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ABSTRACT

3D object detection using LiDAR point cloud data is critical for autonomous driv-
ing systems. However, recent two-stage detectors still struggle to deliver satisfac-
tory performance primarily due to inadequate proposal quality, which stems from
significant geometric detail degradation in generated proposal features caused by
high sparsity and uneven distribution of point clouds, as well as a complete failure
to exploit surrounding contextual cues during independent proposal refinement,
losing complementary details from adjacent proposals. To this end, we propose
a Proposal-centric Transformer Network (PTN), which includes a Hierarchical
Attentive Feature Alignment (HAFA) and a Collaborative Proposal Refinement
Module (CPRM). More concretely, HAFA employs a dual-stream architecture to
extract multi-granularity proposal representations, including coarse-grained multi-
scale voxel features and fine-grained coordinate point features to enhance propos-
als’ object geometric representation ability. CPRM first generates hybrid object
queries for all objects and then establishes contextual-aware interactions through
the 3D parameter-guided deformable attention mechanism to effectively aggre-
gate spatial location cues and category-specific information across proposals that
are spatially adjacent and semantically correlated. Extensive experiments on the
large-scale Waymo and KITTI benchmarks demonstrate the superiority of PTN.

1 INTRODUCTION

3D object detection serves as a foundational task for environmental perception in autonomous driv-
ing, aiming at precise localization and classification of objects in 3D scenes. Recently, to achieve
a trade-off between performance and efficiency, researchers have focused on the two-stage 3D ob-
ject detector paradigm Deng et al.|(2021)); |Shi et al.| (2023)): this paradigm first employs the region
proposal network (RPN) to obtain proposals, then extracts proposal features via ROI pooling [Deng
et al.| (2021), and ultimately produces detection outputs by refining these proposal features in the
subsequent refinement stage. However, existing two-stage 3D object detectors are constrained by
suboptimal proposal quality, which arises from two key underlying issues.

The primary concern revolves around the degradation of geometric detail in the generated proposal
features. In particular, prevailing two-stage detectors typically progressively expand receptive fields
through pooling operations to generate proposal features. For areas of objects with few points, the
pooling operation tends to filter out high-frequency geometric features such as surface details and
edge sharpness, resulting in blurred proposal boundaries and structural incompleteness. As shown
in Figure[T] certain objects have only a few points or sparsely distributed points. After multi-pooling
operations, the detailed information inherent in these points is lost, leading to inaccurate predictions
(denoted by green boxes). Although recent research has explored the use of foreground-agnostic
sampling methods to generate sampled raw points for compensating detailed information |Shi et al.
(2020a; 2023), these methods tend to overlook sparse foreground points, which undermines the
completeness of foreground representation and ultimately impairs the detection performance.

Another issue stems from the inefficient exploitation of surrounding contextual cues during the pro-
posal refinement stage. Current two-stage methods optimize each proposal independently, only
using its local features and failing to leverage complementary details from adjacent proposals with
similar object characteristics. This limitation proves especially problematic in 3D scenes where oc-
clusions are present. As illustrated in Figure [1| (c), since a car is occluded by a tree, its internal
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Figure 1: Qualitative results under the bird’s-eye view (BEV) on Waymo. The red and black 3D
boxes are annotated by humans, and the red points represent the object points. The green 3D boxes
are predicted by VoxelNext. Some predicted boxes are not accurate due to corresponding objects
having only a few points (a) or sparsely distributed points (b). (c) The car is occluded by the tree.

point clouds tend to be split into disjoint segments, with each segment independently predicted as
a separate proposal. Due to the absence of cross-interaction with other proposals and the failure to
integrate complementary information, the refined proposals suffer from inaccurate localization

To address the above challenges, we propose a Proposal-centric Transformer Network (PTN), which
integrates a hierarchical attentive feature alignment module to enhance proposals’ object geometric
representation ability and a collaborative proposal refinement module to effectively aggregate com-
plementary information among spatially adjacent and semantically correlated proposals.

The hierarchical attentive feature alignment module employs a dual-stream feature extraction archi-
tecture to capture complementary multi-granularity features to enhance proposal features. First, we
propose a coarse-grained voxel feature extraction module to derive multi-scale semantic proposal
features directly from voxel features, which enhances discriminative power for classification tasks.
Concurrently, we design a fine-grained point feature retrieval module to recover intricate geometric
details of proposals from unsampled raw foreground point clouds, thereby preserving precise spatial
cues critical for regression refinement. Following the extraction of these dual-granularity features,
we introduce a feature alignment module to harmonize them within a unified feature space, which
ensures synergistic integration while maintaining their complementary strengths.

The collaborative proposal refinement module is designed to first generate object queries for all
objects and then establish proposal contextual-aware interactions to extract complementary infor-
mation from proposals that are spatially relevant and semantically similar. Specifically, we first
select the top-K proposals from the output of RPN based on their classification confidence scores to
construct the basic proposal queries. Concurrently, we introduce learnable random queries to proac-
tively explore objects that may have been overlooked, such as fully occluded or smaller objects.
These hybrid queries are integrated as object queries. Next, we employ a 3D parameter-guided de-
formable attention mechanism to perform interaction between each object query and all generated
proposals, which enables each object query to capture beneficial spatial location cues and category-
specific semantic features from relevant proposals, thereby ultimately improving performance.

We conduct abundant experiments on large-scale 3D object detection benchmarks Waymo [Sun et al.
(2020) and KITTI [Geiger et al.|(2012). Experimental results demonstrate the effectiveness of PTN.
In summary, our contributions are as follows:

* We introduce a hierarchical attentive feature alignment module, producing high-quality proposals
with complementary multi-grained features.

* We propose an effective collaborative proposal refinement module, which adaptively aggregates
crucial surrounding regions and performs proposal-level interaction.

* PTN achieves promising performance for 3D object detection on the large-scale datasets.
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2 RELATED WORK

2.1 LIDAR-BASED 3D OBJECT DETECTION

Existing point cloud-based 3D object detection methods |Fan et al.[(2022b;2024) predominantly fall
into two technical paradigms: point-based and voxel-based approaches. Point-based methods (Chen
et al|(2022) typically employ architectures like PointNet++ Q1 et al.| (2017) to directly extract fea-
tures from unordered point clouds, followed by single-stage or two-stage detection frameworks to
generate predictions. Given the massive scale of raw point clouds, such methods commonly adopt
metric space sampling strategies to select representative point subsets for computational efficiency.
Although point-based methods demonstrate superior performance on small datasets, their computa-
tional complexity scales linearly with point cloud cardinality. To address the efficiency bottleneck
of point-based methods, researchers predominantly adopt voxel-based methods [Liu et al.| (2024);
Jin et al.[(2025)); Zhang et al.| (2024); |L1 et al.[(2021)); [Fan et al.| (2022b) to balance computational
cost and performance. VoxelNetZhou & Tuzel|(2018) pioneers the transformation of irregular point
clouds into structured voxel grids. Voxel R-CNN [Deng et al.| (2021) optimizes the two-stage de-
tection pipeline, substantially reducing computational costs while maintaining accuracy. Our PTN
is similar to Voxel R-CNN but introduces a core innovation: continuously refining the geometric
quality and semantic consistency of proposals through hierarchical feature alignment and dynamic
receptive field adjustment.

2.2 3D OBJECT DETECTION WITH DETR

Recent advancements in Transformer-based architectures have motivated extensive exploration of
DETR |Carion et al.| (2020) frameworks for 3D point cloud object detection, particularly focus-
ing on two critical design aspects: query initialization strategies and feature aggregation mecha-
nisms. TransFusion Bai et al.|(2022) leverages heatmap-guided localization to identify BEV feature
peaks as initial queries, while CMT |Yan et al.| (2023)) implements geometrically anchored learn-
able queries combined with global cross-attention for feature integration. Alternative solutions ad-
dress specific limitations through innovative mechanisms. ConQueR Zhu et al.| (2023) introduces
contrastive query refinement to suppress false detections, and FocalFormer3D |Chen et al.| (2023)
employs multiphase heatmap filtering alongside adaptive attention mechanisms to enhance both
query selection efficiency and context modeling. However, existing DETR-inspired approaches still
underperform compared to some non-transformer detectors. Compared to existing DETR-based ap-
proaches that rely on dense feature matching, we explicitly treat object proposals as learnable queries
in the DETR framework. By enabling dynamic interaction between proposals through deformable
attention mechanisms, we achieve more effective feature representation and information exchange.

3 METHODOLOGY

3.1 OVERVIEW

The framework of our PTN is shown in Figure[2] Given the point clouds F) as input, we first trans-
form them into regular voxel representation. Next, we utilize a 3D backbone network [Yan et al.
(2018)) to extract voxel features at three scales: 2x, 4x, and 8x downsampled features denoted
as FNv, where N, € {1,2,3}. Subsequently, we transform the F> features into the Bird’s-Eye
View (BEV) space and generate BEV features. A region proposal network (RPN) is then applied
to produce proposals B = {b;}}¥, from the BEV features. Those proposals are also called region
of interest (ROIs). For each proposal b;, we employ the Hierarchical Attentive Feature Alignment
(HAFA) module to enhance the proposal features, obtaining ROI features f;. Afterward, we lever-
age the Collaborative Proposal Refinement Module (CPRM) to facilitate cross-proposal interaction
among the proposals B. Finally, a feed-forward network (FFN) is used to predict the output.

3.2 HIERARCHICAL ATTENTIVE FEATURE ALIGNMENT

In this section, we propose a dual-stream feature extraction architecture to capture complementary
multi-granularity features to enhance the proposal features. First, we propose a coarse-grained voxel
feature extraction module to derive multi-scale proposal features from voxel features. Concurrently,
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Figure 2: The overall architecture of PTN. It consists of a 3D backbone, an RPN, an HAFA module,
and a CPRM module. Specifically, the HAFA uses a dual-stream feature extraction architecture to
capture multi-granularity proposal features. The CPRM explicitly establishes contextual interactions
among proposals through a hybrid query generation mechanism.

we design a fine-grained point feature retrieval module to recover intricate geometric details from
the unsampled raw point clouds. Following the dual-granularity feature extraction, we use a feature
fusion module to harmonize them within a unified feature space.

3.2.1 COARSE-GRAINED VOXEL FEATURE EXTRACTION.

For each proposal b, we first use discrete grid points to represent it and then extract the correspond-
ing grid point feature from the voxel feature by trilinear interpolation. Finally, we feed these grid
point features into a Transformer-based encoder to enable cross-grid feature interaction within the
proposal.

Given a proposal b = (x,y, 2,1, w, h,0), where (x,y, 2), (I, w, h), and 6 are the center, size, and
rotation angle of the proposal. We uniformly divide the proposal into g X g X g grid, and use the
g° grid point G® = {(gx, gy, 9-)} to represent the proposal b following Voxel R-CNN Deng et al.
(2021). After obtaining G®, we generate the grid points feature based on the voxel features F2Vv.
Specially, we remap the grid points into voxel feature maps with different downsampling factors and
apply trilinear interpolation to extract grid features { f:_’j\,v }fil and concatenate them to get multi-

scale grid point features { fg’i}. Then, we treat those multi-scale grid points as tokens and use them

. 3
as the query content Q. = { fé”}f:l. Finally, we send the grid point features into the transformer
encoder and MLP Layers to get the coarse-grained voxel feature f; as follows:

f¢ = MLP(Encoder(Q., P,)), @

where P, is the position embedding. We employ a learned absolute position embedding function ¢
to encode the grid points position pg = ¢(gx, 9y, 9=) € R?, d is the channel dimension of f;”i. For
simplicity, we use F. = { f{} to represent the coarse proposal features of B.

3.2.2 FINE-GRAINED POINT FEATURE RETRIEVAL.

Given a proposal b and the point clouds P = {p,, py, p-, fa}, wWhere f, € RC> are the intensity and
timestamp features. we first select the foreground points P’ = {(p,, py, p.)} whose locations are
inside b. Then we encode the geometric information of proposal b into these foreground points to
eliminate size ambiguity |Li et al.| (2021)). Finally, we fuse those enhanced foreground points as the
fine-grained point feature.
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Figure 3: Three heatmaps for pedestrians. The left (a) displays a heatmap generated by applying
local NMS to the predicted heatmap, while the middle (b) and right (c) show the predicted and
ground-truth heatmaps, respectively. Notably, after applying local NMS, the red-circled area in the
left heatmap filters out many correct predictions compared to the right heatmap.

Specifically, for each proposal b, we translate its foreground point clouds into the coordinate system
of the proposal and rotate them along the proposal direction angle 6, through P* = Ry - (P’ — Ty),
where Ry denotes the rotation matrix and T, = (x, y, z) denotes the center of the proposal b. After
obtaining the transformed foreground point clouds, we calculate the Euclidean distances from the
transformed foreground points P* to the six surfaces of the proposal bounding box where they are
located. The feature vector for each transformed foreground point is constructed as:

f{f = COHcat((P;»P}PE), fav (dla drv dfa dba dtv dd))? (2)

where d ) represents the Euclidean distance metric. These features are then processed by multi-layer
perceptrons (MLPs) and max-pooling layers to generate fine-grained point features f;:

Ji = Maxpool(MLP(f})), F, = {f}} 3)

For simplicity, we use F,. = {f{'} to represent the coarse proposal features of B.

3.2.3 FEATURE ALIGNMENT.

For multi-granular features, we first concatenate them into a composite feature representation and
subsequently employ a convolutional network to project them into a unified feature space. The final
proposal features f, are formulated as follows:

f» = Conv(Concat(f¢, f1), Fy = {f»} 4)

3.3 COLLABORATIVE PROPOSAL REFINEMENT MODULE

In this section, we propose CPRM to generate high-quality proposal queries and random queries
as object queries and then establish proposal contextual interactions with all proposals as complete
contextual knowledge to achieve context awareness. Specifically, we first suppress spatial redundan-
cies in RPN proposals B via NMS to obtain candidate proposals B,,,,s. Then we dynamically select
the top K classification confidence proposals from B, s as high-quality proposal queries @),,. Fur-
thermore, we introduce M learnable random queries (), that serve as potential objects. These hybrid
queries are integrated as object queries @ = [Q,, Q,]. Finally, a deformable cross-attention is ap-
plied to make interactions between hybrid object queries and the complete contextual knowledge F3,
that is preserved in B.

3.3.1 PROPOSAL QUERY GENERATION.

We first generate the candidate proposals B,,,,s using the NMS. Generally, the proposals B gen-
erated by RPN often exhibit high overlap ratios. The conventional methods address the overlap
issue by using Non-Local NMS |Yin et al.| (2021a)). They utilize the centers of proposals for post-
processing filtering, as shown in Figure 3] However, the classification performance is not very good
in the early training; such methods tend to filter out true positive proposals that are close together
(the red dashed circle area in Figure [3). To address this issue, we use the box of proposals for post-
processing filtering. In particular, we employ box NMS with a low NMS threshold (e.g., 0.5) to
select highly diverse candidate proposals B,,,,,s. The corresponding features are F}, 5.
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Then we select the top K proposals from By, as proposal queries (),. As the object counts in
3D scenes are inherently uncertain, it is suboptimal to select fixed proposal queries. To achieve
dynamic selection, we propose a query number estimation mechanism based on the classification
score heatmap H M in RPN.

Specifically, we first model the probability distribution of object counts C N7 in the scene as,

w(HM), if epoch > T,
C , otherwise,

ONT = { )
where o(HM) = SUM(HM > st) is the function to calculate the number of objects. st = 0.3 is
the classification score confidence to determine whether a proposal is an object. 7 is the epoch to
apply H M to estimate object counts. C is the maximum object count.

min

Theg we categorize C N T into three intervals {[nj*™, nj***)}?_ and adaptively set the proposal
queries number K according to:

Ky, ifnin < ONT < pive
K ={ K, ifnn<CNT < ngpax (6)
Ks, if nti" < ONT < nipex

Finally, we select the proposal based on the classification confidence of the B,,,,,s and K as follows:

Q[) = tOpK(FTLTYL67HM)7P]) = ¢(tOpK(Bn77L37HM)) (7)

where top  (u, v) means select top K queries from u according to v. P, is the position embedding.
K is determined by Equation[6] H M is the classification score heatmap in RPN.

3.3.2 RANDOM QUERY GENERATION.

After getting the high-quality object queries, we preserve random queries B, to retrieve some over-
looked objects by @,. In particular, the BEV space is uniformly partitioned into X x Y grids
(the BEV feature map size is X x Y x (), where each grid center initializes an auxiliary query.
The centers of random queries B, align with grid positions, and their scales are uniformly set
to (0.05L,0.05W,0.5H). By incorporating such spatially prior-constrained random queries, our
method effectively recalls TPs over-suppressed by NMS while maintaining high detection preci-
sion. The random queries content (),- and position embedding P, are defined as follows:

Q. € RY, P, = ¢(B;) ®)
where d is the channel dimension of the fp.

The object queries are donated as ) = Concat(Q,,@,), and the position embedding P, =
Concat(FPy, P,).

3.3.3 PROPOSAL TRANSFORMER DECODER.

This module aims to establish an interaction between the generated object queries and the complete
contextual knowledge B to achieve object-level context awareness. A direct method is to follow
the DETR by using cross-attention. However, such a paradigm neglects the inherent differences
between 2D images and 3D point clouds. Unlike 2D images where objects may occupy most of
the image, 3D objects exhibit spatial sparsity and occupy minimal area. Consequently, 3D proposal
interactions should focus exclusively on neighborhoods, which reduces computational redundancy
while enhancing geometric relationship modeling. Specifically, for each object query, we utilize its
3D bounding box parameters (e.g., position, dimensions, orientation) to generate spatial attention
weights. These weights dynamically adjust the sampling offset of deformable convolution kernels.
This enables the network to autonomously capture the structural features of neighboring objects and
to enrich each object query with scene-level dependencies. During proposal refinement, the detector
jointly optimizes each object query by leveraging these scene-level dependencies. The enhanced
object queries )’ = Decoder(Q, Py, F},) are used for the subsequent detection head.
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Table 1: Comparison with prior methods on the Waymo Open dataset (single-frame setting). Met-
rics: mAP/mAPH (%)1 for the overall results, and AP/APH (%)1 for each category. I: two-stage
method. {: detr-like methods. —: results are not published.

Results on the validation dataset

Methods mAP/mAPH Vehicle AP/APH Pedestrian AP/APH Cyclist AP/APH
L2 L1 | L2 L1 | L2 L1 | L2
CenterPoint|Yin et al.|(2021b) 68.2/65.8 | 74.2/73.6 | 66.2/65.7 | 76.6/70.5 | 68.8/63.2 | 72.3/71.1 | 69.7/68.5
PV-RCNN{ Shi et al.|(2020b) 69.6/67.2 | 78.0/77.5 | 69.4/69.0 | 79.2/73.0 | 70.4/64.7 | 71.5/70.3 | 69.0/67.8
SST_TS{i|Fan et al.[(2022a) /- 76.2/75.8 | 68.0/67.6 | 81.4/74.0 | 72.8/65.9 —/- —/-
SWFormert |Sun et al.|(2022) /- 77.8/77.3 | 69.2/68.8 | 80.9/72.7 | 72.5/64.9 —/- /-
PillarNet-34 |Shi et al. |(2022) 70.9/68.4 | 79.1/78.6 | 70.9/70.5 | 80.6/74.0 | 72.3/66.2 | 72.3/71.2 | 69.7/68.7
CenterFormerfZhou et al.[(2022) | 71.1/68.9 | 75.0/74.4 | 69.9/69.4 | 78.6/73.0 | 73.6/68.3 | 72.3/71.3 | 69.8/68.8
PV-RCNN++i [Shi et al. [(2021) 71.0/64.9 | 78.8/78.2 | 70.3/69.7 | 76.7/76.2 | 68.5/59.7 | 69.0/67.6 | 66.5/65.2
TransFusiont |Bai et al.|(2022) —/64.9 —/- —/65.1 —/- —/63.7 —/- -/65.9
DSVT|Wang et al. |(2023) 73.2/71.0 | 79.3/78.8 | 70.9/70.5 | 82.8/77.0 | 75.2/69.8 | 76.4/715.4 | 73.6/72.7
ConQueRf|Zhu et al.|(2023) 70.3/67.7 | 76.1/75.6 | 68.7/68.2 | 79.0/72.3 | 70.9/64.7 | 73.9/72.5 | 71.4/70.1
FlatFormerf|Liu et al.|(2023) 69.7/67.1 —/- 69.0/68.6 -/- 71.5/65.3 -/- 68.6/67.5
Shift-SSD|Chen et al. |(2024) 64.8/61.1 | 74.1/73.6 | 65.1/64.6 | 72.3/ 62.3 | 63.4/ 54.5 | 68.2/66.4 | 66.0/ 64.2
LiDAR-PTQ |Zhou et al.|(2024) 67.6/65.1 —/- 66.2/65.7 —/- 67.9/62.2 —/- 68.6/67.5
DRET [Huang et al.[(2024) 71.0/68.6 | 78.5/78.0 | 70.0/69.5 | 81.0/75.1 | 72.2/66.7 | 73.4/72.5 | 70.7/69.7
PASS-PV|Chen et al.|(2025) 72.0/65.7 | 78.3/78.8 | 70.5/70.0 | 76.2/66.9 | 67.2/58.8 | 71.8/70.7 | 69.4/68.3
PTN | 73.5/71.2 | 76.7/77.1 | 68.7/68.2 | 84.2/78.6 | 76.8/71.4 | 71.7/76.5 | 75.0/73.9
Results on the testing dataset
Methods mAP/mAPH Vehicle AP/APH Pedestrian AP/APH Cyclist AP/APH
L2 L1 | L2 L1 | L2 L1 | L2
PV-RCNN++ [Shi et al.|(2023) 72.4/70.2 | 81.6/81.2 | 73.9/73.5 | 80.4/75.0 | 74.1/69.0 | 71.9/70.8 | 69.3/68.2
PillarNet |Shi et al.|(2022) 70.1/67.1 | 81.1/80.6 | 73.6/73.2 | 78.3/70.2 | 72.2/64.6 | 67.2/66.0 | 64.7/63.6
PillarNeXt|Li1 et al.|(2023) 72.2/69.6 —/- —/— /- —/— /- /-

Fade3D|Ye et al.|(2025)

—/- 71.7/77.2 | 69.9/69.5 /- —/— —/— /-

PTN

| 72.7/70.6 | 80.2/79.8 | 72.5/72.1 | 82.0/77.0 | 76.0/71.2 | 72.2/T1.1 | 69.6/68.5

4 EXPERIMENTS

4.1

DATASETS AND EVALUATION METRICS

Waymo Open Dataset (Waymo). It includes 798, 202, and 150 scenes for the training, validation, and
testing sets. It provides three categories: vehicle, pedestrian, and cyclist. The evaluation uses mean
average precision (mAP) and mAP weighted by heading accuracy (mAPH). Objects are classified
into two levels: LEVEL 1 (L1) for more than 5 point clouds and LEVEL 2 (L.2) for more than 1.

KITTI. There are 7481 and 7518 samples for training and testing. The dataset includes three cat-
egories: car, pedestrian, and cyclist. The 7481 training samples are divided into two parts: 3769
and 3712 samples for the training and validation sets. We use 3D mAP as the evaluation metric.

4.2 IMPLEMENTATION DETAILS

For Waymo and KITTI, we apply PTN
to Voxel R-CNN. The setting aligns with
prior works |Deng et al.| (2021). In CPRM,
we categorize CNT into three intervals
[0,20),[20,40), and [40,200], and set
the parameters as K; 180, K>
240, K3 = 300. Additional results are
provided in the supplementary materials.

4.3  STATE-OF-THE-ART COMPARISON

Table 2: Effectiveness of PTN on Waymo validation

set using multi-frame inputs.

Methods [FramesmAP/mAPH (L2)
CenterPoint 4 70.8/69.4
CenterFormer|Zhou et al.| (2022)| 4 74.7/73.2
PillarNet|Shi et al.[(2022) 2 72.2/68.4
PTN 3 74.5/73.2
PTN 4 75.6/74.1

Waymo. Results in Table [T] demonstrate that PTN surpasses most detectors. PTN shows sig-

nificant improvement in pedestrian.

On one hand, the point clouds of pedestrians typically

exhibit sparse distributions, and the use of coarse-grained voxel features tends to cause lo-
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Table 3: Comparison on KITTI. Metrics: mAP7? for the overall results. —: results are not published.

Results on the testing data set

Methods Car Cyclist

i Easy Moderate Hard mAP Easy Moderate Hard mAP
HVPRNOoh et al.|(2021) 86.38 77.92 73.04 79.11 - - - -
SASA|Chen et al.|(2022) 88.76 82.16 77.16 82.69 - - - -
IA-SSDZhang et al.[(2022) 88.34 80.13 75.04 81.44 78.35 61.94 55.70 68.30
Voxel R-CNN|Deng et al.|(2021) 88.09 80.99 76.50 81.86 76.42 62.01 55.94 64.79
PASS-PV Chen et al.|[(2025) 87.65 81.28 76.79 81.90 80.43 68.45 60.93 69.93
DPFusion Mo et al.[(2025) 90.98 82.35 77.26 83.53 79.96 66.47 58.47 68.30
PTN \ 91.60 82.77 77.96 84.11 \ 83.38 70.30 62.63 72.11

Results on the validation data set

) Car Cyclist
Methods Easy Moderate Hard mAP Easy Moderate Hard mAP
EPNe(Huang et al.|(2020) 88.76 78.65 78.32 81.91 83.88 65.60 62.70 70.72
Pointformer|Pan et al. |(2021) 87.13 77.06 69.25 77.81 75.01 59.80 53.99 62.93
IA-SSD|Zhang et al.|(2022) 91.88 83.41 80.44 85.24 88.42 70.14 65.99 74.85
VFF|Li et al.|(2022) 92.31 85.51 82.92 86.91 89.40 73.12 69.86 77.46
Voxel R-CNN Deng et al.|(2021) 92.53 85.03 82.56 86.70 89.52 72.62 68.32 76.82
Fade3D|Ye et al.[(2025) 90.92 82.00 77.49 83.47 - - - -
PTN \ 92.74 85.92 82.87 87.17 \ 91.87 72.66 68.32 77.61

calization inaccuracies.

HAFA addresses this by incorporating fine-grained point cloud fea-

tures to enhance precise localization. On the other hand, CPRM facilitates interaction between
current objects and surrounding ones, effectively mitigating occlusion and overlapping issues.

The results obtained by using multi-frame data
as input in Table [2| demonstrate that PTN out-
performs existing detection approaches.

We compare PTN with other methods in terms
of performance and inference speed, as de-
picted in Figure [d Remarkably, PTN achieves
a good trade-off between performance and in-
ference speed. All models are evaluated on the
NVIDIA A100 GPU.

KITTI. The results on KITTI are shown in Ta-
ble[d.1] PTN achieves promising results on the
KITTT test set, particularly in detecting cyclists.
This can be attributed to the fact that most of the
cyclists’ area is empty, making it difficult for
the model to detect them with limited points. In
contrast, PTN introduces fine-grained points to
complete the appearance of these objects, mak-
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Figure 4: Performance and speed of our PTN and
other leading performance detectors on Waymo.

ing them easier to detect. PTN is generalizable and can be applied to most of the datasets.

4.4 ABLATION STUDIES

The efficiency of each component. In Table[d]
we present an ablation study for different com-
ponents on Waymo. To improve efficiency, we
use 25% of the data for training and validation.
In the following section, we use this as the de-
fault setting unless otherwise stated. CPRM ex-
plicitly introduces the relation between differ-

Table 4: Ablation study of each component on
Waymo.

3D AP/APH (L2) mAP/mAPH

HAFA — CPRM Vehicle Pedestrian Cyclist (L2)
59.09/58.57 58.20/52.47 62.73/61.33 | 60.00/57.45
v 60.86/60.38  65.13/57.13  64.58/63.08 | 63.52/60.19
v 61.91/61.49 65.62/58.69 65.82/64.54 | 64.45/61.57
4 v 62.92/62.50 69.23/62.37 67.05/65.88 | 66.40/63.58

ent proposals, which is beneficial for the detector to filter out background noise and improve preci-
sion. HAFA assists in locating the bounding box of objects, thereby improving the accuracy of the
detector in determining the location and shape of objects.

The number of object queries. When the number of proposal queries increases (e.g., N, = 400 vs
N, = 300), the similarity among queries rises significantly, leading to feature redundancy and con-
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Table 5: Ablation study for each component in PTN on Waymo. N, and N, represent the number
of object queries and random queries, respectively.

N N 3D AP/APH (1.2) mAP/mAPH
P " Vehicle Pedestrian Cyclist (L2)

200 0 54.57/54.01 62.81/53.04 60.05/58.47 59.14/55.17

300 0 58.35/57.83 64.96/55.34 61.94/60.21 61.75/57.79

400 0 55.59/55.03 62.88/53.53 60.89/59.28 59.78/55.94

300 100 61.91/61.49 65.62/58.69 65.82/64.54 64.45/61.57

sequent degradation in classification performance (from 57.79% mAPH to 55.94% mAPH) as shown
in Table [5] Conversely, reducing the number of proposal queries (e.g., N; = 200 vs N, = 300),
results in missed detection of low-score true positive (TP) samples, thereby lowering the recall (from
57.79% mAPH to 55.17% mAPH). This indicates a fundamental trade-off between the diversity and
similarity of proposal queries. To mitigate this conflict, we introduce random queries, which enable
the recovery of overlooked low-score TPs.

The results in sparse scenarios. In Table[6] we  Table 6: Number of true positives under different
test the performance in sparse scenarios. We [oU in sparse scenarios on Waymo.

first construct sparse scenarios and then mea- U | o1 03 05 0.7
sure performance by counting the number of VoxelRCNN| 10327 7017 2372 1075
True POSitiVeS (TPS) Speciﬁcal]y, we sort Ob_ PTN 10656(+3.1%) 7401(+5.4%) 4712(+7.7%) 1193(+10.9%)
jects in descending order according to their internal point counts. We then use the last 2.5% of
objects to construct sparse scenarios. We count the number of TPs on both the baseline and PTN
at different IoU thresholds. The results demonstrate the efficiency of PTN in sparse scenarios. It is
noteworthy that PTN exhibits significantly enhanced performance under high IoU thresholds. This
improvement is attributed to the HAFA, which restores essential details aiding localization.

The performance on occluded scenes. We di-  Typle 7: Recall@0.5 at different occluded scenes
vide the scene into heavily occluded scenarios  on Waymo. ~: no random queries. LO and HO

(theiobjects whose interna} point cloud num- - represent lightly and heavily occluded, respec-
ber is less than 20 or the distance from the Li- tively. VR represents Voxel R-CNN.

DAR sensor to them exceeds 50 meters) and ; — . ;
lightly occluded scenarios (other objects). Re- Setting] VR PTN PTN|PTN" improv. PTN improv.
sults in Table [7] indicate that PTN shows a rel- ~ LO [0.825 0.856 0.874 3.1% 4.9%
atively smaller decrease in recall compared to ~ HO [0.634 0.6850.722]  5.1% 8.8%

the Voxel R-CNN Deng et al.|(2021)). When the

top K proposals do not include these objects, it becomes challenging for the object queries to re-
call them effectively. For the objects missed in the proposals, we add random queries to the object
queries to interact with complete contextual knowledge, thereby improving recall.

The efﬁciepcy of the HAFA. When only using  Table 8: Ablation study of HAFA on Waymo.
the fine-grained point features to refine the pro-  CVFE, FPFR, and FA represent coarse-grained
posals, the performance is better than using the yoxe] feature extraction, fine-grained point feature

voxel features, as shown in Table[8] This is be-  retrieval and feature alignment, respectively.
cause the classification results are encoded into

CVFE FPFR FA ‘ 3D AP/APH (L2) mAP/mAPH

the object query content, while the proposal lo- Vehicle  Pedestrian  Cyclist L2
: . : a? v 59.09/58.57 58.20/52.47 62.73/61.33 | 60.00/57.45
cations are enCOded 1nto the ObJeCt querles pO- v 60.66/59.21 58.26/52.52 62.54/61.19 | 60.48/57.64
Sition embedding. v v 58.91/58.37 56.73/50.35 61.74/60.12 | 59.12/56.28

v v v | 60.86/60.38 65.13/57.13 64.58/63.08 | 63.52/60.19

5 CONCLUSION

In this paper, we propose PTN, a novel Proposal-centric Transformer Network for 3D object detec-
tion. Since the performance of existing two-stage detectors is limited by the quality of proposals
in terms of fine-grained information decay and the lack of effective exploitation of contextual cues,
we address these issues with PTN. PTN aims to enhance the proposal features for accurate 3D de-
tection. Specifically, we use a dual stream feature extraction module to extract coarse grained voxel
features and fine-grained point features, and align them to enhance the representation of proposals.
Furthermore, we propose a collaborative proposal refinement module to explicitly establish contex-
tual interactions among proposals through a proposal transformer decoder. Extensive experiments
on the KITTI and Waymo benchmarks demonstrate the effectiveness of PTN. Future work will focus
on improving proposal quality through learnable mechanisms with minimal cost.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide general details on the datasets and experi-
mental settings in Section 4. Comprehensive information on the model architecture, datasets, and
training strategies can be found in Appendix
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APPENDIX

THE USAGE OF LLMS

In this work, large language models (LLMs) are employed solely during the manuscript preparation
stage to assist with translation and language refinement. Beyond this purpose, they are not utilized
for any other aspects of the study.
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Figure 5: The detail of the deformable box attention.

A DETAILS OF THE PTN

Details of DBA. The detailed structure of the Deformable Box Attention (DBA) module is illus-
trated in Figure The core idea of DBA is to divide each proposal into G? grid points and learn an
offset for every grid, enabling it to aggregate features from neighboring proposals. The grid features
are then fused through learnable attention weights to obtain the final interaction-enhanced proposal
representation. This grid-based decomposition provides two key benefits: (1) using multiple grid
locations offers richer semantics and spatial information than relying solely on the proposal center;
(2) the grid layout implicitly encodes proposal size, which strengthens both regression and classi-
fication.  Specially, given a proposal b; = (z,y, 2,1, h,w,0), where (x,y, z) denotes the center
coordinates, (I, h,w) represents the dimensional size, and ¢ indicates the orientation, we first nor-
malize its coordinates to the range [0, 1] relative to the point cloud range (xo, Yo, 20, 1, Y1, 21) as
follows:

b,f:(x—xo Y—1Yo Z— 20 l
! $1—$07y1—y0’21—207$1—$0’
h 7 w ’9+7r>. ©)
Y1 — Yo 21— 20 27

Subsequently, we convert the proposal into a set of G2 grid points P,, as shown in Figure These
grid points are projected onto the proposal voxel feature map F to extract the corresponding grid
features Fy, = { fj}fil For all grids, we first compute the normalized offset O, = o(MLP(F,))
from F;, where o denotes the sigmoid function to normalize the offset into [0,1]. The final sampling
locations are the normalized offset locations O, plus the initial grid locations Pg. Based on the sam-
pling locations, we apply bilinear interpolation on the voxel feature map to obtain the sampled grid
features Fy, = { f,f}kcil The learned offsets allow grids to sample features from nearby proposals,
naturally enabling cross-proposal feature interaction. In parallel, we compute attention weights for

all grids: A = softmax(MLP(F,)) = {ak}kc;. Finally, the enhanced proposal representation is

obtained by a weighted sum over all sampled grid features: F), = Zkail ar - f¥. This design en-
ables rich feature exchange between proposals and implicitly encodes geometric structure, leading
to stronger proposal refinement.
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B DETAILS OF THE EXPERIMENTAL SETTING

The intervals setting of the ground truth. In the CPRM, we categorize the estimated object num-
ber CNT into three intervals {[n["", nj#*)}3 . In the experimental implementations, we set them
as [0, 20), [20, 40), and [40, 200]. This setting is based on the object distribution of the dataset. As
shown in Figure [6] we analyzed the distribution of object counts in the Waymo validation set and
calculated the 30%, 60%, and 90% percentiles, which are roughly around 20, 40, and 100, respec-
tively. Additionally, the maximum number of objects in a single scene in the dataset is reached 200.

For other datasets, we can also set the intervals based on the object count distribution.
Distribution of Ground Truth Object Counts

I Histogram
— KDE

20.0

17.5

—
wu
=}

—
N
5

—
[
=

60%: 43

Probability Density(x0.001)
~
o

90%: 101

100%: 200

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Ground Truth Objects per Sample

Figure 6: The object number distribution on the Waymo.

C MORE EXPERIMENT RESULTS
The speed and cost of each compo-

nent. Table[9]details the performance
and cost of the individual modules on

Table 9: Inference cost and speed of each component.
HAFA CPRM|mAPH (L2)|Speed (FPS)Memory(G)[FLOPs(G)

Voxel-RCNN Deng et al.| (2021). The 57.45 19.5 4533 101.8
results indicate that adding HAFA 4 60.19 18.0 2431 21.7
improves performance by 3.52/2.74 v 61.57 17.6 2027 63.4

v v 63.58 16.5 2995 69.6

in mAP/mAPH while reducing speed
by 1.5 FPS. Adding CPRM improves
performance by 3.35/4.12 mAP/mAPH and reduces speed by 1.9 FPS. When both modules are inte-
grated, PTN yields the best performance of 66.40/63.58 mAP/mAPH with a speed of 16.5 FPS. PTN
strikes a balance between performance and inference speed. Furthermore, PTN exhibits reduced
computational complexity, with fewer FLOPs and lower memory usage compared to the baseline.

The generality of PTN. To validate the effec- Table 10: Performance on PV-RCNN on Waymo.
tiveness of HAFA and CPRM, we applied them 3D AP/APH (12)

to PV-RCNN, with the results summarized in Methods Veh Ped Cye
Table [I0] The experimental results demon-
strate that incorporating only HAFA yields sig-

PV-RCNN(PV) | 68.0/67.5 67.6/61.6 67.7/66.5

. . . PV+HAFA 68.3/67.9 68.4/62.3 68.1/67.2
nificant improvements, particularly for pedes-  py,. ~prMm 63.8/682 692/632 68.7/67.6
trians (ped) and cyclists (cyc). This is attributed  py,pTN 69.1/68.6 70.3/64.4 69.0/67.9

to the sparse point cloud distribution of these
objects, where edge details are prone to being lost during downsampling operations. HAFA ef-
fectively mitigates this by recovering these critical details. When CPRM is incorporated solely,
performance gains are observed in all categories, with the most pronounced improvements in pedes-
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trians (ped) and vehicles (vehicle). The abundance of training samples for these categories allows
CPRM to facilitate enhanced learning of neighboring contextual information, thereby optimizing
both classification and regression performance. The concurrent integration of both modules leads to
optimal performance. This result convincingly demonstrates the generalizability of our approach.

The threshold value of score st. We pre- Table 11: Mean average error on estimated object
liminarily estimate the number of objects in number with different score threshold on Waymo.
scene through the score distribution of first- st |01 02 03 0.5 0.7
stage heatmaps, thereby providing prior knowl-
edge for the query quantity of objects in CPRM. MAE | 13 10 6 |—10] [-17|
During this process, we first apply local Non-Maximum Suppression (NMS) to the heatmap to re-
move overlapping points. We then set a score threshold: regions with scores exceeding this threshold
are considered target objects, while others are rejected. To obtain accurate object counts, we test dif-
ferent score thresholds (experimental results shown in Table[IT). The results indicate that when the
threshold is too low, the estimated quantity significantly exceeds the actual number; conversely, an
excessively high threshold tends to miss targets. Experiments demonstrate that at a score thresh-
old of 0.3, the gap between estimated and actual counts is minimized. Therefore, we set the score
threshold to 0.3 in the experiments.

The Process of Overlapping Proposals. To Taple 12: Performance of PTN using different loU
achieve high recall, we do not handle overlap-  thresholds in the NMS on Waymo.
ping boxes in HAFA, as those overlapping pro- ToU ‘ 03 04 05 06 07

posals serve as keys and values in the subse-
quent decoder. Instead, we address this issue =~ mAPH \ 60.68 62.84 63.58 61.41 59.96
in CPRM: before selecting the topK proposals
as object queries, we apply NMS post-processing to suppress redundant regions, thereby alleviating
conflicts during Hungarian matching. The results in Table[T2]indicate a balance between overlap and
differences. As the IoU increases, the overlap among retained proposals becomes greater while their
differences decrease. This leads to more pronounced conflicts among the classification branches
during Hungarian matching, ultimately limiting overall performance.

The Robustness of PTN. In DETR-like meth- Table 13: Ablation study for CPRM component
ods |[Liu et al.| (2024); [Carion et al.| (2020); Zhu| in PTN on KITTIL N, and N, represent the object
et al.| (2021), the number of object queries rep- queries number from proposal and random gener-
resents the maximum number of objects that the  ation, respectively.

detector can predict in a scene and is closely N, N, | Car Cye
tied to the dataset’s object distribution. Prop-

L . .o 120 0 0.835 0.703
erly adjusting the number of object queries is 180 0 0.859 0726
crucial. Too many may complicate training and 240 0 0.853 0.698
increase computational resource requirements, 180 50 0.844 0.687

while too few may result in missing some ob-
jects. Existing methods, such as Deformable-DETR, SEED, and TransFusion, confirm this notion
by demonstrating that an appropriate number of queries enhances model performance across vary-
ing scenarios. In practical applications, we design the number of queries based on the object count
distribution to improve robustness and reduce sensitivity. For instance, we set 180 queries for the
KITTI dataset and 400 queries for the Waymo Sun et al.|(2020) dataset, reflecting their differing ob-
ject counts (see Table[I3]and the main paper). The performance of PTN on the occluded scenarios
(Table 7 in the main paper) also demonstrates the robustness of our PTN.

In addition, we evaluate the proposal and ran- Table 14: Performance on the nuScnes. N, and
dom queries on the nuScenes (Caesar et al| NV, represent the number of proposal queries and
(2020) dataset. We first analyze the distribu- random queries, respectively.

tion of object counts in the nuScenes dataset N, N. | NDS | mAP
and calculate the 30%, 60%, and 90% per-

centiles, which are approximately 40, 60, and - - 44.55 36.84

. 240 0 44.84 36.93
100, respectively. Subsequently, we catego-
. . . . 300 0 45.85 37.11
rize the estimated object count C'NT into 200 0 44.49 36.41
three intervals: [O,40), [40,60), and [60, 100] 300 100 47.81 38.93
according to the object distribution statistics
of nuScenes. The number of queries is then set to K; = 180, Ky = 240, and
K3 = 300 for these intervals, respectively, following the same strategy as in Waymo.
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The results presented in Table [[4] demonstrate that the adaptive query number method
(IN, = 300) outperforms the baseline, validating its robustness on the nuScenes dataset.

The design of adaptive K. We replace our Typle 15: Performance with different object num-
discretized method with a dense (without dis- per estimators. MAE represents the mean abso-

cretized intervals) prediction strategy. Re- yte error of the estimated object count.
sults in Table [[3] show that the estimated ob- 3 ——- | mAP/mAPH(L2) | MAE

ject count becomes more accurate when us- T

. he d trate but the detection per- W¥th dlscr-etlze(.i mte:rvals (ours) 64.45/61.57 6
Ing the dense strategy, p without discretized intervals 64.11/60.97 39
formance decreases (from 64.45 mAP(L2) to
64.11 mAP(L2)). This is because the model tends to overemphasize the adaptive K estimation
branch, which interferes with the optimization of the detector.

The number of sampled keys per query. For Taple 16: Performance on the number of proposal
each query, we sample g x g keys. The re- (ransformer decoder layers on Waymo.

sults are presented in Table [I6] With increas- Grids | mAP/mAPH(L2) |  Latency(ms)
ing number of the sampled keys, the detection 3 61.00/606 552
performance of PTN can be consistently im- 5%5 64.45/61.57 56.8
proved. However, the corresponding compu- 77 64.52/61.61 593

tational costs are also increasing due to more
sampled features being performed for query interaction, leading to more latency. Therefore, in
our paper, we choose a proper 5x5 as default to trade off the detection performance and latency.

The number of the proposal trans- Table 17: Performance and cost on Waymo.
former decoder layer. As shown Lovers 3D AP/APH (L2) APAPH G
in Table [T7} we evaluate the perfor- Y Veh Ped Cyc (L2) Y

mance of PTN on different proposal I [59.7/61.1 63.6/59.3 59.7/61.3| 61.0/60.6 | 2021 235
transformer decoder layers. When 3 159.4/60.9 63.1/59.2 62.5/62.4| 61.3/60.8 2025 39.5
only one proposal transformer de- 6 |61.9/61.4 65.6/58.6 65.8/64.5| 64.4/61.5 2027 63.4

coder layer is applied, PTN achieves a relatively poor performance with 61.0/60.6 mAP/mAPH at
L2. As the number of layers increases, the performance improves. In this paper, we set the number
of proposal transformer decoder layers to 6 to achieve better performance.

The efficiency of the CPRM. We illustrate
the accuracy improvements of PTN over Voxel-
RCNN at various distance ranges in Figure [7] Vehicle
Firstly, PTN showed significant improvements T Dedestrian
over Voxel-RCNN on the pedestrian category, —*— Cyelist
where the size of the vehicle is 3 times larger
than that of the pedestrian and there are a few
points inside the pedestrians. This highlights
the importance of capturing fine-grained infor-
mation (such as high-frequency edges and lo-
cal boundary variation) for accurately detect-
ing small objects. Furthermore, PTN achieved
larger performance gains on distant objects 0030 30,50 505inf
compared with objects closer to the LiDAR Distance to LIDAR sensor (m)

sensor across all three categories (especially for

the pedestrian, as the point cloud distributions Figure 7: Performance improvement on PTN
within pedestrian instances are typically sparse compared with baseline on Waymo.

and irregular). We believe this is because distant objects with fewer point clouds require more con-
textual information for accurate detection. Overall, these results demonstrate the effectiveness of
our proposed method in detecting small and distant objects.

—e— Overall

Improvements on L2 mAPH
—_ LS} w S W (=} - oo o

Computational complexity of CPRM- We  Table 18: Computation complexity of the de-
evaluate the computational complexity on an  formable and standard cross-attention.

NVIDIA GeForce RTX 4090 GPU with a batch Attention | FLOPS(G) | Memory(MiB)
size of 1. Results in Table [I8indicate that de- ™. fomable cross-attention 634 2995
formable cross-attention reduces memory costs standard cross-attention 40.4 ‘ 16729

by approximately fivefold compared to stan-
dard cross-attention, while the FLOPs are slightly higher due to the bilinear interpolation operation.
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Figure 8: The visualization results using our PTN on the KITTI. The blue points represent the point
clouds, with yellow boxes, green boxes, and red boxes represent pedestrians, vehicles, and cyclists
respectively. This visualization demonstrates that our PTN can accurately detect objects in the scene.

Table 19: Performance on Waymo with different
queries initialization.
Methods |  mAP/MAPH(L2)

Impact of RPN proposals on the object
queries. The quality of RPN proposals influ-
ences the convergence speed and performance
of the detector. Specifically, we use the high- proposal-initialization (12 epoch) ‘ 64.45/61.57
quality proposals to initialize potential objects zeros-initialization (100 epoch) 61.23/58.51
(object queries), which have been proven in prior works |[Liu et al.| (2024); |Bai et al.| (2022) to be
beneficial for accelerating convergence in DETR-like frameworks. To evaluate this effect, we re-
place the RPN proposals with zeros-initialized queries (where the RPN proposals are extremely
poor) following the standard setting of vanilla DETR. The results shown in Table [19]indicate that
short schedule training with proposal-initialization achieves better performance than long schedule
training with zeros-initialized queries.

Comparison with FSD and FSDv2. When us-  Taple 20: Comparison with other SOTA methods
ing the same sampling interval as input, PTN 4, Waymo.

achieves better performance than FSD|Fan et al. Methods [ samploimterval | mAP/mAPH(L2)
(2022b) as shown in Table 20} While PTN de- FSD[Fan ct al J20226] ‘ i ‘ 7297708
. FSDvZFan et al.|[(2024) 1 75.6/73.5
livers performance comparable to FSDv2, we — 5 o
attribute the performance of FSDv2 [Fan et al. PTN ‘ 1 ‘ 75.1/72.8

(2024) to its introduction of virtual voxels into the detection head, which improves the mAP L2 by
2.7%. This plug-and-play technique could be integrated into the PTN to achieve further improve-
ments. On the other hand, when trained with fewer data (i.e., at a sample interval of 2), PTN still
achieves better performance than FSD.

The Influence of Different Coordinates on Taple 21: Performance with different coordinates
CPRM. To better model occlusion relation- Waymo.

f:égi we .enhance the p0§1t10na1 encodmg by Vethod 3D AP/APH (L2)
porating polar coordinates alongside the ethods ‘ Veh Ped Cye
Cartesian features on CPRM: PE = MLP(z, v, Bacel
z, 1, h,w, 0, ps (b),.where p = /2% + y? rep- Cl?l;l\l/F(eCartesian)
resents the radial distance from the sensor and  ~pry (Polar)

¢ = atan2(y, z) is the azimuth angle. The p
explicitly establishes depth ordering from the sensor’s perspective, enabling direct modeling of oc-
clusion: when two objects overlap in angular and height coordinates (¢, z), the object with smaller p
occludes the one with larger p. Experimental results in Table[21]show that CPRM with polar coordi-
nates achieves a mAP/mAPH (L2) of 64.73/61.82, outperforming the baseline (60.00/57.45) and the
Cartesian-only CPRM (64.45/61.57). The improvement is particularly notable for pedestrian and
cyclist classes, where occlusion handling is critical. This demonstrates that polar coordinates more
naturally represent occlusion relationships and reduce model learning complexity.

59.09/58.57 58.20/52.47 62.73/61.33
61.91/61.49 65.62/58.69 65.82/64.54
61.87/61.45 65.77/58.84 66.56/65.17

The visualization results. The visualization results using our PTN on KITTI |Geiger et al.| (2012)
are shown in Figure[8] From the results, we can see that our PTN can detect most objects, especially
for small objects (such as pedestrians). This is attributed to the HAFA module, which efficiently
retrieves the lost detail information in the downsampling process. This information is important for
the detector to accurately locate small objects.
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