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Abstract

Current strategies for semi-supervised Bayesian active learning are generally based on
learning unsupervised representations and then performing active learning on the resulting
latent space with a supervised model. We find that this approach can break down with
messy, uncurated pools as the representations fail to capture the right similarities between
our inputs. To address this, we propose the use of task-driven representations that are
periodically updated during the active learning process. Initial empirical results suggest
our approach leads to more effective acquisitions and enhances model performance.

1. Introduction

Bayesian active learning (MacKay, 1992; Houlsby et al., 2011; Gal et al., 2017) is a frame-
work for selecting the most informative data points to label during the training of a proba-
bilistic model. It achieves this by estimating how the uncertainty of the model will change
once updated with new data, then choosing labels to minimize this.

While the field has traditionally used fully supervised models (Houlsby et al., 2011;
Chitta et al., 2018; Kirsch, 2023), there has been a growing line of work highlighting the ben-
efits of using semi-supervised models (Burkhardt et al., 2018; Hacohen et al., 2022; Seo et al.,
2022b; Mittal et al., 2023; Bickford Smith et al., 2024). By incorporating the rich informa-
tion available in the unlabeled data, semi-supervised approaches are not only able to improve
the immediate predictions of the model, but also the effectiveness of the acquisitions by im-
proving reducible uncertainty estimation (Osband et al., 2022b; Bickford Smith et al., 2024).

Current semi-supervised approaches typically learn unsupervised representations using
the unlabeled data upfront, then perform active learning on top of the learnt representations
using a fully supervised prediction head (Emam et al., 2021; Osband et al., 2022a; Seo et al.,
2022b; Bickford Smith et al., 2024). As we can expect these representations to capture much
of the important information in our data, this allows for the use of more lightweight super-
vised prediction heads, which in turns improves both the computational efficiency and con-
sistency in uncertainty across updates (Bickford Smith et al., 2024). Moreover, by compress-
ing our inputs to a lower-dimensional space, it also allows our model to make better similar-
ity judgments between inputs and consequently produce more appropriate predictive corre-
lations, which are crucial for effective acquisitions (Wang et al., 2021; Osband et al., 2022d).

Our key insight is that this approach can fail in the presence of messy pools—that is
pools where information about the target predictive task is heavily diluted by information
not relevant to the task—which is precisely the scenario where active learning can be most
impactful (Sun et al., 2017; Emam et al., 2021; Citovsky et al., 2021; Zhang et al., 2022). In-
deed, we show that the task-agnostic nature of unsupervised representation learning can lead
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to representations that fail to capture all the information relevant to our task. As a result,
the representations can fail to capture the right notion of similarity between inputs for our
task, leading to inaccurate predictive correlations and, ultimately, suboptimal acquisitions.

We suggest to address this issue by introducing task-driven representations. Namely, we
argue that updating our representations throughout the active learning process using semi-
supervised learning techniques allows us to guide these representations towards capturing
task-relevant information. This, in turn, should enable our model to better learn the rele-
vant similarities between inputs, improve reducible uncertainty estimation, and make better
acquisition decisions. Initial experiments find that this leads to improved performance.

2. Background

We consider probabilistic models pϕ(y|x) for inputs x ∈ X and outputs y ∈ Y. We as-
sume that pϕ(y|x) takes the form pϕ(y|x) = Epϕ(θ) [pϕ(y|x, θ)], where θ are stochastic model
parameters and ϕ indicates learnable aspects of the model, such that model updates are
reflected through changes to ϕ. Data is treated to be i.i.d. conditional on θ. For ease of
exposition, we will further assume a classification setting, such that Y = {1, . . . ,K}, but
note that all the ideas introduced apply more generally.

Bayesian active learning Deriving information–theoretic acquisition functions for ac-
tive learning using ideas from the framework of Bayesian experimental design (Lindley, 1956;
Rainforth et al., 2024) leads to what is known as Bayesian active learning (BAL, MacKay
(1992)). These acquisition functions target data that would maximally reduce our model’s
uncertainty through a hypothetical Bayesian update to pϕ(θ). For example, the EPIG ac-
quisition function (Bickford Smith et al., 2023) aims to reduce uncertainty in future hypo-
thetical predictions, while the BALD score (Houlsby et al., 2011) aims to reduce uncertainty
in θ itself: BALD(x) = Epϕ(y|x)[H[pϕ(θ)]−H[pϕ(θ|x, y)]].

Semi–supervised active learning By using the rich information available from unla-
beled data points, semi-supervised active learning approaches (Burkhardt et al., 2018; Haco-
hen et al., 2022; Seo et al., 2022b; Mittal et al., 2023; Bickford Smith et al., 2024) are not only
able to offer immediate gains in predictive performance, but are also able to better capture
predictive correlations and reducible uncertainty, allowing for more effective acquisition.

Current semi-supervised BAL approaches are typically based on splitting the predictive
model pϕ(y|x) into a fixed deterministic encoder, g : X → Rd, and stochastic prediction
head, pϕ(y|z, θh), where z = g(x) is the representation output by the encoder, θh ∼ pϕ(θh)
are the stochastic parameters of our prediction head, and our overall predictive model is
pϕ(y|x) = Ep(θh) [pϕ(y|g(x), θh)] (Bickford Smith et al., 2024). By fixing the encoder, we
can leverage large, pretrained unsupervised encoders that capture much of the information
needed for our downstream task in a lower-dimensional space (Chen et al., 2020b,a). This
allows the use of smaller prediction heads which improves the computational efficiency of
the active learning and the quality of the updates (Bickford Smith et al., 2024).

3. Shortfalls of unsupervised representation learning in BAL

While unsupervised representation learning followed by active learning on the latent space
has proven effective for both vision and natural-language processing tasks (Emam et al.,
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Figure 1: Test NLL for EPIG and BALD with unsupervised representations on F+MNIST
(setup as per Table 1 in Appendix A) under increasing levels of pool “messiness”, namely
decreasing the number of pool samples which are of the classes of interest.

2021; Osband et al., 2022a; Bickford Smith et al., 2024), we now explain how this can break
down when applied to messy data pools, for which active learning is often most needed.

Real-world active learning often involves messy pools that can be characterized by two
key features: class imbalance and redundant information (Kothawade et al., 2021;
Emam et al., 2021; Zhang et al., 2022). Redundant information can either be presented in
the form of redundant classes (e.g. images of cats when our task is classifying dog breeds) or
redundant features (e.g. pictures of cars when our task is to classifying number plate digits).

A weakness of unsupervised representations here is that as our data becomes increasingly
messy, the representations fail to capture all the information relevant for our task (see Figure
4 in the Appendix). This has been observed outside of the active learning context for various
unsupervised representation learning methods (Caron et al., 2019; Tian et al., 2021; Shi
et al., 2022). At a high level, it comes from unsupervised representations being task-agnostic:
as the pool becomes messier, the task-specific information becomes smaller compared to the
task-irrelevant information, and the representation increasingly focuses on the latter.

A direct consequence of this is that it hurts the performance of BAL algorithms, as shown
in Figure 1. This is expected since selecting the most informative data points relies on the
model’s ability to make accurate similarity judgments in the latent space (Bickford Smith
et al., 2024). Capturing these similarities is essential for establishing the predictive correla-
tions that drive effective exploration and exploitation in active learning (Wang et al., 2021;
Osband et al., 2022c,d). However, these similarities are task-dependent and break down
with messier pools as our representations fail to include relevant task-specific information.

4. Using Semi–Supervised Representations in Bayesian Active Learning

Motivated by the issues discussed in Section 3, we propose to instead use task-driven repre-
sentations in semi-supervised BAL. Our suggested approach builds on the semi-supervised
approach of Bickford Smith et al. (2024) described in Section 2. However, instead of using
a fixed unsupervised encoder, we regularly update it as we acquire more labels using a
semi-supervised representation learning technique. That is, our predictive model is given
by pϕ(y|x) = Ep(θh) [pϕ(y|g(x), θh)] , where pϕ(y|z, θh) is our prediction head with stochastic

parameters θh ∼ pϕ(θh) and z = g(x) are our representations as before, but g : X → Rd is
now a semi-supervised encoder that utilizes both the unlabeled data and acquired labels.
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There are a variety of different methods one could use to learn this task-driven semi-
supervised encoder (Kingma et al., 2014; Narayanaswamy et al., 2017; Chen et al., 2020b;
Assran et al., 2021; Mo et al., 2023). Something they generally have in common is that they
utilise a “guidance classifier”, c : Rd → [0, 1]|Y|, that maps representations to class probabil-
ities. This classifier will be learned alongside the encoder itself, typically by maximising an
objective that accounts for both fidelity of the representation across all the data and the per-
formance of the classifier on the labelled data. The aim of this is to guide the representations
to be task–driven, such that they retain the information required for both effective down-
stream prediction and label acquisition. The guidance classifier can simply be taken to be
the prediction head, but as we explain later it will typically be beneficial for it to be distinct.

The best setup to use for training the encoder will inevitably vary between problems,
but we now outline one possible setup—inspired by the CCVAE approach of Joy et al.
(2021)—which is carefully curated to our needs for effective active learning.

4.1. A Task–Driven Semi–Supervised Active Learning Approach

The characteristic capturing variational auto-encoder (CCVAE) approach of Joy et al.
(2021) is a VAE-based (Kingma et al., 2013), semi-supervised representation learning method
that aims to capture label–specific information in the representations it learns. This is
achieved by partitioning the representations as z = zc ∪ z\c, where only zc is taken as input
to the guidance classifier(s), while the whole z is used in reconstruction. This encourages
a disentanglement of the information in the representation, with zc (hopefully) containing
all the information relevant for classification. Unlike the original CCVAE approach, we will
focus on the single output setting with no further partitioning of zc.

This split representation perspective is attractive for our purposes because it first allows
for relatively strong pressure to be applied to zc to be highly predictive of y. This means that
we can use a relatively simple prediction head in our active learning loop that will hopefully
have reliable reducible uncertainty estimates and be quick to update. Second, by also having
an explicit representation for ostensibly non-label-relevant information, in the form of z\c,
we are well placed to perform diagnostic checks for needing to update the encoder, e.g. by
comparing the accuracy of the prediction head to a classifier trained with the full z. Finally,
we found this to empirically give better downstream predictions than approaches where the
classifier is used to guide the entire representation, e.g. Kingma et al. (2014).

We now describe other key algorithmic decisions, full details are provided in Appendix A.

Encoder training Unlike in the original CCVAE, we have no need to perform generations
or interventions with our representation. We therefore eschew the introduction of an addi-
tional conditional generative model on zc|y and directly train the encoder and downstream
classifier in an end-to-end manner using both the labeled and unlabeled data. Specifically,
we maximize the following objective, corresponding to Equation (2) in Joy et al. (2021),

J (λ, ψ, ω) =
∑

x∈Dpool

L(λ, ψ;x) +
∑

(x,y)∈Dlabelled

L(λ, ψ;x) + αEqλ(z|x)
[
{cω(zc)}y

]
(1)

where L(λ, ψ;x) = Eqλ(z|x) [log (pψ(x | z)p(z)/qλ(z | x))] is the standard VAE objective,
qλ(z | x) is the VAE encoder with parameters λ (and we take g(x) = Eqλ(z|x)[z]), pψ(x | z) is
the VAE decoder with parameters ψ, p(z) is a fixed isotropic Gaussian prior, cω is the down-
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stream classifier with parameters ω, Dpool is the unlabelled pool data, Dlabelled is the labelled
data gathered thusfar, and α is a hyperparameter controlling the label pressure on zc.

Following Joy et al. (2021); Kingma et al. (2014), we perform the optimization using
stochastic gradient ascent with minibatching, where updates with the labelled and unla-
belled data are conducted in separate batches. As semi-supervised encoders typically strug-
gle with class imbalance and the low-data regimes considered in active learning (Oliver et al.,
2018; Yu et al., 2020; Guo et al., 2020), we further perform simple data augmentations on
our labelled set and upsample minority classes. To deal with the redundant classes in our
pool, we follow Bickford Smith et al. (2023, 2024) by labeling them as a single “redundant”
category and retaining them in our labeled set, noting that these labels still contain useful
information for future acquisition by marking points as not being one of the target classes.

Classifier and prediction head While on the face of it the guidance classifier, cω, and
the prediction head, pϕ(y|z, θh), are both simply predictors for the output given there rep-
resentation, their roles in our pipeline differ significantly. As such, their desirable character-
istics also significantly differ and we generally recommend that they are chosen separately.
The guidance classifier need not be probabilistic but must be differentiable. It is typically
beneficial for it to have limited capacity and be smoothly varying in its inputs, as this forces
the encoder to learn a zc from which it is easy to make predictions. In our experiments, we
use a simple neural network with one hidden layer of 128 units.

The prediction head, on the other hand, needs to be probabilistic with well-calibrated
reducible uncertainty estimates. It will be updated at every iteration so it should ideally be
cheap to train/update, and it should not require careful hyperparamter tuning or access to
validation data. In our experiments, we use Random Forests (Breiman, 2001), due to their
fast training and strong “out-of-the-box” performance.

Encoder retraining For simplicity, we retrain our encoder regularly after every k
acquired labels. We recommend using larger values of k (>= 50) as this naturally suits
many semi-supervised methods which only make significant gains once labels on the order
of 102 have been acquired (Sohn et al., 2020; Joy et al., 2021; Chen et al., 2020b), while also
keeping computational costs low. We also note that very small choices of k, and in particular
taking k = 1, could in principle harm performance, by creating a disconnect between the
update strategy assumed by the acquisition function (which is based only on the prediction
head) and the actual updates performed (with the encoder also updated every kth step).

5. Experiments

To validate our approach (SSL), we compare our approach to using unsupervised represen-
tations (US, based on a VAE encoder with matching architecture) on an adaptation of the
MNIST dataset (Deng, 2012) with the BAL acquisition strategies BALD (Houlsby et al.,
2011) and EPIG (Bickford Smith et al., 2023). We focus on messy pools which we create by
introducing redundant labels and class imbalance. We choose our classes of interest as “5”
and “6”, introduce redundant labels by including the FashionMNIST dataset in our pool
(Xiao et al., 2017), and use an extreme imbalance ratio of 300. We refer to this dataset as
F+MNIST. We set k = 50 and use a budget of 500 labels. We run all experiments for 4
seeds. Full details of our experimental setup can be found in Appendix A.
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Figure 2: Test NLL for EPIG, BALD and random acquisition for US, SSL on F+MNIST.
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Figure 3: Test NLL for our SSL approach and baselines and counts for classes of interest.

Semi-supervised retraining improves both BALD and EPIG In Figure 2, we see
that SSL improves active learning performance compared to US for both BALD and EPIG.
In particular, we see a significant boost in model performance after the first retraining step,
with more gains following in the remainder of the active learning. We also note that semi-
supervised retraining with random acquisition performs terribly and does not result in gains
after model retraining. This makes sense as random acquisition leads to mostly redundant
labels, undermining the encoder’s ability to incorporate task-relevant information.

Comparison with other methods We also compare SSL with baselines that have been
designed specifically to deal with messy pools: SIMILAR (Kothawade et al., 2021), Clus-
ter Margin (Citovsky et al., 2021), and GALAXY (Zhang et al., 2022). Figure 3 shows
that our SSL approach comfortably outperforms them. In particular, our approach with
the EPIG acquisition function performs the best, which is not surprising as EPIG makes ex-
plicit use of the predictive correlations in our model. Furthermore, examining the acquisition
counts of the classes of interest, we find that the best performing approaches do not have the
highest number of acquisitions for the classes of interest. This suggests that actively select-
ing our classes of interest, as done in approaches such as SIMILAR or Cluster Margin,
does not always lead to improved active learning performance. This observation supports
the idea that acquiring from redundant classes can, in fact, enhance classifier performance.
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Appendix A. Experimental setup

A.1. Datasets

Figures 1, 4 To show that unsupervised representations break down with messy pools
(Figure 4), we pretrained a VAE with the setup in Appendix A.2 on the F+MNIST dataset
with increasing levels of ”messiness” in the pool. This was done by creating an increasing
amount of imbalance for our classes of interest (”5” and ”6”) vs. our redundant class. Table
1 shows the imbalance ratios we used for different levels of messiness, where the imbalance
ratio is defined as

Imbalance Ratio =
maxc∈C Nc

minc∈C Nc

for Nc being the number of samples belonging to class c, and C the set of all classes in the
dataset. We evaluated the quality of these representations by training a linear classifier on
5000 samples from classes ”5” and ”6”, and evaluating it on 1000 samples from the same
classes.

Messiness Level Imbalance Ratio

Low 14
Medium 300
High 4000

Table 1: Messiness levels for F+MNIST and their corresponding imbalance ratios.

To show that the representations from increasingly messy pools lead to increasingly
worse active learning performance (Figure 1) we took the representations pretrained on the
messiness levels in Table 1 and used them for active learning with the setup described in
Sections 4.1 and 5. For the active learning we used an imbalance ratio of 14 in the pool to
make the comparison between the different representations fair and started with off with a
labeled set of 12 samples, with 4 samples per class. We again evaluated on 1000 samples
for ”5” and ”6”.

Figures 2-3 For Figures 2-3 we used the ”medium” messiness level from Table 1 for our
pool. We started off with a labeled set of 12 samples, with 4 samples per class, and again
evaluated on 1000 samples for ”5” and ”6”.

A.2. Models

Prediction heads For our prediction heads, we used a random forest with 200 trees
for all the experiments. During training, we trained on both the classes of interest and
redundant classes and at inference we discarded the redundant classes and only focused on
the predictions for the classes of interest.

Unsupervised encoders For our unsupervised encoders, we trained a VAE (Kingma
et al., 2013) on all samples (labeled and unlabeled) before starting the active learning. We
used a batch size of 64, the Adam optimizer and a learning rate of 0.005. We trained the
encoders for 300 epochs.
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Semi-supervised encoders For our semi-supervised encoders we used the model de-
scribed in Section 4. We used a batch size of 64 for the unlabeled data and a batch size of
8 for the labeled data. We set α = 80 to balance the supervised and unsupervised compo-
nents of the loss. We again used the Adam optimizer, a learning rate of 0.005 and trained
for 300 epochs. We used a 1-layer neural network with 128 hidden units as our guidance
classifier and trained it using both the classes of interest and redundant classes. Moreover,
when training the semi-supervised encoder, we extended our labeled set by using random
rotations in [0, π4 ] and random scaling of the images between 60%-100% of their original
size. We also upsampled the minority classes.

Following Joy et al. (2021), we partitioned our representation as z = zc∪zc = zi1 , . . . , zil∪
zil+1

, . . . , zid , where zc denotes the subset used for classification, and the full z is used for
reconstruction. By using only a subset for classification, we are able to more effectively
compress the labeled information into zc and achieve a better disentanglement between
labeled and unlabeled information in z (since the loss no longer has to jointly optimize
for both reconstruction and labeled performance). Additionally, this setup enables the
possibility of more targeted and efficient active learning updates as downstream predictions
can rely solely on the zc component—–though we do not explore this in the present work.
For all our experiments, we set |zc| = 3.

A.3. Active learning

For active learning, we compared the BALD Houlsby et al. (2011) and EPIG Bickford Smith
et al. (2023) acquisition functions for a budget of 500 labels:

BALD(x) = Epϕ(y|x)[H[pϕ(θ)]−H[pϕ(θ|x, y)]]
EPIG(x) = Ep∗(x∗)pϕ(y|x) [H[pϕ(y∗|x∗)]−H[pϕ(y∗|x∗, x, y)]]

For EPIG, we use a target set of 500 points for each class of interest. For our approach, we
retrained our semi-supervised encoder every 50 labels. We used a small validation set (90
labels) to evaluate the quality of the retrained encoder and decided to update the encoder
if its loss on the validation set had improved. All experiments were ran for 4 seeds.

A.4. Baselines

For our baselines in Figure 3, we compared with other approaches in the literature that
deal with the setting of messy pools. We focused on SIMILAR (Kothawade et al., 2021),
GALAXY (Zhang et al., 2022), Cluster Margin (Citovsky et al., 2021). Similar to Zhang
et al. (2022), we use the FLQMI relaxation of the submodular mutual information (SMI)
for SIMILAR.

A.5. Implementation and compute resources

We ran all of our experiments on an NVIDIA H100 80GB GPU and used PyTorch (Paszke
et al., 2019) for our implementations.
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Appendix B. Related work

Previous work on semi-supervised BAL has focused mainly on the use of fixed unsupervised
representations (Seo et al., 2022a; Osband et al., 2022a; Gleave and Irving, 2022; Haco-
hen et al., 2022; Mittal et al., 2023; Bickford Smith et al., 2024). Although some of these
approaches, in particular those for natural-language-processing tasks, have been found to
provide gains over random acquisition, their main focus has not been on the messy, un-
curated pool setting that is common for real-world active learning. Hacohen et al. (2022)
noted this and showed that their approach can fail with pools with class imbalance. At the
same time, approaches that specifically consider the messy uncurated pool setting typically
use pre-trained, unsupervised representations Citovsky et al. (2021); Emam et al. (2021);
Zhang et al. (2022).

Moreover, there exists a lack of methods that look at incorporating both unlabeled and
actively acquired labeled data into the model. Closest to our approach is Burkhardt et al.
(2018) which uses a semi-supervised VAE trained with both labeled and unlabeled data.
However, they do not consider re-training the encoder as more data is acquired and also
focus only on well-curated datasets. Xie et al. (2024) uses a pretrained encoder and finetunes
it after every acquisition step. They, however, work in the different setting of open-world
active learning and do not consider the benefit of semi-supervised representations more
broadly as we do in this work.

Appendix C. Additional plots
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Figure 4: Test NLL and accuracy of a linear classifier trained on pretrained representations,
with pretraining performed on progressively messier F+MNIST. Messiness here refers to
the amount of imbalance for the classes of interest vs. the redundant classes (see Appendix
A).
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Figure 5: Test accuracy on ”5” and ”6” for EPIG and BALD on F+MNIST where the
pool becomes progressively messier by increasing the amount of imbalance for the classes
of interest vs. redundant classes.
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Figure 6: Test accuracy for EPIG, BALD and random acquisition for US, SSL on
F+MNIST.
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Figure 7: Test accuracy for our SSL approach and baselines.
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