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ABSTRACT

We consider the problem of learning nonlinear dynamical systems from a single
sample trajectory. While the least squares estimate (LSE) is commonly used
for this task, it suffers from poor identification errors when the sample size is
small or the model fails to capture the system’s true dynamics. To overcome
these limitations, we propose a robust LSE framework, which incorporates robust
optimization techniques, and prove that it is equivalent to regularizing LSE using
general Schatten p-norms. We provide non-asymptotic performance guarantees
for linear systems, achieving an error rate of Õ(1/

√
T ), and show that it avoids

the curse of dimensionality, unlike state-of-the-art Wasserstein robust optimization
models. Empirical results demonstrate substantial improvements in real-world
system identification and online control tasks, outperforming existing methods.

1 INTRODUCTION

Many real-world problems require learning unknown dynamical systems from data. Examples can
be from identifying the dynamics of mechanical systems like autonomous driving to predicting
time-series data such as climate patterns and financial trends (Ng et al., 2006; Hong et al., 2008;
Louka et al., 2008; Brunton et al., 2016; Alaskar, 2019). In the control community, the problem
of estimating the parameters of a dynamical system is referred to as system identification. System
identification is crucial since accurate estimation of underlying systems is integral to developing safe
and reliable control systems.

In this work, we propose a robust system identification method for a certain class of nonlinear
dynamical systems, assuming only a single trajectory of data is available. Specifically, the system
is expressed as a linear combination of known nonlinear functions of the state and control inputs.
Such system models have been widely applied since they accommodate a broad range of dynamic
behaviors. One of the simplest system identification algorithms is the least squares method or the least
squares estimate (LSE), which minimizes the squared prediction errors of the given samples. Due
to the stochastic nature of the data, the performance of LSE cannot be deterministically guaranteed.
Moreover, since the data comprises a single trajectory of states resulting from the evolution of the
dynamical system, the samples are non-i.i.d. Recent works (Simchowitz et al., 2018; Jedra & Proutiere,
2020) provide non-asymptotic analyses of LSE, specifically addressing system identification errors
with respect to a finite number of non-i.i.d. samples. They show that the error decays as fast as the
optimal rate O(1/

√
T ) where T denotes the number of samples.

Although these theoretical results are promising, the empirical performance of LSE may suffer,
particularly when only a few samples are available or the model is misspecified. This limitation is
critical in applications where data collection is inherently restricted, or the true dynamics are highly
complex. To address these issues, we propose a robust approach that combines robust optimization
with LSE by formulating a min-max optimization problem, referred to as the robust LSE problem.
We show that the robust LSE problem can be cast as a convex semidefinite program (SDP), making
it tractable to solve. Additionally, we provide a non-asymptotic analysis for our approach and
demonstrate that robust LSE achieves a near-optimal error rate of Õ(1/

√
T ). Interestingly, we show

that our robust LSE problem is equivalent to the LSE problem with an additional regularization term
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based on the general Schatten p-norm. While a few special cases of Schatten p-norms have been used
to regularize LSE problems (Abbasi-Yadkori & Szepesvári, 2011; Sun et al., 2022), these methods do
not guarantee asymptotic convergence to the true system parameters under a single trajectory. To our
knowledge, our work is the first to provide a non-asymptotic analysis for LSE with general Schatten
p-norm regularization under a single trajectory.

An alternative data-driven robust approach to ours is the state-of-the-art Wasserstein robust optimiza-
tion (Mohajerin Esfahani & Kuhn, 2018), which has gained considerable attention in the machine
learning community for its promising performance (Shafieezadeh Abadeh et al., 2018; Liu et al., 2022;
Nietert et al., 2024; Bai et al., 2024). However, this approach suffers from the curse of dimensionality:
for systems with a high-dimensional state space, its error rate decays slowly.

The contributions of this paper are summarized as follows:

i. We introduce a novel system identification algorithm that combines robust optimization with
the LSE framework. Additionally, we establish the equivalence between our robust LSE
problem and the LSE problem regularized by the Schatten p-norm. This is significant for
the regularization framework because, as noted in Abu-Mostafa et al. (2012), “most of the
regularization methods used successfully in practice are heuristic methods.” The equivalence,
however, enables regularization to borrow a probabilistic interpretation from robust optimization,
suggesting that the regularization term should be data-dependent to ensure good out-of-sample
(i.e., test) performance.

ii. We provide a theoretical performance guarantee for our robust method, achieving an error rate of
Õ(1/

√
T ). This result is notable not only as the first performance guarantee for regularized LSE

under the single trajectory setting but also because it shows that our robust LSE circumvents
the curse of dimensionality, unlike the emerging data-driven Wasserstein robust optimization
models—hence, offering new insights into the robust regression literature.

iii. We conduct numerical experiments that demonstrate substantial performance improvements
in real-world system identification tasks, such as short-term wind speed prediction. We also
conduct extensive experiments with synthetic dynamical systems to validate our approach.
Additionally, we showcase its effectiveness in online control tasks by integrating our robust
LSE with existing online linear quadratic control algorithms, demonstrating consistently better
performance compared to existing methods.

FUTHER LITERATURE REVIEW

There has been a recent emergence of interest in deriving non-asymptotic systems identification
errors. Most works focus on analyzing performance of the standard LSE (Simchowitz et al., 2018;
Faradonbeh et al., 2018; Sarkar & Rakhlin, 2019; Mania et al., 2019; Foster et al., 2020; Dean et al.,
2020; Jedra & Proutiere, 2020; Sattar et al., 2021; Kowshik et al., 2021; Sattar & Oymak, 2022;
Mania et al., 2022; Li et al., 2023). One advantage of analyzing the standard LSE is that the system
identification error term, which is the main interest of the analysis, can be analytically obtained using
the solution to the LSE problem. This term can then be broken down in various ways, enabling
different approaches to address the resulting components.

While theoretical guarantees for LSE appear promising, the empirical performance degrades in
real-world applications where available data is scarce, resulting in subpar estimates (Sun et al., 2022).
We employ robust optimization techniques (Ben-Tal et al., 2009) to enhance the resilience of LSE.
The key idea of robust optimization is to find solutions that perform optimally against the worst-case
realizations of uncertain data. Dean et al. (2020) assume i.i.d. samples and utilize the standard LSE
for system identification. They construct an uncertainty set of system parameters around the resulting
estimate. They then solve a min-max problem, referred to as the robust LQR problem, to determine
the best control input against the worst-case system parameter in the uncertainty set. In contrast, our
approach directly formulates a min-max problem for system identification, seeking the best system
parameter against the worst-case realizations of the data. To the best of our knowledge, no prior work
has proposed a robust LSE problem formulation presented in this paper.

As stated in our contributions, the non-asymptotic analysis proposed in this paper is not limited
to our robust LSE. It can be extended to the regularized LSE problem, where the regularization
term is defined as the Schatten p-norm of a quadratic function of system parameters multiplied by
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a user-defined (scalar) tuning parameter—henceforth referred to as the regularization parameter.
Special cases of the Schatten p-norm regularization are proposed in the literature (Abbasi-Yadkori
& Szepesvári, 2011; Sun et al., 2022). In Abbasi-Yadkori & Szepesvári (2011), they introduce the
squared Frobenius norm of system parameters with the regularization parameter set to some small
fixed value, hence the convergence of their estimate to the true system parameter is not guaranteed. In
Sun et al. (2022), they consider systems with limited state observations, i.e., states cannot be directly
observed. They introduce the nuclear norm of the Hankel matrix to their LSE problem and derive the
non-asymptotic impulse response estimation errors only for the MISO (multi-input single-output)
system under the assumption that i.i.d. samples are available. These papers do not provide guidance
on how to adjust the regularization parameter as a function of the number of available samples.

NOTATION

Bold lower-case letter x and upper-case letter X represent a vector and a matrix, respectively, while
regular font x indicates a scalar. For any square matrix X ∈ Rn×n, the trace operation is denoted
as tr(X). The spectral radius denoted ρ(X) is the largest absolute value of the eigenvalues of X .
An n× n dimensional identity matrix is denoted as In. For any n×m matrix X ∈ Rn×m, ∥X∥p
represents the Schatten p-norm of the matrix, which is defined as ∥X∥p = (tr(X⊤X)p/2)1/p. For
several special cases of the Schatten p-norm, we may interchangeably use the following notations:
nuclear norm ∥ · ∥∗ = ∥ · ∥1, Frobenius norm ∥ · ∥F = ∥ · ∥2, and operator norm ∥ · ∥ = ∥ · ∥∞. In
the entire paper, we will not use matrix norms induced by vector norms to prevent any confusion. We
may use ∥x∥2 for the Euclidean norm (i.e., ℓ2 norm). In this case, the notation should still be clear
since the norm is taken on a vector (i.e., bold lower-case). To denote an n× n positive (semi)definite
matrix X , we may interchangeably use X ∈ Sn++ (X ∈ Sn+) and X ≻ 0 (X ⪰ 0). We use the
standard O(·) notation to describe the complexity of a function. In addition, Õ(·) is used to suppress
multiplicative terms with logarithmic dependence.

2 PROBLEM STATEMENT

Consider the following class of nonlinear dynamical system models

xt+1 =θ⋆ϕ(xt,ut) +wt, t = 0, . . . , T − 1. (1)

Let xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn represent the state, control input, and noise at time t,
respectively. The feature map ϕ : Rn × Rm → Rp is an arbitrary, known nonlinear function. To
simplify notation, we use the feature map interchangeably as ϕ(xt,ut) and ϕ(zt), where zt =
[x⊤

t u⊤
t ]

⊤ ∈ Rn+m is the augmented vector of the state and control input.

Our goal is to recover the unknown parameters θ⋆ ∈ Rn×p from a single trajectory of data. The
model (1) is versatile enough to capture a broad range of real-world applications, from mechanical
systems like autonomous helicopters and bipedal robots to time-series models commonly used in
financial markets, weather prediction, and epidemiology for modeling disease spread (Ljung, 1998;
Ng et al., 2006; Hong et al., 2008; Louka et al., 2008; Brunton et al., 2016; Alaskar, 2019).

2.1 LEAST SQUARES ESTIMATE

The least squares estimate (LSE) is widely used for system identification. Given a single trajectory
({zt}T−1

t=0 ,xT ), the LSE denoted as θT minimizes the sum of the squares of the residuals:

θT ∈ argmin
θ

1

T

T−1∑
t=0

∥xt+1 − θϕ(zt)∥22 . (2)

Let us refer to the minimization in (2) as the LSE problem. Note that the objective function in (2) is
quadratic in θ. Therefore, we can rewrite the LSE problem as

min
θ

1

T

T−1∑
t=0

[
xt+1

ϕ(zt)

]⊤ [ In −θ
−θ⊤ θ⊤θ

] [
xt+1

ϕ(zt)

]
= min

θ
tr
(
G(θ)Ω̂T

)
, (3)
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where G(θ) =

[
In −θ

−θ⊤ θ⊤θ

]
and Ω̂T =

1

T

T−1∑
t=0

[
xt+1

ϕ(zt)

] [
xt+1

ϕ(zt)

]⊤
. (4)

We can express the true LSE problem by substituting Ω̂T in (3) with its expectation, namely,
Ω⋆

T = E[Ω̂T ]. Then, one can obtain the system parameter by solving the true LSE problem:

θ⋆ ∈ argmin
θ

tr (G(θ)Ω⋆
T ) . (5)

From (5), it is clear that obtaining the true system parameter requires knowledge of Ω⋆
T , while the

empirical estimate Ω̂T inherently contains estimation errors that depend on the available data. In
other words, a poor estimate Ω̂T may lead to inferior performance, which is commonly the case
when the sample size T is small or, in our context, a short trajectory of data.

3 ROBUST LEAST SQUARES ESTIMATE

As mentioned earlier, the estimate Ω̂T based on T non-i.i.d. samples may fail to accurately capture
Ω⋆

T when T is small. Even with a sufficiently large T , the standard LSE θT in (2) may still perform
poorly in practical applications where the model (1) does not adequately reflect the true behavior of
the dynamical system. To address this issue, we formulate a robust version of the LSE problem to
obtain a robust estimate, denoted as θ̂T :

θ̂T ∈ argmin
θ

max
Ω∈Up,ϵ

T

tr (G(θ)Ω) where Up,ϵ
T =

{
Ω ∈ S2n+m

+ : ∥Ω− Ω̂T ∥p ≤ ϵ
}
. (6)

The proposed approach (6) first constructs the uncertainty set Up,ϵ
T which contains all positive

semidefinite matrices Ω that are within a distance of ϵ ≥ 0 from the estimate Ω̂T in the Schatten
p-norm. Then, it seeks a minimizer θ̂T that performs best under the worst-case matrix Ω in Up,ϵ

T .
However, the min-max problem in (6) is difficult to solve directly since the objective function involves
a maximization problem. In the following, we introduce an equivalent semidefinite program (SDP)
for the robust LSE problem. To our knowledge, the proposed formulation has not been derived in the
literature of robust regression problems.
Theorem 1. For any given uncertainty set parameters p ≥ 1 (as in the Schatten p-norm) and ϵ ≥ 0,
the robust LSE problem in (6) can be equivalently reformulated as the SDP

min tr(ΓΩ̂T ) + ϵ∥Γ∥q
s.t. θ ∈ Rn×(n+m), Γ ∈ S2n+m

+ , H ∈ Sn+m
+ ,

Γ ⪰
[

In −θ
−θ⊤ H

]
,[

In θ
θ⊤ H

]
⪰ 0,

(7)

where ∥ · ∥q is the dual Schatten norm of ∥ · ∥p, that is, q such that 1
p + 1

q = 1.

The proof of this theorem is in the supplementary material A.

Note that the Schatten p-norm defined in (6) corresponds to the Schatten q-norm in the objective
function in (7). For any q ≥ 1, the reformulation (7) is a convex SDP. In particular, for several choices
of q such as q = 1, 2,∞, it is readily solvable by off-the-shelf commercial solvers. Moreover, the
computational complexity of our approach is invariant to the number of samples T , i.e., the size of
the SDP (7) remains the same regardless of T since the model only requires the matrix Ω̂T .

Interestingly, the robust LSE problem admits an equivalence to the regularized LSE problem as shown
in the following corollary.
Corollary 1. For any given uncertainty set parameters p ≥ 1 and ϵ ≥ 0, the robust LSE problem (6)
is equivalent to the LSE problem with the Schatten q-norm regularization term as follows:

min
θ

tr
(
G(θ)Ω̂T

)
+ ϵ∥G(θ)∥q. (8)
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The proof of this corollary is in the supplementary material B.

A few remarks are in order. If the nuclear norm (i.e., q = 1) is used in (8), then we have ϵ∥G(θ)∥∗ =
ϵ∥θ∥2F + ϵn. Thus, the regularization term simplifies to a squared Frobenius norm regularization on
θ, and the resulting problem constitutes a tractable quadratic program. Corollary 1 further draws
an interesting connection between the robust LSE and the regularized LSE in Abbasi-Yadkori &
Szepesvári (2011). In that work, the regularization parameter ϵ is set to a small fixed value. However,
it lacks a clear explanation of how the regularization impacts the performance of the LSE since
it is introduced merely to ensure the invertibility of the matrix

∑T−1
t=0 xt+1x

⊤
t+1 (known as the

Gram matrix as discussed in the following section). In this case, a convergence rate on the system
identification error cannot be established. Our result, therefore, not only provides a justification for the
use of squared Frobenius norm regularization but also guidance on how to control the parameter as the
sample size T increases. The recent work Sun et al. (2022) uses a Hankel nuclear norm regularization
to identify low-order linear systems using i.i.d. trajectories. They recognize that the regularization
term yields better performance than the unregularized LSE when the number of samples is small.
However, to the best of our knowledge, there is no prior non-asymptotic analysis for the LSE with
general Schatten norm regularization under the single trajectory assumption. In Section 4, we provide
non-asymptotic analyses for the robust LSE problem, which ultimately results in system identification
errors.

4 PERFORMANCE GUARANTEES

Among the simplest examples of (1) is the linear system, where the feature map is defined as
ϕ(xt,ut) = [x⊤

t u⊤
t ]

⊤ ∈ Rn+m. In this case, the system evolves according to xt+1 = A⋆xt +
B⋆ut+wt, where the unknown parameters are θ⋆ = [A⋆ B⋆] ∈ Rn×(n+m). In the literature, much
of the statistical analysis concerning LSE performance focuses on understanding the sum of outer
products,

∑T−1
t=0 xt+1x

⊤
t+1, known as the Gram matrix. Suppose that the noise is Gaussian, e.g.,

wt ∼ N (0,Σw), and the sequence of control inputs is generated by a Gaussian distribution, e.g.,
ut ∼ N (0, σ2

uI) for t = 0, . . . , T − 1. Then, the expected Gram matrix E[
∑T−1

t=0 xt+1x
⊤
t+1], which

corresponds to the first diagonal block of Ω⋆
T in (5), can be nicely represented as a matrix-valued

function of the unknown system parameter θ⋆:

E

[
T−1∑
t=0

xt+1x
⊤
t+1

]
=

T−1∑
t=0

Γt(θ
⋆) =

T−1∑
t=0

t∑
s=0

(A⋆⊤
)s(σ2

uB
⋆B⋆⊤ +Σw)(A

⋆)s. (9)

Of course, the expected Gram matrix (9) is not accessible to us since it requires θ⋆.

In this section, we discuss the non-asymptotic guarantees of our robust approach for linear systems
under the single trajectory assumption. Specifically, our goal is to show that the system identification
errors of our robust method matches the near-optimal rate Õ(1/

√
T ). This suggests that introducing

robustness incurs only negligible costs in terms of T , while providing significant empirical improve-
ments over the unregularized LSE in (2) (henceforth referred to as the standard LSE), as discussed in
the following section.

As noted in Tsiamis et al. (2023), despite its apparent simplicity, the linear system remains challenging
to analyze. The majority of research in statistical learning for system identification has focused on
linear systems, as this setting allows for more tractable theoretical analysis. While a few papers have
analyzed certain classes of nonlinear systems, these often sidestep the core challenges by focusing on
systems that exhibit near-linear behavior (Foster et al., 2020; Sattar et al., 2021; Kowshik et al., 2021;
Sattar & Oymak, 2022; Mania et al., 2022).

For the standard LSE, many works have established optimal rates of convergence. A key advantage
of analyzing the standard LSE is that the system identification error can be directly derived from
the analytical solution to the LSE problem in (2). Specifically, the error is given by θT − θ⋆ =

(
∑T−1

t=0 wtz
⊤
t )(
∑T−1

t=0 ztz
⊤
t )−1. This expression allows the error term to be decomposed in various

ways to enable different types of analysis (Simchowitz et al., 2018; Sarkar & Rakhlin, 2019; Jedra
& Proutiere, 2020). However, these decomposition techniques do not apply to our robust LSE, as
the error term for the robust estimator, i.e., θ̂T − θ⋆, no longer has a convenient analytical form.
Therefore, a different approach is required for our analysis.
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4.1 ASSUMPTIONS

We formally state our assumptions for the analysis in this section.

A1. We consider a strictly stable system, i.e., ρ(A⋆) < 1.
A2. The data, i.e., observed states of the system (1), is collected in a single trajectory of length T +1

denoted as {xt}Tt=0 ∈ Rn(T+1) with the initial state x0 = 0.
A3. Let {Ft}t≥0 be a filtration and {xt}t≥0 be a stochastic process such that xt is Ft−1 measurable.

A4. The noise wt ∈ Rn is a martingale difference sequence with respect to Ft with E[wt|Ft−1] = 0
and E[wtw

⊤
t |Ft−1] = Σw ≻ 0.

A5. Furthermore, we assume that wt is a σ2
w-conditionally sub-Gaussian random vector with respect

to Ft, i.e., for any unit vector v ∈ Rn, there exists some constant σ2
w > 0 such that the

inner-product v⊤wt follows the inequality E[exp(v⊤wt)|Ft] ≤ exp(∥v∥2σ2
w/2).

A6. The control input ut ∈ Rm is an i.i.d. σ2
u-sub-Gaussian random vector with E[ut] = 0 and

E[utu
⊤
t ] = σ2

uIm. In other words, we inject sub-Gaussian exploration noise into the system to
identify the system parameter θ⋆.

These are standard assumptions in the literature. In particular, A3.-A5. enable us to utilize tools
from the self-normalized process (Abbasi-Yadkori et al., 2011). The main challenge in our analysis
arises from the single trajectory assumption in A2., as this trajectory consists of non-i.i.d. samples.
Due to this difficulty, some previous works rely on a more stringent assumption that T multiple
i.i.d. trajectories are available, taking only the last state from each trajectory to ensure that those T
samples are i.i.d. Our main theoretical contribution lies in deriving non-asymptotic guarantees of the
proposed robust LSE method (6), using non-i.i.d. samples.

We first provide the non-asymptotic coverage guarantee of our uncertainty set in (6), which is
eventually used as the main ingredient for our system identification error analysis.
Proposition 1. (Non-asymptotic coverage guarantee). For any significance level δ ∈ (0, 1], we have

P [Ω⋆
T ∈ Up

T (δ)] ≥ 1− δ. (10)

Here, Up
T (δ) is the uncertainty set for the robust LSE problem in (6) defined as follows:

Up
T (δ) =

{
Ω ∈ S2n+m

+ : ∥Ω− Ω̂T ∥p ≤ ϵ(δ)
}

and ϵ(δ) = Õ(1/
√
T ). (11)

The proof of this proposition is in the supplementary material C.

Before discussing the main results, we make several comments about Proposition 1. Although (37)
provides a more explicit form for the upper bound ϵ(δ) in (11) by identifying the universal constants,
it would be an overly conservative estimate and thus lack practical usage by itself. Instead of relying
on such a conservative a priori bound, it is common practice to calibrate the regularization parameter,
using the cross-validation procedure (Arlot & Celisse, 2010; Mohajerin Esfahani & Kuhn, 2018;
Shafieezadeh Abadeh et al., 2018; Bach, 2024). In the following section, we will use cross-validation
to select the initial regularization parameter. In this context, Proposition 1 becomes practically useful,
as the rate Õ(1/

√
T ) offers guidance on how to scale the regularization parameter of the robust

LSE as the sample size increases. We believe that these results are insightful from a broad range of
perspectives, including machine learning, system identification, and robust optimization.

In the system identification literature, regularization is often applied merely to ensure strong convexity,
with the regularization parameter typically set heuristically to a small value (Abbasi-Yadkori &
Szepesvári, 2011; Sun et al., 2022). Our results, however, suggest that the regularization parameter
should be data-dependent to achieve good out-of-sample performance guarantees. To the best of our
knowledge, there are no existing works that provide a theoretical analysis of the regularized LSE
under a single trajectory.

In the literature on robust optimization, Mohajerin Esfahani & Kuhn (2018) introduces the state-
of-the-art Wasserstein robust optimization model under the i.i.d. data setting. While their model
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could, in principle, be an alternative to ours, unfortunately, their analysis reveals that the Wasserstein
model suffers from the curse of dimensionality, i.e., their error rate O(1/T

2
n ) becomes slower as

the dimension of the state space, n, increases. Although a more recent work Gao (2023) addresses
this challenge by deriving dimension-free non-asymptotic guarantees under the Lipschitz continuity
assumption with respect to θ, it may not easily generalize and, more importantly, it is not applicable
to our problem. While the Wasserstein model has garnered significant attention in the machine
learning community for its promising performance across various applications (Shafieezadeh Abadeh
et al., 2018; Liu et al., 2022; Bai et al., 2024; Nietert et al., 2024), there is still an open question
about whether the error rate can be improved. In this regard, our results provide new insights into the
open question by avoiding the curse of dimensionality, even under the more stringent assumption of
non-i.i.d. data from a single trajectory.

Building upon the insights from Proposition 1, we now turn to the analysis of the non-asymptotic
system identification errors. Specifically, the following theorem applies to both the robust LSE and
the regularized LSE, due to their equivalence.
Theorem 2. (System identification errors). Suppose that ϵ(δ) is the upper bound in (11). Then, for
any significance level δ ∈ (0, 1], as long as

T ≥ T (δ) =

(
400

3

)(
log

(
1

δ

)
+ 2(n+m) log

(
200

3

)
+ logdet

(
Γ̃1Γ1

−1
))

where

Γ̃1 =

[
Γ1(θ

⋆) 0
0 σ2

uIm

]
and Γ1 =

n+m

δ
E
[
z1z1

⊤] ,
we have the following system identification errors

P

[
∥θ⋆ − θ̂T ∥ ≤

ϵ(δ)
√

min{n,m}
α̂

(2 + 2∥θ⋆∥+ ∥∇θ∥G(θ⋆)∥q∥)

]
≥ 1− δ, (12)

where α̂ = 1
24

(
3
20

)2
min

{
σ2
w, σ

2
u

}
.

The proof of this theorem is in the supplementary material D.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to evaluate the performance of our proposed method.
Both the proposed approach and benchmark models are implemented in Python 3.7. Specifically, a
neural network model is implemented using TensorFlow (Abadi et al., 2015), while the optimization
problem (7) is modeled with the CVXPY (Diamond & Boyd, 2016) interface and solved using the
commercial solver MOSEK (ApS, 2024). All experiments were conducted on a laptop equipped with
a 6-core, 2.3 GHz Intel Core i7 CPU and 16 GB of RAM. The SDP formulations for the examples
in this section can be solved in under 0.1 seconds. In the supplementary material E, we provide the
mean computational times for several example systems.

We compare our robust LSE with the standard LSE for the wind speed prediction problem (Tas-
cikaraoglu & Uzunoglu, 2014) and learning synthetic dynamical systems. Additionally, we consider
an online control task where we combine our robust LSE with the existing online linear quadratic
(LQ) control algorithms. We then compare the regret of different algorithms to demonstrate how
improved performance in system identification can be translated into more reliable control systems.

As commented earlier, while the theoretical error rate Õ(1/
√
T ) derived in Proposition 1 is still useful,

choosing the regularization parameter directly from the theoretical upper bound ϵ(δ) leads to a too
conservative estimate θ̂T . In fact, a similar argument is made in Dean et al. (2020). Instead of adopting
the theoretical guarantee, the authors use the standard bootstrap method to obtain an empirical upper
bound ϵ(δ) on the system identification errors of the standard LSE, i.e., ∥θ⋆ − θT ∥ ≤ ϵ(δ). For
the robust LSE, we use a 3-fold cross-validation procedure to determine an initial value of the
regularization parameter, as follows. We split the samples into three equal-sized subsets where two of
the three subsets are put together to learn the robust estimate. The resulting estimate is then tested
on the remaining set for all ϵ = (a · 10b)/

√
T where a ∈ {1, 3, 5, 7, 9} and b ∈ {−3, . . . , 3}. This

process is repeated three times for different partitions of the samples to choose the ϵ that performs
best overall.
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5.1 WIND SPEED PREDICTION

We address the wind speed prediction problem as an example of learning an underlying nonlinear
time-series model. Accurate wind speed prediction is essential for the safe integration of wind
energy into power grids. However, the nonlinear nature of wind speed makes this task particularly
challenging and an active research area, with various approaches being proposed, including physics-
based models and neural network-based designs (Louka et al., 2008; Liu et al., 2018; Chen et al.,
2021; Cai et al., 2021; Theuer et al., 2021; Hazarika et al., 2022). A recent work Chen et al. (2024)
decomposes the raw wind speed data into simpler nonlinear components known as intrinsic mode
functions (IMFs) using the Hilbert–Huang transform (HHT) based on complementary ensemble
empirical mode decomposition. Neural network models are employed to learn the IMFs, and the
standard LSE is used to determine the optimal weights for these learned nonlinear functions.

Note that the nonlinear function ϕ(·) is not given explicitly in this experiment but is learned via the
neural network model, making the problem more challenging than our problem setup. We chose the
wind speed prediction problem because a successful implementation would demonstrate that complex
nonlinear systems can be effectively learned by combining machine learning and optimization
methods without extensive domain knowledge. Using the wind speed data from fedesoriano (2022),
we implemented the optimized HHT-NAR method from Chen et al. (2024) (here simply referred to as
LSE), along with our robust version, and evaluated the prediction accuracy for the next 50 daily wind
speeds. Figure 1 shows prediction results for both methods using a single trajectory of 30 sample
points (i.e., T = 30).
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Figure 1: Daily wind speed predictions for a 50-day period. The training sample size is 30 for both
LSE (red) and robust LSE (green). The predictions for the next 50 days are compared to the actual
wind speed (solid gray line).

We replicated the experiments across 20 different datasets with varying training data sizes (i.e.,
increasing T ) and recorded the root mean squared errors (RMSE) as a measure of system identification
(i.e., prediction) errors. Figure 2 shows that our approach achieves significant improvement over the
standard LSE.
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Figure 2: Mean wind speed prediction errors over 20 test datasets: mean RMSE (solid lines) on a
log scale, with the 10th and 90th percentiles represented by filled areas (left) and mean percentage
improvement of the robust LSE over the standard LSE (right)
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5.2 LEARNING DYNAMICAL SYSTEMS

Instead of focusing on particular dynamical system examples (in the upcoming online control
experiments, we will consider standard examples from the literature), we randomly generated five
sets of 500 synthetic systems θ⋆ = [A⋆ B⋆] ∈ R5×10, each set having the same spectral radius
ρ(A⋆) ranging from 0.1 to 1.0. We compared the system identification errors of the robust LSE and
the standard LSE as we collected more samples (i.e., increasing T ) over time. We observed that the
smaller ρ(A⋆) is, the greater performance improvement the robust LSE achieves over the standard
LSE. Figure 3 shows the mean system identification errors in the operator norm when ρ(A⋆) = 1.0.
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Figure 3: Mean system identification errors over 500 synthetic systems with ρ(A⋆) = 1.0: mean
errors (solid lines) in the operator norm, with the 10th and 90th percentiles represented by filled areas
(left) and mean percentage improvement of the robust LSE over the standard LSE (right)

In the supplementary material F, we tested the stability of the synthesized controller based on the
estimated systems in a marginally stable system. We also conducted additional experiments, including
one on a high-dimensional system, and another comparing our method with the Wasserstein model.

5.3 ONLINE LINEAR QUADRATIC CONTROL

To showcase how our robust LSE can be used to design reliable control systems, we performed online
LQ control tasks using standard examples in the literature: i) the longitudinal flight control of Boeing
747 from Ishihara et al. (1992), ii) a marginally unstable Laplacian system from Dean et al. (2020),
and iii) UAV in a 2D plane from Zhao et al. (2021). We considered several online LQ algorithms
proposed in recent years: 1) OFULQ from Abbasi-Yadkori & Szepesvári (2011), 2) STABL from
Lale et al. (2022), 3) ARBMLE from Mete et al. (2022). Broadly speaking, these algorithms conduct
two main tasks: identifying the system and deriving the best control input. In particular, OFULQ
and STABL utilize the standard LSE for their system identification task. Hence, we can replace the
standard LSE with the robust LSE which we referred to as 4) R-OFULQ and 5) R-STABL.

For each of the algorithms 1)-5), we conducted 500 simulations over a time horizon of T = 1000,
recording the mean regrets. Due to space limitations, we present only the results for the Boeing 747
example in Figure 4—see the plots for other examples included in the supplementary material G. In
Figure 4, we show only the robust algorithms 4) and 5) for q = 1 in the SDP (7) to maintain clarity of
the plot. As mentioned, however, our online control algorithms can be adjusted by selecting different
values of the parameter q, corresponding to the Schatten q-norm in the SDP (7). A detailed discussion
on choosing the parameter q is provided in the supplementary material H.

Every algorithm presented in our experiments requires several parameters. We adopted the parameter
setups suggested by the corresponding papers. However, we acknowledge that their setups are not
identical to each other. For example, some papers start recording regret after t = 50, while others
assume a tight upper bound on ∥θ⋆ − θt∥ is available at each time step t. Irrespective of the choice
of the Schatten norm parameter q, our algorithms offer significant advantages over other benchmark
algorithms. The results demonstrate not only that the robust LSE can be utilized for various online
control algorithms, but also that optimizing the regularization parameter in real-time (i.e., with respect
to T ) for both the robust LSE and the regularized LSE is indeed advantageous.
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Figure 4: Mean regret over 500 replications: i) Boeing 747

6 CONCLUDING REMARKS

We present a robust framework for system identification by leveraging robust optimization to im-
munize standard LSE against small-sample estimation errors and model misspecifications. We
derive non-asymptotic guarantees on system identification errors by analyzing the concentration of a
single-sample trajectory. Notably, robustifying the estimation achieves a near-optimal error rate and
demonstrates substantial empirical improvements. While our analysis is based on a single trajectory,
our framework can be straightforwardly applied to a simpler setting where multiple trajectories are
available.

Our proposed formulation constitutes a simple semidefinite program, which can be efficiently
implemented using standard off-the-shelf solvers. In the special case where the ∞-norm is used
in the uncertainty set, the formulation reduces to an efficiently solvable quadratic program. The
experimental results on the real-world wind prediction problem highlight the significant advantages
of our robust model, achieving unprecedented performance. When deployed in online LQ control
algorithms, the robust system estimates yield substantially lower regret than standard LSE, further
demonstrating the practical benefits of our approach.

Our current work focuses on fully observable systems, which presents a key limitation. Future
research will aim to develop a robust optimization framework for identifying partially observable
systems with performance guarantees. Additionally, while the complexity of our SDP formulation in
(8) is independent of the number of samples, it becomes impractical for high-dimensional systems,
as solving SDPs generally scales poorly with dimensionality. For large-scale system identification,
we recommend setting q = 1 in (8) to reduce the SDP to a quadratic program, though this approach
sacrifices the flexibility of selecting the Schatten norm parameter.
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Feiran Zhao, Keyou You, and Tamer Başar. Infinite-horizon risk-constrained linear quadratic regulator
with average cost. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 390–395.
IEEE, 2021.

13



Published as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

A PROOF OF THEOREM 1

Proof. Dualizing the inner maximization problem with the constraint ∥Ω− Ω̂T ∥p ≤ ϵ given by our
uncertainty set, we have

max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ− λ∥Ω− Ω̂T ∥p

= max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ− max
∥Γ∥q≤λ

tr
(
Γ
(
Ω− Ω̂T

))
(13)

= max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ+ min
∥Γ∥q≤λ

tr
(
Γ
(
Ω̂T −Ω

))
(14)

= min
λ≥0,

∥Γ∥q≤λ

tr
(
ΓΩ̂T

)
+ λϵ+max

Ω⪰0
tr((G(θ)− Γ)Ω) (15)

= min
λ≥0,

∥Γ∥q≤λ

tr
(
ΓΩ̂T

)
+ λϵ s.t. Γ ⪰

[
In −θ

−θ⊤ θ⊤θ

]
(16)

= min
λ≥0,

∥Γ∥q≤λ,
H⪰0

tr
(
ΓΩ̂T

)
+ λϵ s.t. Γ ⪰

[
In −θ

−θ⊤ H

]
,

[
In θ
θ⊤ H

]
⪰ 0. (17)

In the first equality (13), we use the definition of the dual norm for λ∥Ω− Ω̂T ∥p. As in the second
equality (14), we can convert the maximization to a minimization since max f(·) = −min−f(·).
The third equality (15) exploits strong duality by following the standard results of the convex analysis
(see Theorem 1, Chapter 8 in Luenberger (1997)). The feasible set of (λ,Γ) defined in (14) is a convex
set, and the objective function of the inner minimization problem is convex in (λ,Γ). Furthermore,
we can show the existence of an interior point in the feasible set, that is, there always exists some Γ
such that the following strict inequality holds: ∥Γ∥q < λ for any λ > 0. Hence, strong duality holds.
Then, the maximization over Ω in (15) leads to a restriction of the feasible set which is given by the
constraint in (16). In other words, (G(θ)− Γ) in (15) needs to be negative semidefinite. In the last
equality, we linearize the quadratic term θ⊤θ by following Lemma 4 in Mittal et al. (2020). Then,
we can combine the minimization in (17) with the minimization over θ in (7). Finally, reversing the
epigraphic reformulation ∥Γ∥q ≤ λ in the equality (17) yields the problem formulation (7), which is
a semidefinite program.

B PROOF OF COROLLARY 1

Proof. By reversing the epigraphic reformulation ∥Γ∥q ≤ λ in (16), we have

min
Γ,θ

tr
(
ΓΩ̂T

)
+ ϵ∥Γ∥q s.t. Γ ⪰

[
In −θ

−θ⊤ θ⊤θ

]
︸ ︷︷ ︸

=G(θ)

. (18)

Suppose that A,B,C ⪰ 0 and A ⪰ B. Then, the following is true: tr(AC) ≥ tr(BC). Recall
that positive semidefinite inequality ⪰ implies ordering on matrices known as Loewner’s ordering.
One property of the Loewner’s ordering is that A ⪰ B ⇒ σi(A) ≥ σi(B) for all i where σi(·)
denotes the i-th singular value of the corresponding matrix (note that the converse is not necessarily
true). Also, by definition, the Schatten q-norm is equivalent to the ℓq-norm of the vector of singular
values, i.e., ∥A∥q = ∥[σ1(A), . . . , σn(A)]⊤∥q = (

∑n
i=1 |σi(A)|q)1/q. Using these facts, we can

conclude that Γ = G(θ) holds when Γ and θ are the minimizer of the problem (18). Hence, the
problem (18) is equivalent to (8).
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C PROOF OF PROPOSITION 1

Proof. Proving that the guarantee (10) holds amounts to showing that the distance between Ω⋆
T and

Ω̂T is small w.h.p.: ∥Ω⋆
T − Ω̂T ∥p ≤ ϵ(δ) w.p. at least 1− δ. Here, we derive the upper bound ϵ(δ)

for p = ∞, i.e., the case where the norm in (11) defined by the Schatten ∞-norm (equivalently,
operator norm ∥ · ∥ = ∥ · ∥∞). Due to the equivalence of norms, it is easy to show similar bounds for
any p ≥ 1 with different dimensional factors.

Note that Ω̂T can be explicitly expressed as follows:

Ω̂T =
1

T

T−1∑
t=0

[
xt+1

xt

ut

][
xt+1

xt

ut

]⊤
(19)

=
1

T

T−1∑
t=0

 xt+1x
⊤
t+1 (A⋆xt +B⋆ut +wt)x

⊤
t (A⋆xt +B⋆ut +wt)u

⊤
t

xt (A
⋆xt +B⋆ut +wt)

⊤
xtx

⊤
t xtu

⊤
t

ut (A
⋆xt +B⋆ut +wt)

⊤
utx

⊤
t utu

⊤
t

 .

(20)

Similarly, Ω⋆
T is expectation of (20), i.e., Ω⋆

T = E[Ω̂T ]. Hence, using (20), we can establish the
following inequalities:

∥Ω⋆
T − Ω̂T ∥ ≤ 2 (1 + ∥A⋆∥) 1

T

∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]
−

T−1∑
t=0

xtx
⊤
t

∥∥∥∥∥︸ ︷︷ ︸
(a)

+ 2
1

T

∥∥∥∥∥E
[
T−1∑
t=0

wtx
⊤
t

]
−

T−1∑
t=0

wtx
⊤
t

∥∥∥∥∥︸ ︷︷ ︸
(b)

+2 (1 + ∥A⋆∥+ ∥B⋆∥) 1

T

∥∥∥∥∥E
[
T−1∑
t=0

utx
⊤
t

]
−

T−1∑
t=0

utx
⊤
t

∥∥∥∥∥︸ ︷︷ ︸
(c)

+ (1 + 2 ∥B⋆∥) 1

T

∥∥∥∥∥E
[
T−1∑
t=0

utu
⊤
t

]
−

T−1∑
t=0

utu
⊤
t

∥∥∥∥∥︸ ︷︷ ︸
(d)

+2
1

T

∥∥∥∥∥E
[
T−1∑
t=0

wtu
⊤
t

]
−

T−1∑
t=0

wtu
⊤
t

∥∥∥∥∥︸ ︷︷ ︸
(e)

.

Our goal is to bound each of the terms (a)-(e), and then combine the results to complete the proof.

(a):

Notice that we analyze the difference between the Gram matrix and its expectation with factor (1/T ).
Similar results are discussed in Jedra & Proutiere (2020). First, we introduce the preparatory result.

Suppose ρ(A) < 1 for a matrix A ∈ Rn×n. Consider a t× t block Toeplitz matrix

Ht =


In 0 0 0
A In 0 0
...

...
. . . 0

At−1 At−2 · · · In

 ∈ Rnt×nt. (21)

Then, for any t ≥ 1, there exists a finite constant J (A) > 0 that only depends on A such that

∥Ht∥ ≤ J (A) :=

+∞∑
s=0

∥As∥, (22)

where J (A) is specifically the limit of a matrix power series
∑t

s=0 ∥As∥.

Jedra & Proutiere (2020) analyze the sample complexity of the unregularized LSE where an unknown
system is uncontrolled. (i.e., identifying only A⋆). We can derive a similar result to Lemma 2 in their
work.
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Under an i.i.d. sub-Gaussian exploration noise, our dynamic system can be written as xt+1 = A⋆xt+
ηt where ηt is a zero mean noise with a covariance matrix Ση := E[ηtη

⊤
t ] = σ2

uB
⋆B⋆⊤ + Σw.

Then, we can define vectorized states of the system up to time T : x1

...
xT

 = HTC
1/2
η ξ ∈ RnT where Cη = E


 η0

...
ηT−1


 η0

...
ηT−1


⊤
 =

 Ση 0 0

0
. . . 0

0 0 Ση

 ∈ SnT+

and ξ =

 ξ0
...

ξT−1

 ∈ RnT is isotropic, i.e., E[ξξ⊤] = InT (23)

To simplify the notation, let us define the reciprocal of the square root matrix of the expected Gram
matrix as follows:

M :=

(
T−1∑
t=0

Γt(θ
⋆)

)−1/2

=

(
T−1∑
t=0

t∑
s=0

(A⋆⊤
)s(σ2

uB
⋆B⋆⊤ +Σw)(A

⋆)s

)−1/2

.

Then, we can establish the following equalities:

∥M⊤
T−1∑
t=0

xtx
⊤
t M − In∥ = sup

∥u∥2≤1

∣∣∣∣∣u⊤

(
M⊤

T−1∑
t=0

xtx
⊤
t M − In

)
u

∣∣∣∣∣ (24)

= sup
∥u∥2≤1

∣∣∣∣∣∥
T−1∑
t=0

x⊤
t Mu∥22 − E

[∥∥ΣT−1
t=0 x⊤

t Mu
∥∥2
2

]∣∣∣∣∣ (25)

= sup
∥u∥2≤1

∣∣∣∥Σ⊤
MuHTC

1/2
η ξ∥22 − E

[
∥Σ⊤

MuHTC
1/2
η ξ∥22

]∣∣∣ (26)

= sup
∥u∥2≤1

∣∣∣∥Σ⊤
MuHTC

1/2
η ξ∥22 − ∥Σ⊤

MuHTC
1/2
η ∥2F

∣∣∣ , (27)

where ΣMu =

 Mu 0 0

0
. . . 0

0 0 Mu

 ∈ RnT×T in (26) is a block diagonal matrix.

The first equality (24) is the variational form of the operator norm. In the last equality (27), we
use the fact that E[∥Dξ∥22] = tr(D⊤DE[ξξ⊤]) = ∥D∥2F for an isotropic vector ξ. The objective
function in (27) can be written as | |ξ⊤Wξ| − |E[ξ⊤Wξ]| | where (ξ⊤Wξ)W∈W indexed by a set
of matrices W is referred to as a chaos process.

We omit the remaining steps since they are identical to the proof of Lemma 2 in Jedra & Proutiere
(2020) once we recognize that (27) is the supremum of a chaos process. The main idea for the remain-
ing steps is that the Hanson-Wright inequality (Hanson & Wright, 1971) provides the concentration
bound on (27) when u is fixed. Then, we can use the ϵ-net argument, i.e., discretizing the feasible
region U = {u : ∥u∥2 ≤ 1} and combining the bounds for all u ∈ U(ϵ) where U(ϵ) is an ϵ-net of
U . Following this idea, for δ ∈ (0, 1], we have

Pr

[
1

T

∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]
−

T−1∑
t=0

xtx
⊤
t

∥∥∥∥∥ ≤ ϵ(a)(δ)

]
≥ 1− δ, where

ϵ(a)(δ) = σ2
w max


√

∥M−1∥∥HT ∥2 ∥Cη∥
(
log

(
2
δ

)
+ c2n

)
√
c1T

,
∥HT ∥2 ∥Cη∥

(
log

(
2
δ

)
+ c2n

)
c1T

 . (28)

Note that ∥HT ∥ in (28) can be further bounded by some finite constant J (A⋆) due to the preparatory
result (22). However, we have not made the explicit dependence of ϵ(a)(δ) in terms of T yet as
∥M−1∥ in (28) grows with T . We defer the discussion to where the bounds on (b) and (c) are
established since the same issue arises.
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(b) and (c):

The same technique is applied to (b) and (c). Hence, we only show the derivation for (b). Note that
since the noise term wt is independent of xt, the expectation in (b) is a zero matrix. Hence, we only
need to analyze (1/T )∥

∑T−1
t=0 wtx

⊤
t ∥. Assuming

∑T−1
t=0 xtx

⊤
t is invertible (at the moment), we

can break (b) into the product of two terms as follows:

1

T

∥∥∥ T−1∑
t=0

wtx
⊤
t

∥∥∥ =
1

T

∥∥∥∥∥
(

T−1∑
t=0

wtx
⊤
t

)(
T−1∑
t=0

xtx
⊤
t

)−1/2(T−1∑
t=0

xtx
⊤
t

)1/2 ∥∥∥∥∥
≤ 1

T

∥∥∥∥∥
(

T−1∑
t=0

wtx
⊤
t

)(
T−1∑
t=0

xtx
⊤
t

)−1/2

︸ ︷︷ ︸
self-normalized martingale

∥∥∥∥∥
∥∥∥∥∥
(

T−1∑
t=0

xtx
⊤
t

)1/2 ∥∥∥∥∥︸ ︷︷ ︸
persistent excitation term

. (29)

As denoted, the stochastic process in (29) is referred to as the self-normalized martingale whose
non-asymptotic bounds are already analyzed in Abbasi-Yadkori & Szepesvári (2011). Hence, we can
invoke the following results to obtain the bound on the self-normalized term.

Suppose that VT =
∑T−1

t=0 xtx
⊤
t + V where V = c ⌊T/2⌋Γ1(θ

⋆) is a positive definite matrix with
a universal constant c > 0, ensuring the invertibility of VT . Then, for δ ∈ (0, 1], we have

P


∥∥∥∥∥∥
(

T−1∑
t=0

wtx
⊤
t

)(
T−1∑
t=0

xtx
⊤
t

)−1/2
∥∥∥∥∥∥ ≤ 4

√√√√∥Σw∥ log

(√
det (VT )

det(V )
· 5

n

δ

) ≥ 1− δ (30)

as long as T ≥ O
(
n log

(n
δ

)
+ log

(
detΓT (θ

⋆)

detΓ1(θ⋆)

))
. (31)

Note that VT in (30) is the only term that depends on T and it increases at most logarithmically as T
grows. We make a few comments before proceeding: i) the bound (30) has to be probabilistic since
the invertibility (i.e., positive definiteness) of

∑T−1
t=0 xtx

⊤
t cannot be guaranteed deterministically; ii)

the lower bound on T in (31), i.e., the minimum number of samples that ensures the invertibility of∑T−1
t=0 xtx

⊤
t w.h.p., is called the burn-in time. Here, we use the big-O notation for the burn-in time

only because we want to streamline the exposition. We make the quantity explicit in the proof of
Theorem 2 under sufficient conditions.

Subsequently, we derive an upper bound on the persistent excitation term in (29). Note that the term
is similar to one in (28). Hence, we can establish the following inequalities:∥∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]1/2
−

(
T−1∑
t=0

xtx
⊤
t

)1/2
∥∥∥∥∥∥ ≤ n

1
4

√√√√∥∥∥∥∥E
[
T−1∑
t=0

xtx⊤
t

]
−

T−1∑
t=0

xtx⊤
t

∥∥∥∥∥ ≤ n
1
4

√
T ·ϵ(a)(δ)

(32)
w.p. at least 1− δ.

In the first inequality, we use the following fact: ∥A1/2−B1/2∥ ≤
√
∥A−B∥F ≤ n

1
4

√
∥A−B∥

for any A,B ∈ Sn+. The second inequality follows from (28). By the reverse triangle inequality, we
can further derive the following upper bound on the persistent excitation term:

∥∥∥∥∥
(

T−1∑
t=0

xtx
⊤
t

)1/2 ∥∥∥∥∥ ≤

∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]1/2
︸ ︷︷ ︸

=M−1

∥∥∥∥∥+ n
1
4

√
T ·ϵ(a)(δ). (33)

Recall that we have not addressed the term ∥M−1∥ in ϵ(a)(δ). In fact, the term ∥E[
∑T−1

t=0 xtx
⊤
t ]

1/2∥
in (33) is equivalent to ∥M−1∥ as denoted above. Using the definition of the expected Gram matrix
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(9), we obtain the following inequalities:∥∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]1/2∥∥∥∥∥∥ =

∥∥∥∥∥E
[
T−1∑
t=0

xtx
⊤
t

]∥∥∥∥∥
1/2

=

∥∥∥∥∥
T∑

t=0

Γt (θ
⋆)

∥∥∥∥∥
1/2

=

∥∥∥∥∥
T∑

t=0

t∑
s=0

(A⋆)
s (

σ2
uB

⋆B⋆⊤ +Σw

) (
A⋆⊤)s∥∥∥∥∥

1/2

≤

∥∥∥∥∥T
+∞∑
s=0

(A⋆)
s (

σ2
uB

⋆B⋆⊤ +Σw

) (
A⋆⊤)s∥∥∥∥∥

1/2

≤
√
T
∥∥σ2

uB
⋆B⋆⊤ +Σw

∥∥1/2 ∥∥∥∥∥
+∞∑
s=0

(A⋆)
s

∥∥∥∥∥
=
√
T
∥∥σ2

uB
⋆B⋆⊤ +Σw

∥∥1/2 J (A⋆) (34)

=O(
√
T ).

The first equality holds since the expected Gram matrix is positive semidefinite and (34) follows
from the preparatory result (22). Here, we emphasize ∥M−1∥ grows at the rate of O(

√
T ). Hence,

combining (30) and (33) with the factor 1/T yields that (b) is upper-bounded by Õ(1/
√
T ). Moreover,

since ∥M−1∥ = O(
√
T ), we can claim that ϵ(a)(δ) in (28) is at most O(1/

√
T ).

(d) and (e):

They can be addressed by the standard concentration inequality for a covariance matrix (see Theorem
6.5 in Wainwright (2019)). For (d), under i.i.d. sub-Gaussian exploration noise, we can claim that
there exist universal constants c1, c2, c3 > 0 such that

P
[∥∥∥E [∑T

t=1 utu
⊤
t

]
−
∑T

t=1 utu
⊤
t

∥∥∥ ≤ ϵ(c)(δ)
]
≥ 1− δ, (35)

where ϵ(c)(δ) = σ2
u · c1

(√
m
T + m

T

)
+ σ2

u

(√
log( c2

δ )
Tc3

+
log( c2

δ )
Tc3

)
= O(1/

√
T ). For (e), we can

apply the same concentration inequality by defining an augmented random vector vt = [u⊤
t w⊤

t ]
⊤

since
1

T

∥∥∥∥∥E
[

T∑
t=1

wtu
⊤
t

]
−

T∑
t=1

wtu
⊤
t

∥∥∥∥∥ ≤ 1

T

∥∥∥∥∥E
[

T∑
t=1

vtv
⊤
t

]
−

T∑
t=1

vtv
⊤
t

∥∥∥∥∥ .
Therefore, there exists universal constants c̄1, c̄2, c̄3 > 0 such that

P

[∥∥∥∥∥E
[

T∑
t=1

wtu
⊤
t

]
−

T∑
t=1

wtu
⊤
t

∥∥∥∥∥ ≤ ϵ(d)(δ)

]
≥ 1− δ, (36)

where ϵ(d)(δ) = max
(
σ2
u, σ

2
w

)
· c̄1
(√

n+m
T + n+m

T

)
+max

(
σ2
u, σ

2
w

)(√ log( c̄2
δ )

T c̄3
+

log( c̄2
δ )

T c̄3

)
=

O(1/
√
T ).

Finally, combining (a)-(e), we have

ϵ(δ) = c1


√
log
(
2
δ

)
+ c2n

T
3
4

+

(
log
(
2
δ

)
+ c2n

)
T

+ c3
1√
T

·

√
log(T ) + log

(
5n

δ

)

+ c4

√n+m

T
+

n+m

T
+

√
log
(
c5
δ

)
T

+
log
(
c5
δ

)
T

 . (37)

Here, c1, c2, c3, c4, and c5 are universal constants. Removing the dependence of (37) on variables
other than T establishes the guarantee (10).
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D PROOF OF THEOREM 2

Proof. The guarantee (10) in Proposition 1 implies that the following holds:

P
[
min
θ

tr (G(θ)Ω⋆
T )︸ ︷︷ ︸

=f(θ)

≤ min
θ

tr
(
G(θ)Ω̂T

)
+ ϵ(δ)∥G(θ)∥q︸ ︷︷ ︸

=g(θ)

]
≥ 1− δ.

Let f(θ) and g(θ) be the objective function of the true and robust LSE problems, respectively.
First, we show that g(θ) is an α-strongly convex function with high probability (w.h.p.). Following
the definition of strong convexity, showing strong convexity amounts to showing that g(θ) can
be rewritten as g(θ) = g′(θ) + α∥θ∥2F where g′(θ) is a convex function and α > 0. Note that
tr(G(θ)Ω̂T ) contains the convex quadratic function, i.e., tr(1/T

∑T
t=0 ztz

⊤
t θ⊤θ). As shown in

Tsiamis et al. (2023), under i.i.d. exploration noise, the stochastic process of zt = [x⊤
t u⊤

t ]
⊤

satisfies the block martingale small ball (BMSB) condition with parameters (k, Γ̃⌊k/2⌋, 3/20) where
parameter k can be set to a positive integer and

Γ̃⌊k/2⌋ =

[
Γ⌊k/2⌋(θ

⋆) 0
0 σ2

uIm

]
is the covariance matrix of z⌊k/2⌋.

It can be shown that the BMSB condition can guarantee the persistent excitation w.h.p. (see Proposi-
tion 2.5 in Simchowitz et al. (2018)). Therefore, by setting k = 2, we can establish the following
persistent excitation of the stochastic process zt for T ≥ T (δ) (defined earlier):

P

[
1

T

T∑
t=0

ztz
⊤
t ⪰ α̂I(n+m)

]
≥ 1− δ, where α̂ =

1

16

(
3

20

)2(
2

3

)
min

{
σ2
w, σ

2
u

}
. (38)

Hence, we can claim that for any significance level δ ∈ (0, 1], g(θ) is α̂-strongly convex with
probability (w.p.) at least 1− δ when T is sufficiently large. Suppose g(θ) is indeed an α̂-strongly
convex function. Then, we can upper-bound the system identification errors as follows:

∥θ⋆ − θ̂T ∥F ≤ 2

α̂
∥∇θg (θ

⋆)∥F ≤
2
√
min{n,m}

α̂
∥∇θg (θ

⋆)∥ . (39)

The first inequality follows from the properties of strong convexity. The second inequality holds due
to the equivalence of norms. To ease the notation, we define the following block matrix notations for
Ω⋆

T and Ω̂T :

Ω⋆
T =

[
Q⋆ W ⋆

W ⋆⊤ E⋆

]
and Ω̂T =

[
Q̂ Ŵ

Ŵ⊤ Ê

]
. (40)

Then, we can write the gradient in (39) as ∇θg (θ
⋆) = −2Ŵ + 2θ⋆Ê⊤ + ϵ(δ)∇θ∥G(θ⋆)∥q.

Subsequently, we can establish the following inequalities:

∥∇θg (θ
⋆)∥ =

∥∥∥−2Ŵ + 2θ⋆Ê⊤ + ϵ(δ)∇θ∥G(θ⋆)∥q
∥∥∥

≤ sup∥∥∥[ ∆Q ∆W

∆W⊤ ∆E

]∥∥∥≤ϵ(δ)

∥∥∥−2 (W ⋆ −∆W ) + 2θ⋆ (E⋆ −∆E)
⊤
+ ϵ(δ)∇θ∥G(θ⋆)∥q

∥∥∥
(41)

= sup∥∥∥[ ∆Q ∆W

∆W⊤ ∆E

]∥∥∥≤ϵ(δ)

∥∥2∆W − 2θ⋆∆E⊤ + ϵ(δ)∇θ∥G(θ⋆)∥q
∥∥ (42)

≤ sup∥∥∥[ ∆Q ∆W

∆W⊤ ∆E

]∥∥∥≤ϵ(δ)

2 ∥∆W ∥+ 2∥θ⋆∥∥∆E∥+ ϵ(δ)∥∇θ∥G(θ⋆)∥q∥

≤ 2ϵ(δ) + 2∥θ⋆∥ϵ(δ) + ϵ(δ)∥∇θ∥G(θ⋆)∥q∥
= ϵ(δ)(2 + 2∥θ⋆∥+ ∥∇θ∥G(θ⋆)∥q∥) (43)

The first inequality (41) holds due to our guarantee in Proposition 1. In the next equality (42), we
cancel out the terms W ⋆ and E⋆ using the optimality condition for the true LSE problem, namely,
∇θf (θ⋆) = 0 ⇒ W ⋆ = θ⋆E⋆⊤. Combining (38) and (39) (∥∇θg(θ

⋆)∥ in (39) replaced by (43))
using the union bound yields the claim.
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E COMPUTATIONAL TIME

T i) Boeing 747 ii) Laplacian iii) UAV
100 6.09E-02 5.58E-02 6.61E-02
400 6.30E-02 5.10E-02 5.20E-02
1000 4.90E-02 6.09E-02 5.08E-02

Table 1: Mean computational time (in seconds) over 100 replications for solving the example systems
in the SDP formulation; as shown here, the computational time is invariant to the sample size T .

F FURTHER EXPERIMENTS

Figure 5: We consider a marginally stable system (i.e., ρ(A⋆) = 1). In the second plot, we compute
the optimal LQ controller K̂T using the estimated system θ̂T = [ÂT B̂T ] and show the frequency
that the synthesized controller is stable, i.e., ρ(A⋆ +B⋆K̂T ) < 1.

Figure 6: Comparison between our robust LSE model (green) and the Wasserstein model (blue), with
both models fine-tuned using cross-validation. The Robust model demonstrates superior performance
in terms of mean norm errors. As shown in the right subplot, the run time for our model remains
constant regardless of sample size while the run time for the Wasserstein model increases with sample
size.
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Figure 7: Performance comparison in a large-scale system: we compare our proposed method (green)
with the standard LSE (red) in a large-scale linear system where θ⋆ ∈ R50×100. Robust LSE shows
superior performance, similar to other experiments in this paper.

Figure 8: Performance comparison with long-range memory and under-actuated system: the system
has ρ(A⋆) = 0.995 and A⋆ ∈ R20×20 and B⋆ ∈ R20×2. The results show the superior performance
of ours (green) over LSE (red).
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G MORE ONLINE LQ CONTROL RESULTS
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Figure 9: Mean regret over 500 replications: ii) marginally unstable Laplacian system:
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Figure 10: Mean regret over 500 replications: iii) UAV in a 2D plane
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H CHOICE OF THE SCHATTEN NORM PARAMETER q

Since the regularization term in (7) is defined using the Schatten norm, the parameter q—or equiva-
lently p in (6)—can be chosen based on the distribution of the eigenvalues of the underlying system.
To illustrate this relationship, we conducted stylized experiments, as shown in Figure 11.

Figure 11: Choosing the optimal Schatten norm parameter q in (7): We generate two 3 × 3 linear
systems for the experiment. The system in the left subplot has uneven eigenvalues (λ1 = 0.9 and
λ2 = λ3 = 0.1), while the system in the right subplot has even eigenvalues (λ1 = λ2 = λ3 = 0.9).
We conduct 300 simulations across different choices of the Schatten norm parameter q ∈ {1, 2,∞}
and the radius parameter ϵ (on the x-axis), plotting the mean norm error (on the y-axis) to identify the
optimal radius for each value of q. As shown, q = 1 performs the best for the system with uneven
eigenvalues, while q = ∞ performs the best for the system with even eigenvalues.

Furthermore, we validated our findings through adaptive control tasks, as demonstrated in Figure 12.

Figure 12: Adaptive control tasks with different choices of q: i) Boeing 747 represents a system
with uneven eigenvalues, whereas iii) UAV corresponds to a system with even eigenvalues. We
conducted 500 simulations to evaluate adaptive control tasks using different values of q in Robust
STABL (R-STABL). The results align with our interpretation of the choice of q as described in Figure
11.
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