the top covariates with high attention weights for the
[CLS] token for each treatment. For ATACH-II, the key covariates identified, in decreasing order of
importance, were initial systolic and diastolic blood pressure (SBP and DBP), GCS score, Hispanic
ethnicity, and White race. High SBP is a critical factor in intracerebral hemorrhage (ICH) outcomes,
and the ATACH-II trial specifically targeted SBP management to prevent hematoma expansion and
improve clinical outcomes. While DBP is less commonly emphasized compared to SBP, it still
contributes to cardiovascular stress and influences outcomes. The GCS score is a well-established
predictor of ICH outcomes. For MISTIE-III, the important covariates identified were platelet count,
sodium, potassium, CO2, BUN, APTT, WBC count, and chloride level. These variables are essential
for patient recovery following surgical interventions like those in MISTIE-III. For instance, platelet
count is critical for assessing bleeding risk and clotting ability; low platelet counts increase the
risk of hemorrhage during and after surgery (Ziai et al., 2003). These analyses confirm that the
patient representations learned by the covariate encoder and the treatment effect captured by the
cross-attention mechanism indeed reflect significant treatment- and disease-level information. A
visualization of the cross-attention activations is provided in Figure 3.

5 RELATED WORK

This section provides a brief overview of the most relevant prior work in the fields of ITE estimation,
and federated learning for healthcare and ITE estimation. We highlight the novel aspects of our work
in relation to relevant previous research in Table 4 and include relevant work in federated learning
domain in Appendix A due to space constraints.

ITE Estimation Due to their ability to handle high-dimensional data and intricate feature interactions,
machine learning methods have been increasingly used for ITE estimation. However, most existing
methods estimate effects using locally accessible data sources. Broadly, ITE estimation methods can
be categorized into two groups - indirect learners, which estimate the potential outcomes for each
intervention and compute ITE as the difference between the predicted outcomes with and without
the intervention, and direct learners, which directly model ITE without explicitly estimating the
potential outcomes. Among indirect learners, many approaches augment covariates by incorporating
intervention information to form the input set (X , T ) for predicting µ1(x) and µ0(x). These include
methods using regression trees (Athey & Imbens, 2016), random forests (Künzel et al., 2017), non-
parametric approaches (Curth & van der Schaar, 2021a), and Bayesian methods (Hill, 2011). However,
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conventional supervised learning methods that use intervention as a feature often struggle with
selection bias inherent in intervention assignment, limiting their direct applicability to ITE estimation.
To address this, other approaches build separate models for each potential outcome under the Neyman-
Rubin framework. Early works in this category utilized regression-based modeling (Cai et al., 2011),
trees, random forests (Foster et al., 2011; Athey & Imbens, 2015), and other techniques (Nie &
Wager, 2017; Kennedy, 2020). Recently, the focus has shifted toward neural networks, with the most
common strategy involving representation learning from input data followed by intervention-specific
predictive models. Notable examples include methods leveraging deep neural networks (Johansson
et al., 2016; Alaa & van der Schaar, 2017; Shalit et al., 2017; Atan et al., 2018; Qidong et al., 2020;
Zhang et al., 2020; Curth & van der Schaar, 2021b), transfer learning (Bica & van der Schaar, 2022b),
and Bayesian approaches (Yao et al., 2018; Hassanpour & Greiner, 2020; Curth et al., 2021; Chauhan
et al., 2023). On the other hand, direct learners typically estimate nuisance parameters, which are then
used to directly infer treatment effects. Each direct learner defines its own set of nuisance parameters
and employs unique methods for their estimation (Wager & Athey, 2015; Powers et al., 2017; Yoon
et al., 2018; Kristiadi, 2019). Recently, pair-based approaches, such as learning predictors from pairs
of examples with observed outcomes, have also been introduced (Nagalapatti et al., 2024).

Federated Learning for Healthcare and ITE Estimation FL has demonstrated significant utility
in healthcare (Rieke et al., 2020; Sheller et al., 2020; Prayitno et al., 2021), enabling numerous
applications such as predicting adverse drug reactions (Choudhury et al., 2020), stroke prevention (Ju
et al., 2020), and mortality prediction (Vaid et al., 2021). Despite these advancements, the federated
estimation of causal effects has received limited attention. Xiong et al. (2023) proposed a method to
predict average treatment effects by locally computing summary statistics and then aggregating these
across sites. Vo et al. (2022) introduced a Bayesian mechanism that integrates local causal effects from
different sites to estimate posterior distributions but assumed identical data distributions across sites,
which was later extended to handle dissimilar distributions by Vo et al. (2024). Privacy-preserving
learning methods (Han et al., 2023a;b) have been proposed for federated settings but typically assume
identical covariates across sites, a condition often unmet in practice. Other approaches, such as Yang
& Ding (2018); Zeng et al. (2023); Han et al. (2023c), address non-identical covariates by leveraging
transportability to transfer causal effects from a source population distributed across multiple sites
to a target population. Khellaf et al. (2024) compared meta-analysis with one-shot and multi-shot
FL approaches for decentralized data but assumed identical covariates across sites. While some
methods accommodate heterogeneous covariates, they often fail to address the challenge of disparate
interventions or treatments administered across sites, highlighting a significant gap in the current
literature. Recent advancements have investigated the use of transformers for tabular data (Wang &
Sun, 2022; Zhu et al., 2023; Wang et al., 2024; Hollmann et al., 2025), highlighting their effectiveness
for structured data tasks. However, their application to causal inference, particularly in the context
of ITE estimation, remains unexplored. This work leverages transformers to address the unique
challenges of causal inference, making novel contribution in this domain. Table 4 compares our
approach with the most closely related works.

6 CONCLUSION

We introduced FedTransTEE, a novel framework for ITE estimation that effectively bridges the
gap between healthcare data silos while accommodating heterogeneity in covariates, treatments,
and outcome spaces. Our extensive experimentation across semi-synthetic benchmarks and real-
world clinical trials demonstrates the framework’s superior performance in both federated and
centralized settings. The framework’s interpretability mechanisms provide clinically meaningful
insights validated by domain experts, enhancing trust and adoption potential. The zero-shot capability
demonstration enables reliable estimation of treatment effects for previously unseen interventions
by leveraging additional treatment information, a comprehensive evaluation of zero-shot robustness
across diverse settings remains part of our future work agenda. Our results confirm two fundamental
insights - i) collaborative learning across diverse institutions significantly improves treatment effect
estimator quality, and ii) strategic use of treatment information enables accurate prediction of novel
treatment effects. While the federated mechanism does not entail explicit data sharing, the method
may encounter limitations in settings where sharing model parameters outside the client site, even
with a trusted server, poses privacy risks. Therefore, a privacy-preserving version of the method will
be considered for future work. Also, while this work addresses a critical gap in the literature by
providing a novel and empirically validated framework under realistic settings, developing theoretical
guarantees on the method will be completed as part of the future work.
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Supplement for “Beyond Data Silos : Leveraging Disparate Data
Sources for ITE Estimation”

Table 4: Contrasting our method, FedTransTEE, against previous works.

Method
Addressed Challenges

ITE
Estimation

Federated
Learning

Heterogeneous
Data Sources Explainability

HyperITE ✓ ✗ ✗ ✗
FlexTENet ✓ ✗ ✗ ✗
TARNet ✓ ✗ ✗ ✗
PairNet ✓ ✗ ✗ ✗
Unipredict ✗ ✗ ✓ ✗
Xtab ✗ ✗ ✓ ✗
iFedTree ✓ ✓ ✗ ✗
FedCI ✓ ✓ ✗ ✗
FedTransTEE ✓ ✓ ✓ ✓

In this supplementary material, we begin by offering further details on the background, followed by an overview
of the datasets employed in the experiments. We then provide precise definitions of the evaluation metrics used.
Subsequently, additional experimental results are presented, focusing on the local training of the models, along
with visualizations related to the interpretability analysis discussed in subsection 4.2.2.

A ADDITIONAL RELATED WORK

Federated Learning Initially presented as the FedAvg algorithm in the pioneering study by (McMahan et al.,
2017), FL has since undergone numerous modifications tailored to address distinct challenges. These adaptations
include both global solutions as well as personalized solutions that cater to the non-IID data across clients in a
better way. Some key works that obtain global solutions for FL include (Karimireddy et al., 2020; Acar et al.,
2021; Chen & Chao, 2021; Collins et al., 2021; Zhang et al., 2021) and that for personalised FL include (Fallah
et al., 2020; Li et al., 2020; Makhija et al., 2022; Shamsian et al., 2021). However, it is only very recently that the
problem of heterogeneous feature spaces has been explored in the FL setting. Suzuki & Banaei-Kashani (2023)
use clustering to figure out similar clients and exchange knowledge within the cluster whereas Rakotomamonjy
et al. (2023) use learnt prototypes to align the feature spaces across the clients.

B BACKGROUND AND ASSUMPTIONS

Our framework is based on several general assumptions commonly adopted in causal inference. The first
assumption, known as the Stable Unit Treatment Value Assumption (SUTVA), requires that each individual’s
potential outcomes are independent of the potential outcomes of others, and that there is no interference
across individuals. The second assumption is unconfoundedness, which suggests that there are no unmeasured
confounders affecting both the treatment assignment and the outcome. Specifically, the potential outcomes,
µj(x), are independent of the treatment variable T , given the observed variables X . The third assumption is
stochasticity in treatment assignment. Under these assumptions, the ITE of an intervention j for an individual
with covariates X is approximated by the Conditional Average Treatment Effect (CATE), denoted as τj(x) =
µj(x)− µ0(x). A causal learning model estimates the CATE by predicting µ̂j(x) and µ̂0(x), which are then
used to compute the estimated CATE as τ̂j(x) = µ̂j(x)− µ̂0(x).

We further assume a hierarchical data structure where each hospital/clinical site is drawn from a distribution
P (H), within each site h, patients are drawn from a site-specific distribution P (X|H = h), and treatment
assignments follow site-specific policies P (T |X , H = h). This hierarchical structure allows us to operate under
conditional positivity within sites rather than globally: the positivity assumption is required per site, and we
do not require all treatments to be available at all sites. This addresses real-world scenarios such as certain
drug trials not being available at particular hospitals. Under the assumption that sites are exchangeable, the
optimal approach in a frequentist framework for collaboration of models is to perform size-weighted averaging
of treatment effects as in FedAvg. By accounting for the hierarchical structure and site-specific variations, the
model can provide more accurate personalized treatment recommendations across diverse clinical environments.

C DATASETS

We first discuss the additional details of the semi-synthetic datasets. The IHDP dataset involves a binary treatment
scenario with real covariates and simulated outcomes. In this dataset, covariates are obtained from both the
mother and the child, with explicit child care or specialist home visits treated as interventions. The outcomes
are the future cognitive test scores of the children. This dataset includes 25 covariates and approximately
∼743 datapoints. The ACIC-2016 dataset, originally introduced for a competition, was sourced from the
Collaborative Perinatal Project. It includes 55 covariates and ∼4,802 datapoints. The Twins dataset contains 39
covariates and ∼11,400 datapoints. It represents a real-world collection of twin births in the US between 1989
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and 1991 and includes covariates related to the parents, pregnancy, and birth. In this dataset, birth weight is
considered the treatment variable, while one-year mortality serves as the outcome, making it a binary treatment
problem with binary outcomes. All three datasets were pre-processed using the processing method employed in
CATENets Curth.

For the first real-world dataset, we collect data from three randomized clinical trials for intracerebral hem-
orrhage (ICH) therapy development: ATACH2 (NCT01176565), MISTIE3 (NCT01827046), and ERICH
(NCT01202864). Each hospital location provides patient-level pre-treatment measurements considered as
covariates, such as demographics and clinical presentation of the ICH. A treatment variable indicates whether
the patient is receiving active treatment or standard of care, and the outcomes are measured using the modified
Rankin Score (mRS), which represents the patient’s severity. Each of the three treatments is administered
at a different hospital location, and all three trials include standard-of-care therapy. The second real-world
dataset is obtained from the clinical trials for the Alzheimer’s disease. The covariates include the pre-treatment
measurements of the patients, and the outcome is the total ADAS-cognitive score of the patient. These real-world
datasets are summarized in Table 5.

Table 5: Dataset statistics and brief description for the real-world datasets used for experimental
evaluation.

# subjects # covariates # treatments # sites Description

ICH data 3279 45 3 3 Clinical trial data from 3 trials for therapy
development of intracerebral hemorrhage, prepared in Ling et al. (2024).

CPAD data 9406 144 7 19 Clinical trial data for Alzheimer’s disease
therapy development from 38 Phase II/III trials cpa.

C.1 ZERO-SHOT INFERENCE

As discussed in the Experiments section under subsection 4.2.1, we use additional information to test the
approach in the zero-shot setting. Since treatment names are available only for the ICH dataset, we can obtain
the necessary additional information and test our method on this dataset. The information that we consider
involves textual descriptions of the treatments in natural language, and is sourced from treatment descriptions
provided on the website clinicaltrials.gov under ARM details for the treatment. On average, these descriptions
contain 55 words. To give a clearer understanding of what these descriptions entail, we highlight excerpts from
them and present them in Table 6 below.

Table 6: Excerpts of the descriptions obtained from clinicaltrials.gov for ATACH2, MISTIE and
Placebo treatments used in zero-shot inference experiments.

Treatment Name Description Snippets

ATACH-II Antihypertensive Treatment of Acute Cerebral Hemorrhage II uses early intensive blood pressure lowering.
Intravenous nicardipine hydrochloride will be used as necessary (pro re nata or "PRN") as the primary agent in lowering SBP.

The goal for the intensive BP reduction group will be to reduce and maintain SBP < 140 mmHg
for 24 hours from randomization.

MISTIE-III Subjects randomized to the Minimally Invasive Surgery (MIS) plus rt-PA management arm will undergo minimally
invasive surgery followed by up to 9 doses of 1.0 mg of rt-PA (Activase/Alteplase/CathFlo) for intracerebral hemorrhage

clot resolution.

Placebo Subjects randomized to medical management will receive the standard medical therapies for the treatment
of intracerebral hemorrhage, which includes ICU care only and no planned surgical intervention.

D METRICS

In this section, we precisely define the metrics used for evaluating our methods against the baselines. Since,
we consider a multi-treatment setting, we show the generalization of the metric definitions for any treatment
denoted by j and calculated over n subjects (datapoints). Firstly, we show the metrics applicable when true
treatment effects can be calculated by using the factual and counterfactual outcomes available. These metrics are
used for evaluation on the semi-synthetic datasets.
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ATEϵ(j) =
1

n

n∑
i=1

(µj(xi)− µ0(xi))−
1

n

n∑
i=1

(µ̂j(xi)− µ̂0(xi)).

PEHE(j) =
1

n

n∑
i=1

(
(µj(xi)− µ0(xi))− (µ̂j(xi)− µ̂0(xi))

)2

.

Then, we introduce the metrics applicable in real-world settings, where only factual outcomes are available and
the true treatment effect cannot be computed.

RMSE-F =

√√√√ 1

n

n∑
i=1

K∑
j=1

1(T i = j)(Yi(j)− µ̂j(xi))2.

ATT(j) =
1

|Tj |

n∑
i=1

1(T i = j)Yi(j)−
1

|T0|

n∑
i=1

1(T i = 0)Yi(0)

ATTϵ(j) = |ATT(j)− 1

|Tj |

n∑
i=1

1(T i = j)(µ̂j(xi)− µ̂0(xi))|

where |Tj | and |T0| represents the count of patients receiving treatment j and treatment 0 respectively.

E ADDITIONAL EXPERIMENTS

This section provides additional experimental results to complement those presented in Table 1. These results are
obtained in the training protocol of local model training. This setting is highlighted because when the methods
do not suggest a way of collaboration across multiple sites, each site can only train its own local model for
ITE estimation using its respective dataset. For comparison, we also show the result obtained if our method
FedTransTEE under federated learning protocol is used instead.

Table 7: The results in the table show performance comparison between our method and the related
ITE prediction methods on the held-out test dataset for the local setting on semi-synthetic datasets.

Method
IHDP ACIC-16 Twins

(PEHE) (ATEϵ) (RMSE-F) (PEHE) (ATEϵ) (RMSE-F) (PEHE) (ATEϵ) (RMSE-F)

(Local)
S-Learnerl 1.11 ± 0.02 3.3 ± 0.06 1.83 ± 0.09 2.2±0.01 2.9±0.02 2.3±0.1 0.32±0.01 0.02±0.001 0.10±0.02
T-Learnerl 1.5 ± 0.06 3.58 ± 0.13 1.55 ± 0.1 2.8±0.02 3.3±0.02 1.4±0.01 0.35±0.001 0.04±0.001 0.11±0.001
TARNetl 1.22 ± 0.02 3.7 ± 0.06 1.59 ± 0.1 2.77±0.01 3.3±0.02 3.4±0.02 0.35±0.001 0.03±0.01 0.11±0.005
FlexTENetl 1.22 ± 0.2 3.7 ± 0.06 1.6 ± 0.07 2.6±0.02 3.34±0.01 1.7±0.01 0.33±0.001 0.02±0.001 0.09±0.002
HyperITEl (S-Learner) 1.02 ± 0.03 3.59 ± 0.1 1.87 ± 0.23 2.2±0.01 3.1±0.02 2.84±0.05 0.32±0.001 0.02±0.001 0.11±0.004
HyperITEl (TARNet) 1.06 ± 0.02 3.8 ± 0.06 1.6 ± 0.07 2.7 ± 0.02 3.1 ± 0.03 3.4 ± 0.01 0.33 ± 0.001 0.03 ± 0.002 0.10 ± 0.002

FedTransTEE (Ours) 1.02 ± 0.01 0.26 ± 0.06 1.77 ± 0.5 0.78 ± 0.1 0.326 ± 0.02 0.728 ± 0.01 0.32 ± 0.01 0.01 ± 0.002 0.09 ± 0.01

E.1 ATTENTION VISUALIZATIONS

We visualize and analyze the cross-attention and self-attention heads’ activations obtained during the learning
process of FedTransTEE. This allows us to identify the covariates that are crucial in predicting outcomes for
different treatments and to explore the relationships between these covariates. Such examination underscores both
the explainability and interpretability of our approach. While detailed analysis is provided in subsection 4.2.2,
the visualizations are included below.
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Figure 3: Visualization of the activations of cross-attention head obtained while learning on the ICH
dataset.

Figure 4: Visualization of the activations of first self-attention head of the covariate encoder obtained
while learning on the ICH dataset.
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Figure 5: Visualization of the activations of second self-attention head of the covariate encoder
obtained while learning on the ICH dataset.
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