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ABSTRACT

Generating complete 360° panoramas from narrow field of view images is on-
going research as omnidirectional RGB data is not readily available. Existing
GAN-based approaches face some barriers to achieving higher quality output, and
have poor generalization performance over different mask types. In this paper,
we present our 360° indoor RGB-D panorama outpainting model using latent dif-
fusion models (LDM), called PanoDiffusion. We introduce a new bi-modal la-
tent diffusion structure that utilizes both RGB and depth panoramic data during
training, which works surprisingly well to outpaint depth-free RGB images dur-
ing inference. We further propose a novel technique of introducing progressive
camera rotations during each diffusion denoising step, which leads to substan-
tial improvement in achieving panorama wraparound consistency. Results show
that our PanoDiffusion not only significantly outperforms state-of-the-art methods
on RGB-D panorama outpainting by producing diverse well-structured results for
different types of masks, but can also synthesize high-quality depth panoramas to
provide realistic 3D indoor models.

1 INTRODUCTION

Omnidirectional 360° panoramas serve as invaluable assets in various applications, such as light-
ing estimation (Gardner et al., 2017; 2019; Song & Funkhouser, 2019) and new scene synthesis
(Somanath & Kurz, 2021) in the Augmented and Virtual Reality (AR & VR). However, an obvi-
ous limitation is that capturing, collecting, and restoring a dataset with 360° images is a high-effort
and high-cost undertaking (Akimoto et al., 2019; 2022), while manually creating a 3D space from
scratch can be a demanding task (Lee et al., 2017; Choi et al., 2015; Newcombe et al., 2011).

(a) Masked input (b) Ours PanoDiffusion (c) BIPS (d) OmniDreamer

Figure 1: Example results of 360◦ Panorama Outpainting on various masks. Compared to BIPS
(Oh et al., 2022) and OmniDreamer (Akimoto et al., 2022), our model not only effectively generates
semantically meaningful content and plausible appearances with many objects, such as beds, sofas
and TV’s, but also provides multiple and diverse solutions for this ill-posed problem. (Masked
regions are shown in blue for better visualization. Zoom in to see the details.)
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To mitigate this dataset issue, the latest learning methods (Akimoto et al., 2019; Somanath & Kurz,
2021; Akimoto et al., 2022; Oh et al., 2022) have been proposed, with a specific focus on generating
omnidirectional RGB panoramas from narrow field of view (NFoV) images. These methods are
typically built upon Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), which
have shown remarkable success in creating new content. However, GAN architectures face some
notable problems, including 1) mode collapse (seen in Fig. 1(c)), 2) unstable training (Salimans
et al., 2016), and 3) difficulty in generating multiple structurally reasonable objects (Epstein et al.,
2022). These limitations lead to obvious artifacts in synthesizing complex scenes (Fig. 1).

The recent endeavors of (Lugmayr et al., 2022; Li et al., 2022; Xie et al., 2023; Wang et al., 2023)
directly adopt the latest latent diffusion models (LDMs) (Rombach et al., 2022) in image inpainting
tasks, which achieve a stable training of generative models and spatially consistent images. How-
ever, specifically for a 360° panorama outpainting scenario, these inpainting works usually lead to
grossly distorted results. This is because: 1) the missing (masked) regions in 360° panorama out-
painting is generally much larger than masks in normal inpainting and 2) it necessitates generating
semantically reasonable objects within a given scene, as opposed to merely filling in generic back-
ground textures in an empty room (as shown in Fig. 1 (c)). To achieve this, we propose an alternative
method for 360° indoor panorama outpainting via the latest latent diffusion models (LDMs) (Rom-
bach et al., 2022), termed as PanoDiffusion. Unlike existing diffusion-based inpainting methods, we
introduce depth information through a novel bi-modal latent diffusion structure during the training,
which is also significantly different from the latest concurrent works (Tang et al., 2023; Lu et al.,
2023) that aims for text-guided 360° panorama image generation. Our key motivation for doing so
is that the depth information is crucial for helping the network understand the physical structure of
objects and the layout of the scene (Ren et al., 2012). It is worth noting that our model only uses par-
tially visible RGB images as input during inference, without requirement for any depth information,
yet achieving significant improvement on both RGB and depth synthesis (Tables 1 and 2).

Another distinctive challenge in this task stems from the unique characteristic of panorama images:
3) both ends of the image must be aligned to ensure the integrity and wraparound consistency of the
entire space, given that the indoor space lacks a definitive starting and ending point. To enhance this
property in the generated results, we introduce two strategies: First, during the training process, a
camera-rotation approach is employed to randomly crop and stitch the images for data augmenta-
tion. It encourages the networks to capture information from different views in a 360° panorama.
Second, a two-end alignment mechanism is applied at each step of the inference denoising process
(Fig. 4), which explicitly enforces the two ends of an image to be wraparound-consistent.

We evaluate the proposed method on the Structured3D dataset (Zheng et al., 2020). Experimental
results demonstrate that our PanoDiffusion not only significantly outperforms previous state-of-the-
art methods, but is also able to provide multiple and diverse well-structured results for different types
of masks (Fig. 1). In summary, our main contributions are as follows:

• A new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data
to better learn spatial layouts and patterns during training, but works surprisingly well to
outpaint normal RGB-D panoramas during inference, even without depth input;

• A novel technique of introducing progressive camera rotations during each diffusion de-
noising step, which leads to substantial improvement in achieving panorama wraparound
consistency;

• With either partially or fully visible RGB inputs, our PanoDiffusion can synthesize high-
quality indoor RGB-D panoramas simultaneously to provide realistic 3D indoor models.

2 RELATED WORK

2.1 IMAGE INPAINTING/OUTPAINTING

Driven by advances in various generative models, such as VAEs (Kingma & Welling, 2014) and
GANs (Goodfellow et al., 2014), a series of learning-based approaches (Pathak et al., 2016; Iizuka
et al., 2017; Yu et al., 2018; Zheng et al., 2019; Zhao et al., 2020; Wan et al., 2021; Zheng et al., 2022)
have been proposed to generate semantically meaningful content from a partially visible image.
More recently, state-of-the-art methods (Lugmayr et al., 2022; Li et al., 2022; Xie et al., 2023;
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(a) Training Stage

(b) Inference Stage

(c) Refine Stage

Figure 2: The overall pipeline of our proposed PanoDiffusion method. (a) During training,
the model is optimized for RGB-D panorama synthesis, without the mask. (b) During inference,
however, the depth information is no longer needed for masked panorama outpainting. (c) Finally, a
super-resolution model is implemented to further enhance the high-resolution outpainting. We only
show the input/output of each stage and omit the details of circular shift and adding noise. Note that
the VQ-based encoder-decoders are pre-trained in advance, and fixed in the rest of our framework.

Wang et al., 2023) directly adopt the popular diffusion models (Rombach et al., 2022) for image
inpainting, achieving high-quality completed images with consistent structure and diverse content.
However, these diffusion-based models either focus on background inpainting, or require input text
as guidance to produce plausible objects within the missing regions. This points to an existing
gap in achieving comprehensive and contextually rich inpainting/outpainting results across a wider
spectrum of scenarios, especially in the large scale 360° Panorama scenes.

2.2 360° PANORAMA OUTPAINTING

Unlike NFoV images, 360° panorama images are subjected to nonlinear perspective distortion, such
as equirectangular projection. Consequently, objects and layouts within these images appear sub-
stantially distorted, particularly those closer to the top and bottom poles. The image completion has
to not only preserve the distorted structure but also ensure visual plausibility, with the additional
requirement of wraparound-consistency at both ends. Previous endeavors (Akimoto et al., 2019;
Somanath & Kurz, 2021) mainly focused on deterministic completion of 360° RGB images, with
BIPS (Oh et al., 2022) further extending this to RGB-D panorama synthesis. In order to generate
diverse results (Zheng et al., 2019; 2021), various strategies have been employed. For instance,
SIG-SS (Hara et al., 2021) leverages a symmetry-informed CVAE, while OmniDreamer (Akimoto
et al., 2022) employs transformer-based sampling. In contrast, our PanoDiffusion is built upon
DDPM, wherein each reverse diffusion step inherently introduces stochastic, naturally resulting in
multiple and diverse results. Concurrently with our work, MVDiffusion (Tang et al., 2023) gen-
erates panorama images by sampling consistent multi-view images, and AOGNet (Lu et al., 2023)
does 360° outpainting through an autoregressive process. Compared to the concurrent models, our
PanoDiffusion excels in generating semantically multi-objects for large masked regions, without the
need of text prompts. More importantly, PanoDiffusion is capable of simultaneously generating the
corresponding RGB-D output, using only partially visible RGB images as input during the inference.

3 METHODS

Given a 360° image x ∈ RH×W×C , degraded by a number of missing pixels to become a masked
image xm, our main goal is to infer semantically meaningful content with reasonable geometry for
the missing regions, while simultaneously generating visually realistic appearances. While this task
is conceptually similar to conventional learning-based image inpainting, it presents greater chal-
lenges due to the following differences: 1) our output is a 360° RGB-D panorama that requires
wraparound consistency; 2) the masked/missing areas are generally much larger than the masks in
traditional inpainting; 3) our goal is to generate multiple appropriate objects within a scene, instead
of simply filling in with the generic background; 4) the completed results should be structurally
plausible, which can be reflected by a reasonable depth map.

3



Published as a conference paper at ICLR 2024

(a) Training Stage

(b) Inference Stage

Figure 3: Our LDM outpainting structure with camera rotation mechanism. During training
(a), we randomly select a rotation angle to generate a new panorama for data augmentation. During
inference (b), we sample the visible region from the encoded features (above) and the invisible part
from the denoising output (below). The depth map is not needed, and is set to random noise. At each
denoising step, we crop a 90°-equivalent area of the intermediate result from the right and stitch it to
the left, denoted by the circle following zmixed

t — this strongly improves wraparound consistency.

To tackle these challenges, we propose a novel diffusion-based framework for 360° panoramic out-
painting, called PanoDiffusion. The training process, as illustrated in Fig. 2(a), starts with two
branches dedicated to RGB x and depth dx information. Within each branch, following (Rombach
et al., 2022), the input data is first embedded into the latent space using the corresponding pre-
trained VQ model. These representations are then concatenated to yield zrgbd, which subsequently
undergoes the forward diffusion step to obtain zT . The resulting zT is then subjected to inverse
denoising, facilitated by a trained UNet, ultimately returning to the original latent domain. Finally,
the pre-trained decoder is employed to rebuild the completed RGB-D results.

During inference, our system takes a masked RGB image as input and conducts panoramic outpaint-
ing. It is noteworthy that our proposed model does not inherently require harder-to-acquire depth
maps as input, relying solely on a partial RGB image (Fig. 2(b)). The output is further super-resolved
into the final image in a refinement stage (Fig. 2(c)).

3.1 PRELIMINARIES

Latent Diffusion. Our PanoDiffusion builds upon the latest Latent Diffusion Model (LDM) (Rom-
bach et al., 2022), which executes the denoising process in the latent space of an autoencoder.
This design choice yields a twofold advantage: it reduces computational costs while maintaining
a high level of visual quality by storing the domain information in the encoder E(·) and decoder
D(·). During the training, the given image x0 is initially embedded to yield the latent representation
z0 = E(x0), which is then perturbed by adding the noise in a Markovian manner:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (1)

where t = [1, · · · , T ] is the number of steps in the forward process. The hyperparameters βt denote
the noise level at each step t. For the denoising process, the network in LDM is trained to predict
the noise as proposed in DDPM (Ho et al., 2020), where the training objective can be expressed as:

L = EE(x0),ϵ∼N (0,I),t[||ϵθ(zt, t)− ϵ||22] (2)
Diffusion Outpainting. The existing pixel-level diffusion inpainting methods (Lugmayr et al.,
2022; Horita et al., 2022) are conceptually similar to that used for image generation, except xt

incorporates partially visible information, rather than purely sampling from a Gaussian distribution
during the inference. In particular, let x0 denote the original image in step 0, while xvisible

0 = m⊙x0

and xinvisible
0 = (1−m)⊙ x0 contain the visible and missing pixels, respectively. Then, as shown

in Fig. 3, the reverse denoising sampling process unfolds as follows:

xvisible
t ∼ q(xt|xt−1), (3)

xinvisible
t−1 ∼ pθ(xt−1|xt), (4)

xt−1 = m⊙ xvisible
t−1 + (1−m)⊙ xinvisible

t−1 . (5)
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Figure 4: An example of our two-end alignment mechanism. During inference, we rotate the
scene for 90° in each denoising step. Within a total of 200 sampling steps, our PanoDiffusion will
effectively achieve wraparound consistency.

Here, q is the forward distribution in the diffusion process and pθ is the inverse distribution. After T
iterations, x0 is restored to the original image space.

Relation to Prior Work. In contrast to these inpainting methods at pixel-level, our PanoDiffusion
builds upon the LDM. Despite the fact that the original LDM provided the ability to inpainting
images, such inpainting focuses on removing objects from the image, rather than generating a variety
of meaningful objects in panoramic outpainting. In short, the x0 is embedded into the latent space,
yielding z0 = E(x0), while the subsequent sampling process follows the equations (3)-(5). The
key motivation behind this is to perform our task on higher resolution 512×1024 panoramas. More
importantly, we opt to go beyond RGB outpainting, and to deal with RGB-D synthesis (Sec. 3.3),
which is useful for downstream tasks in 3D reconstruction. Additionally, existing approaches can not
ensure the wraparound consistency during completion, while our proposed rotational outpainting
mechanism in Sec. 3.2 significantly improves such a wraparound consistency.

3.2 WRAPAROUND CONSISTENCY MECHANISM

Camera Rotated Data Augmentation. It is expected that the two ends of any 360° panorama
should be seamlessly aligned, creating a consistent transition from one end to the other. This is
especially crucial in applications where a smooth visual experience is required, such as 3D recon-
struction and rendering. To promote this property, we implement a circular shift data augmentation,
termed camera-rotation, to train our PanoDiffusion. As shown in Fig. 3(a), we randomly select a
rotation angle, which is subsequently employed to crop and reassemble image patches, generating a
new panorama for training purposes.

Two-Ends Alignment Sampling. While the above camera-rotation technique can improve the
model’s implicit grasp of the wraparound consistency using the augmentation of data examples, it
may not impose strong enough constraints on wraparound alignment of the results. Therefore, in
the inference process, we introduce a novel two-end alignment mechanism that can be seamlessly
integrated into our latent diffusion outpainting process. In particular, the reverse denoising process
within the DDPM is characterized by multiple iterations, rather than a single step. During each iter-
ation, we apply the camera-rotation operation, entailing 90° rotation of both the latent vectors and
mask, before performing a denoising outpainting step. This procedure more effectively connects
the two ends of the panorama from the previous step, resulting in significant improvement in visual
results (as shown in Fig. 8). Without changing the size of the images, generating overlapping con-
tent, or introducing extra loss functions, we provide ‘hints’ to the model by rotating the panorama
horizontally, thus enhancing the effect of alignment at both ends (examples shown in Fig. 4).

3.3 BI-MODAL LATENT DIFFUSION MODEL

In order to deal with RGB-D synthesis, one straightforward idea could be to use Depth as an explicit
condition during training and inference, where the depth information may be compressed into latent
space and then introduced into the denoising process of the RGB images via concatenation or cross-
attention. However, we found that such an approach often leads to blurry results in our experiments
(as shown in Fig. 11). Alternatively, using two parallel LDMs to reconstruct Depth and RGB images
separately, together with a joint loss, may also appear to be an intuitive solution. Nonetheless, this
idea presents significant implementation challenges due to the computational resources required for
multiple LDMs.

Therefore, we devised a bi-modal latent diffusion structure to introduce depth information while
generating high-quality RGB output. It is important to note that this depth information is solely
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(a) NFoV (b) Camera (c) Random (d) Layout
Figure 5: Examples of various mask types. See text for details.

necessary during the training phase. Specifically, we trained two VAE models independently for
RGB and depth images, and then concatenate zrgb ∈ Rh×w×3 with zdepth ∈ Rh×w×1 at the latent
level to get zrgbd ∈ Rh×w×4. The training of VAEs is exactly the same as in (Rombach et al., 2022)
with downsampling factor f=4. Then we follow the standard process to train an unconditional
DDPM with zrgbd via a variant of the original LDM loss:

LRGB−D = Ezrgbd,ϵ∼N (0,1),t[∥ϵθ(zt, t)− ϵ∥22], zrgbd = E1(x)⊕ E2(dx) (6)

Reconstructed RGB-D images can be obtained by decoupling zrgbd and decoding. It is important to
note that during training, we use the full RGB-D image as input, without masks. Conversely, during
the inference stage, the model can perform outpainting of the masked RGB image directly without
any depth input, with the fourth channel of zrgbd replaced by random noise.

3.4 REFINENET

Although mapping images to a smaller latent space via an autoencoder prior to diffusion can save
training space and thus allow larger size inputs, the panorama size of 512×1024 is still a heavy
burden for LDM (Rombach et al., 2022). Therefore, we adopt a two-stage approach to complete the
outpainting task. Initially, the original input is downscaled to 256×512 as the input to the LDM.
Correspondingly, the image size of the LDM output is also 256×512. Therefore, an additional mod-
ule is needed to upscale the output image size to 512×1024. Since panorama images are distorted
and the objects and layouts do not follow the regular image patterns, we trained a super-resolution
GAN model for panoramas to produce visually plausible results at a higher resolution.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Dataset. We estimated our model on the Structured3D dataset (Zheng et al., 2020), which provides
360° indoor RGB-D data following equirectangular projection with a 512×1024 resolution. We split
the dataset into 16930 train, 2116 validation, and 2117 test instances.

Metrics. For RGB outpainting, due to large masks, we should not require the completed image
to be exactly the same as the original image, since there are many plausible solutions (e.g. new
furniture and ornaments, and their placement). Therefore, we mainly report the following dataset-
level metrics: 1) Fréchet Inception Distance (FID) (Heusel et al., 2017), 2) Spatial FID (sFID) (Nash
et al., 2021), 3) density and coverage (Naeem et al., 2020). FID compares the distance between
distributions of generated and original images in a deep feature domain, while sFID is a variant of
FID that uses spatial features rather than the standard pooled features. Additionally, density reflects
how accurate the generated data is to the real data stream, while coverage reflects how well the
generated data generalizes the real data stream. For depth synthesis, we use RMSE, MAE, AbsREL,
and Delta1.25 as implemented in (Cheng et al., 2018; Zheng et al., 2018), which are commonly used
to measure the accuracy of depth estimates. Implementation details can be found in section 5.

Mask Types. Most works focused on generating omnidirectional images from NFoV images (Fig.
5(a)). However, partial observability may also occur due to sensor damage in 360° cameras. Such
masks can be roughly simulated by randomly sampling a number of NFoV camera views within the
panorama (Fig. 5(b)). We also experimented with other types of masks, such as randomly generated
regular masks (Fig. 5(c)). Finally, the regions with floors and ceilings in panoramic images are often
less interesting than the central regions. Hence, we also generated layout masks that muffle all areas
except floors and ceilings, to more incisively test the model’s generative power (Fig. 5(d)).
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(a) Ground Truth (b) Masked Input (c) PanoDiffusion (RGB) (d) PanoDiffusion (RGB-D)

(e) BIPSECCV’2022 (f) OmniDreamerCVPR’2022 (g) TFillCVPR’2022 (h) Inpaint AnythingarXiv’2023

Figure 6: Qualitative comparison for RGB panorama outpainting. Our PanoDiffusion generated
more objects with appropriate layout, and with better visual quality. For BIPS and OmniDreamer,
despite the seemingly reasonable results, the outpainted areas tend to fill the walls and lack diverse
items. As for TFill, it generates blurry results for large invisible areas. For Inpaint anything, it gen-
erates multiple objects but they appear to be structurally and semantically implausible. Compared
to them, PanoDiffusion generates more reasonable details in the masked region, such as pillows,
paintings on the wall, windows, and views outside. More comparisons are provided in Appendix.

Table 1: Quantitative results for RGB outpainting. All models were re-trained and evaluated
using the same standardized dataset. Note that, we tested all models without the depth input.

Methods Camera Mask NFoV Mask Layout Mask Random Box Mask
FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑

BIPS 31.70 28.89 0.769 0.660 57.69 44.68 0.205 0.277 32.25 24.66 0.645 0.579 25.35 22.60 0.676 0.798
OmniDreamer 65.47 37.04 0.143 0.175 62.56 36.24 0.125 0.184 82.71 28.40 0.103 0.120 45.10 24.12 0.329 0.576
LaMa 115.92 107.69 0.034 0.082 125.77 136.32 0.002 0.006 129.77 35.23 0.018 0.043 45.25 24.21 0.429 0.701
TFill 83.84 61.40 0.075 0.086 93.62 76.13 0.037 0.027 97.99 43.40 0.046 0.052 46.84 30.72 0.368 0.574
Inpainting Anything 97.38 54.73 0.076 0.133 105.77 59.70 0.054 0.035 92.18 32.00 0.116 0.085 46.30 26.71 0.372 0.632
RePaint 82.84 84.39 0.096 0.105 95.38 82.35 0.0639 0.078 69.14 31.63 0.294 0.263 55.47 38.78 0.433 0.581
PanoDiffusion 21.55 26.95 0.867 0.708 21.41 27.80 0.790 0.669 23.06 22.39 1.000 0.737 16.13 20.39 1.000 0.883

Baseline Models. For RGB panorama outpainting, we mainly compared with the following state-
of-the-art methods: including image inpainting models LaMa (Suvorov et al., 2022)WACV’2022 and
TFill (Zheng et al., 2022)CVPR’2022, panorama outpainting models BIPS (Oh et al., 2022)ECCV’2022
and OmniDreamer (Akimoto et al., 2022)CVPR’2022, diffusion-based image inpainting models Re-
paint (Lugmayr et al., 2022)CVPR’2022 and Inpaint Anything (Yu et al., 2023)arXiv’2023. To evaluate
the quality of depth panorama, we compare our method with three image-guided depth synthesis
methods including BIPS (Oh et al., 2022), NLSPN (Park et al., 2020), and CSPN (Cheng et al.,
2018). All models are retrained on the Structured3D dataset using their publicly available codes.

4.2 MAIN RESULTS

Following prior works, we report the quantitative results for RGB panorama outpainting with camera
masks in Table 1. All instantiations of our model significantly outperform all state-of-the-art models.
Specifically, the FID score is substantially better (relative 67.0% improvement).

It is imperative to note that our model is trained unconditionally, with masks only employed during
the inference phase. Therefore, it is expected to handle a broader spectrum of mask types. To vali-
date this assertion, we further evaluated our model with the baseline models across all four different
mask types (displayed in Fig. 5). The results in Table 1 show that PanoDiffusion consistently outper-
forms the baseline models on all types of masks. Conversely, baseline models’ performance displays
significant variability in the type of mask used. Although the visible regions of the layout masks are
always larger than the camera masks, the performances of baseline models on camera masks are
significantly better. This is likely because the masks in the training process are closer to the NFoV
distribution. In contrast, PanoDiffusion has a more robust performance, producing high-quality and
diverse output images for all mask distributions.

The qualitative results are visualized in Fig. 6. Here we show an example of outpainting on a
layout mask (more comparisons in Appendix). Besides the fact that PanoDiffusion generates more
visually realistic results than baseline models, comparing the RGB (trained without depth) and RGB-
D versions of our PanoDiffusion, in Fig. 6(c), some unrealistic structures are generated on the center
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(a) RGB Input (b) Depth GT (c) Ours PanoDiffusion

(d) CSPN (e) BIPS (f) NLSPN

Figure 7: Qualitative comparison for depth panorama synthesis.

Table 2: Depth map ablations. All models are trained and evaluated on the Structured3D dataset.

Noise Level Camera Mask NFoV Mask Layout Mask Random Box Mask
FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑ FID ↓ sFID ↓ D ↑ C ↑

no depth 24.33 29.00 0.667 0.635 24.01 30.00 0.639 0.617 25.37 22.92 0.785 0.677 17.88 21.21 0.913 0.857
50% 21.65 28.12 0.678 0.660 21.99 29.37 0.678 0.561 24.24 23.05 0.855 0.724 17.02 21.22 0.919 0.837
30% 21.78 27.96 0.714 0.674 21.78 29.39 0.643 0.658 24.11 23.00 0.919 0.724 16.87 21.25 0.937 0.855
10% 21.68 27.79 0.721 0.658 21.49 29.74 0.558 0.620 24.02 22.68 0.938 0.741 16.60 21.02 0.932 0.853
full depth 21.55 26.95 0.867 0.708 21.41 27.80 0.790 0.669 23.06 22.39 1.000 0.737 16.13 20.39 1.000 0.883

(a) Usage of depth maps (training). We use different sparsity levels of depth for training and the results (more
intense color means better performance) verify the effectiveness of depth for RGB outpainting. It also proves
that the model can accept sparse depth as input.

Methods Input Depth FID ↓ sFID ↓ D ↑ C ↑
BIPS fully visible 29.74 30.59 0.931 0.721
PanoDiffusion 21.90 26.78 0.829 0.693

BIPS partial visible 31.70 28.89 0.769 0.660
PanoDiffusion 22.34 26.74 0.856 0.686
BIPS fully masked 68.79 42.62 0.306 0.412
PanoDiffusion 21.55 26.95 0.867 0.708

(b) Usage of depth maps (inference). BIPS heav-
ily relies on the availability of input depth during
inference, while our model is minimally affected.

Methods Input Depth RMSE ↓ MAE ↓ AbsREL ↓ Delta1.25 ↑
BIPS

fully masked

323 207 0.1842 0.8436
CSPN 374 282 0.2273 0.6618
NLSPN 284 183 0.1692 0.8544
PanoDiffusion 276 193 0.1355 0.9060
BIPS

partial visible

247 136 0.1098 0.9032
CSPN 291 195 0.1547 0.8182
NLSPN 221 124 0.1058 0.9143
PanoDiffusion 219 123 0.1127 0.9278

(c) Depth panorama synthesis. Our model outperforms
baseline models in most of the metrics.

wall, and when we look closely at the curtains generated by the RGB model, the physical structure
of the edges is not quite real. In contrast, the same region of RGB-D result (Fig. 6(d)) appears more
structurally appropriate. Such improvement proves the advantages of jointly learning to synthesize
depth data along with RGB images, even when depth is not used during test time, suggesting the
depth information is significant for assisting the RGB completion.

4.3 ABLATION EXPERIMENTS

We ran a number of ablations to analyze the effectiveness of each core component in our PanoDif-
fusion. Results are shown in tables 2 and 3 and figs. 7 and 8 and discussed in detail next.
Depth Maps. In practice applications, depth data may exhibit sparsity due to the hardware limita-
tions (Park et al., 2020). To ascertain the model’s proficiency in accommodating sparse depth maps
as input, we undertook a training process using depth maps with different degrees of sparsity (i.e.,
randomized depth value will be set to 0). The result is reported in Table 2(a). The denser colors in
the table represent better performance. As the sparsity of the depth input decreases, the performance
of RGB outpainting constantly improves. Even if we use 50% sparse depth for training, the result is
overall better than the original LDM.

We then evaluated the importance of depth maps during inference, and compared it with the state-of-
the-art BIPS (Oh et al., 2022), which is also trained with RGB-D images. The quantitative results are
reported in Table 2(b). As can be seen, BIPS’s performance appears to deteriorate significantly when
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(a) PanoDiffusion w/ TA (b) PanoDiffusion w/o TA (c) OmniDreamer (d) BIPS

Figure 8: Examples of stitched ends of the outpainted images. For each image, the left half
was unmasked (i.e. ground truth), while the right half was masked and synthesized. The results
generated with rotation are more naturally connected at both ends (a).

Table 3: Two-end alignment ablations. Using rotational outpainting, we achieve optimal consis-
tency at both ends of the PanoDiffusion output.
Methods \ Mask Type Camera NfoV Layout Random Box Methods \ Mask Type Camera NfoV Layout Random Box

PanoDiffusion (w/ rotation) 90.41 89.74 88.01 85.04 PanoDiffusion (w/o rotation) 125.82 128.33 128.10 128.19
BIPS 117.59 96.82 132.15 148.78 OmniDreamer 115.6 109.00 146.37 136.68
LaMa 119.51 119.39 133.54 136.35 TFill 155.16 157.60 136.94 122.96

the input depth visual area is reduced. Conversely, our PanoDiffusion is not sensitive to these depth
maps, indicating that the generic model has successfully handled the modality. Interestingly, we
noticed that having fully visible depth at test time did not improve the performance of PanoDiffusion,
and in fact, the result deteriorated slightly. A reasonable explanation is that during the training
process, the signal-to-noise ratios (SNR) of RGB and depth pixels are roughly the same within each
iteration since no masks were used. However, during outpainting, the SNR balance will be disrupted
when RGB input is masked and depth input is fully visible. Therefore, the results are degraded, but
only slightly because PanoDiffusion has effectively learned the distribution of spatial visual patterns
across all modalities, without being overly reliant on depth. This also explains why our model is
more robust to depth inputs with different degrees of visibility.

Finally, we evaluated the depth synthesis ability of PanoDiffusion, seen in Table 2(c) and Fig. 7. The
results show that our model achieves the best performance on most of the metrics and the qualitative
results also show that PanoDiffusion is able to accurately estimate the depth map. This not only
indicates that PanoDiffusion can be used for depth synthesis and estimation but also proves that it
has learned the spatial patterns of panorama images.

Two-end Alignment. Currently, there is no metric to evaluate the performance of aligning the two
ends of an image. To make a reasonable comparison, we make one side of the input image fully
visible, and the other side fully masked and then compare the two ends of output. Based on the
Left-Right Consistency Error (LRCE) (Shen et al., 2022) which is used to evaluate the consistency
of two ends of the depth maps, we designed a new RGB-LRCE to calculate the difference between
the two ends of the image: LRCE = 1

N

∑N
i=1 |P col

first − P col
last|, and reported results in table 3.

The qualitative results are shown in fig. 8. To compare as many results, we only show the end
regions that are stitched together to highlight the contrast. They show that the consistency of the two
ends of the results is improved after the use of rotational outpainting, especially the texture of the
walls and the alignment of the layout. Still, differences can be found with rotated outpainting. We
believe it is mainly due to the fact that rotational denoising is based on the latent level, which may
introduce extra errors during decoding.

5 CONCLUSION

In this paper, we show that our proposed method, the two-stage RGB-D PanoDiffusion, achieves
state-of-the-art performance for indoor RGB-D panorama outpainting. The introduction of depth
information via our bi-modal LDM structure significantly improves the performance of the model.
Such improvement illustrates the effectiveness of using depth during training as an aid to guide
RGB panorama generation. In addition, we show that the alignment mechanism we employ at each
step of the denoising process of the diffusion model enhances the wraparound consistency of the
results. With the use of these novel mechanisms, our two-stage structure is capable of generating
high-quality RGB-D panoramas at 512×1024 resolution.
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Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gambaretto, Chris-
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APPENDIX

The supplementary materials are organized as follows:

1. A video is added to illuminate the work with more results.

2. The reproducible code is included.

3. An additional PDF for implementation, training, metrics details, as well as more quantita-
tive and qualitative results.

IMPLEMENT DETAILS

TRAINING OF VQ MODELS FOR RGB AND DEPTH PANORAMA

The reason why LDMs (Rombach et al., 2022) can be trained on larger image scales is that per-
ceptual image compression is used so that the diffusion process can be conducted in latent space,
with the decoder D used for returning the latent vector z ∈ Rh×w×c to high-resolution image
x ∈ RH×W×C . During this process, the inherent spatial structure of the image does not change but
is downscaled. Such spatial constancy is critical for our work as the partially visible regions will not
be changed during outpainting, shown in Fig. 9.

(a) Masked Image (b) Masked Latent Image (c) Masked Image (d) Masked Latent Image

Figure 9: Masking at different levels. (a)(c) are pixel-level masked images, while (b)(d) are corre-
sponding latent-level masked images. They are aligned well, except for the different mask values.

Two VQ models, V Qrgb and V Qdepth with downsampling factor f = 4 are trained using RGB and
depth data respectively. The output channel numbers of V Qrgb and V Qdepth are set to 3 and 1. For
the training of V Qrgb, we finetuned on the pre-trained VQ-f4 model provided by Rombach et al.
(Rombach et al., 2022). Due to the lack of a pre-trained model, V Qdepth is trained from scratch.
Both V Qrgb and V Qdepth are trained for 30 epochs and we select the models that perform best
on the validation data for the training of bi-modal LDM. Throughout the process, the datasets used
during training, validation, and testing are exactly matched for V Qrgb and V Qdepth.

TRAINING OF LATENT DIFFUSION MODEL

The training of PanoDiffusion initially loaded the LSUN-Bedrooms (Yu et al., 2015) pre-trained
model provided by official LDM (Rombach et al., 2022). Despite the fact that the LSUN-Bedrooms
images are in normal view, where the objects and the layout are not subjected to equirectangular
projection, we believe that it can provide useful priori knowledge of item semantics, texture, etc.
for the outpainting of the indoor panoramas. At the same time, pre-trained V Qrgb and V Qdepth are
loaded and fixed during the training of our bi-modal LDM.

CAMERA-ROTATION DIRECTION

During the training stage, we restrict random angle rotation solely to the horizontal direction. As
panorama images typically follow equirectangular projection, the distortion increases non-uniformly
towards the top and bottom poles. Introducing random angle rotation in the vertical direction would
lead to substantial changes in the projection results, and require more complex preprocessing, which
will increase training costs. Conversely, distortion is uniform horizontally - image manipulation
here only involves horizontal cropping and splicing, without the need for reprojection.

Here we show two examples where the camera has a 90-degree vertical rotation as Fig 10.
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Horizontal Rotation Original View Vertical Rotation

Figure 10: Examples of vertical and horizontal camera rotation. No matter how many degrees the
panorama is rotated horizontally, the distortion of each component remains unchanged. However,
when the panorama is rotated vertically, even by a small angle, the distortion of the entire scene
changes significantly, which can be a hindrance for PanoDiffusion to learn.

REFINENET IMPLEMENTATION

For the second stage of our structure, to generate visually plausible 512×1024 results, we trained a
GAN for super-resolution. It consists of a generator G and a discriminator D. For training G, we use
a weighted sum of the pixel-wise L1 loss and adversarial loss. The pixel-wise L1 loss is denoted as
Lpixel, measuring the difference between the GT and the output panorama.

Lpixel = L1(gt,G(gtlr)), (7)

Ladv =
1

2
E[(D(G(gtlr)− 1)2], (8)

LG = λLpixel + Ladv. (9)

The training data is randomly downscaled from 512×1024 GT images to 128×256 or 256×512 and
upscaled back to 512×1024 using the traditional interpolation method, which will erase details from
GT images. Then they are used as the input of our super-resolution GAN, denoted as gtlr. Here the
value of λ is set to 20 during the training.

QUANTITIVE METRICS

In this section, we will describe how the quantitative metrics used in this paper are implemented.

Fréchet inception distance (FID) FID (Heusel et al., 2017) is used to capture the similarity of
generated images to real ones. We used the official PyTorch implementation of FID to evaluate the
similarity between the final average pooling features of GT images and model outputs.

Spatial FID (sFID) Spatial FID (Nash et al., 2021) is a variant of FID, using spatial features
rather than the standard pooled features. As standard pool 3 features compress spatial information
to a large extent, making it less sensitive to spatial variability, mixed 6/conv features can provide
a sense of spatial distributional similarity between models. sFID is calculated using the first 7
channels from the intermediate mixed 6/conv feature maps in order to obtain a feature space of size
7×17×17=2023, which is comparable to the final average pooling features of size 2048.

Density and Coverage Density and coverage metrics are proposed by Naeem et al. (Naeem et al.,
2020), who argue that even the latest version of the precision and recall metrics are still not reliable.
Therefore, they proposed density and coverage, which can provide more interpretable and reliable
signals. In this paper, we used their official implementation with nearest neighbor k = 3 to calculate
the density and coverage of the final average pooling features of the GT panoramas and the generated
output.
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Depth Estimation Metrics Given ground truth depth Dgt = {dgt} and predicted depth Dpred =
{dpred}, we use the following metrics to evaluate the quality of our depth estimates.

RMSE =

√
1

|D|
∑

||dgt − dpred||2, (10)

MAE =
1

|D|
∑

|dgt − dpred|, (11)

AbsREL =
1

|D|
∑ |dgt − dpred|

dgt
, (12)

Delta1.25 = % of dpred in Dpred, s.t. max(
dpred
dgt

,
dgt
dpred

) < 1.25 (13)

ADDITIONAL RESULTS AND EXAMPLES

QUANTITATIVE COMPARISON FOR DEPTH-CONDITIONED LDM

As described in the main paper, to introduce depth information to aid RGB generation, an intuitive
idea would be to use depth information as an explicit condition during training and inference. By
compressing depth information into latent space zdepth, it can be introduced into the denoising
process of the RGB images via cross-attention, denoted as depth-conditioned LDM (DC LDM).
However, we have found that such an approach often leads to blurry results, as the image examples
we have shown in the main paper (more examples are shown in Fig. 11).

Figure 11: Outpainting with a basic depth-conditioned LDM. This leads to blurry results.

Since DC LDM is also trained with RGB-D images, here we report its performance on depth inputs
with different degrees of visibility together with BIPS and our RGB-D PanoDiffusion, shown in
Table 4.

Table 4: Full quantitative results for RGB outpainting with different depth input at test time.

Methods Input Depth FID ↓ sFID ↓ Density ↑ Coverage ↑
BIPS

fully visible
29.74 30.59 0.931 0.721

DC LDM 77.75 44.47 0.051 0.086
RGB-D PanoDiffusion 21.90 26.87 0.829 0.693

BIPS
partially visible

31.70 28.89 0.769 0.660
DC LDM 77.77 44.44 0.054 0.080
RGB-D PanoDiffusion 22.34 26.74 0.856 0.686
BIPS

fully masked
68.79 42.62 0.306 0.412

DC LDM 78.15 44.29 0.048 0.073
RGB-D PanoDiffusion 21.55 26.95 0.867 0.708

The results show that the DC LDM does not perform well in terms of both visual and quantitative
results. Even if complete depth information is provided as a condition, the improvement in results
is very marginal. This indicates that the conditional LDM structure cannot make good use of depth
information to assist RGB panorama outpainting, which proves the effectiveness of our bi-modal
LDM structure.

FULL QUANTITATIVE COMPARISON FOR REFINENET

As we only show the results of our RefineNet on camera and NFoV mask in the main paper, here we
report the full quantitative results on all types of masks with both RGB and RGB-D PanoDiffusion
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(a) Classical Interpolation Output (b) Super Resolution Output
Figure 12: Examples of upscaled results using classical interpolation method and out super-
resolution GAN.

(Table 5). A visualized comparison example is shown in Fig. 12. The results show that our super-
resolution GAN improves the quality of PanoDiffusion output comprehensively, except for a slight
degradation of the sFID of RGB PanoDiffusion on the NFoV mask.

Table 5: Full quantitative results for RefineNet. (-): classical interpolation. (+): super-resolution.

Mask Type Version SR FID ↓ sFID ↓ Density ↑ Coverage ↑ Mask Type Version SR FID ↓ sFID ↓ Density ↑ Coverage ↑

Camera
RGB-D - 24.29 28.05 0.805 0.663

Layout
RGB-D - 26.16 24.21 0.920 0.689

+ 21.55 26.95 0.867 0.708 + 23.06 22.39 1.000 0.737

RGB - 26.75 29.89 0.581 0.570 RGB - 28.18 24.50 0.751 0.650
+ 24.33 29.00 0.667 0.635 + 25.37 22.92 0.785 0.677

NFoV
RGB-D - 23.96 28.19 0.775 0.645

Random Box
RGB-D - 20.05 22.77 0.996 0.836

+ 21.41 27.80 0.790 0.669 + 16.13 20.39 1.000 0.883

RGB - 26.72 29.94 0.648 0.595 RGB - 21.77 23.72 0.853 0.800
+ 24.01 30.00 0.639 0.617 + 17.88 21.21 0.913 0.857

ABLATION STUDY ON CAMERA-ROTATION ANGLES

We additionally explored the effect of different rotation angles, including 180°, 90° (chosen for our
final result), and 45°, on the outpainting results, seen as Table 6. The results show that the wrap-
around consistency of outpainting results is improved across all settings. Compared to 180°, 90°
leads to better consistency. However, diminishing the angle further to 45° did not lead to additional
improvements. We believe this is reasonable, as the model is expected to generate coherent content
when the two ends are in contact for enough denoising steps. Therefore, smaller rotation angles than
90° and longer connections do not necessarily lead to more consistent results.

Table 6: Camera-rotation angles ablations.

Methods \ Mask Type Camera NfoV Layout Random Box End

PanoDiffusion(w/o rotation) 125.82 128.33 128.10 128.19 132.69
PanoDiffusion(180°) 95.11 96.57 90.93 85.23 119.60
PanoDiffusion(90°) 90.41 89.74 88.01 85.04 116.77
PanoDiffusion(45°) 90.67 90.25 87.65 86.50 112.47

ADDITIONAL VISUALIZATION EXAMPLES OF RGB PANORAMA OUTPAINTING

Due to page limitations, we only provide one group of comparative results for RGB outpainting in
the main paper. Here we will provide more visualization examples, shown in Fig. 13. Same as in
the main paper, we compare PanoDiffusion with LaMa (Suvorov et al., 2022), TFill (Zheng et al.,
2022), OmniDreamer (Akimoto et al., 2022), BIPS (Oh et al., 2022), Repaint (Lugmayr et al., 2022),
and Inpaint Anything (Yu et al., 2023) on different types of masks. It can be seen that our method
outperforms the baseline models by generating various objects with appropriate layout, and with
better visual quality. Besides, to prove that our PanoDiffusion can perform diverse and plausible
completions on a given input, we provide two different outpainting results for each example.
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ADDITIONAL VISUALIZATION EXAMPLES OF DEPTH PANORAMA SYNTHESIS

Due to page limitations, we only provide one group of comparative results for Depth synthesis in
the main paper. Here we will provide more visualization examples, shown in Fig. 14. Same as in
the main paper, we compare PanoDiffusion with BIPS (Oh et al., 2022), NLSPN (Park et al., 2020),
and CSPN (Cheng et al., 2018). It can be seen that our method outperforms the baseline models by
accurately estimating the depth map.

GT RGB
Image

Masked RGB
Image (Input)

Ours 1

Ours 2

LaMa

TFill

BIPS

OmniDreamer

Inpaint
Anything

RePaint
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Anything

RePaint

Figure 13: Additional qualitative comparisons for RGB panorama outpainting. Our PanoDif-
fusion generated more objects with appropriate layout, and with better visual quality. Please zoom
in to see the details.

QUALITATIVE RESULTS OF ZERO-SHOT TEST ON MATTERPORT3D DATASET.

To test the generalization capability of PanoDiffusion, we conducted additional tests using a set of
panorama images from the Matterport3D dataset. Here we provide six groups of examples from
the outpainting results, which show that our model can have a decent outpainting effect on the real
panorama dataset as well.
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RGB Input

Depth GT

Ours

BIPS

NLSPN

CSPN

Figure 14: Additional qualitative comparisons for Depth panorama synthesis. Our PanoDiffu-
sion achieves most accurate estimation. Please zoom in to see the details.

Figure 15: Results of zero-shot test on Matterport3D dataset. Zoom in to see the details.

QUALITATIVE RESULTS OF DISCRETE MASK ABLATION.

To explicitly assess our model’s performance with discrete masks, we flipped the camera mask -
swapping the originally visible and invisible parts to simulate this situation. This type of mask is
equivalent to randomly sampling several NFoV masks and making them invisible. Here we provide
examples from the outpainting results as Fig 16.
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Figure 16: Outpainting Results on discrete masks.

Masked Image (Input) Generated RGB Generated Depth

Figure 17: Synthesized RGB-D Panorama Outpainting Results.

QUALITATIVE RESULTS OF SYNTHESIZED RGB-D PANORAMA RESULTS.

In Fig. 17 we provide some synthesized RGB-D panorama examples where RGB is partially visible
and depth is fully masked. The results show that our PanoDiffusion can outpainting plausible and
consistent RGB-D panoramas simultaneously.

COMPLEXITY ANALYSIS

Table 7: Training and inference time comparison
Method Type Depth Training (mins/epoch) Inference (sec/image)

PanoDiffusion bi-modal LDM + 82 5
BIPS GAN + 131 <1
RePaint Diffusion model - 78 45
LDM LDM - 72 4
OmniDreamer Transformer + VQGAN - 158 61
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For training, we compared average training time (minutes) for one epoch of PanoDiffusion against
baseline models on the same devices, using the same batch size 4 and the same training dataset. For
inference, we compared the time (seconds) required to infer a single image.

The results show that while our model is not the fastest, it remains within a reasonable and acceptable
range. It’s also noteworthy that, compared to the original LDM framework, our bi-modal structure
achieves a significant improvement in the quality of outpainting. This improvement comes without
a proportionate increase in resource consumption – we observed only a modest increase of 13.8% in
training time and 25% in inference time.
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