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Abstract

In this work, we present a novel unsupervised001
method for adjective-noun metaphor detection002
on low resource languages. We propose two003
new approaches: First, a way of artificially004
generating metaphor training examples and005
second, a novel way to find metaphors rely-006
ing only on word embeddings. The latter en-007
ables application for low resource languages.008
Our method is based on a transformation of009
word embedding vectors into another vector010
space, in which the distance between the ad-011
jective word vector and the noun word vec-012
tor represents the metaphoricity of the word013
pair. We train this method in a zero-shot014
pseudo-supervised manner by generating arti-015
ficial metaphor examples and show that our016
approach can be used to generate a metaphor017
dataset with low annotation cost. It can then018
be used to finetune the system in a few-shot019
manner. In our experiments we show the capa-020
bilities of the method in its unsupervised and021
in its supervised version. Additionally, we test022
it against a comparable unsupervised baseline023
method and a supervised variation of it.024

1 Introduction025

The automatic detection of metaphors is a useful026

tool for literary studies. While many recent super-027

vised approaches for common languages like En-028

glish exist, those methods rely on large pretrained029

models like BERT (Devlin et al., 2019) transform-030

ers and on labeled metaphor datasets. Those pre-031

trained models and labeled data can not be ob-032

tained for low resource languages like Middle High033

German. To enable metaphor detection in those034

low resource languages without annotated data we035

propose a novel unsupervised zero-shot approach036

based only on simple word embeddings. In our037

approach, adjective-noun metaphor word pairs are038

found by transforming their word embeddings into039

another vector space, where common word pairs040

are located near each other. At the same time,041

metaphoric word pairs have a large cosine distance 042

between them. Their cosine distance then serves as 043

a measurement of metaphoricity. 044

A metaphor, as a semantic figure of speech, is 045

a way of referring to one concept by mentioning 046

another. An example for this would be the phrase 047

the car drinks gasoline, where the word drinks 048

from the domain of food consumption is applied to 049

word car from the domains of transportation and 050

machines. It carries over its base meaning of con- 051

sumption of liquids, so that the reader understands 052

that the car consumes fuel. Another example would 053

be the phrase a sweet thought. Here the word sweet 054

from the domain of taste is applied to the word 055

thought. While in its base meaning only physical 056

objects can be sweet, the reader understands by 057

their context knowledge and world knowledge that 058

a sweet taste is considered pleasant and thus the 059

aforementioned phrase means a pleasant thought. 060

In this work, we want to concentrate on adjective- 061

noun pattern like sweet thought, raw emotion, or 062

clear answer. While with the knowledge of syntac- 063

tical dependencies also more complex forms can be 064

analyzed, we want to limit our approach to meth- 065

ods also applicable to low resource languages like 066

Middle High German, where no syntax parsing is 067

available. Thus, we assume that part-of-speech 068

tags, lemmas and token-based word embeddings 069

like word2vec (Mikolov et al., 2013) or fasttext (Bo- 070

janowski et al., 2017) embeddings are obtainable. 071

We do not rely on methods requiring large amounts 072

of training data like transformer models or syntax 073

parsers. 074

There are different ways to define adjective-noun 075

metaphors to operationalize the search for them. 076

One possibility is to define metaphors as a viola- 077

tion of selectional preference. The approach we 078

focus on, defines the adjective that commonly oc- 079

cur together with a noun as their selection prefer- 080

ence. When an adjective that does not typically ap- 081

pear together with the noun emerges, this anomaly 082
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is called a selection preference violation. This083

implies that an adjective from another source do-084

main is used to describe something from the tar-085

get domain of the noun. It fits our definition of086

a metaphor. Since our approach should also be087

applicable to new languages without an existing088

labeled metaphor dataset in that language, we need089

to develop an unsupervised approach. In Section090

3. we explain how to derive such a method from a091

supervised method.092

2 Related Work093

The most common current approaches for metaphor094

detection like MelBERT (Choi et al., 2021) and095

DeepMet (Su et al., 2020) are based on supervised096

learning and transformer models. Those models097

require to be pretrained on a very large corpus098

with billions of tokens. However, if we want to099

search for metaphors in low resource languages like100

Middle High German, using such a large pretrained101

language model is not possible. Additionally, there102

may be no training dataset for supervised training103

available to finetune the model on.104

Other approaches like (Reinig and Rehbein,105

2019) use supersense taxonomies like Ger-106

maNet (Hamp and Feldweg, 1997; Henrich and107

Hinrichs, 2010), which is comparable to the En-108

glish WordNet (Fellbaum, 1998), which deliver109

information about the domain that certain words110

belong to. However, those external sources of infor-111

mation are not present for low resource languages112

like Middle High German. In an earlier unsuper-113

vised approach, the authors of (Shutova and Sun,114

2013) used grammatical relations between words115

as the basis for a clustering approach based on hi-116

erarchical graph factorization. For this approach117

syntax parsing is necessary, as well. The authors118

of (Navarro-Colorado, 2015) propose an unsuper-119

vised metaphor detection system based on topic120

modeling. In comparison, they do not search for121

adjective-noun pairs but instead for single words122

with metaphorical meaning inside a sentence.123

There are also unsupervised approaches that124

work without labeled data and do not use big pre-125

trained transformer models. Our baseline (Praman-126

ick and Mitra, 2018) uses an approach that clusters127

adjective-noun pairs using the kmeans algorithm.128

To cluster the data, six different features are used:129

(1) abstractness rating of the adjective; (2) abstract-130

ness rating of the noun; (3) difference between the131

abstractness ratings; (4) cosine similarity of the132

word embeddings of the noun; (5) edit distance 133

from the adjective to the noun, normalized by the 134

number of characters in the adjective; (6) edit dis- 135

tance from the noun to the adjective, normalized by 136

the number of characters in the noun. Clusters are 137

then interpreted as metaphors or non-metaphors. 138

While this approach also uses information - the ab- 139

stractness rating - that may not be present in low 140

resource languages, we consider this a compara- 141

ble baseline approach to our work. Due to its un- 142

spervised nature, it can also be used on languages 143

without existing metaphor dataset. 144

3 Method 145

Our contribution consists of two parts: First, we 146

propose a feedforward neural network that maxi- 147

mizes the cosine distance between the word vectors 148

of an adjective-noun word pair for metaphors and 149

minimizes the distance otherwise. Second, a way 150

to train this model in a zero-shot setting without 151

any metaphor examples. It also covers a step to 152

finetune the system on human annotated metaphors 153

previously proposed by the unsupervised system. 154

3.1 Metaphor Ranking 155

The basic idea of our novel approach is to trans- 156

form the word embeddings of the adjective and 157

the noun into a vector space. The cosine distance 158

between the transformed vectors is small if the ad- 159

jective is meant literally and large if the adjective 160

has a metaphorical function. The intuition behind 161

this is that words which occur often next to each 162

other should have a low distance by the nature of 163

the word embeddings, while unusual combinations 164

like metaphors should have a higher distance. We 165

use a simple feedforward network with both the 166

same weights for the embedding of the adjective 167

and the embedding of the noun. As a result, we 168

can transform the word vectors into a vector space 169

where this distance property is ensured by the train- 170

ing. The cosine embedding function (Payer et al., 171

2018) is used as a training loss to maximize the 172

cosine distance if the adjective has a metaphorical 173

meaning and minimizes the distance if the adjective 174

has a literal meaning. The cosine distance of the 175

transformed vectors then represents the metaphoric- 176

ity of a word pair an can be used to rank all possible 177

metaphor candidates. 178
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method TSV poems
supervised 0.90 0.82
SVM baseline features (+abst) 0.92 0.77
SVM baseline features 0.67 0.74
zero-shot 0.70 0.74
baseline (+abst) 0.85 0.81
baseline 0.52 0.83

Table 1: Results of two different experiments: numbers
are the average precision, which is the area under the
precision-recall-curve. Methods in italics are our ap-
proaches; methods marked with +abst use features that
are not present in low resource languages.

3.2 Unsupervised Zero-Shot Training179

As a goal, we also want to apply this method to180

low resource languages like Middle High German181

where we do not have a labeled metaphor dataset.182

This makes supervised training impossible. To mit-183

igate this, we assume that the number of metaphor-184

ical adjectives in a text is low enough to make185

the majority of adjective-noun pairs in a text good186

examples for non-metaphors. Based on this as-187

sumption, we generate artificial metaphor exam-188

ples by using the idea of selectional preference189

violation. As such, we shuffle the adjectives to gen-190

erate random adjective-noun pairs and label those191

as metaphor examples. While this may not result192

in semantically useful metaphors, it still satisfies193

the idea of selectional preference violation. It also194

enables the classifier to distinguish between normal195

and anomalous pairs.196

3.3 Few-Shot Finetuning197

With the above mentioned idea, we get a classifier198

to rank the metaphoricity of adjective-noun pairs199

using no labeled training data. This approach can200

then be refined with a human-in-the-loop bootstrap-201

ping approach. Using the zero-shot classifier, we202

can rank all the adjective-noun pairs in the training203

corpus by their metaphoricity. A human annotator204

can then annotate the most promising metaphor205

candidates to generate a metaphor dataset without206

the need to annotate the whole text. This step can207

be repeated in an iterative manner, generating better208

metaphor examples with every annotation step.209

4 Experiments210

To evaluate our embedding approach as well as our211

unsupervised labeling approach, we conducted sev-212

eral experiments, which are explained below. We213

iteration GerDraCor TSV poems MHG
base 0.26 0.70 0.74 0.22
iter 1 0.60 0.84 0.77 0.61
iter 2 0.71 0.67 0.74 0.25
iter 3 0.46 0.72 0.78 0.60
iter 4 0.73 0.70 0.77 0.40
iter 5 0.95 0.59 0.78 0.60
iter 6 0.60 0.70 0.82 0.66

Table 2: Results of the iteratively trained model on the
GerDraCor corpus on the GerDraCor test set (precision
at top 100) and on the TSV and poetry test sets (average
precision): The MHG column shows the results on the
Middle High German test set (precision at top 100).

make our code publicly available 1. Since we want 214

to emulate the search for metaphors in low resource 215

languages, we do not use all features that are pos- 216

sible in the German language. We exclude syntax 217

trees, external knowledge bases like GermaNet and 218

large pre-trained models like BERT (Devlin et al., 219

2019). We extracted PoS tags, lemmas and tokens 220

using the spaCy (Honnibal et al., 2020) package. 221

As annotated metaphor dataset we used the Ger- 222

man version (Reinig and Rehbein, 2019) of the 223

TSV metaphor dataset. Additionally, we used their 224

annotated metaphor dataset from German poetry. 225

However, their approach used features based on 226

GermaNet, a supersese taxonomy which can not 227

be assumed to exist for low resource languages. 228

Hence, we did not compare our method to theirs. 229

As a corpus for the German case study to ex- 230

tract non-metaphors in an unsupervised manner, 231

we used the GerDraCor (Fischer et al., 2019) cor- 232

pus. For the case study on the low resource lan- 233

guage Middle High German, we used the Ref- 234

erenzkorpus Mittelhochdeutsch (Klein et al., 2016) 235

to train FastText (Bojanowski et al., 2017) word 236

embeddings. We took 22 texts from the Mittel- 237

hochdeutsche Begriffsdatenbank (zep, 1992-2021 238

(laufend) to analyze our approach on this language. 239

The CLTK (Johnson et al., 2021) package was used 240

to normalize the character representation of the 241

Middle High German texts and to generate PoS 242

tags. 243

4.1 Supervised Metaphor Retrieval 244

In the most simple case we have a dataset con- 245

sisting of word pairs which are either labeled as a 246

metaphor or as non-metaphor. Given these labels, 247

1link will be inserted in the camera ready version

3



our approach can be used without any modifica-248

tion. For our baseline, we trained an SVM with249

the features of the otherwise unsupervised base-250

line method. The baseline features contain an ab-251

stractness feature which may not be present in low252

resource languages. To enable a fair comparison,253

we used these features both with and without the254

abstractness feature present. Table 1 shows that255

our supervised approach achieves similar results to256

the supervised baseline features together with the257

abstractness. Without abstractness, our approach258

achieves a higher average precision by 0.18 percent259

points.260

4.2 Unsupervised Metaphor Retrieval261

In this experiment we again used the annotated262

TSV mataphor dataset and the poems dataset. How-263

ever, we did not use any examples annotated as264

metaphors for our zero-shot approach. As ex-265

plained in Section 3, we used randomly connected266

adjectives and nouns from the non-metaphor set as267

metaphor examples. Results in Table 1 (marked268

as zero-shot) show that we get slightly lower av-269

erage precision than the baseline approach with270

the abstractness features. However, we get far bet-271

ter avarage precision numbers than the baseline272

approach without the abstractness features.273

4.3 Baseline274

As baseline experiments we used the methods ex-275

plained in the related work section. Since the ab-276

stractness features are not present in low resource277

languages, we also conducted an experiment with-278

out these features. To compare this with the super-279

vised approach, we also used the baseline features280

with a kernel SVM in a supervised manner.281

4.4 Case Studies282

Our main contribution is a method to generate a283

metaphor dataset and create a metaphor retrieval284

system for a low resource language with no pre-285

viously annotated metaphor dataset. To analyze286

whether our approach is suitable for this, we con-287

ducted two case studies: One on German and one288

on Middle High German.289

For the German texts we extracted adjective-290

noun pairs from one half of the GerDraCor corpus291

and used them to train the unsupervised zero-shot292

system. Two sets of random combinations of ad-293

jectives and nouns were used as pseudo metaphor294

examples. For the Middle High German Data we295

used eleven texts from the Mittelhochdeutsche Be- 296

griffsdatenbank to extract word pairs. In every 297

iteration we then annotated the top 100 rated unan- 298

notated examples in the training corpus, the bot- 299

tom 50 unannotated examples and another random 300

50 unannotated examples. This strategy allows to 301

build a metaphor training dataset for both of these 302

languages. We discarded multiple occurance of 303

the same word pairs as well as ambiguous exam- 304

ples and detections based on errors like wrong PoS 305

tagging. For German, the final dataset contained 306

390 metaphors and 449 non-metaphors, for Middle 307

High German, it was 287 metaphors and 365 non- 308

metaphors, respectively. For testing, we annotated 309

the top 100 results on the other half of the Ger- 310

DraCor corpus for German and the top 100 results 311

on eleven other texts from the Mittelhochdeutsche 312

Begriffsdatenbank for Middle High German. 313

The results in Table 2 show that the zero-shot 314

classifier found 26 metaphors in the top-100 results 315

for German and 22 metaphors in the top-100 results 316

for Middle High German. After only one round of 317

annotation, this already increased to 60 metaphors 318

for German and 61 metaphors for Middle High 319

German. However, it can also be seen that for 320

further iterations this process is still not completely 321

stable. While a tendency towards improvement can 322

be seen, further investigation are necesssary. 323

5 Conclusion 324

In this work, we presented a novel unsupervised 325

method to enable metaphor detection. We demon- 326

strated that our approach improves over compara- 327

ble baseline approaches. The design of our method 328

allows us to apply it to low resource languages 329

without further changes. Our method produces ex- 330

cellent results when used in a supervised manner. 331

While the results are worse when the method is 332

used without labeled data, the method can still be 333

used to enable a bootstrapping approach. There, 334

metaphor candidates are extracted from a text in 335

an unsupervised manner, labeled, and then used 336

to train the supervised version method. Thus, our 337

approach on the one hand enables metaphor detec- 338

tion in uninvestigated low resource languages, and 339

on the other hand serves as a powerful supervised 340

tool once the first metaphors have been discovered. 341

An interesting next step would be to combine our 342

approach with other unsupervised approaches men- 343

tioned in the related work section, that are applica- 344

ble for low resource languages. 345

4



References346

1992-2021 (laufend). Mittelhochdeutsche begriffs-347
datenbank (mhdbdb).348

Piotr Bojanowski, Edouard Grave, Armand Joulin, and349
Tomas Mikolov. 2017. Enriching word vectors with350
subword information. Transactions of the Associa-351
tion for Computational Linguistics, 5:135–146.352

Minjin Choi, Sunkyung Lee, Eunseong Choi, Heesoo353
Park, Junhyuk Lee, Dongwon Lee, and Jongwuk354
Lee. 2021. MelBERT: Metaphor detection via con-355
textualized late interaction using metaphorical iden-356
tification theories. In Proceedings of the 2021 Con-357
ference of the North American Chapter of the Asso-358
ciation for Computational Linguistics: Human Lan-359
guage Technologies, pages 1763–1773, Online. As-360
sociation for Computational Linguistics.361

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and362
Kristina Toutanova. 2019. BERT: Pre-training of363
deep bidirectional transformers for language under-364
standing. In Proceedings of the 2019 Conference365
of the North American Chapter of the Association366
for Computational Linguistics: Human Language367
Technologies, Volume 1 (Long and Short Papers),368
pages 4171–4186, Minneapolis, Minnesota. Associ-369
ation for Computational Linguistics.370

Christiane Fellbaum. 1998. WordNet: An Electronic371
Lexical Database. Bradford Books.372

Frank Fischer, Ingo Börner, Mathias Göbel, Ange-373
lika Hechtl, Christopher Kittel, Carsten Milling, and374
Peer Trilcke. 2019. Programmable corpora: Intro-375
ducing dracor, an infrastructure for the research on376
european drama.377

Birgit Hamp and Helmut Feldweg. 1997. GermaNet - a378
lexical-semantic net for German. In Automatic Infor-379
mation Extraction and Building of Lexical Semantic380
Resources for NLP Applications.381

Verena Henrich and Erhard Hinrichs. 2010. GernEdiT382
- the GermaNet editing tool. In Proceedings383
of the Seventh International Conference on Lan-384
guage Resources and Evaluation (LREC’10), Val-385
letta, Malta. European Language Resources Associ-386
ation (ELRA).387

Matthew Honnibal, Ines Montani, Sofie Van Lan-388
deghem, and Adriane Boyd. 2020. spaCy:389
Industrial-strength Natural Language Processing in390
Python.391

Kyle P. Johnson, Patrick J. Burns, John Stewart, Todd392
Cook, Clément Besnier, and William J. B. Mattingly.393
2021. The Classical Language Toolkit: An NLP394
framework for pre-modern languages. In Proceed-395
ings of the 59th Annual Meeting of the Association396
for Computational Linguistics and the 11th Interna-397
tional Joint Conference on Natural Language Pro-398
cessing: System Demonstrations, pages 20–29, On-399
line. Association for Computational Linguistics.400

Thomas Klein, Klaus-Peter Wegera, Stefanie Dipper, 401
and Claudia Wich-Reif. 2016. Referenzkorpus mit- 402
telhochdeutsch (1050-1350), version 1.0). 403

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey 404
Dean. 2013. Efficient estimation of word represen- 405
tations in vector space. In 1st International Con- 406
ference on Learning Representations, ICLR 2013, 407
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop 408
Track Proceedings. 409

Borja Navarro-Colorado. 2015. A fully unsupervised 410
topic modeling approach to metaphor identification 411
- una aproximacion no supervisada a la deteccion de 412
metaforas basada en topic modeling. 413

Christian Payer, Darko Štern, Thomas Neff, Horst 414
Bischof, and Martin Urschler. 2018. Instance seg- 415
mentation and tracking with cosine embeddings and 416
recurrent hourglass networks. In Medical Image 417
Computing and Computer Assisted Intervention – 418
MICCAI 2018 - 21st International Conference, 2018, 419
Proceedings, Lecture Notes in Computer Science, 420
pages 3–11. Springer Verlag Heidelberg. 21st In- 421
ternational Conference on Medical Image Comput- 422
ing and Computer Assisted Intervention, MICCAI 423
2018 ; Conference date: 16-09-2018 Through 20-09- 424
2018. 425

Malay Pramanick and Pabitra Mitra. 2018. Unsu- 426
pervised detection of metaphorical adjective-noun 427
pairs. In Proceedings of the Workshop on Figurative 428
Language Processing, pages 76–80, New Orleans, 429
Louisiana. Association for Computational Linguis- 430
tics. 431

Ines Reinig and Ines Rehbein. 2019. Metaphor detec- 432
tion for german poetry. In Proceedings of the 15th 433
Conference on Natural Language Processing (KON- 434
VENS 2019): Long Papers, pages 149–160, Erlan- 435
gen, Germany. German Society for Computational 436
Linguistics & Language Technology. 437

Ekaterina Shutova and Lin Sun. 2013. Unsupervised 438
metaphor identification using hierarchical graph fac- 439
torization clustering. In Proceedings of the 2013 440
Conference of the North American Chapter of the 441
Association for Computational Linguistics: Human 442
Language Technologies, pages 978–988, Atlanta, 443
Georgia. Association for Computational Linguistics. 444

Chuandong Su, Fumiyo Fukumoto, Xiaoxi Huang, Jiyi 445
Li, Rongbo Wang, and Zhiqun Chen. 2020. Deep- 446
Met: A reading comprehension paradigm for token- 447
level metaphor detection. In Proceedings of the Sec- 448
ond Workshop on Figurative Language Processing, 449
pages 30–39, Online. Association for Computational 450
Linguistics. 451

5

http://www.mhdbdb.sbg.ac.at/
http://www.mhdbdb.sbg.ac.at/
http://www.mhdbdb.sbg.ac.at/
https://doi.org/10.18653/v1/2021.naacl-main.141
https://doi.org/10.18653/v1/2021.naacl-main.141
https://doi.org/10.18653/v1/2021.naacl-main.141
https://doi.org/10.18653/v1/2021.naacl-main.141
https://doi.org/10.18653/v1/2021.naacl-main.141
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.4284002
https://doi.org/10.5281/zenodo.4284002
https://doi.org/10.5281/zenodo.4284002
https://doi.org/10.5281/zenodo.4284002
https://doi.org/10.5281/zenodo.4284002
https://aclanthology.org/W97-0802
https://aclanthology.org/W97-0802
https://aclanthology.org/W97-0802
http://www.lrec-conf.org/proceedings/lrec2010/pdf/264_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/264_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/264_Paper.pdf
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.acl-demo.3
https://doi.org/10.18653/v1/2021.acl-demo.3
https://doi.org/10.18653/v1/2021.acl-demo.3
https://doi.org/ISLRN 332-536-136-099-5
https://doi.org/ISLRN 332-536-136-099-5
https://doi.org/ISLRN 332-536-136-099-5
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-030-00934-2_1
https://doi.org/10.1007/978-3-030-00934-2_1
https://doi.org/10.1007/978-3-030-00934-2_1
https://doi.org/10.1007/978-3-030-00934-2_1
https://doi.org/10.1007/978-3-030-00934-2_1
https://doi.org/10.18653/v1/W18-0909
https://doi.org/10.18653/v1/W18-0909
https://doi.org/10.18653/v1/W18-0909
https://doi.org/10.18653/v1/W18-0909
https://doi.org/10.18653/v1/W18-0909
https://aclanthology.org/N13-1118
https://aclanthology.org/N13-1118
https://aclanthology.org/N13-1118
https://aclanthology.org/N13-1118
https://aclanthology.org/N13-1118
https://doi.org/10.18653/v1/2020.figlang-1.4
https://doi.org/10.18653/v1/2020.figlang-1.4
https://doi.org/10.18653/v1/2020.figlang-1.4
https://doi.org/10.18653/v1/2020.figlang-1.4
https://doi.org/10.18653/v1/2020.figlang-1.4

