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1 Introduction

Our main contribution is to show how the privacy loss distribution (PLD) formalism (Sommer et al.,
2019) combined with the Fourier accountant (Koskela et al., 2021) can be used in the shuffle model
of DP for several common privacy mechanisms. This provides an efficient method for numerically
calculating tight privacy bounds for shuffled mechanisms.

2 Background

Before analysing the shuffled mechanisms we need to introduce some theory and notations. With
apologies for conciseness, we start by defining DP and PLD, and finish with the Fourier accountant.
For more details, we refer to (Koskela et al., 2021).

2.1 Differential privacy and privacy loss distribution

An input data set containing n data points is denoted as X = (x1, . . . , xn) ∈ Xn, where xi ∈ X ,
1 ≤ i ≤ n. We say X and X ′ are neighbours if we get one by substituting one element in the other
(denoted X ∼S X ′).
Definition 1. Let ε > 0 and δ ∈ [0, 1]. Let P and Q be two random variables taking values in the
same measurable space O. We say that P and Q are (ε, δ)-indistinguishable, denoted P '(ε,δ) Q, if
for every measurable set E ⊂ O we have

Pr(P ∈ E) ≤ eεPr(Q ∈ E) + δ.

Definition 2. Let ε > 0 and δ ∈ [0, 1]. Let ∼ define a neighbouring relation. MechanismM :
Xn → O is (ε, δ,∼)-DP if for every X ∼ X ′: M(X) '(ε,δ) M(X ′). When the relation is clear
from context or irrelevant, we will abbreviate it as (ε, δ)-DP. We callM tightly (ε, δ,∼)-DP, if there
does not exist δ′ < δ such thatM is (ε, δ′,∼)-DP.
Definition 3. Let ε > 0. Mechanism M : X → O is ε-LDP if for every pair of data points
X,X ′ ∈ X and every measurable set E ⊂ O we have

Pr(M(X) ∈ E) ≤ eεPr(M(X ′) ∈ E).

We consider discrete-valued mechanismsM which can be seen as mappings from Xn to the set
of discrete-valued random variables. The generalised probability density functions ofM(X) and
M(X ′), denoted fX(t) and fX′(t), respectively, are given by

fX(t) =
∑

i
aX,i · δtX,i

(t), fX′(t) =
∑

i
aX′,i · δtX′,i(t), (2.1)
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where δt(·), t ∈ Rd, denotes the Dirac delta function centred at t, and tX,i, tX′,i ∈ Rd and
aX,i, aX′,i ≥ 0. The privacy loss distribution is defined as follows.
Definition 4. LetM : Xn → O, O ⊂ Rd, be a discrete-valued randomised mechanism and let
fX(t) and fX′(t) be probability density functions as defined by (2.1). We define the generalised
privacy loss distribution (PLD) ωX/X′ as

ωX/X′(s) =
∑

tX,i=tX′,j
aX,i · δsi(s), si = log

(
aX,i

aY,j

)
. (2.2)

The following theorem (Koskela et al., 2021; Sommer et al., 2019) shows that the tight (ε, δ)-bounds
for compositions of non-adaptive mechanisms are obtained using convolutions of PLDs.
Theorem 5. Consider an nc-fold non-adaptive composition of a mechanismM. The composition is
tightly (ε, δ)-DP for δ(ε) given by δ(ε) = maxX∼X′{δX/X′(ε), δX′/X(ε)}, where

δX/X′(ε) = 1−
(
1− δX/X′(∞)

)nc
+

∫ ∞
ε

(1− eε−s)
(
ωX/X′ ∗nc ωX/X′

)
(s) ds, (2.3)

δX/X′(∞) =
∑
{ti : P(M(X)=ti)>0, P(M(X′)=ti)=0}

P(M(X) = ti)

and ωX/X′ ∗nc ωX/X′ denotes the k-fold convolution of the density function ωX/X′ (an analogous
expression holds for δX′/X(ε)).

In this work, finding the tight (ε, δ)-bounds amounts to finding a pair of random variables P and
Q corresponding to neighbouring data sets that determine the PLDs ωP/Q and ωQ/P . The Fourier
accountant algorithm (Koskela et al., 2021) is then used to evaluate (2.3). We remark that the
algorithm proposed by Gopi et al. (2021) also gives accurate numerical upper bounds for (2.3) and is
more computationally efficient.

3 Shuffled k-randomised response

Balle et al. (2019) give a protocol for n parties to compute a private histogram over the domain [k] in
the single-message shuffle model. The randomiser is parameterised by a probability γ, and consists
of a k-ary randomised response mechanism (k-RR) that returns the true value with probability 1− γ
and a uniformly random value with probability γ. Denote this k-RR randomiser byRPHγ,k,n and the
shuffling operation by S. Thus, we are studying the privacy of the mechanismM = S ◦ RPHγ,k,n.

Consider first the proof of Balle et al. (2019, Thm. 3.1). Assuming without loss of generality that the
differing data element between X and X ′, X,X ′ ∈ [k]n, is xn, their analysis assumes a fairly strong
adversary who knows the full set of the parties who submit random values, the values x1, . . . , xn−1
and the outputM(X) = Y = (yπ(1), . . . , yπ(n)) after applying the local randomisers and shuffling,
where we write π for a uniformly random permutation. That is, writing ViewAM for the view of
adversary A whenM is run on data set X , we define As as follows:
Definition 6. LetM = S ◦ RPHγ,k,n be the shuffled k-RR mechanism. We define adversary As as an
adversary with the view

ViewAs

M(X) = {(x1, . . . , xn−1), β ∈ {0, 1}n, (yπ(1), . . . , yπ(n))},
where β is a binary vector identifying which parties answered truthfully.

Assuming w.l.o.g. that the differing element xn = 1 and x′n = 2, the proof then shows that for

any possible view V of the adversary As,
P(ViewAs

M (X)=V )

P(ViewAs
M (X′)=V )

= n1

n2
, where ni denotes the number of

messages received by the server with value i after removing from the output Y any truthful answers
submitted by the first n− 1 users. Moreover, it is shown that the corresponding random variables

N1 ∼ Ps and N2 ∼ Qs,
where

Ps = Bin
(
n− 1,

γ

k

)
+ 1, and Qs = Bin

(
n− 1,

γ

k

)
. (3.1)

Thus, ViewAs

M(X) '(ε,δ) ViewAs

M(X ′) if Ps '(ε,δ) Qs.

Balle et al. (2019) showed that for adversaryAs the shuffled mechanismM = S◦RPHγ,k,n is (ε, δ)-DP

for any k, n ∈ N, ε ≤ 1 and δ ∈ (0, 1] such that γ = max
{

14·k·log(2/δ)
(n−1)·ε2 , 27·k

(n−1)·ε

}
.
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3.1 Tight bounds for varying adversaries

Following the reasoning of the proof of Balle et al. (2019, Thm. 3.1), we assume w.l.o.g. that the
neighbouring (worst-case) data sets are X = (x1, . . . , xn−1, 1) and X ′ = (x1, . . . , xn−1, 2) and
define

ViewAw

M (X) = {(x1, . . . , xn−1), β ∈ {0, 1}n−1, (yπ(1), . . . , yπ(n))},
where β is a binary vector identifying which of the first n− 1 parties answered truthfully. Note that
compared to the stronger adversary As defined in Section 3, the difference is only in the vector β.
We write b =

∑
i βi, and B for the corresponding random variable in the following.

Notice that for k-RR, seeing the shuffler output is equivalent to seeing the total counts for each
class resulting from applying the local randomisers to X or X ′. The adversary Aw can remove all
truthfully reported values by client j, j ∈ [n− 1]. Denote the observed counts after this removal by
ni, i = 1, . . . , k, so

∑k
i=1 ni = b+ 1. Using standard techniques and deferring the details to the full

version of the paper, writing Ni|B, i ∈ {1, 2} for the random variable Ni conditional on B, we show
that for DP bounds, the adversaries’ full view is equivalent to only considering the joint distribution
of Ni, B, i ∈ {1, 2}, and we can therefore analyse the neighbouring random variables

Pw = P1 + P2, P1 ∼ (1− γ) ·N1|B, P2 ∼
γ

k
· (B + 1),

Qw = Q1 +Q2, Q1 ∼ (1− γ) ·N2|B, Q2 ∼
γ

k
· (B + 1).

(3.2)

Writing NB
i for the count in class i resulting from the noise sent by the n− 1 parties, we also have

B ∼ Bin(n− 1, γ) and NB
i |B ∼ Bin(B, 1/k), i = 1, . . . , k. (3.3)

As V ∼ ViewAw

M (X), we finally have

N1|B = NB
1 |B + Bern(1− γ + γ/k) and N2|B = NB

2 |B + Bern(γ/k). (3.4)

The distributions (3.3) and (3.4) determine the neighbouring distributions Pw and Qw given in (3.2).

3.2 From single message to multi-message protocols

Assuming that at each round of the multi-message protocol the adversary has a view that corresponds
to the ones analysed in the single-message case in Section 3, an (ε, δ)-DP upper bound for the
multi-message protocol is then obtained from a non-adaptive composition of certain pairs of random
variables. This can be seen as follows.

As noted previously in Section 3, for the single message k-RR protocol and adversary As, for
any possible view V = {(x1, . . . , xn−1), β ∈ {0, 1}n, Y = (yπ(1), . . . , yπ(n))} of the adversary,
ViewAs

M(X) '(ε,δ) ViewAs

M(X ′) if Ps '(ε,δ) Qs where Ps, Qs are given by (3.1).

In the multi-message setting with nc communication rounds, where the messages of each party
depend on the same fixed data set throughout the protocol run, we may similarly assume that besides
the results from the previous rounds, the strong adversary As knows

1. The input data (xi1, . . . , x
i
n−1) at each round i (assuming that the differing element is xin).

2. The full set βi ∈ {0, 1}n of users who submit random values at each round i.
3. The outputMi(X) = Y i = (yiπi(1)

, . . . , yiπi(n)
) after each round i.

Then clearly, when the local randomisers and the shuffler are all independent over the rounds, this
multi-message protocol is (ε, δ)-DP if nc-wise compositions of Ps andQs are (ε, δ)-indistinguishable,
i.e., if

(Ps, . . . , Ps) '(ε,δ) (Qs, . . . , Qs).

Figure 1a shows an empirical comparison of the tight bounds obtained with Fourier accountant
assuming the stronger adversary As, which leads to the neighbouring random variables Ps, Qs from
(3.1), or the weaker adversary Aw, corresponding to Pw, Qw from (3.2), together with the loose
analytic bounds from Balle et al. (2019, Thm. 3.1). As shown in the Figure, the tight bounds are
considerably better than the analytic one. There is also a clear difference in the tight bounds resulting
from assuming either the strong adversary As or the weaker Aw.
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4 General analysis via clones of ε0-LDP local randomisers

Feldman et al. (2020) consider general ε0-LDP local randomisers combined with a shuffler. The
model allows adaptive compositions of user contributions allowing e.g. a novel analysis of the
differentially private stochastic gradient descent. The analysis is based on obtaining (ε, δ)-bound for
the 2-dimensional distributions (see Remark 3.5 of Feldman et al., 2020)

P = (A+ ∆, C −A) and Q = (A,C −A+ ∆), (4.1)

where

C ∼ Bin(n− 1, e−ε0), A ∼ Bin(C, 12 ) and ∆ ∼ Bern
(

eε0

eε0+1

)
, (4.2)

n ∈ N, p ∈ [0, 1]. Feldman et al. (2020) give also a numerical method for obtaining a tight (ε, δ)-
bound (i.e., for evaluating the hockey-stick divergence between P and Q). We apply the Fourier
Accountant to the PLD determined by P and Q and this way obtain tight (ε, δ)-bounds also for
non-adaptive compositions of the shuffling mechanism, i.e., for the multi-message protocols (see
Section 3.2). We leave the details to the full version of the paper.

Figure 1b shows a comparison between the PLD approach and the numerical method proposed
by Feldman et al. (2020) (in the implementation we use the parameter value S = 1). We see that for
a single call of the shuffling mechanism the results given by this method are not far from the results
given by the Fourier Accountant. This is expected as the method by Feldman et al. (2020) gives an
accurate upper bound for the hockey-stick divergence between P and Q which is exactly what the
Fourier Accountant does, however here also for non-adaptive compositions of the mechanism.
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(a) Shuffled single and multi-message k-randomised response: tight bounds are significantly better than the
existing analytic one. Tight (ε, δ)-DP bounds obtained using the Fourier accountant (FA) for different number
of compositions nc, and the analytical bound from Balle et al. (2019, Thm. 3.1). We apply FA to distributions
Ps and Qs of equation (3.1), and to Pw and Qw of equation (3.2); both are tight bounds under the assumed
adversary. FA with Ps, Qs and nc = 1 is the tight bound with the same assumptions as used in the loose analytic
bound. Total number of users n = 1000, probability of randomising for each user γ = 0.25, and k = 4.
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(b) Evaluation of δ(ε) for a single call of the shuffling mechanism using the numerical method by Feldman et al.
(2020), and for nc number of non-adaptive compositions (nc = 1, 2, 3, 4) using the Fourier Accountant. Notice
that the numerical method by Feldman et al. (2020) is only applicable for a single call of the mechanism. Here
number of users n = 104 and the LDP parameter ε0 = 4.0.
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