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Abstract
Motivation: Oncoviruses, pathogens known to cause or increase the risk of cancer,
include both common viruses such as human papillomaviruses and rarer pathogens such
as human T-lymphotropic viruses. Computational methods for detecting viral DNA from
data acquired by modern DNA sequencing technologies have enabled studies of the
association between oncoviruses and cancers. Those studies are rendered particularly
challenging when multiple species of oncovirus are present in a tumor sample. In such
scenarios, merely detecting the presence of a sequencing read of viral origin is insuffi-
ciently informative—instead, a more precise characterization of the viral content in the
sample is required.
Results: We address this need with NextVir, to our knowledge the first multi-class viral
classification framework that adapts genomic foundation models to detecting and clas-
sifying sequencing reads of oncoviral origin. Specifically, NextVir explores several foun-
dation models—DNABERT-S, Nucelotide Transformer, and HyenaDNA—and efficiently
fine-tunes them to enable accurate identification of the sequencing reads’ origin. The
results demonstrate superior performance of the proposed framework over existing
deep learning methods and suggest downstream potential for foundational models in
genomics.

Author summary
Cancer-causing viruses, known as oncoviruses, are responsible for approximately 15%
of human cancers worldwide. Detecting and identifying these viruses in tumor sam-
ples is critical for understanding how cancers form and for developing more effective
treatments. In this study, we introduce NextVir, a new artificial intelligence (AI) tool
that not only detects the presence of DNA viruses in a sample but also identifies which
oncoviral family it belongs to. This distinction is important because tumors may involve
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multiple viruses simultaneously, and the interactions between them are poorly under-
stood. NextVir adapts large AI models originally designed for general genomic analysis,
to the specific task of viral detection. Our experiments show that NextVir is accurate
and robust, even in challenging settings that emerge due to various sequencing artifacts.
NextVir outperforms many standard methods on viral detection tasks, demonstrating
the effectiveness of adapting general genomic models to specific use cases. By improv-
ing our ability to detect and classify viruses that contribute to cancer, NextVir offers
a powerful new approach to gain a deeper understanding of tumor development
mechanisms.

Introduction
Several viruses are well-known to be associated with human cancers, either increasing the
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risk or downright causing the disease [1,2]. Examples of such so-called oncoviruses include
Human papillomaviruses (HPVs), linked with cervical cancer; Epstein-Barr virus (EBV),
known to promote certain lymphomas; and Hepatitis B virus (HBV) and hepatitis C virus
(HCV), tied to liver cancer. This has motivated research efforts to improve our understand-
ing of the molecular mechanisms of viral carcinogenesis [3]. For instance, it is known that
oncoviruses encode viral oncoproteins, which may impact the regulatory cellular processes
in the host, leading to tumor formation. In addition to this, viral genetic material integrate
into the host genome, which may in turn confer a proliferative advantage on infected cells and
result in tumor formation.

Studies of viral carcinogenesis mechanisms are predicated upon our ability to map the
oncoviral landscape, i.e., identify viral genomic content in tumor cells. This task has proven
to be challenging due to the incompleteness of viral genome databases, coupled with the
rapid mutations exhibited by oncoviral families. Moreover, even low amounts of viral con-
tent may prove to be causative for cancer [4], necessitating reliable classification capabili-
ties. Most existing approaches for viral detection from RNA, cDNA and/or peptides seek to
frame this problem as a binary classification, wherein the goal is to simply identify whether
a given sequence is of viral origin. Examples of such methods include ViFi [5], viRNAtrap
[6] and DeepViFi [7]. ViFi constructs an ensemble of Hidden Markov Models (HMMs)
built from viral reference genomes to identify viral reads that may have evolved from those
genomes. In contrast, viRNAtrap employs a convolutional neural network (CNN) to iden-
tify relatively short viral RNA sequencing reads, while DeepViFi utilizes a combination of a
transformer and random forest for viral DNA read identification. Deep learning methods
for similar problems in metagenomics include the CNN-based DeepVirFinder [8] and
LSTM-based Virtifier [9].

While all of the aforementioned techniques focus on binary classification of pathogens,
recent studies have revealed that tumors can exhibit multiple viral infections [10–12]. In such
settings, the existing methods are limited to detecting the presence of viral genomic material
in a sample but are unable to ascertain the virus that the sequence originated from. A poten-
tial solution based on training a set of binary classifiers, one for each class of oncoviruses,
requires high computational and memory costs, and is time-consuming. This motivates our
pursuit of multi-class viral classifiers built atop of genomic foundation models: since they are
trained to provide “good” general-purpose latent representation of genomic sequences, such
models appear inherently felicitous for the task of distinguishing between components of a
viral mixture.
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Foundational models in genomics
DNA sequences that may be used in viral classification tasks (and, more broadly, other tasks
in genomics) vary significantly in size—short and long sequencing reads, contigs and scaf-
folds, complete genome assemblies, etc. Existing deep learning models developed for such
tasks utilize various techniques to encode the genetic information and relationships inherent
to these sequences. A natural starting point is to use each nucleotide base as a token, yielding
a vocabulary comprising only four tokens corresponding to adenine, cytosine, guanine and
thymine; HyenaDNA [13] opts for such a tokenization to preserve single-nucleotide resolu-
tion. Other approaches, such as DNABERT [14] and Nucleotide Transformer [15], tokenize
the sequence into k-mers, i.e., subsequences of length k. On one hand, such a tokenization
is advantageous as it confers each token with some contextual information. On the other
hand, k-mer driven tokenization may suffer from poor sample efficiency due to information
leakage when using overlapping k-mers, and the sensitivity to insertions and deletions when
using non-overlapping k-mers. More recent foundational models, including DNABERT-2 [16]
and DNABERT-S [17], elect to tokenize genomic sequences using SentencePiece [18] with
Byte Pair Encoding [19]; this tokenizer dispenses with any predefined notion of a ‘word’ and
instead seeks to construct a fixed-size vocabulary based on co-occurrence frequencies of the
bases. Next, we briefly overview the considered foundation models.

DNABERT-S. DNABERT-S gains the ability to distinguish between genomic material
originating from different species by refining its predecessor, DNABERT-2, through a two-
step training strategy dubbed C2LR or Curriculum-Contrastive Learning. The first step relies
on Weighted SimCLR [20] to learn sequence embeddings. The second step utilizes the Mani-
fold Instance Mixup (MI-Mix) method to create progressively more challenging positive and
negative pairs of embeddings that the model should distinguish between. The dataset for the
aforementioned training comprises pairs of non-overlapping DNA sequences, each 10k base
pairs (bp) in length, originating from the genomes under consideration. One of the sequences
in each pair is arbitrarily fixed as the anchor to reduce computational complexity.

Nucleotide transformer. The Nucleotide Transformer consists of a series of foundational
models of varying sizes, ranging from 500 million to 2.5 billion parameters. These models
employ a BERT-style encoder in order to learn generalizable embeddings from a diverse col-
lection of genomes using masked language modelling (MLM). In particular, the Nucleotide
Transformer tokenizes each input sequence as a series of non-overlapping k-mers (a mix of
6-mers and 1-mers). For our experiments„ we focus on the 500 million parameter model, as
it is the closest in parameter count to the other foundational models we considered.

HyenaDNA. In contrast to the aforementioned models, HyenaDNA is a decoder-only
architecture trained for next-token prediction on the human reference genome. It lever-
ages the Hyena operator [21] to greatly expand the context length of the traditional trans-
former block from 4096 tokens to 1 million tokens. In addition to this, it forgoes the use of
a tokenizer and encodes each sequence using the minimal DNA vocabulary consisting of
4 letters.

Contributions
We present a novel deep learning framework, NextVir, for detecting and classifying DNA
sequencing reads of oncoviral origin. NextVir builds on three foundation models by fine-
tuning their embeddings using the low-rank weight matrix adaptation (LoRA) technique
[22] and adding an adapter network on top to accurately classify input sequencing reads
based on their origin. The remainder of the paper is organized as follows. In Methods, we
outline the NextVir framework and provide details of the network architecture. In Results, we
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demonstrate the ability of NextVir models to attribute reads to oncoviral families on semi-
experimental data. We then proceed to compare the performance of NextVir to state-of-the-
art methods at identifying sequencing reads of viral origin. Finally, Discussion recounts the
paper and outlines future work directions.

Methods
Problem formulation
High-throughput sequencing platforms are capable of generating massive amounts of
sequencing reads characterizing genomic material in a biological sample [23]. Each such read
can be thought of as being obtained by sampling, with replacement, the genomes present
in the sample. When sequencing genetic material collected from tumor cells, an oncoviral
infection is manifested via the presence of sequencing reads originating from the infecting
virus. Formally, the classification problem that we pursue can be stated as follows: For each
sequencing read ri, can we determine whether it is of viral origin and, if so, which oncoviral fam-
ily yi it belongs to? As argued in Introduction, prior works are restricted to binary classification
settings where yi is constrained to be binary (with 0 indicating non-viral and 1 indicating viral
origin). For our problem, on the other hand, yi ∈ {0, 1, 2,… ,n}; here 0 still indicates non-
viral, i.e., human origin, while the other values of yi indicate different oncoviral families. We
will focus on optimizing NextVir models for the multi-class case, however we will also train
and test binary models for comparison with existing viral classification methods.

NextVir framework
The architecture of NextVir is illustrated in Fig 1. It comprises two components - a founda-
tional base model and an adapter network. The foundational base models employ different
architectures and tokenization schemes, but have each been shown to perform well on a vari-
ety of downstream genomic tasks. We train and test variants of NextVir built atop each of
the three discussed foundational models: DNABERT-S (leading to NextVir-D), Nucleotide
Transformer (NextVir-N), and HyenaDNA (NextVir-H). The sequence embeddings from
each base model are mean-pooled prior to the adapter network, which computes the output
logits.

Fig 1. An illustration of the NextVir framework.The dashed arrows indicate the layers affected by the various
training regimens.

https://doi.org/10.1371/journal.pcbi.1013360.g001
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Input preprocessing. NextVir models are trained on next-generation sequencing (NGS)
reads of length 150 base pairs (bp), typical of Illumina’s sequencing platforms. This stands
in contrast to the three foundational models: DNABERT-S was pre-trained on 700bp long
sequences and fine tuned using sequences 10,000bp in length, HyenaDNA saw full refer-
ence genomes of up to 1 million bp, while NucleotideTransformer was trained on 1000bp
long sequences. Note that DNABERT-2 (the predecessor of DNABERT-S) was not shown any
viral sequences while the fine-tuning data used to create DNABERT-S contained only small
amount of viral data (2.34% of the dataset). Similarly, HyenaDNA and Nucleotide Trans-
former saw no viral DNA during pre-training; instead, they were trained on a human refer-
ence genome and a collection of species excluding plants and viruses, respectively. We opt
to train NextVir models on short NGS reads due to their prevalence in sequencing studies of
tumor samples.

Each read is tokenized according to the tokenization scheme of the corresponding base
model. In the case of NextVir-D, this results in inputs of different lengths. To enable effi-
cient batch processing for such sequences, all sequences are padded to a uniform length by
appending special padding tokens to sequences shorter than the maximum length in the
batch. An accompanying attention mask is applied to each input to ensure that padding
tokens are ignored during attention computations. This mechanism ensures that padding
does not influence the model’s predictions. Padding enables the simultaneous processing of
variable-length reads in a batch, which is essential for the practical use of transformer models.
Without padding, training would be restricted to one read at a time, resulting in prohibitively
high computational costs.

Pooling. Recall that after tokenization, each read is represented as a sequence of k tokens.
The corresponding transformer model encodes this sequence into a k × L embedding matrix,
where L denotes the dimensionality of the latent space: 768, 1024, and 256 for NextVir-D,
NextVir-N, and NextVir-H, respectively. To obtain a fixed-size representation for down-
stream classification, we apply mean pooling across the token dimension, resulting in an
L-dimensional vector for each input sequence. While more sophisticated pooling strategies
(e.g., attention-based or learned linear pooling) could potentially further enhance the model
performance, mean pooling offers a parameter-free alternative with lower computational
complexity and training cost. Despite its simplicity, this approach allows NextVir to maintain
strong classification accuracy.

Adapter. Each NextVir model employs a lightweight two-layer feedforward adapter to
compute class logits from the pooled sequence embeddings. Specifically, the adapter con-
sists of two fully connected layers with a ReLU activation between them. Given a pooled
embedding vector zi ∈ℝL, the adapter computes the output according to

FFN(zi) =max(0, ziW
ff
1 + bff

1)W
ff
2 + bff

2 , (1)

where Wff
1 and Wff

2 are the weight matrices of the feedforward layers, and bff
1 and bff

2 are the
corresponding biases.

The latent dimension of the adapter is 64, i.e., the adapter projects each L-dimensional
input into a 64-dimensional latent space before producing the final output logits. In the
multiclass classification setting, the output dimension C is equal to the number of target viral
families plus one, accounting for the non-viral class. The final class probabilities are obtained
by applying the softmax function to the output logits.
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Network optimization
DNABERT-S, Nucleotide Transformer, and HyenaDNA comprise in excess of 100 million,
450 million, and 6.5 million parameters, respectively. Fine-tuning such large-scale models
presents a significant computational challenge. To mitigate this, we train the self-attention
matrices (query, key and value matrices) and the dense layers of each model by relying on
the low-rank weight matrix adaptation (LoRA) technique [22]. LoRA posits that the weight
update has low ”intrinsic rank”, so it learns low-rank matrix decompositions of the weight
updates. These weight updates can then be added to the weights of the foundation model
to obtain fine-tuned model weights. Since the number of learnable parameters scales lin-
early with rank, for computational efficiency, LoRA updates in NextVir are generated using
an intrinsic rank of 4. While larger ranks may perform marginally better, as shown in S1
Appendix, they introduce longer training times and require large computational costs to
ensure convergence to a fully fine-tuned model.

Loss function. Training of NextVir aims to minimize weighted cross-entropy loss
formally defined as

L = –
M
∑
i=1

M
Myi

yi log (pi) , (2)

where M denotes the total number of reads and Mj denotes the number of reads in the jth

class. This loss function upweights accurate classification of reads belonging to classes where
Mj is small, i.e., the classes that are present in the training set at low abundances. In effect, this
encourages the model to classify all the classes equally well.

Optimization and hyperparameter tuning. All NextVir variants are trained using the
schedule-free AdamW optimizer with a learning rate of 0.001, 𝛽 = 0.85 and 𝜆 = 0.005. Hyper-
parameter selection is performed via two independent grid searches on the validation set. The
first search focused on identifying optimal learning rates in the range [0.0005, 0.005] for both
NextVir-D fine-tuning and adapter training. The second search targeted optimal values for 𝛽1
and 𝜆 within the ranges [0.85, 0.95] and [0.001, 0.01], respectively. Further details on the grid
search procedures can be found in S1 Appendix. All models are trained for 15 epochs, with
40% of the first epoch used as warmup steps. Model selection is based on validation loss.

Hardware and software. All experiments are conducted on a shared Linux server
equipped with an AMD EPYC 7642 48-core CPU and 512 GB of DDR4 memory. Training
the NextVir multi-class model takes 12 hours using 4 GPUs for 15 epochs. Experiments
are spread across 8 AMD Vega 20 32GB GPUs with RoCM.The code is implemented in
Python, using PyTorch-ROCm for distributed processing. The codebase will be made pub-
licly available. DNABERT-S and AdamWScheduleFree are used in accordance with their
Apache 2.0 licenses. The DNABERT-S weights used are available at https://huggingface.
co/zhihan1996/DNABERT-S/commit/1cdf84d992ace6f3e75c7356774b4da088c8dc7c
and the optimizer used is available at https://github.com/facebookresearch/schedule_free
or through pip as ‘schedulefree==1.2.5‘. NucleotideTransformer is used in accordance
with its Creative Commons License; the weights are available at https://huggingface.co/
InstaDeepAI/nucleotide-transformer-v2-500m-multi-species/commit/\protect\penalty-\
@M{}f1fd7a1df5b19d31b88f11db1ce87caeb1ea4d2a. HyenaDNA is used in accordance with
its BSD 3-Clause license; the weights used are available at https://huggingface.co/LongSafari/
hyenadna-large-1m-seqlen/commit/bf15705b2037667c89fbc6aa4126ead6da403bf3. Numer-
ous experiments are run concurrently, some of which have been omitted from the paper for
brevity. Across all experiments, an estimated 15 GPU-days of compute are consumed.
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Results
Experimental setting
We construct our dataset using 18,680 oncoviral genomes from the integrative database
of cancer-associated viruses (iCAV) [24]. These genomes span 7 viral families known to
include carcinogenic subtypes: Hepatitis B (HBV), Human-Papillomavirus (HPV), Hepati-
tis C (HCV), Epstein-Barr (EBV), Human T-Cell Lymphotrophic Virus (HTLV), Human
Herpesvirus 8 (HHV-8), and Merkel Cell Polyomavirus (MCV). Human DNA sequences are
obtained from the primary assemblies of the GRCh38.p14 reference genome [25]. ART [26] is
used to generate 150bp Illumina MiSeq reads from all the genomes; this data is then randomly
partitioned according to an 80:10:10 split into training, validation, and testing sets, respec-
tively. Table 1 summarizes the genome lengths and the number of sequencing reads generated
for each viral family and the human reference.

Classification with pretrained embeddings
We start by testing the capabilities of NextVir with the three models kept as-is, without
any fine-tuning of the base model (see Fig 1). In this configuration, only the adapter net-
work (i.e., the two-layer feed-forward classifier) is trained, while the loss gradients are not
propagated through the base model. Thus, the mean-pooled embeddings produced by
DNABERT-S, HyenaDNA, and the Nucleotide Transformer are solely the result of their exten-
sive pre-training. As discussed in Input preprocessing, viral sequences constituted only a small
fraction of DNABERT-S’s pretraining data, and none of the pretraining data for HyenaDNA
or the Nucleotide Transformer included reads from viral genomes. Hence, the burden of
adapting to oncoviral sequence classification falls entirely on the lightweight adapter and the
models’ latent ability to generalize to previously unseen sequence domains.

Table 2 demonstrates that, even without fine-tuning, adapter-only training enables NextVir
to learn discriminative embeddings that support effective oncoviral classification. Notably, the
per-class accuracy or recall—a fraction of reads in a given class that are correctly classified—
exceeds 70% for most viral families. However, performance of these models degrades on
classes associated with longer genomes, particularly Epstein-Barr Virus (EBV) and Human
Herpesvirus 8 (HHV-8), both of which have average genome lengths exceeding 100,000
base pairs. These longer genomes result in lower sequencing coverage, i.e., fewer reads per
base on average, which limits the amount of information available to the model for learning
class-specific features. In contrast, this experiment produces high classification accuracies for
Hepatitis B Virus (HBV) and Human Papillomavirus (HPV), which have shorter genomes

Table 1. Semi-experimental dataset: length of the genomes and the number of 150bp reads originating from each
genome in the dataset.
Species Average length (bp) Number of 150bp reads
Human 2.94 × 109 464016
HBV 3195 229057
HPV 7725 149184
HCV 9310 34086
EBV 168013 25975
HTLV 8663 5296
HHV-8 135310 1959
MCV 5297 1709

https://doi.org/10.1371/journal.pcbi.1013360.t001

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013360 August 21, 2025 7/ 16

https://doi.org/10.1371/journal.pcbi.1013360.t001
https://doi.org/10.1371/journal.pcbi.1013360


ID: pcbi.1013360 — 2025/8/20 — page 8 — #8

UN
CO

RR
EC

TE
D

PR
O
O
F

PLOS COMPUTATIONAL BIOLOGY Enabling classification of tumor-causing viruses with genomic foundation models

Table 2. Classification accuracies on test data for different NextVir variants; “pretrained” indicates no fine-
tuning of the foundation model. Five seeded runs are averaged for fine-tuned models to calculate an associated
95% confidence interval.
Class Accuracy (%)

NextVir-D
pretrained

NextVir-D NextVir-N
pretrained

NextVir-N NextVir-H
pretrained

NextVir-H

Overall Top-1 77.40 94.69 ± 0.34 81.51 95.02 ± 0.95 58.00 89.88 ± 0.24
Human 71.32 91.81± 0.52 75.35 92.19± 1.59 50.90 84.57± 0.44
HBV 87.35 99.74± 0.05 93.36 99.80± 0.08 60.22 99.53± 0.08
HPV 87.44 95.53± 0.52 87.55 96.94± 0.35 77.87 92.91± 0.28
HCV 70.39 95.68± 0.66 78.26 96.55± 0.67 70.84 91.54± 0.38
EBV 49.59 95.13± 0.56 56.55 91.03± 2.24 32.34 77.84± 2.12
HTLV 81.02 98.18± 0.53 85.20 98.63± 0.32 72.30 97.42± 0.32
HHV-8 38.60 62.33± 1.41 43.72 57.30± 2.47 28.37 54.70± 2.46
MCV 80.71 99.05± 0.59 71.60 99.88± 0.23 57.40 98.11± 0.43

https://doi.org/10.1371/journal.pcbi.1013360.t002

and, consequently, higher read coverage. This trend underscores the importance of sequenc-
ing depth in achieving accurate read-level classification, particularly when relying on frozen
pretrained embeddings.

Improvements with LoRA fine-tuning
To improve classification performance beyond what is achievable with frozen embeddings,
we fine-tune the base models alongside the adapter network, leveraging the LoRA technique
for efficient parameter updates (as described in section Network optimization). We select
the model with the lowest validation loss for final evaluation on the held-out test set. Table 2
summarizes the resulting test accuracies, both overall and per class, of the trained model. As
can be seen there, fine-tuning leads to substantial performance gains across all viral families,
with each model achieving overall test accuracy exceeding 90%. In particular, the classifica-
tion accuracy on EBV reads nearly doubles, reaching levels comparable to more prevalent
classes such as HPV and HCV. Adapted models also classify HHV-8 reads much more accu-
rately, with the recall exceeding 60% when using DNABERT-S or Nucleotide Transformer.
HyenaDNA struggles the most with this class, but still manages to nearly double its pretrained
performance. The reads originating from HHV-8 remain the most difficult to identify. We
attribute this difficulty to its extreme rarity in the dataset: HHV-8 reads are over 10 times less
abundant than EBV reads (see Table 1), leading to markedly lower sequencing coverage and
reduced signal for learning discriminative features.

Context-supported classification
The results presented thus far suggest that accurate classification of sequencing reads is pred-
icated upon genome-wide high sequencing coverage, i.e., the presence of a sufficient number
of reads distributed across the full length of each genome. To further investigate this depen-
dency, we design an experiment in which the training, validation, and test reads originate
from non-overlapping genomic regions. This setup simulates realistic conditions in sequenc-
ing workflows, such as those involving Polymerase Chain Reaction (PCR), where primer
binding may preferentially amplify specific regions of a genome. In extreme cases, this may
result in uneven or localized coverage, with some sections of the genome underrepresented or
even absent.

We refer to this experimental task as ‘context-supported classification’. To implement it,
we first align the sequencing reads to the human and viral genomes used to create the dataset
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(see section Experimental setting) in order to determine the positions of the reads along their
respective genomes of origin. For each class, reads are ordered by position and partitioned
such that the first 80% are used for training, the next 10% for validation, and the final 10%
for testing. This ensures that each split contains reads from distinct, non-overlapping genome
segments. Importantly, validation and test reads do not share context with the training data. A
detailed description of this partitioning scheme, along with a visualization, is provided in S1
Appendix.

As expected, the results reported in Table 3 indicate that the overall accuracy for context-
supported classification decreases as compared to the setting of Improvements with LoRA
fine-tuning (from 94.79% to 86.85% for NextVir-D). Nevertheless, the accuracy in the more
challenging context-supported classification setting is significantly higher than the clas-
sification with pre-trained embeddings in the previous (easier) setting for all the NextVir
models. This indicates that fine-tuning enables the models to capture generalizable pat-
terns in sequencing reads, rather than simply memorizing region-specific features. However,
classification accuracy for HHV-8 drops sharply under this disjoint-read setup. In contrast,
the performance on MCV, another low-abundance class, declines only slightly (less than
1%). Recall that while the MCV reads are even scarcer than HHV-8 reads, MCV genomes
are over 20× shorter than HHV-8 genomes. These observations support the hypothesis that
low sequencing coverage limits the learning ability of the NextVir framework, and hence its
efficacy at classifying reads from classes sequenced at low coverage.

Among the models, NextVir-N performs particularly well in the context-supported setting,
highlighting the robustness of the k-mer-based tokenization strategy introduced in [15].

Robustness to mutations
Viruses are characterized by high mutation rates, leading to the continual emergence of novel
strains and the formation of viral quasispecies [27–29]. The divergence from known viral
sequences clearly presents a challenge to any viral identification or classification method. To
evaluate the robustness of NextVir under these conditions, we construct a separate test set
containing mutated viral reads, while keeping the training data unaltered. We simulate two
forms of mutation in the viral sequencing reads—substitutions, where single nucleotide bases
are changed, and indels, where bases are inserted or deleted. Computational approaches find
indels particularly difficult to handle as a single base shift affects the reading frame of a given
sequence. Substitutions, on the other hand, not only reflect biological variation but also serve
as a proxy for sequencing errors. For example, the typical sequencing error rate for Illumina
reads is approximately 0.1

Table 3. Performance of context-supported classification with fine-tuned embeddings.
Accuracy (%)
NextVir-D NextVir-N NextVir-H

Overall top-1 86.85 89.38 79.89
Human 93.33 95.23 86.55
HBV 90.84 93.83 77.05
HPV 71.26 76.40 73.88
HCV 62.13 55.38 54.33
EBV 64.01 71.86 59.05
HTLV 79.43 77.55 75.09
HHV-8 15.82 21.43 13.27
MCV 98.83 99.42 98.25

https://doi.org/10.1371/journal.pcbi.1013360.t003
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Table 4 summarizes the performance of the NextVir models under varying mutation
rates. As expected, higher mutation rates consistently lead to greater degradation in clas-
sification accuracy across all classes. Nevertheless, all models are fairly robust to small lev-
els of mutation; with a substitution rate of 5%, the overall accuracy decreases by less than
4% per model and the per-class accuracy for most viral classes decreases by less than 7%.
Notably, the impact of mutations is disproportionately large for three classes: EBV, HHV-8,
and MCV.These classes also happen to exhibit the lowest coverage and/or the lowest abun-
dance, suggesting that improving coverage and representation for such classes may not only
boost accuracy in standard settings (as we observed earlier) but also enhance robustness to
mutations.

At high mutation rates, particularly if indels are present, all NextVir models exhibit a
notable decline in classification performance. For NextVir-D, this vulnerability may stem
from the Byte-Pair Encoding (BPE) tokenization scheme used by DNABERT-S. While BPE
is generally resilient to substitutions, even a single base insertion or deletion can shift the
sequence and drastically alter its tokenization. Although NextVir-N demonstrates strong
robustness to substitutions, it too struggles with indels. In fact, the drop in classification accu-
racy for high-coverage HPV reads due to indels is nearly twice as severe for NextVir-N as it
is for the other models. This supports the hypothesis that non-overlapping k-mer tokeniza-
tion, as employed by Nucleotide Transformer, is rather sensitive to frame shifts introduced by
indels. Surprisingly, the 1-mer tokenization used in HyenaDNA does not confer consistent
robustness to indels in NextVir-H. Its performance deterioration typically falls between that
of the other two models, despite the expectation that single-nucleotide tokenization would be
more tolerant to small structural changes. Additionally, due to its lower baseline performance,
NextVir-H is the weakest performer across all mutation levels.

Robustness to contamination
Real-world DNA sequencing workflows may experience contamination from non-target DNA
(e.g., bacterial or fungal sources). Moreover, growing evidence links certain bacterial species
to cancer development across various tissues in the human body [30]. Although classifying

Table 4. Robustness to mutations in viral sequencing reads.
Model Top-1 HBV HPV HCV EBV HTLV HHV-8 MCV
Accuracy (Change in Accuracy)
Baseline - no mutation
NextVir-D 94.69 99.74 95.53 95.68 95.13 98.18 62.33 99.05
NextVir-N 93.90 99.78 96.75 95.67 89.03 98.48 60.47 100.00
NextVir-H 89.93 99.49 92.46 91.70 78.26 97.53 52.56 98.82
5% substitution
NextVir-D 91.72 (-3.0) 93.44 (-6.3) 91.20 (-4.3) 91.05 (-4.6) 78.44 (-16.7) 89.94 (-8.2) 52.09 (-10.2) 84.02 (-15.0)
NextVir-N 91.86 (-2.0) 95.74 (-4.0) 93.24 (-3.5) 90.91 (-4.8) 82.67 (-6.4) 92.22 (-6.3) 55.81 (-4.7) 92.31 (-7.7)
NextVir-H 86.77 (-3.2) 92.11 (-7.4) 88.12 (-4.3) 86.16 (-5.6) 70.21 (-8.1) 87.10 (-10.4) 46.98 (-5.6) 79.88 (-18.9)
10% substitution
NextVir-D 85.04 (-9.7) 73.56 (-26.2) 86.04 (-9.5) 84.94 (-10.7) 67.33 (-27.8) 71.92 (-26.3) 46.05 (-16.3) 53.85 (-45.2)
NextVir-N 86.88 (-7.0) 82.78 (-17.0) 86.82 (-9.9) 83.24 (-12.4) 75.00 (-14.0) 83.30 (-15.2) 56.74 (-3.7) 72.19 (-27.8)
NextVir-H 80.75 (-9.2) 74.56 (-24.9) 82.50 (-10.0) 79.73 (-12.0) 62.95 (-15.3) 73.24 (-24.3) 44.65 (-7.9) 56.80 (-42.0)
10% substitution + 5% indel
NextVir-D 76.16 (-18.5) 48.04 (-51.7) 76.72 (-18.8) 78.26 (-17.4) 54.64 (-40.5) 51.99 (-46.2) 49.30 (-13.0) 23.67 (-75.4)
NextVir-N 78.66 (-15.2) 71.63 (-28.2) 60.52 (-36.2) 85.82 (-9.9) 44.95 (-44.1) 57.87 (-40.6) 28.37 (-32.1) 30.77 (-69.2)
NextVir-H 74.96 (-15.0) 59.52 (-40.0) 74.31 (-18.2) 78.14 (-13.6) 50.26 (-28.0) 55.22 (-42.3) 43.72 (-8.8) 29.59 (-69.2)

https://doi.org/10.1371/journal.pcbi.1013360.t004
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bacterial sequences is beyond the current scope of NextVir, robustness of classifiers to such
contaminant reads is essential for their real-world adoption. Evaluating this robustness also
serves a dual purpose—it indicates whether NextVir can function effectively within a broader
DNA mixture separation pipeline. In such a pipeline, the reads NextVir confidently predicts
as non-oncoviral could be forwarded to downstream classifiers such as MetaTransformer or
DeepMicrobes [31,32] to determine their bacterial origin.

To assess robustness to contamination, we generate reads from the human contaminome
using the ART simulator [33]. New test sets are created by spiking the original test set with
varying proportions of contaminant DNA—specifically, .5%, 1%, and 5%. These additional
reads originate from bacterial and fungal species commonly encountered in human sequenc-
ing experiments and are labeled as part of the non-oncoviral or, for consistency, “Human”
class. An ideal classification model should maintain high average accuracy in the presence of
such contaminants, correctly identifying them as non-viral despite never encountering these
sequences during training.

As illustrated in Fig 2, the overall accuracy of the NextVir models is only marginally
affected by low levels of contamination and remains high even when 5% of the test reads orig-
inate from non-oncoviral, non-human sources. This robustness is particularly noteworthy
given that, in real sequencing data, contaminant reads typically comprise just 1% of a sample
[33]. The NextVir models prove to be robust across all contamination levels, with NextVir-
D exhibiting the smallest drop in accuracy and NextVir-N the largest. These results indicate
that, on average, NextVir is capable of handling realistic contamination scenarios, further
supporting its utility in practical sequencing pipelines.

Benchmarking against existing methods for binary classification tasks
To our knowledge, NextVir is the first deep learning scheme designed for multi-class oncovi-
ral classification tasks; hence the results reported in the preceding sections show no com-
peting benchmarks. In this section, we adapt NextVir to a binary classification setting (i.e.,
to the task of distinguishing viral from non-viral reads) in order to benchmark its perfor-
mance against state-of-the-art approaches used in tumor virome analysis and metagenomics.
To this end, the output layer of NextVir is modified to produce a single logit, with the label
‘1’ indicating viral origin. Since the dataset is approximately balanced between viral and

Fig 2. Change in top-1 accuracy under various contamination levels.

https://doi.org/10.1371/journal.pcbi.1013360.g002
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non-viral reads, binary cross-entropy loss is used for training. Competing methods include
DeepVirFinder (DVF) [8], which employs a shallow convolutional neural network to detect
bacteriophage DNA from metagenomic data; Virtifier [9], which combines an attention
mechanism with an LSTM architecture; and XVir [34], a transformer-based method for viral
read classification. For a fair comparison, all baseline models are retrained on the dataset
used in this study, following the training protocols described in their respective papers. The
primary benchmarking results are summarized in Table 5, and additional benchmarks are
provided in S1 Appendix.

As shown in Table 5, the NextVir models perform competitively with the best existing
binary classification method, DeepVirFinder (DVF), on the standard test set obtained via
random splitting. Notably, they outperform all baseline methods in the more challenging
context-supported setting, where training and test reads are drawn from disjoint genome
segments. ROC curves for both test scenarios are presented in Fig 3. These results demon-
strate the effectiveness of genomic foundation models in applications to viral read detection
and classification tasks. In particular, the strong performance of NextVir under the context-
supported split demonstrates its robustness to coverage gaps and sequence heterogeneity. This
robustness suggests that the proposed approach may be well-suited for real-world sequencing
applications where uniform genome coverage cannot be guaranteed.

Discussion
We introduced NextVir, a novel framework for multi-class classification of oncoviral reads
from next-generation sequencing data. Building on recent advances in genomic foundation
models, including DNABERT-S, HyenaDNA, and NucleotideTransformer, NextVir lever-
ages fine-tuning and adapter-based embedding modification to enable accurate classification
of reads based on their origin. Our benchmarking on semi-experimental data demonstrates
substantial gains from fine-tuning over frozen representations, highlighting the value of task-
specific adaptation. NextVir proves to be effective and achieves high performance across a
range of settings, including the challenging, practically-motivated scenario where the reads
in the training and test sets originate from disjoint regions of the genome. Moreover, NextVir
delivers state-of-the-art performance in the binary setting of viral versus non-viral detection.
These results reinforce the promise of genomic foundation models as powerful starting points
for deep learning solutions to not only the oncoviral read classification task, but a broader
spectrum of problems in genomics as well.

The choice of foundation model in NextVir reflects inherent trade-offs between com-
putational efficiency, sequence resolution, and robustness to genomic variation. In our
evaluations, DNABERT-S achieves the second highest performance, with superior precision
across most oncoviral species and high AUC-ROC scores in binary settings. We attribute this
consistency to its species-aware embeddings learned through MI-Mix training. However, as

Table 5. Performance of NextVir models, DeepVirFinder, XVir and Virtifier on the (binary) viral detection task.
Random split Context-supported

Method Accuracy AUCROC Accuracy AUCROC
NextVir-D 98.22% 0.999 91.55% 0.985
NextVir-N 98.69% 0.999 91.57% 0.989
NextVir-H 97.71% 0.997 88.70% 0.969
DVF 98.87% 0.999 89.90% 0.968
XVir 98.00% 0.998 88.50% 0.968
Virtifier 93.71% 0.984 71.70% 0.922

https://doi.org/10.1371/journal.pcbi.1013360.t005
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Fig 3. Binary Receiver operating characteristic curves for NextVir-D, DVF, XVir and Virtifier on the test data in
both randomly sampled and context-supported settings.

https://doi.org/10.1371/journal.pcbi.1013360.g003

discussed in section Robustness to mutations, DNABERT-S exhibits notable sensitivity to
indels, which may affect its scalability in mutation-heavy or low-coverage settings. Nucleotide
Transformer offers even stronger performance, particularly in substitution-robustness and
out-of-distribution generalization, due to its multi-species pretraining and non-overlapping
k-mer tokenization. Notably, NextVir-N yields the highest per-class accuracy among the
pretrained (frozen) models, as reported in section Classification with pretrained embed-
dings. This contrasts with the findings in [17], likely reflecting our focus on oncoviral read-
level classification. Still, its fixed k-mer encoding makes Nucleotide Transformer vulnerable
to frame shifts introduced by indels (section Robustness to mutations), and it remains the
most memory- and time-intensive model to train. HyenaDNA, with single-nucleotide res-
olution and a long-context processing architecture, offers the best computational efficiency
and scalability, particularly for long-read inputs—results consistent with the conclusions
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in [13]. However, this advantage comes at the cost of accuracy: NextVir-H consistently lags
behind the other models in both multi-class precision and binary AUC-ROC scores, partic-
ularly in short-read classification tasks. Overall, our findings support the observation in [35]
that the DNABERT-S architecture offers the most balanced trade-off among classification
performance, robustness to mutations, and computational feasibility.

The clinical implications of NextVir extend beyond computational benchmarks, suggesting
potential applications in precision oncology workflows. Accurate detection and classification
of oncoviral content in tumor samples could enhance our understanding of viral carcinogen-
esis mechanisms and potentially inform therapeutic strategies. Existing clinical approaches
often rely on targeted PCR-based detection methods that are limited to predefined viral types
and may fail to identify co-infections or novel variants. In contrast, NextVir’s ability to per-
form multi-class classification with high accuracy enables more comprehensive viral profiling,
potentially revealing previously unrecognized viral associations across diverse cancer types.
Moreover, the framework’s robustness to contamination suggests it could be integrated seam-
lessly into existing clinical sequencing pipelines, without requiring specialized preprocessing
or sample preparation protocols.

Despite the promising results, several challenges must be addressed before NextVir can be
fully translated into clinical settings. Most notably, the observed performance degradation
for viral classes with low sequencing coverage, such as HHV-8, underscores a fundamental
limitation of sequence-based classification methods and highlights the need for further
investigation. Additionally, while NextVir demonstrates reasonable robustness to substi-
tution mutations, its performance deteriorates markedly in the presence of insertions and
deletions, particularly for low coverage classes. Incorporating specialized alignment-based
pre-processing or designing tokenization strategies that are inherently tolerant to indels could
help mitigate this limitation in future iterations of GFMs. Lastly, expanding the viral refer-
ence database beyond the seven oncoviral families considered in this study to include newly
identified or emerging oncogenic viruses would enhance the framework’s applicability to viral
discovery and broader clinical genomics.

Supporting information
S1 Appendix Contains additional sections detailing: Choice of LoRA rank; Single species
binary detection; Context-supported classification; Optimization; Simulated viral discov-
ery; Results on uniformly sampled data; Difficulty detecting HHV-8; Detecting HPV in
experimental data; Additional benchmarks versus binary viral detection methods.
(PDF)
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