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Abstract

Memorization in language models is typically001
treated as a homogenous phenomenon, neglect-002
ing the specifics of the memorized data. We003
instead model memorization as the effect of a004
set of complex factors that describe each sam-005
ple and relate it to the model and corpus. To006
build intuition around these factors, we break007
memorization down into a taxonomy: recita-008
tion of highly duplicated sequences, reconstruc-009
tion of inherently predictable sequences, and010
recollection of sequences that are neither. We011
demonstrate the usefulness of our taxonomy012
by using it to construct a predictive model for013
memorization. By analyzing dependencies and014
inspecting the weights of the predictive model,015
we find that different factors influence the like-016
lihood of memorization differently depending017
on the taxonomic category.018

1 Introduction019

The existing literature on Language Model (LM)020

memorization1—the tendency to generate exact021

copies of training samples at test time—varies022

widely in stated motivation. Papers might focus023

on copyright (Shi et al., 2023; Karamolegkou et al.,024

2023; Meeus et al., 2024), privacy (Carlini et al.,025

2018, 2022b; Brown et al., 2022; Mireshghallah026

et al., 2022), or scientifically understanding how027

interpolation (Mallinar et al., 2022) leads to gen-028

eralization (Feldman, 2021; Tirumala et al., 2022;029

Henighan et al., 2023a). Although these objectives030

share commonalities, they also drive distinct and031

sometimes contradictory notions of memorization.032

To disentangle these motivations and to articulate033

the factors that determine or signal memorization,034

we propose a taxonomy inspired by colloquial dis-035

tinctions of memorization behavior in humans.036

Our taxonomy, illustrated in Fig. 1, defines three037

types of LM memorization based on colloquial de-038

scriptions of human memorization. Humans recite039

1As defined by www.genlaw.org/glossary.html.

direct quotes that they commit to memory through 040

repeated exposure, so LMs recite highly duplicated 041

sequences. Humans reconstruct a passage by re- 042

membering a general pattern and filling in the gaps, 043

so LMs reconstruct inherently predictable boiler- 044

plate templates. Humans sporadically recollect an 045

episodic memory or fragment after a single expo- 046

sure, so LMs recollect other sequences seen rarely 047

during training. 048

We use our taxonomy in a variety of experiments 049

that highlight the multifaceted nature of memoriza- 050

tion. In summary: 051

• We introduce an intuitive taxonomy and 052

heuristics for categorizing memorized data. 053

• By comparing memorized and unmemorized 054

distributions, we assess how a variety of 055

corpus-wide statistics, datum-level metrics, 056

and representational differences influence the 057

likelihood of a given sequence being memo- 058

rized. Our dependency tests confirm existing 059

findings that low perplexity is strongly associ- 060

ated with memorization—though not equally 061

for all memorized examples. This fact guides 062

our heuristic for partitioning memorized data 063

into a recitation category. 064

• We study scaling factors in memorization by 065

monitoring each taxonomic category over the 066

course of training and across model sizes. The 067

number of memorized sequences increases 068

with training time and model size, regardless 069

of taxonomic category. Recollection, how- 070

ever, sees the fastest increase—and this out- 071

size growth cannot be attributed solely to re- 072

peated exposures to rare sequences or to ran- 073

dom memorization. 074

• We train logistic regressions to predict memo- 075

rization for each category. This predictive 076

model outperforms both a simple baseline 077
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Is the sequence 
32-extractable?
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Is the continuation 
duplicated < 6 
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boilerplate template: either incrementing 
numerals or substring repetition?

Recitation Recollection Reconstruction

Figure 1: Our intuitive memorization taxonomy has three categories determined by simple heuristics.

with no taxonomy and a model that uses a078

taxonomy optimized by searching for the best079

set of mediating factors. These experiments080

show that the intuitions behind our taxonomy081

can improve on more generic approaches.082

• We highlight differences between categories083

by exploring statistical dependencies, find-084

ing recitation is enabled by low-perplexity085

prompts and recollection is constrained by the086

presence of rare tokens.087

2 Experiments088

In this section, we detail the definitions and data089

we use to analyze varying factors in memorization.090

Defining Memorization There are multiple com-091

peting definitions for memorization (Zhang et al.,092

2021; Ippolito et al., 2022). Because our experi-093

ments employ memorization data released by Bi-094

derman et al. (2023a), we use their preferred defi-095

nition of k-extractable memorization (Carlini et al.,096

2022a) with k = 32. A sample is k-extractable097

if the LM, when prompted with the first k tokens,098

generates the following k tokens verbatim.099

Language Models We study memorization100

across model scale and training timing using101

the deduplicated Pythia models (Biderman et al.,102

2023b), which range in size from 70M to 12B103

parameters2 trained on a deduped version of The104

Pile (Gao et al., 2020). Data order is fixed across105

runs, enabling causal claims about the effect of106

model scale on memorization.107

Datasets Our memorized sample is a public list108

of sequences memorized by Pythia, released by109

Biderman et al. (2023a). Unlike other works that110

2Excluding the 160M parameter model, as its memoriza-
tion dataset exhibits outlier behavior that could be either a
buggy data artifact or a real phenomenon, but is regardless
outside of the scope of our work.

estimate whether a generation is from a model’s 111

training set using predictive techniques (Carlini 112

et al., 2020; Shi et al., 2023; Yang et al., 2024), this 113

dataset contains all 32-extractable samples from 114

the Pile, verified by referencing the training data 115

(Gao et al., 2020). We also collect a representa- 116

tive sample by taking a random 3% subset of The 117

Pile, retaining the first 64 tokens of each sequence. 118

Some analysis also considers an unmemorized dis- 119

tribution estimated by subtracting the memorized 120

data distribution from the entire Pile, as inferred 121

from the representative sample. 122

3 Potential factors in memorization 123

We consider a number of possible factors in 124

whether a given sequence is memorized. These fac- 125

tors are based on corpus statistics, datum statistics 126

intrinsic to that sample, or model perplexity. Fea- 127

tures may be computed over the first 32 tokens (the 128

prompt); the last 32 tokens (the continuation); 129

and the full sequence of 64 tokens subsampled 130

from the training data. Implementation details are 131

provided in Appendix A. 132

Many of these properties have different distribu- 133

tions for memorized and unmemorized data. Fig. 2 134

illustrates these differences, highlighting that for 135

some properties, the memorized distribution is 136

more concentrated. Other properties—in particular 137

perplexity and number of duplicates in the training 138

corpus—have memorized and unmemorized dis- 139

tributions with visibly different medians. Where 140

the distributions differ, the property in question is 141

likely to influence memorization, an assumption 142

which we employ predictively in Section 6. 143

3.1 Corpus statistics 144

Some factors relate a given sequence to the entire 145

training corpus. Overall, the following features il- 146

lustrate how memorization is influenced by various 147

types of duplication. 148
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Figure 2: Histogram of various properties of interest (described in Section 3) for memorized and unmemorized
(estimated by assuming the representative dataset’s statistics hold for the Pile) samples.

Duplicates For each 32-token window in any149

2049-token sequence seen during training, we150

count the number of duplicates in the Pile.151

Semantic Matches To assess the prevalence of152

semantically similar samples in training, we gener-153

ate document embeddings for each full sequence154

using SBERT and count the number of sequences155

with cosine similarity ≤ 0.8. These sequences are156

semantically similar but may not be exact token-157

level duplicates.158

Textual Matches We filter the set of semantic159

matches for a given target sequence to identify160

those with a low Levenshtein edit distance in their161

prompts (Levenshtein et al., 1966) from the target162

sequence. These matches flag slight variations on163

boilerplate prompts. We compute edit distance at164

the character level, thereby accounting for different165

tokenizations of identical sequences.166

Token frequency We also compute summary167

statistics about the corpus-wide frequency of in-168

dividual tokens in the sequence: mean, median,169

maximum, minimum, and 25th / 75th percentile170

counts.171

3.2 Sequence properties172

Because some sequences are inherently easier to173

encode, we also consider factors determined by174

intrinsic metrics on the sample itself.175

Templating A sample is classified as templating176

if it follows a predictable pattern. We do not com-177

prehensively consider all possible templates, but178

focus on two common patterns defined by hand-179

crafted heuristics:180

• Repeating: Consisting only of a short repeat-181

ing sequence of tokens, e.g., “Go Go Go ...”.182

Zhang et al. (2021) previously discussed repet- 183

itive templates as a common feature of appar- 184

ently memorized data which was not classified 185

as counterfactually memorized. 186

• Incrementing: Consisting of incrementing 187

numerical sequences. For example, consider 188

the sequence “23: 0xf1, 24: 0xf2, 25: 0xf3”, a 189

set of interspersed numerical sequences with 190

repeating separators. 191

Compressibility We use Huffman Coding (Huff- 192

man, 1952) length to measure how easily a se- 193

quence is compressed. Compressibility generalizes 194

repeating templates to cases where minor varia- 195

tions on repeating patterns must be memorized. 196

The connection between learning, memorization, 197

and compression is drawn from the existing liter- 198

ature: Carlini et al. (2020) attempts to filter out 199

sequences that are “easy” to produce by compar- 200

ing zlib compression with perplexity to identify 201

memorized training data. 202

3.3 Perplexity 203

We compute average perplexity across tokens on 204

the prompt, continuation, and full sequence. The 205

importance of perplexity is one of the most re- 206

produced results in memorization research (Zhang 207

et al., 2021; Carlini et al., 2018) and we confirm 208

that low perplexity sequences are far more likely 209

to be memorized than high perplexity sequences 210

(Fig. 2). Perplexity is the only factor we consider 211

that relates to model behavior, rather than being 212

intrinsic to the data. 213

4 Memorization Taxonomy 214

To analyze the fundamental causes of k-extracted 215

memorization, we subdivide memorized samples 216
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Figure 3: KL divergence between generation perplex-
ity of memorized and non-memorized examples for
Pythia 12B with bootstrapped confidence intervals. Non-
memorized samples are treated as the reference dis-
tribution. Divergence is highest for sequences with 6
duplicates, while highly duplicated sequences have near-
identical memorized and unmemorized distributions.

into three types. The following rules categorize a217

sample as a candidate for recitation, reconstruc-218

tion, or recollection; candidates memorized by the219

model are therefore respectively recited, recon-220

structed, or recollected.221

4.1 Recitation222

The existing memorization literature agrees that the223

duplication of a sequence across the training corpus224

is strongly correlated with its memorization (Lee225

et al., 2021; Kandpal et al., 2022). For example,226

LMs produce verbatim copies of bible quotes or227

software licenses that are commonly duplicated.228

We consider a sample to be a recitation candi-229

date if it is highly duplicated in the training corpus.230

Model perplexity is a good predictor of memo-231

rization on rare sequences because the perplexity232

distributions are more different on memorized and233

unmemorized data with few duplicates (Fig. 3).234

For highly duplicated sequences, however, perplex-235

ity is no longer a good predictor of whether the236

sequence is memorized or not. We therefore de-237

fine a recitation candidate as a sequence with at238

least 6 duplicates because the three-way relation-239

ship between perplexity, memorization, and dupli-240

cate count differs before and after that maximum241

divergence point.242

LMs memorize a wide variety of highly dupli-243

cated texts, as shown in the example of Appendix244

F. Recited natural language text largely comprises245

webpage boilerplate text, liturgy, and software li-246

censes or other legalese. Table 3, which includes247

random samples of natural language recitation, in-248

cludes all of these common cases. Recited code249

text, as seen in Appendix 4, is largely web devel-250

opment (HTML, CSS, JavaScript, etc.) boilerplate251

that describes common elements or derives from252

popular webpage templates.253

4.2 Reconstruction 254

Are all perfectly reproduced sequences truly “mem- 255

orized”? We consider cases that may be spuriously 256

classified by definitions like k-extraction. Rather 257

than encoding the entire sequence, the model learns 258

templates and then reconstructs the sample based 259

on these more broadly applicable patterns. A se- 260

quence can thus be perfectly reproduced even if it 261

never appeared during training. 262

We consider a few templates—stereotyped se- 263

quence patterns with a single logical continuation— 264

to define reconstruction candidates. These tem- 265

plates are not intended to be comprehensive, as 266

any stereotyped pattern may permit reconstruction. 267

Our reconstruction candidates are sequences classi- 268

fied as incrementing or repeating by the heuristics 269

described in Section 3.2. As seen in Appendix E, 270

code is more likely to be reconstructed than natural 271

language text. When natural language text is recon- 272

structed, as seen in Appendix F, it often takes the 273

form of a chapter index and it is more likely than 274

code to contain cases of phrase repetition rather 275

than arithmetic sequences. 276

4.3 Recollection 277

After excluding highly duplicated recitations and 278

template-based reconstructions, what remains 279

memorized? Despite only seeing a sample a small 280

number of time, the model might still be able to 281

recollect a given sample, although the factors that 282

lead to instant memorization are poorly understood. 283

We consider a sample to be a recollection candi- 284

date if it is a candidate for neither recitation nor 285

reconstruction. 286

Recollected code, seen in Table 4, is largely 287

made up of templating patterns that are not strictly 288

the combination of incrementing and repetition that 289

we use to define templates. The examples of natu- 290

ral language recollection in Table 3 might likewise 291

at first appear to be misclassified recitation cases. 292

Natural language recollection frequently comprises 293

legal or liturgical texts, which would be expected 294

to appear frequently throughout the corpus. 295

One might conjecture that these sequences are 296

cases of retokenization, i.e., the particular token 297

sequence is rare but the same string is heavily du- 298

plicated in the corpus under different tokenizations. 299

However, the dependency tests in Appendix B con- 300

tradict this hypothesis: the correlation between tex- 301

tual match count and memorization is consistently 302

neutral or negative for recollection candidates. In 303
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other words, a rare token sequence is less likely to304

be memorized, not more, if it is a different tokeniza-305

tion of a common string. We instead conjecture that306

the model appears to memorize slight differences307

in translation (liturgical text) or indexing (legal)308

between each variation on a sequence.309

5 Distribution Across Scale and Time310

Larger models memorize more data (Biderman311

et al., 2023a; Carlini et al., 2023; Tirumala et al.,312

2022), likely because they have more parameters313

with which to recreate those sequences. Recent314

work on deduplication (Sorscher et al., 2022) has315

argued that larger models are more distorted by316

duplication, potentially because heavily duplicated317

sequences are more likely to be memorized (Lee318

et al., 2021).319

Likewise, models memorize more data as train-320

ing progresses (Tirumala et al., 2022), but it is not321

known whether the accumulation of memorized322

examples is caused solely by increased exposure to323

heavily duplicated samples or whether other factors324

eventually cause memorization of rare sequences.325

In this section, we study the impact of training time326

and model size on each category of memorization.327

5.1 Model size328

Fig. 4(a) reports the number of examples mem-329

orized by each fully trained model, confirming330

that memorization increases with parameter count.331

While all types of memorization increase with332

model size, some increase faster than others. Rec-333

ollection grows the most (Fig. 4(b)) from 4.49% of334

the examples memorized in the 70M model, to335

11.34% in the 12B model. This disproportion-336

ate growth suggests larger models tend to mem-337

orize rarer sequences that cannot be trivially re-338

constructed. Meanwhile, reconstruction barely339

increases, indicating the smallest models have340

learned to extrapolate repeating and incrementing341

templates almost as effectively as the largest.342

5.2 Time343

Over the course of training, LMs are known344

to memorize an increasing pool of the training345

data (Tirumala et al., 2022). However, is the cumu-346

lative effect due solely to exposure to more memo-347

rizable sequences? Due to repeated exposure to the348

same heavily duplicated data? Or is some structural349

property of the later model more amenable to exact350

memorization? To understand why memorization351

accumulates throughout training, we measure each 352

taxonomic category in intermediate checkpoints for 353

the 12B parameter Pythia model. We find that ac- 354

cumulated memorization cannot be ascribed solely 355

to the number of available samples to memorize or 356

to repeated exposure to highly duplicated samples. 357

First, in Figure 4(c), we see that models do not 358

simply accumulate memorized samples with a uni- 359

form probability through training since memoriza- 360

tion increases sub-linearly. Second, if memoriza- 361

tion accumulates solely due to repeated exposure to 362

each duplicated sample, recitation of these highly 363

duplicated samples would be the main source of in- 364

creasing memorization. Instead, the proportion of 365

recitation decreases relative to the amount of mem- 366

orization (Fig. 4(d)). Therefore, the additional 367

memorization cannot be due to repeated exposure 368

to recitation candidates. Instead, again the largest 369

proportional increase among all categories is in the 370

recollection category. This trend holds until ap- 371

proximately 86% of total training time, which sees 372

a sudden increase in reconstruction. We conjecture 373

that this increase represents a breakthrough in gen- 374

eralizing more complex templates but leave further 375

investigation to future work. 376

Having considered and rejected both exclusive 377

explanations, we must presume that memorization 378

continues to occur late in training through a com- 379

bination of repeated exposure, opportunities for 380

memorizing new sequences, and other unexplored 381

factors that may be the focus of future work. 382

6 Predicting memorization 383

What makes a taxonomy useful, or a reflection 384

of natural kinds? Our position is that categories 385

should differ in the dependencies between features 386

of interest. The most obvious example of vali- 387

dated natural kinds is the case of Simpson’s Para- 388

dox (Simpson, 1951), a statistical phenomenon in 389

which a pair of variables are correlated across a 390

population, but the direction of correlation reverses 391

when considering each subpopulation category sep- 392

arately. One famous example is Charig et al. (1986), 393

who found that a particular surgery was more effec- 394

tive on both large and small kidney stones, but 395

appeared less effective across all kidney stones 396

without accounting for the confounding variable of 397

size. Simpson’s Paradox is only the most obvious 398

evidence for natural kinds, but large changes in cor- 399

relation may support categorical differences even 400

if that correlation does not change direction. 401
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Figure 4: The quantity of memorized data categorized by taxonomy across parameter size and training time. For
fully trained models of varying parameter sizes, we give (a) total counts and (b) proportion of memorized samples
by category. For the 12B parameter model, we consider intermediate checkpoints during training, also providing for
each checkpoint the (c) total memorized counts and (d) proportion of memorized samples by category. Note that
the proportional plots are truncated at 80%, as recitation is consistently a majority of the overall memorized data.

Figure 5: Performance of baseline, proposed taxonomy and optimally partitioned models against various metrics on
subsets of test dataset. Confidence interval is standard deviation computed by bootstrapping.

We measure a number of categorical differences402

in dependencies, including sign and significance403

differences, in Appendix B. If our intuitive taxon-404

omy did not reflect meaningful differences with405

respect to the factors in Section 6.3, their depen-406

dencies would not differ significantly. We instead407

find significant differences through statistical tests,408

suggesting the taxonomy expresses some natural409

kinds.410

Not only do these differences support our taxon-411

omy as an ontology, but they suggest our taxonomy412

can help predict memorization from dependent fac-413

tors. We therefore test the applicability of our tax-414

onomy by creating a predictive model based on the415

intuitive taxonomic model. We compare it with416

a generic baseline model lacking a taxonomy and417

with a model using an automatically selected op-418

timal partition, finding that our taxonomic model419

supports more accurate predictions.420

6.1 Models 421

Each model is a logistic regression trained with L2 422

regularization, a bias parameter, and balanced class 423

weights. We split the representative sample into test 424

and train sets. We then combine the train set with 425

the full memorized sample, reserving a portion as 426

a validation set. For each set, continuous features 427

are normalized to zero mean and unit variance. 428

Generic baseline model The generic baseline 429

is a logistic regression model trained to predict 430

whether a sample is memorized given the features 431

from section 3. It is trained on the training split of 432

the entire memorized dataset and the entire repre- 433

sentative Pile sample. 434

Intuitive taxonomic model (Ours) The predic- 435

tive model based on our intuitive taxonomy is made 436

up of a set of three binary logistic regression mod- 437

els. We divide samples into taxonomic groups be- 438
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fore training a separate regression on each taxo-439

nomic category.440

Optimally partitioned model To demonstrate441

that our intuitive taxonomic model is not sim-442

ply benefiting from having more degrees of free-443

dom, we devise an equally complex—that is,444

with the same architecture of three binary logis-445

tic regressions—alternative taxonomic model. To446

provide a strong baseline, we search for a parti-447

tion based on a set of possible feature-threshold448

combinations. We train predictive models with449

the same three-regression architecture as our intu-450

itive taxonomic model, but partitioning based on451

each feature-threshold combination. The optimal452

partition is that which supports the best predictive453

model, which we find categorizes samples based454

on Huffman coding length followed by sequence455

duplicate count.456

For a given feature, we consider the 25th, 50th457

and 75th percentiles of the value distribution dis-458

tribution as potential thresholds. Each feature-459

threshold pair provides a possible partition split;460

we select the optimal three-category partition based461

on F1 score on the aggregate representative test462

set. Note that our “optimal” partition may not ex-463

plore our intuitive taxonomy as an option because464

the threshold search is limited to each feature’s465

quartile values. Our intuitive taxonomy may—and466

does—therefore outperform the optimal partition.467

6.2 How good is our taxonomy?468

To test our intuitions, we compare our proposed469

taxonomy to the homogeneous baseline and to our470

optimal partition. As seen in Fig. 5, the greedy-471

optimal partition outperforms the aggregate base-472

line slightly on most metrics, but our intuitive tax-473

onomy is better calibrated and more accurate ex-474

cept on the recollection set, where it has low preci-475

sion. We conclude that our intuition has guided us476

to a better taxonomy than searching possible data477

partitions.478

6.3 Categorical differences479

Having confirmed the benefits of separately con-480

sidering these three taxonomic categories, Fig. 6481

shows how they differ through the feature weights482

from our regression models.483

Recollection candidates—that is, rare484

sequences—are more likely to be memorized if485

they have no rare tokens. We posit that there is486

more resistance to memorizing rare tokens within487

Figure 6: Feature weights from predictive models
trained on the homogeneous aggregate baseline and the
intuitive taxonomy categories.

a sequence, as their prior probability is low. 488

Meanwhile, the more duplicates a recollection 489

candidate has, the more likely it is to be memorized, 490

whereas recitation candidates are hardly affected by 491

duplicate count. These results suggest that beyond 492

the 5-duplicate threshold, greater exposure hardly 493

leads to memorization. 494

Another notable difference is in the effect of 495

perplexity: while predictable continuations are 496

strongly associated with memorization across all 497

categories, unpredictable prompts are strongly as- 498

sociated with memorization except for cases of 499

reconstruction. The clear explanation is that high- 500

perplexity prompts often only occur as prelude to 501

the same continuation, providing a unique index for 502

the memorized sequence, but that a low-perplexity 503

prompt may also initiate a common template, en- 504

abling reconstruction. 505
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7 Discussion and future work506

We have established that an intuitive taxonomy can507

be used to improve understanding of memorization.508

We now relate our methods to the existing literature509

on memorization and to possible future directions.510

7.1 Ontologies of memorization511

Our work is strongly related to several recent efforts512

to develop an ontology of memorization. Dankers513

et al. (2023), studying machine translation, focus514

primarily on the influence of a sequence during515

training rather than on the semantics or properties516

of an individual sequence. Like us, they investigate517

the factors that influence counterfactual memoriza-518

tion, the category likely to dominate “recollection”519

cases. They find that rare tokens, long sequence520

lengths, and high BPE segmentation rate are cor-521

related with counterfactual memorization (Zhang522

et al., 2021); of these, we only consider rare to-523

kens, which we confirm to predict recollection in524

particular.525

Hartmann et al. (2023) consider what facets of526

memorization are likely to be relevant to different527

targets, just as we discuss the differences between528

motivations grounded in copyright infringement529

and privacy. Bansal et al. (2023) consider two dif-530

ferent kinds of memorization: heuristic memoriza-531

tion, i.e., shortcut learning, and example memoriza-532

tion. Our work focuses on what they call example533

memorization, further decomposing that category.534

We do not test their result that high-entropy fea-535

tures can indicate example memorization, but like536

us, they use this factor to differentiate between their537

memorization categories.538

7.2 Memorization and training time539

Our work fits into an existing literature on how540

time and scale affect memorization. Biderman et al.541

(2023b) find that the position of a sequence in train-542

ing does not affect its likelihood of being mem-543

orized, and that smaller models fail to memorize544

even when repeatedly exposed to a term. Tiru-545

mala et al. (2022) find that larger models memorize546

more training data and forget less during training.547

They also observe that models memorize nouns548

and numbers first, using these entities as unique549

identifiers for individual samples. Our work further550

expands our understanding of scale in memoriza-551

tion by highlighting that rare sequences compose552

the fastest-growing category of memorization.553

7.3 Which categories do we care about? 554

The relevance of each category depends on our 555

motivation for studying memorization. 556

1. Intellectual property violations: The con- 557

tent most relevant to concerns about intellec- 558

tual property may be highly duplicated data, 559

such as frequently excerpted passages from a 560

popular book. However, some rare sequences 561

may also be memorized, making recollection 562

potentially relevant to issues of copyright in- 563

fringement. 564

2. Privacy: If the primary motivation is prevent- 565

ing the memorization of personally identify- 566

ing information, we may focus on recollection, 567

as issues may arise if a model generates such 568

information even after even a small number 569

of exposures. 570

3. Scientific understanding of generalization: 571

Work like Henighan et al. (2023b) and Bartlett 572

et al. (2020) points to eventual generaliza- 573

tion as a result of memorization dynamics. 574

A deeper understanding of these phenomena 575

might focus on reconstruction, which exposes 576

a direct link between apparent overfitting and 577

general pattern recognition. 578

7.4 Ontologies and statistics 579

This taxonomy may serve as an example for fu- 580

ture methods of interpreting complex phenomena, 581

in deep learning and elsewhere. We have, in par- 582

ticular, quantified the validity and usefulness of 583

such a taxonomy by comparing predictive models 584

which treat memorization in aggregate to models 585

which treat memorization as a multifaceted phe- 586

nomenon with our taxonomy. We provide evidence 587

for the taxonomic model by measuring the improve- 588

ment in predictive judgments when reflecting the 589

dependent and nonlinear thresholded relationship 590

between memorization and the properties that de- 591

fine each taxonomic category. 592

In future work, we hope that interpretable and 593

useful ontologies can be validated by a similar ap- 594

proach. Our proposal for what makes a good taxo- 595

nomic model is not only applicable to memoriza- 596

tion or even to deep learning phenomena. Instead, 597

by studying interactions and nonlinearities in arbi- 598

trary settings, researchers may find complex depen- 599

dencies and artifacts like Simpson’s paradox. 600
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Limitations601

Our primary goal is to intuitively describe the602

memorization behavior with a taxonomy and con-603

sequently use that taxonomy to investigate how604

several dominant factors in memorization interact605

with each other. A secondary goal is to provide606

an example of how an ontology can be constructed607

and tested in general, as tested with our predictive608

models. However, these predictive models are not609

measurements of statistical dependency in general,610

instead only focusing on linear dependence. Al-611

though more general statistical dependencies are612

studied in the supplementary experiments of Ap-613

pendix B, the experiments in the main body of the614

paper assume linear dependence and so the inter-615

acting factors should be evaluated in the context of616

our supplementary dependency experiments. We617

believe future work inspired by our approach could618

improve on our work by incorporating more gen-619

eral dependencies.620

Another limitation is our definition of memoriza-621

tion. The choice of 32-elicitation has a number of622

disadvantages, one of them being that we lose a623

notion of fuzzy or partial memorization, which is624

considered important in some contexts. Arguably,625

under a counterfactual memorization definition, we626

may not see substantial patterns of either recitation627

or reconstruction. The measurement of memoriza-628

tion is a large area of research with many possible629

definitions to choose from (Carlini et al., 2022a;630

Tirumala et al., 2022; Kandpal et al., 2022; Zhang631

et al., 2021; Zhao et al., 2022; Stock et al., 2022;632

Schwarzschild et al., 2024).3633
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A.1 Number of exact duplicate samples811

We compute the number of exact duplicates as a812

3-step process:813

1. For every 32-gram window in the data point814

S (comprised of 2049 tokens) we compute a815

rolling hash and store it, along with the win-816

dow’s index and offset in a parallelized set of817

data frames.818

2. For every index position, we compute the819

same hash for all S[32: 64] (sequence con-820

tinuations) and store all (index, offset, hash)821

tuples if their hash is one of the computed822

sequences continuation hashes.823

3. Now, for every sequence continuation, we824

look at all 32-gram windows with the same825

hash and compute their number of duplicates826

as the number of equivalent (same set of to-827

kens in the same order) samples.828

The hash function used is similar to Rabin-829

Karp’s rolling hash algorithm. Specifically, con-830

sider a token sequence of 32 tokens.831

S = [c1, c2, c3, ...c32]832

Let us define two primes P = 60013 and MOD =833

1018 + 3. We define their hash function to be834

H(S) = (c1+c2∗P+c3∗P 2+...+c32∗P 31)%MOD835

A.2 Token frequency836

Token frequencies are calculated across the Pile.837

For every sequence continuation, we consider the838

maximum, minimum, median and quartile frequen-839

cies of tokens.840

A.3 Compressibility841

We use Huffman Coding length to measure how842

easily a sequence can be compressed. Compress-843

ibility provides a rough generalization of internal844

repetition, where only a few exceptions to some845

simple repetition pattern might need to be memo-846

rized. However, unlike straightforward repetition847

templates, compressible sequences may not be con-848

sidered to be reconstructed by the model. Instead,849

we include compressibility as a filter to evaluate850

whether LLMs memorize samples that are easier to851

compress into their parameters.852

A.4 Incrementing and Repeating templates 853

A.4.1 Incrementing Templates 854

To check for an incrementing sequence, we perform 855

the following steps: 856

• Split the text by whitespace and convert any 857

splits which are numerals in non-decimal 858

bases (e.g., hexadecimal) into base 10. 859

• Remove escape sequences. 860

• Within each string, separate contiguous nu- 861

meric characters from anything else. If two 862

contiguous numeric characters are separated 863

by a period, combine them into their floating 864

point representations. 865

• Discard if there are fewer than 3 potential 866

numerals in the sequence. 867

• Check if the sequences are incrementing or 868

repeating. 869

A.4.2 Repeating templates 870

We perform the following steps to check for repeat- 871

ing sequences: 872

• Obtain a sequence by splitting the text by char- 873

acter. 874

• Check if the sequences are incrementing or 875

repeating. 876

We perform the following steps to determine if a 877

sequence generated from either of the above steps 878

is incrementing or repeating. 879

• For every templating length, defined to be less 880

than half length of splits, and for every po- 881

sition less than templating length, we iterate 882

through splits with start position as position 883

and step size set to templating length. We then 884

determine if the current iteration is repeating 885

or incrementing. 886

• For example, if position is 1 and templat- 887

ing length is 5, we iterate through positions 888

[1, 6, 11, 16...]. if our input splits length is 10, 889

we iterate for all templating lengths 1 through 890

5 and for all positions less than current tem- 891

plating length 892

• Within each iteration, we check: 893

– If the current iteration has both texts and 894

numerals, it is neither incrementing nor 895

repeating. 896
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– If the current iteration has only texts, we897

consider the current iteration to be repeat-898

ing if all elements in the iteration are the899

same.900

– If the current iteration has only numer-901

als, we consider current iteration to be902

incrementing if all the numerals are in an903

arithmetic progression. If the difference904

in AP is 0, we consider it to be repeating905

instead.906

• Input splits are considered as repeating if all907

iterations for a given templating length are908

repeating.909

• Input splits are considered as incrementing if910

atleast one of the iterations for a given tem-911

plating length are incrementing and others, for912

the same templating length, are either incre-913

menting (or) repeating.914

• For all templating lengths, if any length of915

them has been found to be incrementing or916

repeating, we return True (corresponding to917

the fact that the text is indeed a template) and918

diff.919

• Note that, in the case of sequences generated920

while checking for a repeating template, we921

do not have any numerals.922

B Dependency Tests for Influence of923

Features on Memorization924

This section contains visualizations of various de-925

pendency tests between memorization likelihood926

and our target features. We look at dependencies on927

code (Fig. 9), natural language (Fig. 8), and both928

(Fig. 7). These tests are more general and have929

stronger guarantees than simply looking at regres-930

sion weights, which have a number of flaws. For931

example, we see in Fig. 6 that regression can reallo-932

cate bias terms to features that take on a consistent933

value, giving them spurious weight.934

C Tables for scaling experiments935

Figure 4 visualizes the count and proportion of936

memorized samples by category across time and937

scale. We present the raw statistics for each taxo-938

nomic category across model size in Table 1 and939

training time in Table 2.940

D Classifying examples as natural 941

language or code 942

To train a Natural Language vs Code classifier, 943

we fine-tune DistilBert (Sanh et al., 2020) on uni- 944

formly random sampled Bookcorpus (Zhu et al., 945

2015) and github-code datasets. We train it with 946

learning rate of 10−7 and batch size of 256 for a 947

total of 1000 steps and observe validation f1 score 948

of 0.9950 on a held of evaluation set. 949

To select an optimal threshold for this classifier 950

on memories dataset, we randomly sample 500 se- 951

quences and manually label them. To make sure 952

that precision is high for our models, we choose 953

≤ 0.4 as threshold for determining code samples 954

and a threshold of ≥ 0.525 for determining natural 955

language samples, based on the points marked in 956

Figure 10, which mark points of near 100% preci- 957

sion for classifying each category. 958

E Likelihood of memorization for code 959

and natural language 960

We study the likelihood that a sample that has been 961

confidently classifier as code or NL (Appendix D) 962

is memorized across time and scale. For example, 963

for all samples confidently classified as code Fig- 964

ure, what is the proportion of samples which are 965

memorized? 966

Figure 11 shows that code samples are more 967

likely to be memorized than NL across categories. 968

This trend suggests that certain intrinsic factors 969

about code make it more susceptible to memoriza- 970

tion, even for recollection samples where memo- 971

rization cannot be attributed to obvious patterns 972

and high duplication. Both code and NL become 973

more likely to be memorized across scale, except 974

for reconstruction samples, which remain compara- 975

tively unchanged. 976

F Examples of memorized continuation 977

sequences 978

Table 3 provides examples of memorized natural 979

language text in each memorization category and 980

Table 4 provides examples of memorized code. 981

Samples are classified using the methodology in 982

Appendix D. 983
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Figure 7: Dependency measurements between influence factors and memorization.

Figure 8: Dependency measurements between influence factors and memorization for natural language samples.
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Figure 9: Dependency measurements between influence factors and memorization for code samples.

Figure 10: False positive rates across various thresholds on randomly sampled sequences of Pile. We choose ≤ 0.4
as threshold for determining code samples and a threshold of ≥ 0.525 for determining natural language

14
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Figure 11: We study how likely models are to memorize samples confidently classified as code or NL. We calculate
the likelihood for each distribution (code vs. NL) separately. Figures include probability across a model scale and
training time. Models memorize a greater proportion of code samples than NL across all categories, model scale,
and training time.
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Recitation Reconstruction Recollection

Model Count Percent Count Percent Count Percent

70m 362,550.0 88.12% 30,430.0 7.40% 18,468.0 4.49%
410m 690,726.0 85.17% 46,076.0 5.68% 74,238.0 9.15%

1b 878,456.0 85.05% 49,253.0 4.77% 105,163.0 10.18%
1.4b 887,549.0 84.68% 49,435.0 4.72% 111,120.0 10.60%
2.8b 1,141,180.0 84.21% 52,416.0 3.87% 161,620.0 11.93%
6.9b 1,416,014.0 84.27% 53,968.0 3.21% 210,314.0 12.52%
12b 1,566,369.0 84.56% 55,114.0 4.10% 249,733.0 11.34%

Table 1: The number of memorized samples for each taxonomic category across model size. These results are
visualized in Figure 4(a) and 4(b).

Recitation Reconstruction Recollection

Checkpoint Count Percent Count Percent Count Percent

16% 137,681.0 84.25% 7,960.0 4.87% 17,777.0 10.88%
30% 301,146.0 83.92% 15,379.0 4.29% 42,338.0 11.80%
44% 489,629.0 83.69% 23,333.0 3.99% 72,105.0 12.32%
58% 710,823.0 83.42% 31,260.0 3.67% 109,985.0 12.91%
72% 999,867.0 83.63% 38,999.0 3.26% 156,712.0 13.11%
86% 1,308,538.0 83.66% 47,145.0 3.01% 208,372.0 13.32%
100% 1,566,369.0 84.56% 55,114.0 4.10% 249,733.0 11.34%

Table 2: The number of memorized samples for each taxonomic category across training time for Pythia 12b. 14,000
is the final checkpoint. These results are visualized in Figure 4(c) and 4(d).
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Category Text Count

Recitation

-11 NASB
Or do you not know that the unrighteous will not inherit the kingdom of God? Do not be
deceived; neither fornicators, nor idolaters, nor adulterers, nor effeminate, nor homosexuals, nor
thieves, nor the covetous, nor drunk

175

Recitation
2d 1234, 1238 (8th Cir.1990). On the other hand, the Federal Rules of Civil Procedure have
authorized for nearly 60 years "motions for summary judgment upon proper showings of the
lack of a genuine, triable issue of material fact." Celotex Corp. v. Catrett

86

Recitation

view of life, food, cocktails, fitness, and fun.
This blog is just a regular guy’s view of life, food, cocktails, fitness, and fun. My opinions,
musings, observations, rantings, ravings, foodie adventures, and overall humorous pontification
of

52

Recitation

://www.harpercollins.ca>
New Zealand
HarperCollinsPublishers (New Zealand) Limited
P.O. Box 1
Auckland, New Zealand
<http://www.harpercollins.co.nz>
United Kingdom
Har

2303

Recitation

000,
from the tribe of Simeon 12,000,
from the tribe of Levi 12,000,
from the tribe of Issachar 12,000,
from the tribe of Zebulun 12,000,
from the tribe of Joseph 12,000,

7

Reconstruction
THEIR EAGLE ONAND THE DIRTY BIRDS READY AS WELL DOWN AND GET THEIR
EAGLE ONAND THE DIRTY BIRDS READY AS WELL DOWN AND GET THEIR EAGLE
ONAND THE DIRTY B

4

Reconstruction 181 |182 |183 |184 |185 |186 |187 |188 |189 |190 |191 |192 |193 |194 |195 |196 |197 |198 |199 |200
|201 |202 2

Reconstruction 4: 1482 4: 1483 4: 1484 4: 1485 4: 1486 4: 1487 4: 1488 4: 1489 4: 1490 4: 1491 4: 1492 4:
1493 4: 14 2

Reconstruction

1970–71 Turkish Third Football League season
Promotion and relegation:
1971–72 Turkish Third Football League season
Promotion and relegation:
1972–73 Turkish Third Football League season
Promotion and relegation:
1973–74 Turkish Third Football

1

Reconstruction , 28-63, 28-64, 28-65, 28-66, 28-67, 28-68, 28-69, 28-70, 28-71, 28-72, 28-73, 28-74, 28-75,
28-76, 28-77, 28-78 3

Recollection

affect the child;
¶70 (b) The wishes of the child, as expressed directly by the child or through the
child’s guardian ad litem, with due regard for the maturity of the child;
¶71 (c) The custodial history of the child,

2

Recollection

will be too late!
” 24 “Strive to enter through the narrow door. For many, I tell you, will seek to enter and will not
be able. 25 When once the master of the house has risen and shut the door, and you begin to
stand outside and to knock at the door,

4

Recollection

, and freedom.Revava
Revava (), is an Orthodox Jewish Israeli settlement in the West Bank. Located between Barkan
and Karnei Shomron, it falls under the jurisdiction of Shomron Regional Council. In it had a
population of.
The international community considers Israeli settlements in

2

Recollection

§ 2254(d)).
A state-court decision is considered “contrary to... clearly established Federal law” if the two
are “diametrically different, opposite in character or nature, or mutually opposed.” Williams v.
Taylor, 529 U.S. 362, 405 (

5

Table 3: Random examples of natural language (as classified per Appendix D) from each category of memorization.
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Category Text Count

Recitation >-task"> <a class="nav-group-task-link" href="../Extensions/Int.html">Int</a> </li> <li
class="nav-group-task"> <a class="nav-group-task-link" href="../Extensions/ 5310

Recitation
> <widget class="GtkButton" id="entCleanBut"> <property name="label" translatable="yes">...
:</strong></p> <ul> <li> <p>Must be one of: <code>true</code>, <code>false</code>,
<code>1</code>, <code>0</code>.</p> </li> </ul>

3689

Recitation
= null, CancellationToken cancellationToken = default(CancellationToken)) { if
(Client.SubscriptionId == null) { throw new ValidationException(ValidationRules.CannotBeNull,
"this.Client.SubscriptionId"); } if

227

Recitation .Object</h3> <code>equals, getClass, hashCode, notify, notifyAll, wait, wait, wait</code></li>
</ul> </li> </ul> </li> </ul> </div> <div class="details"> 18963

Reconstruction FileEntry("/base1/dir1/",fe, age); fe.name = "file3"; fi -> updateFileEntry("/base1/dir1/",fe, age);
fe.name = "file4"; fi -> updateFileEntry("/base1/ 2

Reconstruction ="time2[]" value="5" ></td> <td><input type="checkbox" name="time2[]" value="6" ></td>
<td><input type="checkbox" name="time2[]" value="7" ></td> < 2

Reconstruction XMM3 (1ULL « 28) #define DBG_CTX_EX_PART_FLAG_XMM4 (1ULL « 29) #define
DBG_CTX_EX_PART_FLAG_XMM5 (1ULL « 30) #define DBG_ 2

Reconstruction
" /> <Compile Include="Message\MFN_M06.cs" /> <Compile In-
clude="Message\MFN_M07.cs" /> <Compile Include="Message\_M08.cs" /> <Compile
Include="Message\MFN_

3

Recollection
OFFSET + (2 * FPREG_SIZE)) #define PROBE_CPU_Q3_OFFSET
(PROBE_FIRST_FPREG_OFFSET + (3 * FPREG_SIZE)) #define PROBE_CPU_Q4_OFFSET
(PROBE_FIRST_FPREG_OFFSET +

2

Recollection ); } uint16_t WS2812FX::mode_custom_5() { return customModes[5](); } uint16_t
WS2812FX::mode_custom_6() { return customModes[6](); } uint16 2

Recollection XMMM128, __) /* 0xDC */ NORMAL("paddusb", MM_XMM, MMM64_XMMM128, __) /*
0xDD */ NORMAL("paddusw", MM_XMM, MMM64_X 2

Recollection DBF3B /* icon1.png */; }; 651A5A7E177AE2D8003DBF3B /* icon2.png in Resources */ =
{isa = PBXBuildFile; fileRef = 651A5A7C177AE2D8003DBF 2

Table 4: Random examples of code (as classified per Appendix D) from each category of memorization.
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