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ABSTRACT

Despite a widespread success in various applications, large language models
(LLMs) often stumble when tackling basic physical reasoning or executing robotics
tasks, due to a lack of direct experience with the physical nuances of the real world.
To address these issues, we propose a Grounding Large language model with Imper-
fect world MOdel (GLIMO), which utilizes proxy world models such as simulators
to collect and synthesize trining data. GLIMO incorporates an LLM agent-based
data generator to automatically create high-quality and diverse instruction datasets.
The generator includes an iterative self-refining module for temporally consistent
experience sampling, a diverse set of question-answering instruction seeds, and a
retrieval-augmented generation module for reflecting on prior experiences. Com-
prehensive experiments show that our approach improve the performance of strong
open-source LLMs like LLaMA-3 with a performance boost of 2.04 ×, 1.54 ×,
and 1.82 × across three different benchmarks, respectively. The performance is
able to compete with or surpass their larger counterparts such as GPT-4.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) is bringing great transformation in various
robotics applications, such as self-driving cars (Mao et al. (2023)), autonomous drones (Vemprala
et al. (2023)), robotics manipulation (Liang et al. (2022)). LLMs are able to enhance robots with rich
common-sense knowledge and complex planning capabilities. However, LLM needs to be physically
grounded in reality, which includes understanding of the environment dynamics, the task-related
constraints, and the consequences of its actions (Gao et al. (2023); Rana et al. (2023)).

Many previous works in robot learning heavily rely on prompting, such as (1) decomposing problem
structures using human priors (Rana et al. (2023); Liang et al. (2022)), (2) self-refinement (Zhang
et al. (2023); Wang et al. (2023a)) and (3) external tools (Mao et al. (2023)). This approach does not
alter the weights of the model, instead relying on the pretrained knowledge of the LLMs. However,
LLMs are trained with text corpus, lacking the understanding of the fine-grained semantics in physical
environments. It also suffers from hallucination problems (Rawte et al. (2023)), and difficulties with
understanding time-aware actions (Dhingra et al. (2021)). Moreover, the "heavy prompting" approach
often proves effective only in small-scale environments, like a predefined room with fixed sets of
objects and available actions (Rana et al. (2023)). The prompts we use may easily overfit to these
small-scale environments, making the evaluation results less applicable to open-ended real-world
robotic tasks.

To overcome those limitations, instruction tuning (Wei et al. (2021)) was proposed as a powerful
solution by leveraging a question-answering data to finetune the LLMs and learn new capabili-
ties (Zhou et al. (2023)). Studies also show that instruction tuning can mitigate hallucination (Ouyang
et al. (2022)), enhance the agent capabilities in using tools (Schick et al. (2023)), and improve
understanding of the physical world (Mao et al. (2023)).

Recent work (Xiang et al. (2023)) applied instruction tuning to enhance LLM’s capability in embodied
tasks with a new learning paradigm, Embodied Experiences from World Model (E2WM), which
samples embodied experiences from a world model and fine-tunes LLMs with instruction data derived
from those experiences. However, such an approach has several limitations. First, directly sampling
experiences from a perfect world model is costly and often unsafe in real-world robotics applications,
such as autonomous driving. Second, such approaches are less generalizable. E2WM assumes that
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Figure 1: Overview of GLIMO (Grounding Large language model with Imperfect world MOdel).
Compared with previous approaches (Xiang et al. (2023); Zeng et al. (2023)) that rely on human
annotation or downstream task design, GLIMO introduces an LLM agent-based framework that
autonmously navigate in the imperfect world model and annotate the embodied experiences. It
improves the data quality with a self refining prompting mechanism and retrival augmented generation
and enhance policy exploration in favor of data diversity.

a grounded simulator is capable of easily generating instruction datasets, whereas this is difficulty
with general robotics simulators that lack text descriptions. Finally, instruction tuning requires high
data diversity and quality (Zhou et al. (2023)). Yet previous approaches require human design for
each specific tasks. For example, E2WM requires manually designing the downstream tasks, such as
counting and object path tracking, to inject task-related knowledge into LLMs. Such approaches are
not automated or scalable, further limiting its applicability to general robotics tasks.

To address these issues, we propose a Grounding Large language model with Imperfect world MOdel
(GLIMO), which relaxes the assumption of a perfect world model τ by leveraging proxy world
models τ̂ , such as simulators. Our approach effectively improves the performance of LLMs on τ
by fine-tuning them with embodied experiences acquired from τ̂ . One primary challenge in our
approach is the distribution shift between τ̂ and τ . To tackle this challenge, we propose to learn
domain-invariant knowledge and transfer it to the target environment. To automatically generate
high-quality and diverse instruction data, we further design an LLM agent-based data generator,
which samples experiences from the imperfect world model and generates instruction datasets. As
depicted in Figure 1, our LLM agent framework comprises three key components: (1) An iterative
self-refining module, which interactively samples embodied experiences in a temporally consistent
manner. The LLM-in-the-loop guided sampling improves the LLM’s performance on frequently
accessed states during inference. (2) A rich set of question-answering instruction seed datasets
queried across different temporal contexts to enhance data diversity and quality. (3) A retrieval-
augmented generation module for the LLM to reflect on prior collected experiences and enhance
the effectiveness of future exploration.

To evaluate the efficacy of GLIMO, we fine-tune multiple open-source LLMs, including LLaMA-
3 (Touvron et al. (2023)) 8B and 70B models, LLaMA-2-13B model and OPT-13B (Zhang et al.
(2022)) model. As shown as in Figure 2, we assess the performance of the fine-tuned LLMs in
two environments: a 2D strategic puzzle game Agent World similar to Tower Of Sorcerer and a
Urban Driving environment. Our experiments demonstrate that GLIMO enables LLMs to learn
domain-robust policies with 2.04 ×, 1.54 ×, and 1.82 × of improvements in all environments, despite
a distribution shift between imperfect world model and world model. Our fine-tuned model beats the
SoTA close source model GPT-4 by a large margin of 51.7% and 84.5% in Agent World and Urban
Driving environments, respectively.

2 BACKGROUND AND RELATED WORK

Robot Learning With LLMs. LLMs are already shown to be effective across a diverse range of
robotics tasks (Mao et al. (2023); Liang et al. (2022); Vemprala et al. (2023)). Many studies are lever-
aging large language models to do the high-level planning for the robotics tasks (Rana et al. (2023)).
Other studies also show that LLM has the potential to solve low-level control problems (Mirchandani
et al. (2023)), given its strong capability in modeling the sequence. Voyager (Wang et al. (2023a))
proposes an automatic curriculum that maximizes exploration and includes an iterative prompting
mechanism to absorb environment feedback and mitigate execution errors. Augmenting LLMs with
external tools (e.g., web search, calculators, perception modules) is another promising approach for
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AgentWorld 
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AgentWorld Urban-Driving 
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Urban-Driving

Figure 2: We collect imperfect experiences from the left imperfect world model and test it in the
environment on the right. (1) The AgentWorld is a strategic 2D decision games, where players need
to learn to improve themselves. The left figure (imperfect) is a simplified and steerable version with
a smaller size and different elements and tools. (2) The Urban-Driving environment is based on
CARLA simulator (Dosovitskiy et al. (2017)). We also build a simplified (imperfect) autonomous
driving environment on the left.

enabling LLMs to interact with the real world (Mao et al. (2023)). Toolformer teaches LLM agents
about tool usage through fine-tuning with demonstrations (Schick et al. (2023)).

World Model. "World model" refers to a digital representation of the physical world, which can
simulate real-world changes in response to actions (Ha & Schmidhuber (2018)). A large body
of previous studies on machine learning and cognitive science leveraged world model to enable
data-efficient learning and strong generalization in unseen scenarios (Allen et al. (2020); Battaglia
et al. (2013)). Humans have an innate world model for predicting outcomes of actions. Recent studies
develop these models in LLMs for enhanced reasoning. Xiang et al. (2023) fine-tuned LLMs with
collected experiences in a grounded physics engine, VirtualHome (Puig et al. (2018)), to mirror real
conditions. However, those approach is infeasible in real-world robotics tasks due to its high-cost
and safety concerns in directly collecting embodied experiences from the real world. Instead, our
approach mitigates these issues by enabling learning from imperfect world model, such as simulators.

Language Model Grounding. Recent research has focused on integrating language models (LMs)
with world models to improve task performance. Techniques vary from prompting (Wang et al.
(2023a)) and fine-tuning through supervised learning (Wei et al. (2021)) to reinforcement learn-
ing (Ouyang et al. (2022)). Previous works (Xiang et al. (2023)) show that LLMs can improve their
capabilities by fine-tuning on embodied experiences collected from world models. This process
involves adjusting the model’s parameters to better reflect the complexities and nuances of real-world
interactions. By simulating scenarios within world models, LLMs can learn to predict outcomes
more accurately and adapt to dynamic environments. This method has proven especially beneficial
in scenarios where LLMs must interact with physical or simulated environments, enhancing their
decision-making and problem-solving abilities.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

LLMs, parameterized by θ, learns to predict the distribution of next word xt, given the preceding text
sequence x1:t−1:

Pθ(xt|x1:t−1) (1)

Large language models (LLMs) are often viewed as world models in textual space, containing
extensive knowledge that can assist in decision-making within physical environments. Previous
research shows that sampling embodied experiences from physical environments can help LLMs
better understand those environments (Xiang et al. (2023)), which is often infeasible due to costs and
safety concerns in real-world robotics tasks.
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Figure 3: (1) On the left shows the LLM agent-based pipeline guiding the sampling of embodied
experiences and transforms these experiences into formats suitable for instruction tuning. In each
iteration, the LLM agent executes one plan evaluates whether the goal is achieved. The LLM also
compares the current plan with history experiences and annotates them on different length of steps.
(2) On the right shows our prompt templates to (i) self-refine with past experiences (ii) generating
rationale (or explanation) for decisions, to enable chain-of-thoughts finetuning Lightman et al. (2023).
(iii) to favor exploration and also enhance the diversity of our data. These templates guarantee our
agents be able to produce high-quality and diverse embodied experiences.

In this paper, we propose a novel learning paradigm of grounding large language models, GLIMO,
that collects embodied experiences from imperfect world models. GLIMO enables LLM to learn
from sampled embodied experiences from an imperfect world model τ̂(st|st−1, a), which is often
accessible, low-costs, and interactive, in the hope of optimizing its performance in real-world (perfect)
environment τ(st|st−1, a). Formally:

min
θ

Ex∼D̂,D̂∼τ̂(st|st−1,a)
L(y, f(x; θ)) (2)

fθ(x) is the autoregressive neural language model, x is the input prompts and y is the corresponding
label. L is a cross-entropy loss that is used to train the language model fθ.

By relaxing the assumption of perfect world model, this framework facilitates a more cost-efficient
and generalized learning paradigm . A typical example is the simulator, it can simulate imperfect
experiences D̂ in the virtual world efficiently, while the problems such as sim2real gaps render the
synthesized data less useful, due to the simulator cannot perfectly model the real-world distribution.
We conjecture and prove that LLMs are able to learn useful information from imperfect world models
such as simulators.

Perfect & Imperfect Environments. We deploy LLM-based agents in an environment with a
state distribution stest, while the LLM is fine-tuned on a training dataset D, sampled from a state
distribution strain. Inevitably, the embodied experience Dtest differs from Dtrain due to distribution
shifts, which may cause LLMs to learn spurious correlations rather than the true causal structure of
the environment.

To assess whether LLMs can learn policies that generalize across different distributions, we conduct
a case study using two environments to validate our methods. Figure 2 shows the visualization of: (1)
Agent World, a 2D puzzle game adapted from "The Tower of the Sorcerer," requiring strategic plan-
ning across 42 tasks; and (2) Urban Driving, a self-driving simulator based on CARLA (Dosovitskiy
et al. (2017)), which generates varied traffic scenarios to test the LLM’s ability to handle safety-critical
events. The detailed description is in Appendix A.3. Each environment has an imperfect and perfect
version. Appendix A.4 shows a detailed comparison of the distribution shift.

3.2 GENERATING GROUNDED EMBODIED EXPERIENCES WITH LLM AGENTS

Instruction tuning (Wei et al. (2021)) is an effective approach to enhance LLMs’ capabilities in
domain-specific problems. However, instruction tuning requires a textual question-answering format.
To fit this paradigm, previous works manually design formats to extract knowledge from collected
experiences, such as plan generation and object path tracking (Xiang et al. (2023)). These approaches,
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which integrate human prior knowledge about what is useful in specific tasks, are still unwieldy and
difficult to scale in real-world robotics tasks.

To address this, we propose to use an LLM agent-based framework to interpret embodied experiences
and automatically transform it into instruction tuning format, in a scalable manner. The LLM-based
agent framework keeps track of the embodied experiences in the target environment D̂. The LLM
interacts with the embodied experiences as a multi-turn dialogue, and generates grounded instruction
data. Our framework let the LLM to explore the environment via a self-refining iterative prompting
mechanis (Shinn et al. (2023); Wang et al. (2023a); Yao et al. (2023)).

Figure 3 illustrates the pipeline for our LLM agent-based system, designed to guide the sampling
of embodied experiences and optimize them for instruction tuning. On the left side of the figure,
the LLM agent iteratively executes a plan and evaluates whether the defined goal has been achieved.
During each iteration, the agent not only assesses the success of the current plan but also compares
it against prior experiences. This iterative approach ensures that the agent continuously learns and
adapts from historical data.

We present the prompt templates that are integral to this process. These templates serve three
key functions: (i) enabling self-refinement based on past experiences, (ii) generating rationales or
explanations for the agent’s decisions to support chain-of-thought fine-tuning Lightman et al. (2023),
and (iii) encouraging exploration to enhance the diversity of the generated data. These prompt
templates ensure that the LLM agents produce high-quality, diverse embodied experiences, which
are essential for refining the agent’s decision-making capabilities in dynamic environments. We will
introduce those with more details in the remained section.

Agent Integration. We use text-only LLMs in this paper, as we focus on whether the textual
embedding space learned by LLMs is able to transfer the dynamics from imperfect world model to
perfect world model, which also helps our future study in multimodal LLMs. To generate text inputs
and enable actions for LLMs, we introduce: (1) a tool module, that interacts with the environment
to provide necessary information. For example, a neural object detection module, or a collision
detection module. LLM agents will call the tool to acquire necessary information for the decision-
making. (2) A customizable memory module that explicitly retains previous actions and observations,
integrating human prior knowledge about what is necessary past information for future tasks. (3) A
skill library that encodes necessary skills for LLMs to act in the physical world. The skills works as a
function calling with certain format: e.g., a lane_change(lane_id:int) skill can be called,
and we have a low-level implementation to actuate this skill. The skill library is needed to cope with
continuous control task.

Reasoning. Reasoning is important in sampling experiences, reject trivial experiences and explore
valuable directions. We use prompt engineering techniques such as Chain-of-thoughts (Wei et al.
(2022)), ReAct (Yao et al. (2023)) and Reflexion (Shinn et al. (2023)) to faciliate reasoning and refine
the LLM’s decisions, and mitigate error accumulation. To enhance the LLMs’ ability in reasoning,
we use an iterative prompting method as in (Wang et al. (2023a)) to self-refine and verify proposed
action sequences. By performing exploration actions iteratively, the LLM learns to self-reflect and
refine its actions. Figure 3 shows a self-consistency example to generate n reasoning data and using
votes to select the groundtruth Wang et al. (2023b).

3.3 RETRIVAL-AUGMENTED EXPERIENCES

Imagine a game in which the player makes a single decision, choosing between option A and option
B. The success rate of option A is 100%, while the success rate of option B is 80%. Without any prior
knowledge, the LLMs should treat both options as equal. Prior works, such as supervised finetuning,
adjust the LLMs’ weights based on maximum likelihood principles. As a result, the LLM might
slightly favor option A. However, in real-world decision-making, we desire a deterministic policy
that always chooses option A. This example highlights the importance of reflecting on embodied
experiences along with past experiences.

We introduct a RAG (Retrieval Augmented Generation) pipeline to self-reflect and self-improve
prior experiences while promote exploration. As shown in Figure 3.3, our framework retrieves
previous related embodied experiences, and generate instruction data based on this contexts (Lewis
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Figure 4: This figure illustrates retrieval-augmented generation involving reasoning about the feasi-
bility of different high-level plans, such as: "Which plan is better, challenge the boss directly or get
the hammer first?" This approach allows us to reflect on prior experiences, determine which is better
and generate reasoning data, which can be further transformed into QA datasets with varying format,
as introduced in 3.4.

et al. (2020)). We use LLM to tag the action sequence of each experience, mainly describing the
strategy and outcome, for example: “firstly get the yellow keys, open the door with the key, grab the
hammers”. We embed the tag with SFR embedding by Salesforce( Rui Meng* (2024)) and retrieve
relevant experiences. Such retrival enhance the reasoning of LLMs by providing more diverse and
high-quality few-shot examples, which is particularly useful in domains where expert demonstrations
are abundant. We also ask LLM to label the surprising score of the instruction data (on a scale of
1-10), which can be used as weighted sample to upweight the difficult samples, as in Xiang et al.
(2023).

We also leverage domain specific models to do the retrieval. For the urban driving scenario, we used
a scenario encoding model, as used in MTR [2]. The MTR transformer first transform the driving
scenario into a vectorized representation, and use a transformer-based encoder to encode it into an
embedding. The original MTR paper can decode the embedding to predict the future trajectory, in
our work, we use it to retrieve similar scenarios. One future exploration to leverage multimodal
embeddings to retrieve experiences with vision modalities [3].

3.4 ANNOTATION GENERATION

Our pipeline automatically transform embodied experiences to grounded instruction data formats.
Motivated by self-instruct (Wang et al. (2022)), we begins with a small set of task templates. Random
tasks are sampled from this pool and used to prompt the LLM to generate both new instructions and
corresponding instances. Low-quality or similar generations are then filtered out, and the remaining
high-quality instances are added back to the initial repository of tasks. Such self-refining and
bootstrapping process improve the diversity and quality of the generated data. They also constantly
receiving the feedback from the simulators to correct possible errors.

Notable, our task pool includes the following tasks which significantly improve the finetuned model:
(1) Rationale Enhancement. Incorporating explanations or rationales has been shown to improve
LLM performance, as indicated by previous studies (Lampinen et al. (2022)). By understanding the
reasoning behind decisions, LLMs can form more robust strategies that better mimic human-like
reasoning. (2) Counterfactual Reasoning involves training LMs to consider alternative outcomes
or scenarios that didn’t occur but could have, under different circumstances. By engaging in this
type of hypothetical reasoning, LMs can develop a deeper understanding of causality and potential
consequences in physical environments, leading to more informed and effective decision-making. (3)
Episodic Memory Question Answering (Datta et al. (2022)) is a question-answering format that
queries pre-recorded embodied experiences to assess the spatial and temporal understanding of a
scenario. For example, it might ask, "Where is the altar you encountered most recently?".
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We also annotate the grounded instruction dataset by querying on different temporal scale. For
example, Figure 3.3 shows the comparison of two high-level plans: getting the hammer and attack
the boss. Those actions are carried out with a sequence of low-level actions of up/down/left/right
movement. We also design different questions on a shorter temporal scale, e.g. "Is it able to access
the yellow key directly?"

Filtering. The purpose of the filtering is to encourage diverse and high-quality data samples, which
is critical for the performance of instruction tuning Ouyang et al. (2022); Wang et al. (2022). We
find two approaches effective in our experiments: Ask LLM to determine if the new data is novel
with chain-of-thoughts prompting, according to the tagging as mentioned in 3.3. We also leverage
self-consistency to generate multiple samples to evaluate the novelty, and take the majority of the
voting results. Use domain specific model or generative model to embed the observation, and filter
the samples that are in distribution. For the urban-driving scenario, we use a variational autoencoder
and leverage the reconstruction loss to evict easy samples, a low reconstruction loss means the data is
in-distribution, and easy to predict. This is actually similar to the idea of hard negative data mining.

Training. We take a two-stage finetuning approach: (1) in the first stage, we improve the instruction
following capability of our base model as in (Liu et al. (2024)), Chat-QA instruction dataset also
specializes in understanding tabular data and text retrieval, which we deem very useful in our
embodied setup. (2) in the second stage, we finetune our model with our grounded embodied
experiences. To save computation resources and avoid overfitting, we use LoRA techniques (Hu
et al. (2021)) to finetune LLMs such as LLaMA-3 (Touvron et al. (2023)) and OPT-13B (Zhang et al.
(2022)).

4 EXPERIMENTS

In this section we present the training and evaluation details of our experiments.

4.1 TRAINING DETAILS AND BASELINES

Experimental Details. We test our methods mainly on the powerful LLaMA-3-8B, LLaMA-3-
70B Touvron et al. (2023), and OPT-13B models Zhang et al. (2022). We use Q-LoRA finetuning
techniques Dettmers et al. (2023) with 8-bit quantization, due to limited computation resources.
We finetune our models on 4 × NVIDIA A6000 and 8 × NVIDIA H100 clusters (For 70B models
mainly). For the annotating LLMs agent, we leverage the OpenAI gpt-4-0314 APIs and Gemini
Pro for embodied experiences annotation. When finetuning the LLM, the training process can be
unstable, leading LLMs to lose its general language capability Luo et al. (2024a). Such phenomenon,
called catastrophic forgetting, is often mitigated by a Kullback–Leibler divergence regularization
term, to avoid the language model weights from diverging too much from the original model Xiang
et al. (2023); Rafailov et al. (2023).

Hyperparameters. For LLaMA-3 models, we use a learning rate of 6×10−5. For OPT models, we
use a learning rate of 2.5×10−5. Our approach requires about 19 and 45 hours to train LLaMA-3-8B,
70B models and 23 hours to train OPT-13B. We used a rank of 128 and a coefficient of 256 for
LoRA’s hyperparameters.

Baselines. We offer a model-agnostic LLM agent framework, built using LangChains (lan). Pri-
marily, we utilize ReAct (Yao et al. (2023)) and provide essential tools, such as object detection for
urban driving environments. Given the model-agnostic nature of the LLM agent, we use the base
LLM as the baseline and integrate our fine-tuned models to compare performance. For each task, the
LLM agent is run 10 times, and we calculate the mean performance/accuracy.

4.2 FINETUNED BASELINES.

We introduce a baseline that fine-tunes LLMs using data sampled from a perfect world model, as
shown in Figure 5. A ratio of 0 indicates fine-tuning exclusively with data from the imperfect world
model, while a ratio of 1 represents fine-tuning solely with data from the perfect world model. The
overall dataset size remains constant to eliminate any influence from varying dataset sizes.
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Figure 5: We compare the performance (success rate) our framework with varied ratio of imperfect
training data, ranging from 0 to 1. (1) the left figure shows the performance of AgentWorld environ-
ment. (2) the right figure shows the performance of Urban-driving environment, we also evaluate its
generalization capability in OOD scenarios.

Our key insights are as follows: (1) Increasing the proportion of perfect world model data enhances
model performance, but the performance gains diminish rapidly beyond a ratio of 0.25. (2) Training
with data from the imperfect world model actually improves the generalization capability of LLMs,
particularly in out-of-distribution (OOD) scenarios. This suggests that data from the imperfect world
model can serve as an effective "regularization" technique to mitigate overfitting, a common challenge
in LLM supervised finetuning (Luo et al. (2024b)).

4.3 BASE MODEL AS BASELINE

In this section we compare our performance with base model. Our evaluation focuses on testing
the task completion rate within the environment. Additionally, we use question answering to assess
whether LLMs understand the fine-grained information relevant to their actions. To evaluate the
model’s capability to extrapolate and apply knowledge in unfamiliar scenarios, we use out-of-domain
(OOD) question answering data. We also study the exploration capability with an increasing number
of attempts, as shown in Figure 7.

Task Completion. We measure the task completion percentage in those environments. The tasks
are deemed successful if it achieves certain goals such as "beat the boss monsters", "enter the next
level", and "reach the destination lane safely". We report the task completion performance in Figure 6
(a), on finetuned and original LLaMA-3 8B, 70B and OPT-13B. As a comparison, we also report
the performance of the GPT-4 model, as the current state-of-the-art closed source LLM. We can see
that our finetuned models achieve great improvement from base models, and the finetuned LLaMA-3
models are able to beat the GPT-4 model, demonstrating the effectiveness of our approach.

Environment Understanding. To evaluate if the LLMs are able to understand the fine-grained
dynamics of the environment (such as if lane changing to the right is safe), we also curate question
answering datasets (1000 QA data for each perfect environment) from those collected embodied
experiences. We list those question format in Appendix A.2. The question answering accuracy
is shown in Figure 6 (b). We also show its accuracy for out-of-distribution scenarios (OOD) to
showcase zero-shot generalization capability. We can see that except OPT-13B models, our approach
consistently achieve considerable improvements in environment understanding. The LLaMA-8B and
70B models are able to beat GPT-4 in Agent-QA and Driving-QA datasets.

Language Modeling. We also evaluate the finetuned model’s perplexity on the general language
modeling tasks, as a metric about catastrophic forgetting. Table 1 shows that our finetuned model
has a slightly increased perplexity value on PILE dataset (Gao et al. (2021)), demonstrating the
perservation of generality and language modeling capabilities of LLMs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

AgentWorld Self Driving Self Driving
 (Rare)

Multi-Agent
0

20

40

60

80

Ta
sk

 C
om

pl
et

io
n 

(%
)

GPT-4
LLaMA-8B (Base)
LLaMA-70B (Base)
OPT-13B (Base)
LLaMA-8B
LLaMA-703B
OPT-13B

Agent-QA Driving-QA Agent-QA
(OOD)

Driving-QA
(OOD)

0

20

40

60

80

QA
 A

cc
ur

ac
yW

 (%
)

GPT-4
LLaMA-8B (Base)
LLaMA-70B (Base)
OPT-13B (Base)
LLaMA-8B
LLaMA-70B
OPT-13B

Figure 6: Performance and accuracy of our framework evaluated in two environments.
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Figure 7: Ablation study on annotation LLM agent design choice and seed instruction data format.

4.4 ABLATION STUDY

We ablate the different design choices and different QA format in Figure 7 to highlight their individual
contribution. We find that self-guided sampling and iterative refining significantly improve the quality
of embodied experiences. Besides, the counterfactual QA and episodic QA improves the reasoning
of the finetuned LLMs by exposing novel states to the collected experiences.

Scaling Performance. We report the task completion of LLaMA-2, from 7B, 13B, to 70B on the
validation QA datasets in Table 1. We see that the performance consistently improve as the parameter
number increases, showing the potential of our approach with scaling computation budgets.

Table 2: Results of using different LLMs as the annotating agents. We evaluate the model in two
environments and report the task completion percentages.

Gemini-Pro GPT-4 LLaMA-3
8B 70B

Agent World 58.5 78.45 51.2 61.2
Self-driving 41.12 50.32 37.8 43.4
Multi-agent 39.2 45.4 38.1 45.6

4.5 DATA QUALITY STUDY

Because we do not train the annotating LLMs, we also study how different LLM models affect the
quality of instruction datasets, as shown in Table 2. From LLaMA-3 8B to 70B, we observe that the
data quality consistently improves with growing capability of the LLMs. GPT-4 still achieves an
optimal data annotation quality among those LLMs.

Model LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
Task Completion(%) 68.5% 72.9% 83.5%

Perplexity 4.37 4.24 3.98
Original Perplexity 4.62 4.55 4.04

Table 1: Results of base models with various parameters. We report task completion percentages and
the perplexity of the outputs on autonomous driving scenarios and DrivingQA.
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5 LIMITATIONS

Due to the limitations of conducting real-world testing in academia, including insufficient resources
and costs, our approach is evaluated solely in simulated environments, such as games and self-driving
simulators, which may not sufficiently generalize to complex real-world scenarios. Additionally, our
LLMs currently accept only text inputs, while robotics applications require perception modalities to
comprehend fine-grained environmental semantics. In future work, we aim to extend our approach to
multimodal LLMs, as they can incorporate perception capabilities.

6 CONCLUSION

In this paper, we presented GLIMO, a novel approach to enhance the performance of large language
models (LLMs) in robotics applications by leveraging imperfect world models. By using an automatic
LLM annotation agent that includes an iterative self-refining module to explore the environment,
a diverse set of question-answering instruction sets, and a retrieval-augmented generation module,
we demonstrated that GLIMO can effectively fine-tune LLMs using embodied experiences from
imperfect world models.
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A APPENDIX

A.1 ENVIRONMENT DESCRIPTION

Prompt .1 Observation (Or the LLM input prompt), simplified for illustration

STATUS

The player starts at position (0, 0) on the first floor. The goal is to navigate through the tower
to reach the stairs at position (4, 4) while defeating monsters (if necessary) and collecting
items.
Health: 535
Attack: 12
Defense: 8
You current backpack:
YELLOW KEY: 2
BLUE KEY:1

MAP LAYOUT (CATEGORY: DESCRIPTION ID)
Row 1: (Player: P1), (Empty: E1), (Empty: E1), (Wall: W1), (Health Potion: H1)
Row 2: (Empty: E1), (Empty: E1), (Empty: E1), (Wall: W1), (Monster: M1)
Row 3: (Empty: E1), (Empty: E1), (Monster: M2), (Empty: E1), (Empty: E1)
Row 4: (Empty: E1), (Key: K1), (Empty: E1), (Monster: M3), (Empty: E1)
Row 5: (Empty: E1), (Empty: E1), (Empty: E1), (Empty: E1), (Stairs: S1)

DESCRIPTION IDS AND THOROUGH DESCRIPTIONS

PLAYER (P1)
• Position: (0, 0)
• Description: You are the warrior, starting from this position. Your goal is to reach

the stairs at (4, 4) and progress through the tower.
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Observation (Or the LLM input prompt), simplified for illustration

• Attributes:
– Health: 100
– Attack: 10
– Defense: 5

EMPTY (E1)
• Position: Various
• Description: This is an empty tile with no obstacles or monsters. You can move

freely through these tiles.

WALL (W1)
• Position: Various
• Description: This is a wall tile that cannot pass, you can destroy the tile with a

shovel (if any).

RED DOOR (D1)
• Position: Various
• Description: This is a door tile that can be opened with a key.

HEALTH POTION (H1)
• Position: (0, 3)
• Description: A health potion that restores 20 health points when collected.
• Effect: +20 Health

RED KEY (K1)
• Position: (3, 1)
• Description: A red key used to unlock red doors and access other areas of the tower.
• Effect: Unlocks locked a red door, you lose the item once you use it.

MONSTER (M1)
• Position: (1, 2)
• Description: A low-level monster blocking your path.
• Attributes:

– Health: 50
–
– Attack: 15
– Defense: 5

MONSTER (M2)
• Position: (2, 2)
• Description: A medium-level monster that poses more danger.
• Attributes:

– Health: 70
–
– Attack: 20
– Defense: 8
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Observation (Or the LLM input prompt), simplified for illustration

MONSTER (M3)
• Position: (3, 3)
• Description: A strong monster that guards valuable areas.
• Attributes:

– Health: 100
–
– Attack: 25
– Defense: 10

STAIRS (S1)
• Position: (4, 4)
• Description: These stairs lead to the next floor of the tower. Reaching them will

allow you to progress to the next level.

A.2 DATASET FORMAT

Prompt .2 Agent World

Question: Which item should you prioritize collecting to increase your defense strength?
Context: A: Blue Crystal B: Red Crystal C: Health Potion
Answer: A
Question: What should you do when you encounter a monster with higher defense strength
than your attack strength?
Context: A: Engage in battle B: Search for attack crystals C: Drink a health potion
Answer: B
Question: Which action maximizes your health conservation in the early levels?
Context: A: Fighting weaker monsters first B: Donating gold to altars C: Skipping battles and
collecting potions
Answer: A
Question: How do you increase your attack strength efficiently?
Context: A: Collecting attack crystals B: Drinking health potions C: Avoiding battles
Answer: A
Question: What should you do when the Orb of the Hero shows a monster will inflict high
damage?
Context: A: Engage in battle B: Seek an alternate path C: Use a health potion
Answer: B
Question: Which monster should you challenge first on a new floor?
Context: A: The one with the lowest health B: The one with the highest attack strength C:
The one guarding the key
Answer: A
Question: What is the best strategy for donating gold to altars?
Context: A: Donate all gold at once B: Donate small amounts regularly C: Save gold for later
floors
Answer: B
Question: What is the immediate benefit of collecting a health potion?
Context: A: Increased attack strength B: Increased defense strength C: Increased health
Answer: C
Question: What should you consider before engaging a boss monster?
Context: A: Your current health and strength levels B: The number of keys you have C: The
location of the nearest health potion
Answer: A
Question: How can you determine the optimal path through a floor?
Context: A: By engaging the strongest monsters first B: By avoiding all battles C: By using
the Orb of the Hero to assess monster damage
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Agent World

Answer: C

Prompt .3 Urban-Driving

Question: what may be the future movement of red vehicle in front?
Context: A: lane change to the left B: Going straight C: lane change to the right
Answer: A
Question: What’s the last lane you are in? Answer the lane id
Context: N/A
Answer: [lane_id]
Question: Which object in the scenario is the most safety-critical to your decisions?
Context: N/A
Answer: [obj_id]
Question: Is this trajectory likely to collide with vehicle A?
Context: N/A
Answer: No
Question: What is the most probable action of the pedestrian on the right sidewalk?
Context: A: Crossing the street B: Walking along the sidewalk C: Standing still
Answer: A
Question: Which lane should you merge into to follow the planned route?
Context: A: Left lane B: Middle lane C: Right lane
Answer: B
Question: What is the likely future movement of the blue truck behind?
Context: A: Accelerating B: Decelerating C: Maintaining speed
Answer: A
Question: How should you adjust your speed given the yellow traffic light ahead?
Context: A: Speed up B: Maintain current speed C: Slow down
Answer: C
Question: What should be your immediate action when the vehicle in front suddenly brakes?
Context: A: Brake immediately B: Change lanes to the left C: Change lanes to the right
Answer: A
Question: What is the expected behavior of the cyclist on your left?
Context: A: Turning right B: Continuing straight C: Stopping
Answer: B
Question: How should you respond to the emergency vehicle approaching from behind?
Context: A: Speed up B: Maintain current speed C: Pull over to the side
Answer: C
Question: What is the likely action of the white SUV merging from the right?
Context: A: Accelerating to merge B: Decelerating to yield C: Maintaining speed
Answer: A
Question: What is the best course of action when approaching a school zone?
Context: A: Increase speed B: Maintain current speed C: Reduce speed
Answer: C
Question: What should you anticipate from the car signaling a left turn ahead?
Context: A: Immediate turn B: Decelerate and then turn C: Continue straight
Answer: B

A.3 ENVIRONMENTS

Agent World. The Tower of the Sorcerer tow is a puzzle game where the player (as a warrior) takes
an adventure in a 17-level tower, the player needs to explore the tower, improve itself to get ready for
the final boss and save the princess. Players enhance their character’s attack strength, defense, and
health by collecting items, such as potions, crystals, and equipment, and by donating gold at altars
to acquire experiences or strength. The game features a deterministic combat system where players
and monsters take turns striking each other, with damage calculated as the difference between attack
and defense strengths. This necessitates thoughtful planning and strategic battle order to efficiently
progress through levels while conserving resources like health and keys. A interesting tool is the Orb
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of the Hero, which provides vital information on monster capabilities and potential damage, aiding
players in choosing their battles wisely.

Key to strategy in the Tower of the Sorcerer is the Orb of the Hero, which provides vital information
on monster capabilities and potential damage, aiding players in choosing their battles wisely. This
intricate setup makes the game an excellent platform for evaluating decision-making algorithms,
as it requires advanced reasoning, meticulous planning, and ongoing strategy refinement—crucial
capabilities for sophisticated AI systems.

We design a 2D puzzle game by readapting The Tower of the Sorcerer tow. The game requires the
player to plan its action wisely, for example, practice on the weak monster to gain the experiences
and gold, then use the gold to improve himself at the altar. LLM needs to explore the environment
and come up with optimal strategies.

The input of the agent world is a 2D string array, each elements are a description of the position,
including wall, boss. Since the game takes very long durations and has very diverse challenges
in reasoning and planning, We redesign the original games into 42 tasks across different levels,
each tasks comes with an initial states and a final goal. We also build Agent-QA as annotated
question-answering datasets based on those tasks. We manually filter and verify the correctness of
those data. Figure 1 shows an visualization of both environments.

Urban Driving. We build a self-driving simulator based on the highway-env Leurent (2018). The
simulator can randomly generate different maps such as intersections, roundabouts and junctions.
It simulate the behaviors using a rule-based Intelligent Driver Model (IDM) Treiber et al. (2000),
with a discrete action space based on the IDM, including change lanes, accelerate and decelerate. To
evaluate, we curate a list of typical unseen scenario by clustering real-world driving scenarios from
Waymo dataset Ettinger et al. (2021). To test the ability to handle long-tailed events, we generate
safety-critical scenarios Liu et al. (2023); Rempe et al. (2022). We curate those unseen scenarios as a
Driving-QA(OOD) datasets. Refer to Appendix for more information.

We use CARLA simulator to render and simulate the physics and behavior of the environment. The
following list shows our testing scenarios and their brief descriptions:

• Vehicle Following: The autonomous vehicle (AV) is following another vehicle in the same
lane, trying to keep a safe distance.

• Yielding: Another vehicle in the neighboring lane is trying to cut in; the AV should yield to
avoid crashes.

• Cut-in: The AV is about to cut in.

• Intersection: Steering at the intersection.

• Merging Lane: Entering the merging lane.

• Road Curve: The AV should avoid the road edge.

• Occlusion: An unexpected pedestrian or vehicle shows up from behind an occlusion.

• Reckless Driver: Another vehicle not following traffic rules, such as running a red light or
making an illegal U-turn.

OOD Scenario Description Here is a list of safety-critical scenarios we used for generalization
study in Figure 6 and Figure 5.

• Erratic Merging: A vehicle merges into your lane abruptly without signaling or at an
unsafe speed.

• Cut-In: Another vehicle suddenly cuts into your lane, often from an adjacent lane or during
heavy traffic.

• Nudging: A vehicle gradually moves closer to your lane without fully changing lanes,
causing a potential sideswipe situation.

• Hard Braking: A vehicle in front of you suddenly decelerates, forcing you to react quickly
to avoid a collision.
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Figure 8: The AgentWorld environment includes a diverse range of tasks including challenges in
exploration, tool usage, and planning. The last figure shows the Orb of the Hero, which shows the
strength of all the monsters in current level, providing necessary informaiton for warriors to plan.

• Lane Departure: A vehicle unintentionally drifts out of its lane, potentially into oncoming
traffic or off the road.

• Intersection Encroachment: A vehicle enters an intersection at the wrong time, violating
right-of-way rules.

• Pedestrian Crossing: A pedestrian suddenly appears on the roadway, requiring immediate
action to avoid an accident.

• Unexpected Obstacle: An object or animal suddenly appears on the road, necessitating a
quick response to avoid impact.

• Aggressive Driving: Another driver exhibits aggressive behavior such as tailgating, speed-
ing, or weaving through traffic.

Multi-agent. Previous research has already shown that LLMs often lack the Theory Of Mind Bara
et al. (2021), which is the capability to explain, predict, and interpret behaviors by attributing mental
states such as beliefs to oneself or the others. When applying LLMs on real-world AI tasks that
involves interacting with humans, or multi-agent setting that requires cooperations, it is essential for
LLMs to understand, or suitably expect others to work. We build special settings in the previous two
environments that requires collaboration between agents. For example, two warriors are trapped in
different rooms in Agent World, they need to collaborate to trigger the mechanism to open the door
for each of them.

A.4 DISTRIBUTION SHIFT BETWEEN IMPERFECT AND PERFECT ENVIRONMENT

This section describes the details of the two environment AgentWorld, in terms of their difference
between imperfect world model and world model. Since we use text-only input for the LLMs, the
major difference is the environment setup and dynamics.
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Figure 9: The Urban Driving environment characterizes a diverse range of traffic scenarios including
intersections, stop sign, multilanes. It also involve complex interactions with other traffic agents and
challenge the LLM agent to correctly recognize other agents and make reasonable decision-making
to safely navigate in the environment.

A.4.1 AGENT WORLD

We first introduct the combat rules, which determines the logic to calculate the outcome of each
combat. The warrior (and the boss) has three states: attack, defense, and life. When a warrior with
attack a, defense d, and life l is fighting a monster with am, dm and lm, we use following equation to
calculate the outcome, which is the residual life of the warrior lupdated after the combat:

turn =
lm

a− dm
(3)

lupdated = l − threshold(am − d) ∗ turn (4)

If turn < 0, the warrior cannot attack the monster. If lupdated < 0, the warrior is defeated and
we deem this as failure. This basic rule applies to both the imperfect environment and the perfect
environment.

Monsters. The perfect world model also features a wider variety of monsters, categorized into
three types:

• Normal: Balanced attack and defense values.
• Wizard: High attack but low defense.
• Guardian: High defense but low attack.

The imperfect world model only includes monsters of the first type.

Store. A unique feature of the perfect environment where the warrior can trade combat experience
(gained from fighting monsters) to upgrade attack, defense, or life stats. The player must maintain a
balanced approach to these upgrades. Imperfect world model does not have stores, or the concept of
the combat experiences.

Complexity The imperfect environment has smaller rooms size, room numbers and simpler con-
nectivity, while the perfect environment is more complex, and involves exploring different maps by
using the stairs. For example, if we enter the stair in the upmost stairs of the first image in Figure 8,
we will get the second floor, which is the second image in Figure 8. The imperfect environment only
has one map to explore.

Items. In the imperfect world model, items are limited to swords and shields, which boost attack
and defense, respectively. The perfect world model adds more strategic items, like the shovel, which
can break a wall block, and the Wing, which allows the warrior to fly to the symmetrical position on
the map. Using these items effectively requires a deep understanding of the game.
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Vampire. A special monster in the perfect environment with a unique lifesteal effect, which drains
a fixed percentage of the warrior’s life with each turn in combat. A common strategy for facing this
monster is to keep the warrior’s life relatively low.

Keys & Doors. In the imperfect world model, there is only one type of key and door. In contrast,
the perfect world model introduces keys and doors in three colors: yellow, blue, and red. The red
key is the rarest, while the yellow key is the most common. For example, in the fourth image of
Figure 8, to enter the middle room on the right, you can use either the blue door or the yellow door.
The varying scarcity of these keys and the cost of defeating the guardian monsters present unique
trade-off challenges for LLMs in making optimal decisions.

A.4.2 URBAN DRIVING

Traffic Density. In the imperfect environment, traffic density is kept constant with a moderate
number of vehicles on the road. In the perfect environment, traffic density varies dynamically, ranging
from light to heavy congestion, which requires the driving model to adapt to different traffic flow
patterns and congestion levels.

Obstacle Types. The imperfect environment have only one obstacle, the fixed size vehicle. The
perfect environment adds static obstacles such as parked vehicle and traffic cones. It also involves
dynamic obstacles such as moving pedestrians, cyclists, and non-compliant behaviors such as vehicles
suddenly stopping or swerving, which requires accurate responses from the driving model.

Road Types. The imperfect environment consists solely of straight highways and simple turns. The
perfect environment introduces a variety of road types, including sharp curves, urban streets with
narrow lanes, lane merging, and complex intersections with traffic lights and STOP signs. Each road
type presents unique challenges for the driving model.

Interaction with Other Vehicles. In the imperfect environment, interactions with other vehicles
are minimal and predictable, with other vehicles maintaining consistent speeds and distances. In the
perfect environment, other vehicles exhibit more complex behaviors, such as sudden lane changes, er-
ratic driving, and varied speed patterns, requiring the model to predict and react to these unpredictable
actions effectively.
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