© ® N O oA~ W N =

The Road to Generalizable Neuro-Symbolic Learning
Should be Paved with Foundation Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Neuro-symbolic learning was proposed to address challenges with training neural
networks for complex reasoning tasks with the added benefits of interpretability, re-
liability, and efficiency. Neuro-symbolic learning methods traditionally train neural
models in conjunction with symbolic programs but they face significant challenges
that limit them to simplistic problems. On the other hand, purely-neural founda-
tion models now reach state-of-the-art performance through prompting rather than
training, but they are often unreliable and lack interpretability. Supplementing foun-
dation models with symbolic programs, which we call neuro-symbolic prompting,
provides a way to use these models for complex reasoning tasks. Doing so raises
the question: What role does specialized model training as part of neuro-symbolic
have in the age of foundation models? To explore this question, we highlight
three pitfalls of traditional neuro-symbolic learning with respect to the compute,
data, and programs leading to generalization problems. This position paper argues
that foundation models enable generalizable neuro-symbolic solutions, offering a
path towards achieving the original goals of neuro-symbolic learning without the
downsides of training from scratch.

1 Introduction

Foundation models pre-trained on general internet-scale data are now ubiquitous, bringing the benefits
of deep learning to downstream applications across several domains [1]]. This is achieved primarily via
prompting techniques as well as finetuning for more niche use cases. Their success is driven by scaling
up both the training data and model parameters, leading to predictable performance improvements [2]].
Even so, limitations on problems requiring complex reasoning and reliability remain [3} 4]. Further,
these systems are fundamentally black-box and lack features like interpretability, which is vital for
safety-critical domains such as medicine [} 6], autonomous driving [7]], and aviation [8]], and their
unpredictable nature raises safety concerns for their real-world deployment [9].

Neuro-symbolic learning is a paradigm that moves towards a solution to these limitations by training
deep neural models in conjunction with symbolic reasoning [10]]. Figure[T]on the left shows a setup
common for neuro-symbolic systems such as Scallop [[1L1]], ISED [12], and NeurASP [13]]. Here,
the task is split into two common subtasks, perception and reasoning. Perception tasks convert raw
inputs (text, images, video, etc.) into symbols using deep neural models and the reasoning task uses a
symbolic program (e.g. a Python function) to process the symbols from perception [[14]. Training the
system end-to-end provides several benefits over traditional neural networks, including data efficiency
(using smaller datasets and less supervision), generalizability, and interpretability (the intermediate
symbols can be examined and the program offers a faithful explanation of the output). Despite
these benefits, neuro-symbolic training is often impractical due to scalability challenges, which are
significantly rooted in the typical absence of direct supervision for the intermediate symbols produced
by the neural model before they are processed by the symbolic reasoner [15].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72
73
74

Neuro-Symbolic Training Prompting Neuro-Symbolic Prompting

Neural I

>]\04 . E_ -S- : -ro " -.y . OMO;SO OMO(?SO : _S_ ! Program
6 >
A

. R ﬁ-

Training — —

-————

Figure 1: Neuro-symbolic training consists of neural models whose results are fed into a program to
produce the desired output (shown on the left). Training the neural models in neuro-symbolic training
is a significant challenge due to not having supervision for the intermediate symbols, denoted as s.
Shown in the middle is the modern foundation model prompting paradigm where a user provides a
prompt and their input to a foundation model which then produces the output. On the right, we show
the foundation model approach to neuro-symbolic which like prompting does not require training,
but uses a symbolic component like neuro-symbolic training.

While a major challenge in traditional neuro-symbolic training is learning the neural component,
foundation models can now perform many tasks requiring strong input understanding without any
additional training [} [16] [17]. The common prompting setup is shown in the middle of Figure [I]
where there is now just a prompt rather than the training and program. As foundation models are
trained on such large amounts of data, prompting can even offer better performance and robustness
than a training-based method using less data [[1]]. This raises the following question: What role does
specialized model training as part of neuro-symbolic have in the age of foundation models?

In this paper, we argue that building neuro-symbolic atop frontier foundation models al-
lows for achieving the benefits of neuro-symbolic learning—program reliability and symbol
interpretability—without the disadvantages that come with training. We term the replacement
of neural components in the traditional neuro-symbolic training setup with foundation models as
Neuro-Symbolic Prompting, and show its setup in Figure [T]on the right. Neuro-symbolic prompting
uses prompted foundation models to perform the perception task of extracting symbols, while a
symbolic program (e.g. a Python program) is used to reason over the detected symbols. Several
prior works fall into the category of neuro-symbolic prompting including Vieira [18] which combines
foundation models with Scallop, SatLM [19] which uses LLMs to convert input problems into
constraint solver input, and LLMFP [20] which solves planning problems by formalizing them as
constrained optimization problems which are solved by a discrete optimizer.

Our experiments uncover several pitfalls of traditional neuro-symbolic training including unnecessar-
ily training models when prompting is now available, overfitting to labeled datasets, and reliance on
a single program to provide learning signal for the correct behaviors. On the other hand, we show
that neuro-symbolic prompting provides opportunities for enabling reliability and interpretability of
foundation models without the pitfalls associated with training in neuro-symbolic training. In light of
these findings, we look towards future research on neuro-symbolic prompting, where we highlight
the problem of autonomously inferring the symbols and program as the significant remaining frontier.

2 Pitfalls

The neuro-symbolic training paradigm enables the use of explicit programs in an end-to-end differ-
entiable manner, which allows for training models for reasoning tasks using less supervision, data,
and compute compared to traditional deep learning techniques. However, in the age of foundation
models, a well-crafted prompt often performs just as well or better than training a deep neural network
from scratch. neuro-symbolic prompting techniques, which build neuro-symbolic systems on top
of prompted foundation models, provide many of the benefits of neuro-symbolic training, with the
additional generalization benefits of foundation models, without the need for training of specialized
models from scratch. We thus observe that the neuro-symbolic training paradigm faces three main
pitfalls in the age of foundation models: the compute pitfall, the data pitfall, and the program pitfall.
Our quantitative results which describe each pitfall are shown in Table [[| which we will describe in
detail with further evidence in the following sections.

75

76
77
78
79
80

81
82
83
84

85
86
87
88
89
90
91
92
93
94

Table 1: Results for the pitfalls across five datasets (D1-D4). D1: Sum5, D2: HWF5, D3: CLUTRR,
D4: Leaf, D5: CLEVR. For symbol hallucination, we measure the fraction of times that the neuro-
symbolic training method produces the true intermediate symbols, specifically among cases when the
neuro-symbolic training method’s final answer is correct but the neuro-symbolic prompting method’s
final answer is wrong. A value of 1 means the performance gap between neuro-symbolic training and
neuro-symbolic prompting is due to inferring the true symbols while a low value means the correct
answer is reached via hallucinated symbols. The ‘*’ indicates a human evaluation.

Pitfall Cat. Aspect / Condition Metric D1 D2 D3 D4 D5

Compute Pitfall Neuro-Symbolic Train- Acc. Diff. (NSgin — +0.11 +0.25 -0.39 +0.31 -0.15
ing vs. Prompting Perf. NSpompt)

. . Acc. Drop (NSiain) -0.02 -0.21 - -0.11 -0.19
Data Pitfall Robustness at 3% Noise Acc. Drop (NSpromp) 003 -006 — 2006 -0.07
Program Pitfall Symbol Hallucination Symbol GT Match - - 0.00 0.16* 0.14
Sumb5 CLUTRR Leaf CLEVR
e —e— Phi 3.5
0.8 - Eessm== Qwen2.5 VL
> —o— Llama 3.2
g 0.6 1 1
@ Y —o— InternVL 2.5
§ 0.4 | —— Gemini Flash
< ./0—‘ —— GPT 4o Latest
021p . R —= ISED
Py == Scallop
T T R | T RN | T

101! 102 101! 102 10! 102 10! 102
Model Size (B)

Figure 2: Performance of neuro-symbolic prompting for four benchmarks as model size increases
compared to Scallop and ISED, two baseline neuro-symbolic training methods. As model size
increases, the gap between neuro-symbolic training and neuro-symbolic prompting increasingly
vanishes. There is still a considerable gap for the Leaf dataset which we discuss with regard to the
program pitfall in Section[2.3] See Table [B.1|for full results on all five datasets.

2.1 The Compute Pitfall

From its inception, neuro-symbolic training was proposed as a solution for tasks requiring both deep
learning and complex reasoning where, formerly, knowledge that was otherwise human-specifiable
would instead need to be learned indirectly by extensive training of large neural networks from
scratch [21]. While the neuro-symbolic training paradigm relies on training, the models trained can
be smaller and more specialized, learning concepts with less data and less overall compute.

The proliferation of foundation models changes the underlying assumptions of this paradigm. If one
can replace the models from traditional neuro-symbolic training with foundation models that no longer
require additional training, they may forgo the compute traditionally required in neuro-symbolic
training. Therefore, how beneficial is the training component of neuro-symbolic training?

To answer this question, we start by comparing two neuro-symbolic training techniques, Scallop [[11]
and ISED [[12]], against neuro-symbolic prompting instantiated with various open and proprietary
foundation models. For foundation models, we consider recent multimodal LLMs of a diverse set of
sizes and capabilities. We evaluate all methods on five benchmarks frequently used in prior work
on neuro-symbolic training methods. As benchmarks, we consider the SumS5 dataset [[11] which
asks for the sum of five MNIST [22] handwritten digits, the HWFS5 dataset [23] which asks for the
result of evaluating a handwritten arithmetic expression, the CLUTRR dataset [24]] which asks for
the relationship between people described in text, the Leaf dataset [12, [25] which asks for a plant’s
name from an image of a leaf, and finally the CLEVR dataset [26] which asks questions about an
image containing various objects. For foundation models, we use the Llama 3.2 [27], Qwen 2.5 VL

95
96

97
98
99
100
101
102

103
104

106
107
108
109
110

111
112
113
114
115
116
17
118

119

120
121
122

Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)

U X D 2 7 1 8 03 7 | 8 0372

HWF5 /_ "_'(/W 1 -7 1 9 1 -1 /7 9

Leaf oblong G- eliptical -

e -
There is a green cylinder that is the
same size as the yellow metallic

cube; what material is it?

Figure 3: Examples of the data pitfall from four benchmarks showing cases where the neuro-
symbolic prompting method using Gemini makes an “error”. In contrast, the neuro-symbolic training
method is “correct.” These predictions, marked as errors from neuro-symbolic prompting, reflect
cases where some symbols are ambiguous or hard to determine from the input. In contrast, the
neuro-symbolic training method appears to have memorized noise and biases in the dataset to get the
“correct” symbols. For example, for the Leaf dataset, the leaf is folded so that it looks oblong (which
is predicted by Gemini), but Scallop predicts elliptical, which is correct based on this species of leaf.

[28]], InternVL 2.5 [29], and Phi 3.5 [30] family of open models along with Gemini 2.0 Flash
and GPT 4o [32]. See Appendix [B|for further information on our experimental setup.

The first row of Table[T]shows the accuracy difference between the best neuro-symbolic training and
the best neuro-symbolic prompting method for all five datasets, and Figure [2] shows a snapshot of
four benchmarks with increasing model size. In each subplot of Figure[2] Scallop’s performance is
denoted by a black dashed line, whereas the solid lines indicate the performance of neuro-symbolic
prompting. We plot the performance of foundation models against their size (number of parameters).
In all cases, the foundation models are strictly prompted, without any training or fine-tuning.

Consider the graphs for the CLUTRR and CLEVR benchmarks. In both cases, we can see that the
smallest versions of the foundation models perform worse than Scallop, where the neural models
are specifically trained for that particular task. However, notice that as the size of the foundation
models increases, they progressively close the performance gap, with their largest versions eventually
outperforming Scallop’s trained models. In the case of both Sum5 and Leaf, the largest foundation
models are unable to outperform Scallop or ISED, with the performance gap being more significant
for Leaf. However, in both cases, the gap still narrows with scale, and we will address reasons why
the gap remains large for these datasets in the following sections on the data and program pitfalls.

These results show foundation models can generally convert raw input to symbols, nearing the
performance of specialized, task-specific models. Further, as the size of foundation models increases,
they can replace, or come closer to matching, task-specific models trained through neuro-symbolic
training techniques. This encapsulates our first pitfall: spending compute on training specialized
perception models in neuro-symbolic learning has diminishing returns as the performance gap with
neuro-symbolic prompting shrinks with scale. Naturally, we want to understand why there may be
performance gaps for the SumS5 and Leaf benchmarks; closer examination of model behaviors over
these benchmarks reveals the next two pitfalls.

2.2 The Data Pitfall

The performance gap often arises when neuro-symbolic prompting errs on ambiguous symbols,
while traditional neuro-symbolic trained models predict dataset-conformant “correct” symbols based
on data biases or noise. This finding sheds light on the data pitfall: neuro-symbolic training with

123
124

125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141

142

143
144
145
146
147
148
149

150
151
152
153
154
155
156

157
158
159
160
161
162

= Std. .

Sl 4 03125
0.75 — — dev: 3
—@— Gemini 2.0 Flash
0.50 ‘ —@— Scallop 0.0625 3
0.25 0.125

0.1 0.2 ;
Gaussian Noise Std. Dev. 0.25

(a) Accuracy with increasing noise. (b) MNIST+noise.

Accuracy

Figure 4: Neuro-symbolic frained neural models memorize dataset biases rather than learn general
concepts like foundation models.

specialized datasets, as opposed to large-scale foundation model pretraining, encourages overfitting
to dataset particularities.

We quantify overfitting from neuro-symbolic training by studying generalization under slight dis-
tribution shifts. The second row of Table|l|shows the performance drop after adding 3% Gaussian
noise to the four image datasets for neuro-symbolic prompting is significantly lower than for neuro-
symbolic training, highlighting the greater generalizability from foundation models. In Figure |4} we
show neuro-symbolic training and neuro-symbolic prompting performance on the Sum5 task with
increasing noise levels. The noisy data shown in Figure is small enough to not affect the image
visibility. Despite this, the addition of noise significantly drops neuro-symbolic training performance
below that of neuro-symbolic prompting.

In Figure 3] we show several qualitative examples which highlight the data pitfall in terms of cases
where the data itself is ambiguous, yet Scallop makes the correct prediction. We include further
examples in Figure and Figure[D.3] For instance, consider the MNIST digits used in one sample
from the Sum5 dataset. While the first four digits are relatively clear, the last digit is ambiguous.
Gemini predicts it to be a “1”, while Scallop predicts it as a “2”. Even though the digit appears to
be closer to a “1”, the correct answer is “2”, so Scallop infers the correct sum. We attribute this
discrepancy to the possibility that the model trained by Scallop has memorized this particular image
to be a “2”, while Gemini’s prediction is not biased by the peculiarities of the MNIST dataset. We
see similar behavior in other benchmarks including HWF5, Leaf, and CLEVR shown in Figure@

2.3 The Program Pitfall

The neuro-symbolic training paradigm assumes the reasoning program is provided by domain experts
and relies on it as a form of supervision. As such, the concepts learned by the perception models are
highly dependent on the program itself. Since this supervision is relatively weak, with ground truth
not available for the perception subtasks, the neural network may learn to hallucinate, or mispredict,
symbols that still result in the correct answer due to the reasoning program. This results in the
program pitfall: using programs as a component in neuro-symbolic training can lead to the neural
component hallucinating symbols.

Figure 5] shows examples of the program pitfall in three datasets, and we provide additional examples
in Figure[D.4] Consider the Leaf dataset, where there is still a large gap between neuro-symbolic
training and neuro-symbolic prompting performance shown in the first row of Table[I] The reasoning
program in this case is a decision tree over the edge, shape, and texture of the leaf. This program is
specified in a forestry database [33]] developed for identifying leaves. Here, we find that many of the
neuro-symbolic prompting errors correspond to cases where these features are extremely challenging
to identify simply from a given image of a leaf.

For example, for the leaf shown in Figure[5] Gemini identifies that it has an “entire” margin, meaning
it is smooth, while Scallop identifies it as “serrulate,” meaning it has a finely serrated edge. From just
the image, it is difficult to determine whether the margin is serrulate or entire, even though identifying
this is vital to reaching the correct answer via the program. Even more ambiguous is the texture of
the leaf, which Scallop predicts as smooth (resulting in the correct final classification) while Gemini
predicts as glossy even though the texture is not clear from the image.

163
164
165
166
167
168
169

170
171
172
173
174
175
176
177
178
179

Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)

edge: entire ‘ edge: serrulate et
Leaf shape: ovate - shape: elliptical i)
texture: glossy texture: smooth
—>» Psidium guajava —>» Citrus limon
[Benjamin] is the uncle of [Timothy]. [Benjamin] is uncle of [Timothy] [Benjamin] is son of [Timothy]
[Timothy] took his son [William] out for pizza. [Timothy] is father of [William] [Timothy] is father of [William]
CLUTRR [William] and his daughter [Christina] loved [William] is father of [Christina] [William] is father of [Christina]
to play soccer together. Unfortunately, her [William] is father of [Connie] [William] is father of [Connie]
sister [Connie] did not like sports. How is [Christina] is sister of [Connie] [Christina] is sister of [Connie]
Benjamin related to Connie? » Unknown » Uncle
CLEVR s

What shape is the small red object
right of the small gray cube? > unknown » sphere

Figure 5: Examples of the program pitfall. All examples reflect errors made by neuro-symbolic
prompting where the neuro-symbolic training method (Scallop) produced the correct answer. We
see that the neuro-symbolic training method reaches the correct answer for the wrong reasons or
even identifies seemingly undetectable symbols to reach the correct answer. For CLUTRR, the
neuro-symbolic prompting method extracts the correct symbols, but the symbolic program cannot
deduce an answer, while the neuro-symbolic training method hallucinates incorrect symbols and
reaches the correct answer. For CLEVR, the neuro-symbolic training method incorrectly identifies
a blue sphere as “small” when it appears large while neuro-symbolic prompting identifies the blue
sphere as large but misjudges a cube as large which was vital to the question.

To validate that these concepts are not immediately apparent from the image, we perform a human
evaluation using Prolific [34] to determine if the outputs of Scallop’s trained neural model are really
correct for the cases where neuro-symbolic prompting with Gemini gets the wrong answer. Results
are shown in Table 2] where we see that a majority of respondents disagree with Scallop’s neural
outputs for margin and shape classification even though they result in the correct answer. For texture
classification, the inter-annotator agreement is so low that it indicates people cannot reliably determine
leaf texture from the images. Full details of this human evaluation are in Appendix [C]

Table 2: Human evaluation of foundation model errors on the Leaf classification dataset. We compare
foundation model predictions leading to the wrong classification with the Scallop predictions which
produce the correct answer. We find that Scallop leads to “symbol hallucination” since humans
overall disagree with Scallop predictions even if they lead to the right answer.

Symbol Category % Scallop Wrong Agreement (Cohen’s Kappa)

Margin 58.8 0.32
Shape 60.0 0.34
Texture 46.7 0.05

We call this behavior symbol hallucination, since the neural model in neuro-symbolic training
identifies symbols which do not appear present in the input, but their identification leads to the
correct output from the program. A similar phenomenon called reasoning shortcuts is identified in
prior work [33]] where reasoning shortcuts occur from a program with multiple choices of symbols
which result in the correct answer. We use the term symbol hallucination to also include the case
where the program is not perfect, so the wrong symbols are necessary to reach the correct answer.
We also see a similar behavior on the CLUTRR dataset in Figure |§| where, due to limitations of
the reasoning program, neuro-symbolic prompting gets the wrong answer even though it correctly
identifies the symbols, while Scallop hallucinates the incorrect fact that “Benjamin is the son of
Timothy," resulting in a correct answer that was spuriously derived. For the CLEVR example, both

180
181
182
183

184
185
186
187
188

189

190
191
192

193

194
195
196
197
198
199
200
201

202

204
205
206
207
208
209

210

211
212

Scallop’s model and neuro-symbolic prompting mispredict some symbols due to misjudging object
size, but the neuro-symbolic training method still results in the correct answer since the program
happens to ignore the mispredicted object. In this case, neuro-symbolic training gets the right answer,
but has not actually learned the desired distinction between small and large objects.

Focusing on the problems which Scallop answers correctly but neuro-symbolic prompting with
Gemini answers incorrectly, we report the fraction of solutions using the correct intermediate symbols
in Table|I} when symbol annotations are available. This shows that overwhelmingly, the performance
advantage of Scallop over neuro-symbolic prompting does not come from more “correct” intermediate
symbol prediction, but rather from hallucinating symbols which happen to reach the correct answer.

3 Opportunities

Given these pitfalls, what is neuro-symbolic’s merit today? We argue its core principles offer key
opportunities with foundation models that enable general input perception which can benefit from the
rigor of symbolic programs.

3.1 Program Reliability

Compared to pure foundation model prompting, using a symbolic program in a neuro-symbolic
training or neuro-symbolic prompting approach can improve accuracy and provide reliability. Recent
results have shown that combining foundation models with explicit programs in various neuro-
symbolic prompting configurations improves performance for mathematical reasoning tasks while
providing reliability and trustworthiness that were lacking through pure prompting [36H38]]. Beyond
mathematical reasoning, a neuro-symbolic prompting approach is beneficial for any task involving
symbolic computation, since performing exact symbolic computation will always be more accurate
and reliable than a neural approximation.

0.6 0.8 1
> ~ P -
3 2 0.7 4 NeSy
5 5 - CoT
8 0.4 1 \\ 8 Prsy
< \ < 0.6 -
\ 7’
Sso_N
0.2 N ‘ 4
e 0.5
T T T T T T T T
4 6 8 10 7.5 10.0 125 15.0
Min. Path Length Program Length
(a) CLUTRR (b) CLEVR

Figure 6: Performance of end-to-end prompting of Gemini-2.0-Flash compared to neuro-symbolic
prompting (Gemini-2.0-Flash with a program) on CLUTRR and CLEVR examples of increasing
complexity. Complexity for CLUTRR is the minimum number of reasoning steps needed, and
complexity for CLEVR is the length of the program required to answer a sample’s question.

As an example, we take the CLUTRR benchmark which asks about the relationship between two
people described in a paragraph and compare the accuracy of neuro-symbolic prompting to pure
prompting (using Chain of Thought [39])). The results shown in Figure [6(a)] demonstrate that neuro-
symbolic prompting achieves consistently high accuracy with increasing question complexity while
prompting lags in performance. As such, prompting serves as an approximation for symbolic behavior,
but using a real symbolic program via neuro-symbolic prompting yields higher accuracy. Similar
behavior is shown for the CLEVR dataset in Figure [6(b)| where neuro-symbolic prompting results in
higher and more stable performance than prompting with Chain of Thought.

3.2 Symbol Interpretability

In addition to the benefits from using program execution rather than a neural approximation, the
other significant benefit is that the symbol extraction step provides a means for interpretability,

213
214
215
216
217

218
219
220
221
222
223
224
225
226

227

228
229

231
232
233

234
235
236
237

238
239
240
241
242
243
244
245
246

247

248
249

which was a major motivation for the emergence of neuro-symbolic training [40]. As foundation
models become more prevalent in real-world applications, this need only grows. These paradigms are
not orthogonal in this manner; foundation models can offer additional interpretability compared to
traditional neuro-symbolic training since large-scale pretraining is less likely to overfit to artifacts of
any one dataset [41]].

An example of how intermediate symbols are useful for interpretability can be seen in the CLEVR
example in Figure[3] In this case, neuro-symbolic prompting results in the wrong answer of “rubber.”
The nature of neuro-symbolic prompting allows us to debug why the model produced the wrong
answer by investigating the intermediate symbols input to and resulting from the reasoning program.
In this case, we see that the green cylinder was misidentified as rubber, since it is hard to tell the
cylinder’s material. However, a prediction from pure prompting would have been difficult to debug
and understand due to a lack of interpretable intermediate symbols and any guarantees that Chain
of Thought based explanations are faithful to themselves, meaning they explain the true mechanism
behind determining the final answer.

4 Looking Ahead

ChatGPT 40 (@ hnalyzed ~ ChatGPT 40 @ Analyzed

What number of other objects
are there of the same size as the
gray sphere? Use code to help
answer the question.

— Avays show detais @) | @ Copy code thon

import matplotlib.pyplot as plt
import cv2

import numpy as np

image_path = "/mnt/data/clevr_interp.png"
image = cv2.imread(image_path)
« o o

There are no other objects of the same size as the

survey_data.txt
Document

The attatched data represents
survey responses from 10
people. Each row is a person
and each column is a survey
question where response 1 is for
"Yes" and 2 is for "No". What is
the value of the Cohen's Kappa
agreement for just the first 15
questions?

Aways show detats @) | @ Copy code

import numpy as np
import pandas as pd
from sklearn.metrics import cohen_kappa_score

file_path = "/mnt/data/survey_data.txt"

data = np.loadtxt(file_path, delimiter="\t")
o o o
Result

0.31958280939516637

The Cohen's Kappa agreement for the first 15

questions in the survey responses is approximately
0.32. 6

gray sphere in the image. ()

Figure 7: Examples of ChatGPT code execution. Generated code is executed for solving the problem,
but we can see in the example on the left from CLEVR that the model can produce the wrong code.
For the example on the right, the model correctly calculates the Cohen’s Kappa of the attached data.

As foundation models continue to scale, the neuro-symbolic training pitfalls will only become more
apparent, and the opportunities more important. As we demonstrate in this paper, foundation models
are now highly capable for general input processing/understanding tasks which neural models were
traditionally trained for in neuro-symbolic training. The remaining problem in neuro-symbolic
training is no longer learning to identify symbols, but determining which symbols and what program
to use for a problem.

We empirically demonstrate in Section [3.2] that the use of programs in a neuro-symbolic prompting
setup offers the potential for reliable and accurate symbolic reasoning, but the use of human specified
programs greatly limits the practical applicability and performance of the method. As such, effectively
synthesizing programs over foundation model symbols is still an open problem.

There is now growing interest in this problem with methods that mostly focus on prompting or
finetuning foundation models for generating the program in a neuro-symbolic prompting setup [36l-
[38] 42]]. Industry has also taken interest as shown with the release of OpenAlI’s Code Interpreter [43]]
and Google’s Gemini code execution which can write and execute its generated code as well
as OpenATI’s Operator [44] which writes code for performing actions on a computer. As shown in
the example on the right of Figure[7] currently available neuro-symbolic prompting tools are already
useful for relatively simple data analysis tasks. However, for more complicated tasks such as CLEVR
questions, the example on the left shows these methods are ineffective, potentially resulting in even
worse performance than pure prompting.

5 Related Work

Neuro-Symbolic Training Methods For a survey on neuro-symbolic training methods see Garcez
et al. [40]. Neuro-symbolic training methods often consist of a neural perception component followed

254

264

274

275

276
277
278
279
280
281
282
283
284
285
286
287
288
289

291

292
293
294
295
296
297
298
299
300
301
302

by symbolic reasoning [14} |45]]. There are now several frameworks for constructing such neuro-
symbolic training setups including DeepProbLog [46l, Scallop [[L1l], NeurASP [13], LTN [47],
ISED [[12], and Dolphin [48]. All these approaches make various assumptions regarding program
differentiability, and provide different levels of scalability. There are also neuro-symbolic methods
focusing on learning logic rules, such as NLIL [49] and DRUM [50], but these are not the central focus
of our comparison, which centers on systems with explicit, often pre-defined, symbolic programs for
reasoning over neurally perceived symbols.

Neuro-Symbolic Prompting Methods Existing work which incorporates foundation models with
neuro-symbolic training often uses a foundation model to generate code which is then executed [36].
These approaches either use prompting to produce explicit code [[18] 20} [36H38] or finetuning for
code generation [42, 51]. There is also work on directly finetuning foundation models for symbol
extraction [52]]. Finally, neuro-symbolic training has also been combined with foundation models
to help design new neuro-symbolic training datasets [23]] and to develop datasets for finetuning of
foundation models [53]].

Challenges in Neuro-Symbolic Several works have recently identified challenges and misconceptions
with the common neuro-symbolic training setup. Reasoning shortcuts, first identified by Marconato
et al. [54], are cases where a neuro-symbolic training method learns symbols with the wrong semantics,
leading to poor performance on programs using the same symbols in different ways. Reasoning
shortcuts have been further studied in neuro-symbolic training settings [35} 55} 56] as well as other
research in machine learning more broadly [57,158]]. Reasoning shortcuts are a consequence of the
program pitfall. Another challenge comes from the common assumption on independence of all
symbols, which often does not hold [59]. Similarly, it is assumed that the detected symbols should
display locality, or being influenced by a subset of input features [60]. As observed by Raman et al.
[60], training in a neuro-symbolic training setup actually does not result in symbols with the desired
locality, another instance of the program pitfall.

6 Alternate Views

While we focused on prompting of foundation models to argue for their importance in generalizable
neuro-symbolic learning, we also address several alternate views. First, finetuning foundation models
reintroduces training, risking Section[[s pitfalls, but starting from a capable base model can minimize
generality degradation. We therefore see finetuning of foundation models in a neuro-symbolic learning
system as a middle ground between neuro-symbolic training and neuro-symbolic prompting that
in many cases will be preferable to prompting, however we focus on prompting in this paper as it
is already enough to support our argument and finetuning becomes less necessary as foundation
models become more capable [61]. Second, training may still be necessary for specialized domains
lacking pretraining data. In this case where prompting will be ineffective, finetuning should be used
to learn effectively from the minimal amount of data available. This is because finetuning foundation
models is much more data efficient than training from scratch [62]. Finally, one can argue that the
use of small specialized models in neuro-symbolic, while potentially performance matched by larger
foundation models, is necessary for resource constrained scenarios. Similar to finetuning, we see
merit in future methods which distill or compress foundation models into specialized models in a
neuro-symbolic system, trading some generalizability for lower resource demand.

7 Conclusion

In this paper, we took a critical look at traditional neuro-symbolic training in the age of foundation
models. Neuro-symbolic training, as originally proposed, was meant to address the limitations of
deep learning on complex reasoning problems, as well as its lack of reliability and interpretability.
While addressing these problems, neuro-symbolic training introduced scalability and training issues
which limited its effectiveness to overly simplistic domains. In the age of foundation models, where
prompting alone is enough to solve many tasks without training, we highlight three pitfalls of
neuro-symbolic training with respect to compute, data, and programs. These pitfalls are avoided by
neuro-symbolic prompting which replaces training with prompting of foundation models to offer the
benefits of neuro-symbolic without the downsides of training. Finally, we encourage future research
on neuro-symbolic prompting systems which infer the necessary symbols and program for solving a
problem, instead of requiring them to be known in advance.

303

304
305
306

307
308
309

311
312
313

314
315
316

317
318
319

320
321
322

324
325
326
327

328
329

330
331

332
333

335
336
337

338
339
340
341

342
343
344
345

346
347
348
349

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:
70293-70332, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can
Irms? a preliminary evaluation of openai’s ol on planbench. arXiv preprint arXiv:2409.13373,
2024.

Wasif Khan, Seowung Leem, Kyle B See, Joshua K Wong, Shaoting Zhang, and Ruogu Fang.
A comprehensive survey of foundation models in medicine. IEEE Reviews in Biomedical
Engineering, 2025.

Yinjun Wu, Mayank Keoliya, Kan Chen, Neelay Velingker, Ziyang Li, Emily J Getzen, Qi Long,
Mayur Naik, Ravi B Parikh, and Eric Wong. Discret: Synthesizing faithful explanations for
treatment effect estimation. Proceedings of machine learning research, 235:53597, 2024.

Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. Neuro-symbolic program search for au-
tonomous driving decision module design. In Jens Kober, Fabio Ramos, and Claire Tom-
lin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of Pro-
ceedings of Machine Learning Research, pages 21-30. PMLR, 16-18 Nov 2021. URL
https://proceedings.mlr.press/v155/sun2ia.html.

Aziz Siyaev and Geun-Sik Jo. Neuro-symbolic speech understanding in aircraft maintenance
metaverse. [EEE Access, 9:154484-154499, 2021. doi: 10.1109/ACCESS.2021.3128616.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama,
Yisong Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming
Languages, 7(3):158-243, 2021.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si.
Scallop: From probabilistic deductive databases to scalable differentiable reasoning. Advances
in Neural Information Processing Systems, 34:25134-25145, 2021.

Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik,
and Eric Wong. Data-efficient learning with neural programs. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview!
net/forum?id=QXQY58xU25!

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer
set programming. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages 1755-1762. ijcai.org, 2020. doi:
10.24963/1JCAI.2020/243. URL https://doi.org/10.24963/ijcai.2020/243

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
In International Conference on Learning Representations, 2019. URL https://openreview!
net/forum?id=rJgMlhRctm.

10

https://proceedings.mlr.press/v155/sun21a.html
https://openreview.net/forum?id=QXQY58xU25
https://openreview.net/forum?id=QXQY58xU25
https://openreview.net/forum?id=QXQY58xU25
https://doi.org/10.24963/ijcai.2020/243
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

350
351
352

353
354
355
356

358
359
360

362
363

364
365
366

367
368
369
370

371
372

373
374

376
377

378

380
381
382
383
384

385
386
387
388

389
390
391
392

393
394
395

396
397

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Jonathan Feldstein, Paulius Dilkas, Vaishak Belle, and Efthymia Tsamoura. Mapping the neuro-
symbolic ai landscape by architectures: A handbook on augmenting deep learning through
symbolic reasoning. arXiv preprint arXiv:2410.22077, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9556-9567, 2024.

Dyke Ferber, Georg Wolflein, Isabella C Wiest, Marta Ligero, Srividhya Sainath, Narmin
Ghaffari Laleh, Omar SM El Nahhas, Gustav Miiller-Franzes, Dirk Jager, Daniel Truhn, et al.
In-context learning enables multimodal large language models to classify cancer pathology
images. Nature Communications, 15(1):10104, 2024.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Ra-
jeev Alur, and Mayur Naik. Relational programming with foundational models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 10635-10644, 2024.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language
models using declarative prompting. Advances in Neural Information Processing Systems, 36:
45548-45580, 2023.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose
zero-shot planning with LLM-based formalized programming. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=0K10aL6XuK.

Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural networks. Artificial
intelligence, 70(1-2):119-165, 1994.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In International Conference on Machine Learning, pages 5884-5894. PMLR, 2020.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vin-
cent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 4506—4515, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1458. URL
https://aclanthology.org/D19-1458/.

Siddharth Singh Chouhan, Uday Pratap Singh, Ajay Kaul, and Sanjeev Jain. A data repository of
leaf images: Practice towards plant conservation with plant pathology. In 2019 4th International
Conference on Information Systems and Computer Networks (ISCON), pages 700-707. IEEE,
2019.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901-2910, 2017.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783,2024.

Qwen Team. Qwen2.5-vl, January 2025. URL https://qwenlm.github.io/blog/qwen?2|
5-v1/.

11

https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://aclanthology.org/D19-1458/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/

398
399
400
401

402
403
404
405

406
407

409
410
411

412
413

414

415
416
417

418
419
420
421

422
423
424
425

426
427
428

429
430
431

432
433
434

435
436
437
438

440

441
442
443
444
445
446

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 24185-24198, 2024.

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

S.N. Talhouk, M. Fabian, and R. Dagher. Landscape plant database, 2015. URL https:
//landscapeplants.aub.edu.lb/.

Prolific. Prolific. https://www.prolific.com, 2024. Accessed: 2025-05-22.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of reasoning shortcuts. Advances
in Neural Information Processing Systems, 36:72507-72539, 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=YfZ47ZPt8zd.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764-10799. PMLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

A Garcez, M Gori, LC Lamb, L Serafini, M Spranger, and SN Tran. Neural-symbolic computing:
An effective methodology for principled integration of machine learning and reasoning. Journal
of Applied Logics, 6(4):611-631, 2019.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn
Song. Pretrained transformers improve out-of-distribution robustness. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2744-2751, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.244. URL
https://aclanthology.org/2020.acl-main.244/.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 3806-3824, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/
2023.findings-emnlp.248/.

12

https://landscapeplants.aub.edu.lb/
https://landscapeplants.aub.edu.lb/
https://landscapeplants.aub.edu.lb/
https://www.prolific.com
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://aclanthology.org/2020.acl-main.244/
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/

447
448
449

451

452
453
454

455
456
457

458
459

461
462

463
464

465
466
467

468
469
470
471

472
473
474

475
476
477
478

479
480
481
482
483
484
485

486
487

489
490

491
492
493
494

[43] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[44] OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the
digital world. 2025. URL https://openai.com/index/computer-using-agent,

[45] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. Ad-
vances in neural information processing systems, 31, 2018.

[46] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. Advances in neural informa-
tion processing systems, 31, 2018.

[47] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

[48] Aaditya Naik, Jason Liu, Claire Wang, Saikat Dutta, Mayur Naik, and Eric Wong. Dol-
phin: A programmable framework for scalable neurosymbolic learning. arXiv preprint
arXiv:2410.03348, 2024.

[49] Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. In
International Conference on Learning Representations, 2020.

[50] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs. Advances in neural information
processing systems, 32, 2019.

[51] Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=EpOTt jVoap.

[52] Daniel Cunnington, Mark Law, Jorge Lobo, and Alessandra Russo. The role of foundation
models in neuro-symbolic learning and reasoning. In International Conference on Neural-
Symbolic Learning and Reasoning, pages 84—100. Springer, 2024.

[53] Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng Li, Chun Cao, Fan Yang, and Xiaoxing Ma.
Neuro-symbolic data generation for math reasoning. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=CIcMZGLyZW.

[54] Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini,
and Stefano Teso. Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and
concept rehearsal. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
23915-23936. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
marconato23a.html.

[55] Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van
Krieken, Antonio Vergari, Stefano Teso, and Andrea Passerini. A neuro-symbolic benchmark
suite for concept quality and reasoning shortcuts. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2024. URL |https://
openreview.net/forum?id=5VtI484yVy.

[56] Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea
Passerini, and Stefano Teso. BEARS make neuro-symbolic models aware of their reason-
ing shortcuts. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL
https://openreview.net/forum?id=pDcMik7mgZ.

13

https://openai.com/index/computer-using-agent
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=CIcMZGLyZW
https://openreview.net/forum?id=CIcMZGLyZW
https://openreview.net/forum?id=CIcMZGLyZW
https://proceedings.mlr.press/v202/marconato23a.html
https://proceedings.mlr.press/v202/marconato23a.html
https://proceedings.mlr.press/v202/marconato23a.html
https://openreview.net/forum?id=5VtI484yVy
https://openreview.net/forum?id=5VtI484yVy
https://openreview.net/forum?id=5VtI484yVy
https://openreview.net/forum?id=pDcM1k7mgZ

495
496
497

498
499
500
501

502
503
504

505
506
507

508
509
510

511
512
513
514
515

[57]

[58]

[59]

[60]

[61]

[62]

Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right concept:
Revising neuro-symbolic concepts by interacting with their explanations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3619-3629, 2021.

Zenan Li, Zehua Liu, Yuan Yao, Jingwei Xu, Taolue Chen, Xiaoxing Ma, and Jian L\"{u}.
Learning with logical constraints but without shortcut satisfaction. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=M2unceRvqghh,

Emile van Krieken, Pasquale Minervini, Edoardo Ponti, and Antonio Vergari. On the inde-
pendence assumption in neurosymbolic learning. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=S1gSrruvd4l

Naveen Raman, Mateo Espinosa Zarlenga, Juyeon Heo, and Mateja Jamnik. Do concept
bottleneck models obey locality? In XAl in Action: Past, Present, and Future Applications,
2023. URL https://openreview.net/forum?id=F6RPYDUIZr.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text clas-
sification. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
328-339, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-1031. URL https://aclanthology.org/P18-1031/,

14

https://openreview.net/forum?id=M2unceRvqhh
https://openreview.net/forum?id=M2unceRvqhh
https://openreview.net/forum?id=M2unceRvqhh
https://openreview.net/forum?id=S1gSrruVd4
https://openreview.net/forum?id=F6RPYDUIZr
https://aclanthology.org/P18-1031/

516

517
518

519

521

522
523
524
525
526
527

528
529

530
531

533
534
535
536
537
538
539

349

542

543
544
545
546
547
548
549
550

882

553

554
555
556
557

A Prompts

The prompt we use for the foundation models for all benchmarks takes the following form with
placeholders that depend on the particular dataset.

System Prompt:
You are a helpful assistant.

User Prompt:

After examining the input, determine <output_description>. Here are some <
examples:

Example 1:<ex1_input>This is an example of <exl_output>.

<input >The input is <input_description>. Examine it and then output just <«
output_description> after ’FINAL ANSWER:’. If unsure of the answer, try to «

choose the best option.

Assistant:

\. .

For SumS5 the input description is “an image of a handwritten digit”, the output description is “the
digit as an integer from O to 9, and we use 5 few-shot examples.

For HWFS5 the input description is “a handwritten number from O to 97, the output description is
“the value of the number as an integer from O to 97, and we use 5 few-shot examples for the digit
perception. For operator extraction the input description is “a handwritten arithmetic operator”, the
output description is “the operator as a string in the set *+’, ’-’, **’,’/* (note that the division operator
can look like a line with a dot above and below it and multlphcation can look like an ’x’)” and we use
4 few-shot examples.

For CLUTRR the input description is “a description of a relationship between two people and a query
about the two people’s relationship”, the output description is

the described relationship which answers the question. Use the

pronouns to determine the people’s gender. The relatiomnship
must be one of the following: {’brother’, ’sister’, ’father’,
mother’, ’son’, ’daughter’, ’grandfather’, ’grandmother’, °’
uncle’, ’aunt’, ’nephew’, ’niece’, ’husband’, ’wife’, ’brother-
in-law’, ’sister-in-law’, ’son-in-law’, ’daughter-in-law’, °’

father-in-law’, ’mother-in-law’, ’grandson’, ’granddaughter’, ’
unknown ’}. For example, for the input ’John took his sister
Mary to the store. John is Mary’s what?’ the output should be
brother .’ Output just the relationship as a word.

TLLLLLLL!

and we use 2 few-shot examples.

For CLEVR the input description is “an image of geometric objects”, the output description is

each object’s bounding box and attributes in the form {\"bbox_2d\": (
x1, y1, x2, y2), \"attributes\": (color, shape, material, size)
\}. Colors can be one of [’gray’,’green’,’blue’,’red’,’brown’,’
purple’,’yellow’,’cyan’], shapes can be one of [’cube’,’
cylinder’,’sphere’], material can be one of [’rubber’,’metal’]
(it is rubber if the finish is matte and metal if shiny), and
size can be one of [’small’,’large’].

I

TIL!

and we use 2 few-shot examples.

For Leaf, we use three different prompts for the three networks used for perception in the neuro-
symbolic training program. For all networks, the input description is “an image of a leaf”. For the
margin network, the output description is “the classification of the leaf’s margin as one of ’entire’,
’indented’, ’lobed’, ’serrate’, *serrulate’, "undulate’”, and we use 5 few-shot examples. For the shape

15

558
559
560
561

562

563
564

565

566

567

568
569

571
572
573

574
575

576
577

578
579

580
581

582
583
584
585
586

587

588
589

590

591
592
593
594
595

596

598
599

network, the output description is “the leaf’s shape as one of ’elliptical’, ’lanceolate’, *oblong’,
’obovate’, ’ovate’” and we use 9 few-shot examples. Finally, the output description for the texture
network is “the classification of the leaf’s texture as one of ’glossy’, ’leathery’, ’smooth’, ‘rough’”
and we use 3 few-shot examples.

B Experiment Details

For all prompting experiments, we use greedy decoding (temperature 0) so there are no error bars for
neuro-symbolic prompting methods.

B.1 Setup

We describe the benchmark datasets, Foundation Models, and NeSy learning baseline below.

Datasets We use five standard NeSy benchmarks:

e Sum5 [L1]: Constructed from the MNIST dataset of handwritten digits [22]. The input
consists of five images of digits and the expected output is the sum of the digit values.

* HWFS5 [23]]: This dataset consists of five images creating an arithmetic expression. There are
three handwritten digits from zero through nine and two handwritten operators representing
addition, subtraction, division, and multiplication. The expected output is the evaluation of
the expression.

* CLUTRR [24]: The input consists of natural language paragraphs describing family rela-
tionships and a question about the relationship between two people mentioned.

* CLEVR [26]: The input is an image containing various objects of different shape, size, color,
and texture along with a question about the image.

 Leaf [1225]: The input is an image of a leaf and the expected output is the species of the
leaf.

Models We evaluate Foundation Model prompting as a replacement for neural network training in
NeSy learning using the following Foundation Models:

¢ Phi-3.5 Vision Instruct [30]

¢ Qwen2.5 VL Instruct (3B, 7B, and 72B) [28]]
e InternVL 2.5 Instruct (8B, 38B, and 78B) [29]
¢ Llama 3.2 Vision Instruct (11B and 90B) [27]]
e Gemini 2.0 Flash [31]

NeSy learning baselines

* Scallop [[L1]: We use Scallop as a representative NeSy learning method.
* ISED [12].

B.2 Full NeSy Learning vs. Foundation Model Prompting Performance Gap

The performance gap between NeSy prompting and full NeSy learning is quickly diminishing. In
addition, the performance gap reduces with increasing model scale. This is shown in Figure[2] Results
labelled with “—" for ISED are due to an unavailable implementation for the dataset. For GPT-40, we
only evaluate on two datasets to reduce cost. Finally, the neuro-symbolic prompting results marked
“—" for the CLEVR dataset are due to those models not supporting object bounding box generation.

C Human Evaluation For Leaf

Since the Leaf dataset does not provide ground truth annotations for the three leaf properties, we
perform a human evaluation to quantify symbol hallucination in Scallop. For the study, we took all
problems that were correctly answered by Scallop while incorrectly answered by neuro-symbolic

16

600
601
602
603
604
605

606

608
609

610

611
612

Table B.1: All results

Method Sum5 HWF5 CLUTRR CLEVR Leaf
Scallop 0.975 £ 0.002 0.966 4 0.005 0.400 £ 0.031 0.750 0.811 = 0.035
ISED 0.923 £ 0.004 0.023 — — 0.823 £0.041
Phi-3.5-vision-instruct 0.17 0.01 0.53 — 0.055
Llama-3.2-11B-Vision-Instruct 0.645 0.0 0.285 — 0.255
Llama-3.2-90B-Vision-Instruct 0.655 0.180 0.626 — 0.178
Qwen2.5-VL-3B-Instruct 0.075 0.015 0.560 0.250 0.215
Qwen2.5-VL-7B-Instruct 0.595 0.03 0.640 0.650 0.335
Qwen2.5-VL-72B-Instruct 0.790 0.250 0.790 0.900 0.390
InternVL2.5 8B 0.540 0.025 0.150 0.160 0.250
InternVL2.5 38B 0.825 0.140 0.730 0.730 0.335
InternVL2.5 78B MPO 0.830 0.000 0.760 0.880 0.405
GPT-40 0.860 — — — 0.509
Gemini-2.0-Flash 0.815 0.710 0.760 0.765 0.405

The above is an image of a leaf
Is the leaf's shape elliptical?
For reference, elliptical looks like the following:

@D

It is oval-shaped; with the broadest part near the center.

O Yes
O No

Figure C.1: Example question asked in the Leaf dataset human evaluation. Every question was
a binary choice where the choice ‘Yes’ always corresponded to agreeing with Scallop and ‘No’
corresponded to agreeing with Gemini, although this was not told to participants.

prompting with Gemini, sampled 15 questions for each of margin, shape, and texture which had
differing property predictions for the two methods. We then directly asked participants if the neural
model’s prediction from Scallop was correct for each of the three properties, consisting of a total
of 45 questions (15 for each property). For each property we also provide a description and small
depiction to help participants accurately classify the leaves. An example question for the subset about
the leaf shape is in Figure [C.}

In total, we hired 10 people through Prolific [34] to perform the evaluation, answering all 45 questions
each. Respondents were required to have at least a high school education and speak English as their
first language. We paid an average of $16.76 per hour and the task took an average of 6 minutes and
16 seconds.

D Additional Results

To further support the findings in the main paper, we provide additional results for each of the pitfalls
from the main paper.

17

613

614

615

616

Sum5 Gemini: Scallop: HWF3 Gemini: Scallop:
s L Lﬁ 2) q‘ 54334 51334 g >< \ _JV % 8x1+7 Bx1+1
-
2 ’.} q | t 27911 27811 ‘_ 7/6x1 1/6x1
&
i l..i Ll 6 '{:} 14960 14460 —7{« —C E >< L\ 7-9x6 7-9x4
%
? q % [67932 47932 — 7-3/6 1-3/6
b
Figure D.2: Additional examples of the data pitfall in Sum5 and HWF5 datasets.
Gemini: obovate, Scallop: lanceolate ~ Gemini: obovate, Scallop: elliptical
Gemini: obovate, Scallop: elliptical Gemini: obovate, Scallop: elliptical
Figure D.3: Additional examples of the data pitfall in the Leaf dataset.
D.1 The Data Pitfall
Additional qualitative results are included in Figure[D.2]
D.2 The Program Pitfall
Additional qualitative results are included in Figure[D.4]
Margin Texture
Gemini: undulate, Scallop: entire Gemini: entire, Scallop: serrulate Gemini: rough, Scallop: smooth Gemini: smooth, Scallop: glossy
Gemini: entire, Scallop: serrulate Gemini: entire, Scallop: serrulate Gemini: rough, Scallop: smooth Gemini: leathery, Scallop: glossy

Figure D.4: Additional examples of the program pitfall in the Leaf dataset.

18

	Introduction
	Pitfalls
	The Compute Pitfall
	The Data Pitfall
	The Program Pitfall

	Opportunities
	Program Reliability
	Symbol Interpretability

	Looking Ahead
	Related Work
	Alternate Views
	Conclusion
	Prompts
	Experiment Details
	Setup
	Full NeSy Learning vs. Foundation Model Prompting Performance Gap

	Human Evaluation For Leaf
	Additional Results
	The Data Pitfall
	The Program Pitfall

