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ABSTRACT

We investigate a principal-agent problem modeled within a Markov Decision Pro-
cess, where the principal and the agent have their own rewards. The principal can
provide subsidies to influence the agent’s action choices, and the agent’s resulting
action policy determines the rewards accrued to the principal. Our focus is on
designing a robust subsidy scheme that maximizes the principal’s cumulative ex-
pected return, even when the agent displays bounded rationality and may deviate
from the optimal action policy after receiving subsidies.

As a baseline, we first analyze the case of a perfectly rational agent and show that
the principal’s optimal subsidy coincides with the policy that maximizes social
welfare, the sum of the utilities of both the principal and the agent. We then in-
troduce a bounded-rationality model: the globally ϵ-incentive-compatible agent,
who accepts any policy whose expected cumulative utility lies within ϵ of the per-
sonal optimum. In this setting, we prove that the optimal robust subsidy scheme
problem simplifies to a one-dimensional concave optimization. This reduction not
only yields a clean analytical solution but also highlights a key structural insight:
optimal subsidies are concentrated along the social-welfare-maximizing trajecto-
ries. We further characterize the loss in social welfare—the degradation under
the robust subsidy scheme compared to the maximum achievable—and provide
an upper bound on this loss. Finally, we investigate a finer-grained, state-wise
ϵ-incentive-compatible model. In this setting, we show that under two natural def-
initions of state-wise incentive-compatibility, the problem becomes intractable:
one definition results in a non-Markovian agent action policy, while the other ren-
ders the search for an optimal subsidy scheme NP-hard.

1 INTRODUCTION

The principal–agent problem (often modeled as a Stackelberg game) has long been central to the
study of strategic interactions where one party acts on behalf of another, yet with potentially mis-
aligned incentives. This setting arises frequently in economics and governance: for example, govern-
ments design taxes, subsidies, and public investments to guide individual behavior toward socially
beneficial outcomes. However, in decentralized markets, each participant ultimately pursues their
own utility, and centralized guidance can only partially influence outcomes. A similar dynamic ap-
pears in machine learning, where reinforcement learning with human feedback (RLHF) is employed
to align large language models (LLMs) with societal values such as ethics and legal compliance.
In both cases, the principal faces the fundamental challenge of shaping an agent’s behavior without
direct control, while respecting both parties’ interests.

In this paper, we investigate the principal–agent problem within the framework of a Markov Decision
Process (MDP), where the principal can provide subsidies to influence the agent’s action choices.
More specifically, in our setting, each action under each state yields two distinct rewards: one for
the principal and one for the agent. The principal may also assign non-negative subsidies to actions.
The agent selects an action policy based on its own reward combined with subsidies offered by
the principal. The principal, in turn, strategically designs these subsidies to influence the agent’s
choices, aiming to maximize the principal’s overall payoff, which equals the total principal’s reward
associated with the agent’s chosen action minus the subsidies provided.
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A natural assumption in such models is that the agent always behaves rationally, selecting the trajec-
tory that maximizes the sum of the agent’s own reward and the subsidies provided by the principal.
Yet in practice, this assumption is often violated: agents may deviate from perfect rationality due
to bounded cognition, incomplete information, or limited computational power. For example, in
economics, individuals may fail to optimize utility precisely because of uncertainty or behavioral
biases. Similarly, in reinforcement learning, approximate training algorithms may yield suboptimal
policies due to limited exploration or finite computation.

Motivated by these considerations, we ask:

How should the principal design subsidies when the agent may behave irrationally?

Our goal is to identify a robust subsidy scheme that guarantees the principal the best possible
expected cumulative return in the worst-case scenario.

Our Contributions We introduce a theoretical framework based on Markov Decision Processes
(MDPs) to model the principal-agent problem and formulate the design of an optimal robust subsidy
scheme as a minimax optimization problem. Within this framework, we systematically analyze three
agent models: the perfectly rational agent, the globally ϵ-incentive-compatible (IC) agent, and the
state-wise ϵ-IC agent. For each model, we provide structural insights and algorithmic solutions.

We first study a perfectly rational agent as a baseline, who always selects actions that maximize its
own reward. In Theorem 3.1, we characterize the optimal subsidy scheme and show in Proposition
3.2 that it suffices to subsidize only actions that maximize social welfare, defined as the sum of the
principal’s and agent’s utilities. Under this scheme, the agent’s best-response policy aligns with the
social welfare-maximizing policy, establishing a clear benchmark for incentive alignment.

Next, we consider globally ϵ-IC agents, who tolerate at most an ϵ loss relative to their optimal reward
under a given subsidy scheme. Unlike perfectly rational agents, these agents may adopt stochastic
policies, making the principal’s optimization a nontrivial bi-level problem. Theorem 4.1 shows
that this problem can be equivalently reduced to maximizing a one-dimensional concave function
over a bounded interval, allowing efficient solution via standard first-order methods. Structurally,
in Proposition 4.2, we show the optimal subsidy mirrors the perfectly rational case by exclusively
rewarding actions that align with maximizing social welfare; and, in the worst-case response, the
agent’s policy will assign positive probability to the socially optimal actions, though it may also
mix with other actions. We further provide a quantitative analysis of the gap between the total
payoff achieved under this robust scheme and the maximum possible social welfare, as shown in
Proposition 4.3.

Finally, in Section 5, we examine state-wise ϵ-IC agents, for which the ϵ-tolerance must hold at
each individual state. Two natural formalizations arise, each presenting distinct challenges. In the
first formalization, the agent’s worst-case response may necessitate a non-Markovian policy, thereby
violating the foundational assumptions of the MDP framework and introducing history dependence
that makes the problem computationally intractable. In the second formalization, while the agent’s
worst-case response remains polynomial-time computable, Theorem 5.1 demonstrates that the prin-
cipal’s problem becomes NP-hard. These findings illustrate that, although state-wise constraints are
conceptually appealing, they introduce significant computational and modeling complexities that
limit practical applicability.

Related work The principal–agent problem, a central concept in economics (Ross, 1973; Gross-
man & Hart, 1992), arises when a principal delegates tasks to an agent whose actions may be guided
by self-interest. This framework underpins both contract theory (Laffont & Maskin, 1981; Guru-
ganesh et al., 2021) and mechanism design (Myerson, 1982; Kadan et al., 2017).

Recent work has examined this problem in the setting of Markov Decision Processes (MDPs). Re-
search in this area falls into two broad directions. The first, information design, seeks to influence
the agent’s beliefs, as in Bayesian persuasion (Gan et al., 2022; Wu et al., 2022; Bernasconi et al.,
2023). The second, more closely aligned with our work, focuses on shaping the agent’s incentives
through policy teaching (Zhang & Parkes, 2008; Banihashem et al., 2022) or environment/model
design (Thoma et al., 2024; Yu & Ho, 2022). A comprehensive survey is provided by Dütting et al.
(2024). Among these, two approaches are most closely related to our study:
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Contract-based models. This line of research integrates contract theory with MDPs, assuming the
principal observes only states and offers state-dependent payments. Prior studies analyze subgame
perfect equilibrium (Wu et al., 2024; Ivanov et al., 2024), showing that history-dependent contracts
are necessary for farsighted agents (Bollini et al., 2024). These works typically assume perfectly
rational agents and establish that the optimal contract design problem is NP-hard.

Reward shaping. In Reward shaping, the principal modifies the agent’s incentives via additional
rewards for specific state–action pairs, subject to a fixed budget (Ben-Porat et al., 2024), with the
design problem remaining NP-hard. Extensions address behavioral uncertainty through robust re-
ward design (Wu et al., 2025). In contrast, we incorporate incentive costs directly into the principal’s
objective, treating them as part of payoff optimization rather than an external constraint.

2 PROBLEM FORMULATION

The Principal-Agent MDP Model We consider a principal-agent problem modeled as a time-
inhomogeneous, finite-horizon Markov Decision Process (MDP). In this setting, the principal aims
to achieve a goal by influencing an agent’s actions. The principal can offer subsidies to incentivize
the agent to follow a policy that benefits the principal.

Formally, we define the problem instance using the tuple M = ⟨S,A,H,P, rP , rA, ŝ,Π⟩, where:

• S is the set of the finite states and A is the set of actions. We assume that both states and
actions are discrete.

• H = {0, 1, · · · , H − 1} is the set of time steps, with H representing the time horizon.
• P : S × A×H → ∆(S) is the transition kernel , where P (s′|s, a, h) indicates the proba-

bility of transferring to state s′ ∈ S after executing action a ∈ A in state s ∈ S at timestep
h ∈ H .

• rP , rA : S × A ×H → R are the reward functions of the principal and the agent, respec-
tively, where rP (s, a, h) (resp. rA(s, a, h)) denotes the reward obtained by the principal
(resp. agent) when the agent executes action a ∈ A in state s ∈ S at timestep h ∈ H.

• Without loss of generality, ŝ is the fixed starting state for the agent.

Subsidy Scheme and Action Policy The principal commits to a subsidy scheme ∆r : S × A ×
H → R≥0. Here, ∆r(s, a, h) is a non-negative payment from the principal to the agent for taking
action a in state s at timestep h. We denote the set of all feasible subsidy policies as R∆.

Given a subsidy ∆r on action a in state s at timestep h, the effective rewards for the principal and
agent become:

r∆r
P (s, a, h) = rP (s, a, h)−∆r(s, a, h) and r∆r

A (s, a, h) = rA(s, a, h) + ∆r(s, a, h)

The agent observes the subsidy scheme and then chooses a Markovian action policy π : S × H →
∆(A). Based on the agent’s (ir)rationality, for any given ∆r, the agent will choose a policy from a
specific set of feasible policies, which we denote by Π(∆r).

Value Functions For any player i ∈ {P,A}, subsidy scheme ∆r, and agent policy π, we define
the standard state-value and action-value functions via the Bellman expectation equations:

V π,∆r
i (s, h) =

∑
a∈A

π(a|s, h)Qπ,∆r
i (s, a, h)

Qπ,∆r
i (s, a, h) = r∆r

i (s, a, h) +
∑
s′∈S

P (s′|s, a, h)V π,∆r
i (s′, h+ 1)

with the terminal condition V π,∆r
i (s,H) = 0. Furthermore, we use V

∆r

A (s, h) and Q
∆r

A (s, a, h) to
denote the optimal state-value and action-value functions attainable by the agent,

V
∆r

A (s, h) = max
a

Q
∆r

A (s, a, h)

Q
∆r

A (s, a, h) = rA(s, a, h) +
∑
s′∈S

P (s′|s, a, h)V ∆r

A (s′, h+ 1)

3
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Additionally, V π,∆r=0
i (s, h), Qπ,∆r=0

i (s, a, h), V
∆r=0

A (s, h) and Q
∆r=0

A (s, a, h) denote the corre-
sponding value in the absence of subsidies.

Social Welfare We define social welfare as the aggregate reward of both the principal and the
agent: rsw(s, a, h) ≜ rP (s, a, h) + rA(s, a, h), which remains unaffected by the subsidy term ∆r.

The social welfare value functions, V π
sw and Qπ

sw, characterize the expected social welfare under an
agent policy π:

V π
sw(s, h) =

∑
a∈A

π(a|s, h)Qπ
sw(s, a, h),

Qπ
sw(s, a, h) = rsw(s, a, h) +

∑
s′∈S

P (s′|s, a, h)V π
sw(s

′, h+ 1).

Analogously, the optimal social welfare value functions, V ∗
sw and Q∗

sw, are defined as:

V ∗
sw(s, h) = max

a∈A
Q∗

sw(s, a, h),

Q∗
sw(s, a, h) = rsw(s, a, h) +

∑
s′∈S

P (s′|s, a, h)V ∗
sw(s

′, h+ 1).

An action a is said to be social-welfare-maximizing in state s at timestep h if it is greedy with
respect to the optimal Q-value, i.e., a ∈ argmaxa′∈A Q∗

sw(s, a
′, h).

Optimization Objective We consider a robust formulation where the principal seeks a subsidy
scheme that performs best against the agent’s worst-case response. The agent’s adversarial action
policy to a subsidy ∆r is an agent policy π∆r that minimizes the principal’s expected return within
the feasible set Π(∆r):

π∆r ∈ argmin
π∈Π(∆r)

V π,∆r
P (ŝ, h = 0)

The principal’s objective is to find the optimal subsidy scheme ∆r∗ that maximizes this worst-case
outcome. The optimal value for the principal is therefore:

OPT ≜ max
∆r∈R∆

min
π∈Π(∆r)

V π,∆r
P (ŝ, h = 0) (2.1)

3 WARM-UP: THE PERFECTLY RATIONAL AGENT

We begin with the simplest setting of a perfectly rational agent, defined as an agent that seeks to
maximize its cumulative reward. Although this scenario is conceptually straightforward, it provides
a crucial foundation for the subsequent analysis of more complex, irrational agents. We formalize
this concept as follows.

Definition 3.1 (Perfectly Rational Agent). Given a subsidy scheme ∆r, the action policy π ∈
Π0(∆r) of a perfectly rational agent satisfies the constraint

V π,∆r
A (ŝ, h = 0) ≥ V

∆r

A (ŝ, h = 0).

Tie-breaking Rule A tie-breaking rule dictates the agent’s choice when multiple actions yield
identical rewards. In this setting with a perfectly rational agent, we assume that when two options
provide the same personal reward, the agent selects the more cooperative action—that is, the one
that benefits the principal more. For example, consider a single state with two actions. Both give
the agent a reward of 0, but the principal receives 2 for the first action and 0 for the second. Even a
negligible subsidy on the first action makes it strictly preferred. As the subsidy approaches zero, the
agent’s choice remains the action with a higher principal value. Thus, tie-breaking systematically
favors actions that increase the principal’s payoff. This assumption allows for a tractable proof of
optimality in this section, but it is important to note that we will not rely on this rule in the more
general frameworks developed later in the paper.
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3.1 OPTIMAL SUBSIDY SCHEME

With the definition of perfect rationality, we now address the problem of determining the optimal
subsidy scheme ∆r∗. The following theorem characterizes the principal’s optimal payoff and the
optimal subsidy scheme. Detailed proof is deferred to Appendix A.3.
Theorem 3.1 (Optimal Subsidy Scheme). For a perfectly rational agent, the principal’s optimal
payoff is given by

V ∗
sw(ŝ, h = 0) − V

∆r=0

A (ŝ, h = 0),

that is, the maximum attainable social welfare (over all action policies) minus the maximum reward
the agent can obtain in the absence of subsidies. Furthermore, there exists an optimal subsidy
scheme ∆r∗ such that, for every state–action–timestep triple (s, a, h),

∆r∗(s, a, h) = V
∆r=0

A (s, h)−Q
∆r=0

A (s, a, h). (3.1)

Proof Sketch. The principal’s optimal payoff is bounded above by V ∗
sw(ŝ, h = 0) − V

∆r=0

A (ŝ, h =
0), since the total value of the principal and agent cannot exceed the maximum possible social
welfare, and the agent will not accept less than their stand-alone value without subsidies. This upper
bound is achieved under the subsidy scheme ∆r∗ defined in equation (3.1). Under this scheme,
the agent’s adjusted Q-values are equalized across all actions: Q∆r∗

A (s, a, h) = V
∆r=0

A (s, h) for
all (s, a, h). Thus, the agent is indifferent among all actions. Our provisional tie-breaking rule
then ensures the agent selects actions that maximize the principal’s reward, allowing the principal’s
payoff to exactly reach the upper bound.

Although Theorem 3.1 identifies an optimal subsidy scheme that provides transfers on nearly all
actions, the following proposition shows that, to achieve optimal rewards, the principal needs to
subsidize only the social-welfare-maximizing actions. The detailed proof is deferred to Appendix
A.4.
Proposition 3.2 (Social Welfare). There exists an optimal subsidy scheme ∆rsw that assigns posi-
tive transfers exclusively to social-welfare-maximizing actions. Under ∆rsw, the agent implements
social-welfare-maximizing agent policy πsw, allowing the principal to attain the maximum achiev-
able social welfare.

4 OPTIMAL POLICIES FOR GLOBALLY ϵ-IC AGENTS

When an agent is no longer perfectly rational, the optimality of its response ceases to be the sole
factor guiding its decisions. To model such bounded rationality, a natural approach is to assume that
the agent can tolerate a maximum reward loss of ϵ, in line with the classical notion of ϵ-incentive
compatibility (IC). However, since we are dealing with sequential decision-making, several interpre-
tations of ϵ-IC are possible. Here, we focus on the so-called globally ϵ-IC agent, which constrains
only the cumulative reward loss over the entire decision horizon.
Definition 4.1. An agent is a globally ϵ-IC agent if and only if, given a subsidy scheme ∆r, the
action policy π ∈ Πg

ϵ (∆r) satisfies

V π,∆r
A (ŝ, h = 0) ≥ V

∆r

A (ŝ, h = 0)− ϵ.

4.1 OPTIMAL SUBSIDY SCHEME

We now consider the problem of determining the optimal subsidy scheme ∆r∗. Unlike the perfectly
rational case, the agent’s best-response policy may be stochastic.

To handle this, we reformulate the objective (2.1) using occupancy measures. Specifically, let
µ(s, a, h) denote the probability that the agent takes action a in state s at timestep h. Replacing
the policy π with its corresponding occupancy measure µ, the optimization problem becomes

max
∆r∈R∆

min
µ∈M(∆r)

∑
s,a,h

µ(s, a, h)
(
rP (s, a, h)−∆r(s, a, h)

)
, (4.1)

5
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where M(∆r) is the set of occupancy measures satisfying the following constraints:

Initial state:
∑
a

µ(ŝ, a, h = 0) = 1,
∑
a

µ(s, a, h = 0) = 0 ∀s ̸= ŝ, (4.2a)

Transition:
∑
a

µ(s, a, h) =
∑
s′,a′

µ(s′, a′, h− 1)P (s|s′, a′, h− 1), (4.2b)

Non-negativity: µ(s, a, h) ≥ 0, (4.2c)

Global ϵ-IC:
∑
s,a,h

µ(s, a, h)
(
rA(s, a, h) + ∆r(s, a, h)

)
≥ V

∆r

A (ŝ, h = 0)− ϵ. (4.2d)

Directly solving this program is challenging for two main reasons. First, the feasible set of µ is not
fixed but depends on the choice of ∆r, creating a coupling between the inner and outer variables
that distinguishes our setting from standard minimax formulations. Second, defining f(∆r) =
minµ∈M(∆r)

∑
s,a,h µ(s, a, h)

(
rP (s, a, h) − ∆r(s, a, h)

)
shows that f(∆r) is not concave in ∆r

(see Appendix A.2.1 for example). Consequently, the outer problem max∆r f(∆r) is not a concave
maximization , which rules out standard convex optimization methods.

In our main theorem, we show the problem can be reformulated to a one-dimensional concave
optimization (Theorem 4.1). The approach leverages the dual of the inner optimization problem
and swaps the order of optimization between the subsidy scheme ∆r and the dual variables (α, V ).
The optimal subsidy scheme can then be expressed as the difference between the V -function and
Q-function, analogous to the perfectly rational case.

Theorem 4.1. The optimization problem (4.1) is equivalent to maximizing a concave function F (x),
formulated as

max
x∈[0,1)

F (x) = xV ∗
sw(ŝ, h = 0)− V ∗

x (ŝ, h = 0)− x

1− x
ϵ,

where, for each state s and timestep h, V ∗
x (s, h) ≜ maxπ

{
xV π

sw(s, h)− V π,∆r=0
P (s, h)

}
.

Furthermore, for an optimal x∗, there exists an optimal subsidy scheme ∆r∗ such that

∆r∗(s, a, h) = V ∗
x∗(s, h)−Q∗

x∗(s, a, h) (4.3)

where Q∗
x∗(s, a, h) ≜ x∗rsw(s, a, h)− rP (s, a, h) +

∑
s′∈S P (s′|s, a, h)V ∗

x∗(s′, h+ 1).

Proof. We begin by considering the inner program over the state-action occupancy measure µ for a
fixed subsidy scheme ∆r. This program is a linear program. By introducing dual variables α ∈ R+

for the globally ϵ-IC constraint (4.2d) and V ∈ R|S|(H+1) for the transition (4.2a) and initial state
(4.2b) constraints, we can express the problem in its dual form. Combining this with the outer
maximization over ∆r, α, and V yields the following optimization problem:

max
α≥0,V

V (ŝ, h = 0)− αϵ+ αmax
∆r

V
∆r

A (ŝ, h = 0)

such that V (s, h) ≤ rP (s, a, h)−αrA(s, a, h)−(1+α)∆r(s, a, h)+
∑

s′∈S P (s′|s, a, h)V (s′, h+1)
for any s ∈ S, a ∈ A, and h ∈ H; and with the terminal condition V (s,H) = 0 for any state s ∈ S.

Next, we exchange max∆r and maxα≥0,V and analyze maximization over ∆r for a fixed V and α.
Notice that the objective is non-decreasing with respect to ∆r, since V

∆r

A (ŝ, h = 0) represents the
maximum value attainable by the agent under the subsidy ∆r. Additionally, the constraints impose
an upper bound on each ∆r(s, a, h):

∆r(s, a, h) ≤ 1

1 + α

(
− V (s, h) +

∑
s′∈S

P (s′|s, a, h)V (s′, h+ 1) + rP (s, a, h)− αrA(s, a, h)
)
.

Thus, the optimal choice for ∆r is to take this upper bound, making the inequality hold with equal-
ity. Given α and V , substituting the optimal choice of ∆r, the RHS of the above inequality, into

6
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V
∆r

A (ŝ, h = 0) = maxπ Eπ

[∑H−1
t=0 rA(st, at, t) + ∆r(st, at, t)

]
gives

V
∆r

A (ŝ, h = 0) = max
π

1

1 + α
Eπ

[
H−1∑
t=0

(
rP (st, at, t) + rA(st, at, t)

)
+

∑
st+1∈S

P (st+1|st, at, t)V (st+1, t+ 1)− V (st, t)

]

=
1

1 + α

(
V ∗

sw(ŝ, h = 0)− V (ŝ, h = 0)
)
.

Substituting this back, the problem reduces to

max
α≥0

max
V

1

1 + α
V (ŝ, h = 0) +

α

1 + α
V ∗

sw(ŝ, h = 0)− αϵ

s.t. V (s, h) ≤ rP (s, a, h)− αrA(s, a, h) +
∑
s′∈S

P (s′|s, a, h)V (s′, h+ 1),

V (s,H) ≤ 0.

Observing the inner optimization over V (s, h) coincides with form of minimizing cumulative reward
in an MDP with modified reward rP − αrA. By letting x = α

1+α and introducing V ∗
x (s, h) equals

= − 1
1+α times the optimal value of V (s, h), the formulation equals

max
x∈(0,1]

x · V ∗
sw(ŝ, h = 0)− V ∗

x (ŝ, h = 0)− x

1− x
ϵ

where V ∗
x (ŝ, h = 0) ≜ − (1− x) ·min

π

{
V π,∆r=0
P (ŝ, h = 0)− x

1− x
V π,∆r=0
A (ŝ, h = 0)

}
= max

π

{
xV π

sw(ŝ, h = 0)− V π,∆r=0
P (ŝ, h = 0)

}
.

Restricting π to deterministic action policies does not change the value of V ∗
x (ŝ, h = 0), and under

this restriction, V ∗
x (ŝ, h = 0) is the maximum of finitely many linear functions in x, so the objective

function is concave over the interval [0, 1).

Markovian vs. Non-Markovian A process is called Markovian if it depends solely on its current
state, independent of its past trajectory. Conversely, a process is non-Markovian if it can depend
on historical states, i.e., it possesses ”memory.”

In our framework, both the principal and the agent may adopt non-Markovian strategies. For ex-
ample, the principal might determine subsidies based not only on the agent’s current action but also
on past actions. Similarly, in equation (4.1), the agent could adopt a non-Markovian globally ϵ-IC
policy to reduce the principal’s reward. Nevertheless, the following two key observations establish
that it suffices to restrict attention to Markovian strategies.

First observation: Given a Markovian subsidy scheme of the principal, there always exists a Marko-
vian globally ϵ-IC policy for the agent that minimizes the principal’s reward. This follows from the
fact that the inner optimization problem in equation (4.1) is a linear program. Any non-Markovian
ϵ-IC policy can be represented by an occupancy measure µ(s, a, h), which specifies the probability
of taking action a in state s at timestep h. Such an occupancy measure can always be replicated by
a Markovian policy, ensuring identical rewards for both the principal and the agent.

Second observation: Among all possible subsidy schemes—Markovian or non-Markovian—the
Markovian scheme specified in equation (4.3) is optimal. A non-Markovian scheme can be trans-
formed into a Markovian one by augmenting the state space to encode the relevant history. By
Theorem 4.1, for each state–action pair in this augmented representation, the scheme in equation
(4.3) coincides exactly with its Markovian counterpart.

Remark We briefly examine the boundary cases of x∗ and ϵ in Theorem 4.1. When ϵ = 0, as
x∗ → 1, the principal’s value approaches V ∗

sw(ŝ, h = 0) − V ∆r=0
A (ŝ, h = 0), consistent with the

tie-breaking rule in the perfectly rational case. This shows that the globally ϵ-IC agent naturally
generalizes the perfectly rational agent.
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4.2 ACTION POLICY

According to Theorem 4.1, the optimal subsidy scheme ∆r∗ takes a form similar to that in the
perfectly rational case. The following proposition shows that the principal can still allocate positive
transfers exclusively to the social-welfare-maximizing actions. Furthermore, the agent is still willing
to cooperate with the principal to a certain extent by choosing one social-welfare-maximizing agent
policy πsw with probability x∗, the optimal solution in Theorem 4.1. The detailed proof of the
following proposition is deferred to Appendix A.5.

Proposition 4.2 (Optimal subsidy scheme and action policy). There exists an optimal subsidy
scheme ∆rsw that assigns positive reward transfers solely to social-welfare-maximizing actions.
Meanwhile, there exists a globally ϵ-IC action policy π∆rsw minimizing the principal’s reward, which
is the mixture of a social-welfare-maximizing agent policy πsw and one other action policy, placing
a weight of at least x∗ on πsw.

Proof Sketch. The proof relies on two key insights. First, under the optimal subsidy scheme ∆r∗,
the policy πsw achieves the maximum agent expected cumulative reward, V

∆r∗

A (ŝ, h = 0). This
implies that it is sufficient to provide subsidies only along the trajectories induced by πsw, without
affecting the optimal value for the principal. Second, there exists an action policy π̂ whose agent
value falls below V

∆r∗

A (ŝ, h = 0) − ϵ, which can be combined with πsw to form the globally ϵ-IC
policy π∆rsw , such that the dual of the global ϵ-incentive compatibility constraint is tight.

4.3 SOCIAL WELFARE

We define the social welfare gap δsw as the difference between the maximum attainable welfare
and the welfare achieved under the optimal subsidy scheme ∆r∗. When ϵ → +∞, the agent can
effectively bypass the global ϵ-IC constraint and freely select any action policy. In this limit, the
welfare gap becomes δsw = V ∗

sw(ŝ, h = 0) −minπ V
π

sw(ŝ, h = 0). Our objective is to characterize
the upper bound on δsw and the rate at which social welfare declines as a function of ϵ, particularly
in the regime where ϵ remains small. We first establish the following upper bound on δsw.

Proposition 4.3. Given ϵ and the corresponding optimal solution x∗ ∈ (0, 1), the social welfare
gap is δsw = ϵ

1−x∗ and it is upper bounded by O(
√
ϵ).

This O(
√
ϵ) bound can be achieved in certain specific cases (see Appendix A.2.2 for an example).

However, in most cases, the social welfare gap δsw exhibits two different growth rates—O(
√
ϵ) or

O(ϵ)—depending on whether V ∗
x is differentiable at x∗. A concrete example is provided below,

while detailed discussions are deferred to Appendix A.6.1.

Example Consider a single-period scenario with three actions and ϵ = 1. For the first action, the
principal’s reward is 7 and the agent’s reward is 3. For the second action, the principal’s reward is 1
and the agent’s reward is 2. For the third action, the principal’s reward is 1 and the agent’s reward is
0. Figure 1a shows that x can grow at rates of O(ϵ) and O(

√
ϵ), corresponding to the cases in Figure

1b where x remains constant or grows at O(
√
ϵ). Figure 1c depicts the piecewise-linear relationship

between V ∗
x (ŝ, h = 0) and x, where the constant-x value in Figure 1b coincides with the break point

of V ∗
x (ŝ, h = 0), a non-differentiable point of the objective function.

(a) δsw versus ϵ (b) x∗ versus ϵ (c) V ∗
x (ŝ, h = 0) versus x

Figure 1: Curves of δsw and x∗ versus ϵ when V ∗
x (ŝ, h = 0) is non-differentiable.
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5 STATE-WISE ϵ-IC AGENT

In this section, we examine the state-wise ϵ-IC agent, which differs from the globally ϵ-IC agent
in that incentive compatibility is enforced locally at each state and decision step. Intuitively, such
an agent ensures that its chosen action remains within ϵ of the best immediate value available at
that decision point. While the idea is simple, constructing a mathematically consistent and tractable
formalization is more subtle. We provide two definitions below.

Value-Consistent State-Wise ϵ-IC Agent We first define the value-consistent state-wise ϵ-IC
agent, where the agent’s action at each state must approximate the optimal reward within ϵ.
Definition 5.1. An agent is a value-consistent state-wise ϵ-IC agent if, under a subsidy scheme ∆r,
the induced policy π ∈ Πv

ϵ (∆r) satisfies V π,∆r
A (s, h) ≥ V

∆r

A (s, h)− ϵ for all s ∈ S and h ∈ H.

A key challenge with this formulation is that the agent’s policy minimizing the principal’s reward
under a given subsidy scheme may be non-Markovian. In such cases, the agent’s policy cannot be
represented within polynomial size.

(a) Original MDP instance (b) History-dependent MDP expansion

Figure 2: Illustration of value-consistent state-wise ϵ-IC agents.

To illustrate, consider the post-subsidy MDP in Figure 2a, where (i) for action a1 at s1: principal
reward 100, agent reward 3; (ii) for action a2 at s3: principal reward 2, agent reward 2; and (iii) for
all other actions: reward 0. Under a Markovian policy, the value-consistent state-wise ϵ-IC agent
minimizes the principal’s reward by selecting a2 at s3, and steering toward s3 from s1. This yields
a principal reward of 2. However, under a non-Markovian policy, we can duplicate s3 into two
history-dependent states, s13 and s23. At s13, the agent always selects a2, while at s23, the agent mixes
between two actions with equal probability. This reduces the principal’s expected reward to 1.5.

Greedy State-Wise ϵ-IC Agent To avoid non-Markovian behavior, we introduce the greedy state-
wise ϵ-IC agent, which replaces recursive value computations with greedy look-ahead. Once the
subsidy scheme is fixed, V

∆r

A becomes deterministic, and the agent greedily minimizes the princi-
pal’s value through local decisions.
Definition 5.2. An agent is a greedy state-wise ϵ-IC agent if, under subsidy scheme ∆r, the induced
policy π ∈ Πs

ϵ(∆r) satisfies, for all s ∈ S, h ∈ H:∑
a∈A

π(a|s, h)
(
r∆r
A (s, a, h) +

∑
s′∈S

P (s′|s, a, h)V ∆r

A (s′, h+ 1)
)

≥ V
∆r

A (s, h)− ϵ.

However, even in this simplified greedy setting, designing the principal’s optimal subsidy scheme
remains computationally intractable. The complete proof is deferred to Appendix A.7.
Theorem 5.1. Given a greedy state-wise ϵ-IC agent, computing the principal’s optimal subsidy
scheme is NP-hard.

6 CONCLUSION

In this paper, we study a principal-agent problem with the aim of designing a robust subsidy scheme
that maximizes the cumulative expected return in the presence of an irrational agent. We demonstrate
that, under the globally ϵ-IC assumption, the optimal subsidy scheme can be effectively determined,
representing a natural extension of the perfectly rational case. We further show that formulating
the state-wise ϵ-IC follower is computationally challenging. As future work, it would be interesting
to consider scenarios in which the principal does not have prior knowledge of the agent’s reward
function or the value of ϵ, such as in a learning-based setting.
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