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Abstract

Neuro-symbolic learning was proposed to address challenges with training neural1

networks for complex reasoning tasks with the added benefits of interpretability, re-2

liability, and efficiency. Neuro-symbolic learning methods traditionally train neural3

models in conjunction with symbolic programs but they face significant challenges4

that limit them to simplistic problems. On the other hand, purely-neural founda-5

tion models now reach state-of-the-art performance through prompting rather than6

training, but they are often unreliable and lack interpretability. Supplementing foun-7

dation models with symbolic programs, which we call neuro-symbolic prompting,8

provides a way to use these models for complex reasoning tasks. Doing so raises9

the question: What role does specialized model training as part of neuro-symbolic10

have in the age of foundation models? To explore this question, we highlight11

three pitfalls of traditional neuro-symbolic learning with respect to the compute,12

data, and programs leading to generalization problems. This position paper argues13

that foundation models enable generalizable neuro-symbolic solutions, offering a14

path towards achieving the original goals of neuro-symbolic learning without the15

downsides of training from scratch.16

1 Introduction17

Foundation models pre-trained on general internet-scale data are now ubiquitous, bringing the benefits18

of deep learning to downstream applications across several domains [1]. This is achieved primarily via19

prompting techniques as well as finetuning for more niche use cases. Their success is driven by scaling20

up both the training data and model parameters, leading to predictable performance improvements [2].21

Even so, limitations on problems requiring complex reasoning and reliability remain [3, 4]. Further,22

these systems are fundamentally black-box and lack features like interpretability, which is vital for23

safety-critical domains such as medicine [5, 6], autonomous driving [7], and aviation [8], and their24

unpredictable nature raises safety concerns for their real-world deployment [9].25

Neuro-symbolic learning is a paradigm that moves towards a solution to these limitations by training26

deep neural models in conjunction with symbolic reasoning [10]. Figure 1 on the left shows a setup27

common for neuro-symbolic systems such as Scallop [11], ISED [12], and NeurASP [13]. Here,28

the task is split into two common subtasks, perception and reasoning. Perception tasks convert raw29

inputs (text, images, video, etc.) into symbols using deep neural models and the reasoning task uses a30

symbolic program (e.g. a Python function) to process the symbols from perception [14]. Training the31

system end-to-end provides several benefits over traditional neural networks, including data efficiency32

(using smaller datasets and less supervision), generalizability, and interpretability (the intermediate33

symbols can be examined and the program offers a faithful explanation of the output). Despite34

these benefits, neuro-symbolic training is often impractical due to scalability challenges, which are35

significantly rooted in the typical absence of direct supervision for the intermediate symbols produced36

by the neural model before they are processed by the symbolic reasoner [15].37
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Figure 1: Neuro-symbolic training consists of neural models whose results are fed into a program to
produce the desired output (shown on the left). Training the neural models in neuro-symbolic training
is a significant challenge due to not having supervision for the intermediate symbols, denoted as s.
Shown in the middle is the modern foundation model prompting paradigm where a user provides a
prompt and their input to a foundation model which then produces the output. On the right, we show
the foundation model approach to neuro-symbolic which like prompting does not require training,
but uses a symbolic component like neuro-symbolic training.

While a major challenge in traditional neuro-symbolic training is learning the neural component,38

foundation models can now perform many tasks requiring strong input understanding without any39

additional training [1, 16, 17]. The common prompting setup is shown in the middle of Figure 140

where there is now just a prompt rather than the training and program. As foundation models are41

trained on such large amounts of data, prompting can even offer better performance and robustness42

than a training-based method using less data [1]. This raises the following question: What role does43

specialized model training as part of neuro-symbolic have in the age of foundation models?44

In this paper, we argue that building neuro-symbolic atop frontier foundation models al-45

lows for achieving the benefits of neuro-symbolic learning—program reliability and symbol46

interpretability—without the disadvantages that come with training. We term the replacement47

of neural components in the traditional neuro-symbolic training setup with foundation models as48

Neuro-Symbolic Prompting, and show its setup in Figure 1 on the right. Neuro-symbolic prompting49

uses prompted foundation models to perform the perception task of extracting symbols, while a50

symbolic program (e.g. a Python program) is used to reason over the detected symbols. Several51

prior works fall into the category of neuro-symbolic prompting including Vieira [18] which combines52

foundation models with Scallop, SatLM [19] which uses LLMs to convert input problems into53

constraint solver input, and LLMFP [20] which solves planning problems by formalizing them as54

constrained optimization problems which are solved by a discrete optimizer.55

Our experiments uncover several pitfalls of traditional neuro-symbolic training including unnecessar-56

ily training models when prompting is now available, overfitting to labeled datasets, and reliance on57

a single program to provide learning signal for the correct behaviors. On the other hand, we show58

that neuro-symbolic prompting provides opportunities for enabling reliability and interpretability of59

foundation models without the pitfalls associated with training in neuro-symbolic training. In light of60

these findings, we look towards future research on neuro-symbolic prompting, where we highlight61

the problem of autonomously inferring the symbols and program as the significant remaining frontier.62

2 Pitfalls63

The neuro-symbolic training paradigm enables the use of explicit programs in an end-to-end differ-64

entiable manner, which allows for training models for reasoning tasks using less supervision, data,65

and compute compared to traditional deep learning techniques. However, in the age of foundation66

models, a well-crafted prompt often performs just as well or better than training a deep neural network67

from scratch. neuro-symbolic prompting techniques, which build neuro-symbolic systems on top68

of prompted foundation models, provide many of the benefits of neuro-symbolic training, with the69

additional generalization benefits of foundation models, without the need for training of specialized70

models from scratch. We thus observe that the neuro-symbolic training paradigm faces three main71

pitfalls in the age of foundation models: the compute pitfall, the data pitfall, and the program pitfall.72

Our quantitative results which describe each pitfall are shown in Table 1 which we will describe in73

detail with further evidence in the following sections.74
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Table 1: Results for the pitfalls across five datasets (D1-D4). D1: Sum5, D2: HWF5, D3: CLUTRR,
D4: Leaf, D5: CLEVR. For symbol hallucination, we measure the fraction of times that the neuro-
symbolic training method produces the true intermediate symbols, specifically among cases when the
neuro-symbolic training method’s final answer is correct but the neuro-symbolic prompting method’s
final answer is wrong. A value of 1 means the performance gap between neuro-symbolic training and
neuro-symbolic prompting is due to inferring the true symbols while a low value means the correct
answer is reached via hallucinated symbols. The ‘*’ indicates a human evaluation.

Pitfall Cat. Aspect / Condition Metric D1 D2 D3 D4 D5

Compute Pitfall Neuro-Symbolic Train-
ing vs. Prompting Perf.

Acc. Diff. (NStrain −
NSprompt)

+0.11 +0.25 -0.39 +0.31 -0.15

Data Pitfall Robustness at 3% Noise Acc. Drop (NStrain) -0.02 -0.21 – -0.11 -0.19
Acc. Drop (NSprompt) -0.03 -0.06 – -0.06 -0.07

Program Pitfall Symbol Hallucination Symbol GT Match – – 0.00 0.16* 0.14
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Figure 2: Performance of neuro-symbolic prompting for four benchmarks as model size increases
compared to Scallop and ISED, two baseline neuro-symbolic training methods. As model size
increases, the gap between neuro-symbolic training and neuro-symbolic prompting increasingly
vanishes. There is still a considerable gap for the Leaf dataset which we discuss with regard to the
program pitfall in Section 2.3. See Table B.1 for full results on all five datasets.

2.1 The Compute Pitfall75

From its inception, neuro-symbolic training was proposed as a solution for tasks requiring both deep76

learning and complex reasoning where, formerly, knowledge that was otherwise human-specifiable77

would instead need to be learned indirectly by extensive training of large neural networks from78

scratch [21]. While the neuro-symbolic training paradigm relies on training, the models trained can79

be smaller and more specialized, learning concepts with less data and less overall compute.80

The proliferation of foundation models changes the underlying assumptions of this paradigm. If one81

can replace the models from traditional neuro-symbolic training with foundation models that no longer82

require additional training, they may forgo the compute traditionally required in neuro-symbolic83

training. Therefore, how beneficial is the training component of neuro-symbolic training?84

To answer this question, we start by comparing two neuro-symbolic training techniques, Scallop [11]85

and ISED [12], against neuro-symbolic prompting instantiated with various open and proprietary86

foundation models. For foundation models, we consider recent multimodal LLMs of a diverse set of87

sizes and capabilities. We evaluate all methods on five benchmarks frequently used in prior work88

on neuro-symbolic training methods. As benchmarks, we consider the Sum5 dataset [11] which89

asks for the sum of five MNIST [22] handwritten digits, the HWF5 dataset [23] which asks for the90

result of evaluating a handwritten arithmetic expression, the CLUTRR dataset [24] which asks for91

the relationship between people described in text, the Leaf dataset [12, 25] which asks for a plant’s92

name from an image of a leaf, and finally the CLEVR dataset [26] which asks questions about an93

image containing various objects. For foundation models, we use the Llama 3.2 [27], Qwen 2.5 VL94
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Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)
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Figure 3: Examples of the data pitfall from four benchmarks showing cases where the neuro-
symbolic prompting method using Gemini makes an “error”. In contrast, the neuro-symbolic training
method is “correct.” These predictions, marked as errors from neuro-symbolic prompting, reflect
cases where some symbols are ambiguous or hard to determine from the input. In contrast, the
neuro-symbolic training method appears to have memorized noise and biases in the dataset to get the
“correct” symbols. For example, for the Leaf dataset, the leaf is folded so that it looks oblong (which
is predicted by Gemini), but Scallop predicts elliptical, which is correct based on this species of leaf.

[28], InternVL 2.5 [29], and Phi 3.5 [30] family of open models along with Gemini 2.0 Flash [31]95

and GPT 4o [32]. See Appendix B for further information on our experimental setup.96

The first row of Table 1 shows the accuracy difference between the best neuro-symbolic training and97

the best neuro-symbolic prompting method for all five datasets, and Figure 2 shows a snapshot of98

four benchmarks with increasing model size. In each subplot of Figure 2, Scallop’s performance is99

denoted by a black dashed line, whereas the solid lines indicate the performance of neuro-symbolic100

prompting. We plot the performance of foundation models against their size (number of parameters).101

In all cases, the foundation models are strictly prompted, without any training or fine-tuning.102

Consider the graphs for the CLUTRR and CLEVR benchmarks. In both cases, we can see that the103

smallest versions of the foundation models perform worse than Scallop, where the neural models104

are specifically trained for that particular task. However, notice that as the size of the foundation105

models increases, they progressively close the performance gap, with their largest versions eventually106

outperforming Scallop’s trained models. In the case of both Sum5 and Leaf, the largest foundation107

models are unable to outperform Scallop or ISED, with the performance gap being more significant108

for Leaf. However, in both cases, the gap still narrows with scale, and we will address reasons why109

the gap remains large for these datasets in the following sections on the data and program pitfalls.110

These results show foundation models can generally convert raw input to symbols, nearing the111

performance of specialized, task-specific models. Further, as the size of foundation models increases,112

they can replace, or come closer to matching, task-specific models trained through neuro-symbolic113

training techniques. This encapsulates our first pitfall: spending compute on training specialized114

perception models in neuro-symbolic learning has diminishing returns as the performance gap with115

neuro-symbolic prompting shrinks with scale. Naturally, we want to understand why there may be116

performance gaps for the Sum5 and Leaf benchmarks; closer examination of model behaviors over117

these benchmarks reveals the next two pitfalls.118

2.2 The Data Pitfall119

The performance gap often arises when neuro-symbolic prompting errs on ambiguous symbols,120

while traditional neuro-symbolic trained models predict dataset-conformant “correct” symbols based121

on data biases or noise. This finding sheds light on the data pitfall: neuro-symbolic training with122
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Figure 4: Neuro-symbolic trained neural models memorize dataset biases rather than learn general
concepts like foundation models.

specialized datasets, as opposed to large-scale foundation model pretraining, encourages overfitting123

to dataset particularities.124

We quantify overfitting from neuro-symbolic training by studying generalization under slight dis-125

tribution shifts. The second row of Table 1 shows the performance drop after adding 3% Gaussian126

noise to the four image datasets for neuro-symbolic prompting is significantly lower than for neuro-127

symbolic training, highlighting the greater generalizability from foundation models. In Figure 4, we128

show neuro-symbolic training and neuro-symbolic prompting performance on the Sum5 task with129

increasing noise levels. The noisy data shown in Figure 4(b) is small enough to not affect the image130

visibility. Despite this, the addition of noise significantly drops neuro-symbolic training performance131

below that of neuro-symbolic prompting.132

In Figure 3, we show several qualitative examples which highlight the data pitfall in terms of cases133

where the data itself is ambiguous, yet Scallop makes the correct prediction. We include further134

examples in Figure D.2 and Figure D.3. For instance, consider the MNIST digits used in one sample135

from the Sum5 dataset. While the first four digits are relatively clear, the last digit is ambiguous.136

Gemini predicts it to be a “1”, while Scallop predicts it as a “2”. Even though the digit appears to137

be closer to a “1”, the correct answer is “2”, so Scallop infers the correct sum. We attribute this138

discrepancy to the possibility that the model trained by Scallop has memorized this particular image139

to be a “2”, while Gemini’s prediction is not biased by the peculiarities of the MNIST dataset. We140

see similar behavior in other benchmarks including HWF5, Leaf, and CLEVR shown in Figure 3.141

2.3 The Program Pitfall142

The neuro-symbolic training paradigm assumes the reasoning program is provided by domain experts143

and relies on it as a form of supervision. As such, the concepts learned by the perception models are144

highly dependent on the program itself. Since this supervision is relatively weak, with ground truth145

not available for the perception subtasks, the neural network may learn to hallucinate, or mispredict,146

symbols that still result in the correct answer due to the reasoning program. This results in the147

program pitfall: using programs as a component in neuro-symbolic training can lead to the neural148

component hallucinating symbols.149

Figure 5 shows examples of the program pitfall in three datasets, and we provide additional examples150

in Figure D.4. Consider the Leaf dataset, where there is still a large gap between neuro-symbolic151

training and neuro-symbolic prompting performance shown in the first row of Table 1. The reasoning152

program in this case is a decision tree over the edge, shape, and texture of the leaf. This program is153

specified in a forestry database [33] developed for identifying leaves. Here, we find that many of the154

neuro-symbolic prompting errors correspond to cases where these features are extremely challenging155

to identify simply from a given image of a leaf.156

For example, for the leaf shown in Figure 5, Gemini identifies that it has an “entire” margin, meaning157

it is smooth, while Scallop identifies it as “serrulate,” meaning it has a finely serrated edge. From just158

the image, it is difficult to determine whether the margin is serrulate or entire, even though identifying159

this is vital to reaching the correct answer via the program. Even more ambiguous is the texture of160

the leaf, which Scallop predicts as smooth (resulting in the correct final classification) while Gemini161

predicts as glossy even though the texture is not clear from the image.162
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Dataset Example Prompt-symbolic (Gemini) Neuro-symbolic (Scallop)

CLUTRR

CLEVR

[Benjamin] is uncle of [Timothy]
[Timothy] is father of [William]
[William] is father of [Christina]
[William] is father of [Connie]
[Christina] is sister of [Connie]

Unknown

[Benjamin] is son of [Timothy]
[Timothy] is father of [William]
[William] is father of [Christina]
[William] is father of [Connie]
[Christina] is sister of [Connie]

Uncle

What shape is the small red object
right of the small gray cube? unknown sphere

small small

smallsmall

large largesmall

large small

smallsmall

large largelarge

[Benjamin] is the uncle of [Timothy].
[Timothy] took his son [William] out for pizza.
[William] and his daughter [Christina] loved
to play soccer together. Unfortunately, her
sister [Connie] did not like sports. How is
Benjamin related to Connie?

Leaf

Citrus limon

edge: serrulate
shape: elliptical
texture: smooth

edge: entire
shape: ovate
texture: glossy

Psidium guajava

Figure 5: Examples of the program pitfall. All examples reflect errors made by neuro-symbolic
prompting where the neuro-symbolic training method (Scallop) produced the correct answer. We
see that the neuro-symbolic training method reaches the correct answer for the wrong reasons or
even identifies seemingly undetectable symbols to reach the correct answer. For CLUTRR, the
neuro-symbolic prompting method extracts the correct symbols, but the symbolic program cannot
deduce an answer, while the neuro-symbolic training method hallucinates incorrect symbols and
reaches the correct answer. For CLEVR, the neuro-symbolic training method incorrectly identifies
a blue sphere as “small” when it appears large while neuro-symbolic prompting identifies the blue
sphere as large but misjudges a cube as large which was vital to the question.

To validate that these concepts are not immediately apparent from the image, we perform a human163

evaluation using Prolific [34] to determine if the outputs of Scallop’s trained neural model are really164

correct for the cases where neuro-symbolic prompting with Gemini gets the wrong answer. Results165

are shown in Table 2 where we see that a majority of respondents disagree with Scallop’s neural166

outputs for margin and shape classification even though they result in the correct answer. For texture167

classification, the inter-annotator agreement is so low that it indicates people cannot reliably determine168

leaf texture from the images. Full details of this human evaluation are in Appendix C.169

Table 2: Human evaluation of foundation model errors on the Leaf classification dataset. We compare
foundation model predictions leading to the wrong classification with the Scallop predictions which
produce the correct answer. We find that Scallop leads to “symbol hallucination” since humans
overall disagree with Scallop predictions even if they lead to the right answer.

Symbol Category % Scallop Wrong Agreement (Cohen’s Kappa)

Margin 58.8 0.32
Shape 60.0 0.34
Texture 46.7 0.05

We call this behavior symbol hallucination, since the neural model in neuro-symbolic training170

identifies symbols which do not appear present in the input, but their identification leads to the171

correct output from the program. A similar phenomenon called reasoning shortcuts is identified in172

prior work [35] where reasoning shortcuts occur from a program with multiple choices of symbols173

which result in the correct answer. We use the term symbol hallucination to also include the case174

where the program is not perfect, so the wrong symbols are necessary to reach the correct answer.175

We also see a similar behavior on the CLUTRR dataset in Figure 5 where, due to limitations of176

the reasoning program, neuro-symbolic prompting gets the wrong answer even though it correctly177

identifies the symbols, while Scallop hallucinates the incorrect fact that “Benjamin is the son of178

Timothy," resulting in a correct answer that was spuriously derived. For the CLEVR example, both179
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Scallop’s model and neuro-symbolic prompting mispredict some symbols due to misjudging object180

size, but the neuro-symbolic training method still results in the correct answer since the program181

happens to ignore the mispredicted object. In this case, neuro-symbolic training gets the right answer,182

but has not actually learned the desired distinction between small and large objects.183

Focusing on the problems which Scallop answers correctly but neuro-symbolic prompting with184

Gemini answers incorrectly, we report the fraction of solutions using the correct intermediate symbols185

in Table 1, when symbol annotations are available. This shows that overwhelmingly, the performance186

advantage of Scallop over neuro-symbolic prompting does not come from more “correct” intermediate187

symbol prediction, but rather from hallucinating symbols which happen to reach the correct answer.188

3 Opportunities189

Given these pitfalls, what is neuro-symbolic’s merit today? We argue its core principles offer key190

opportunities with foundation models that enable general input perception which can benefit from the191

rigor of symbolic programs.192

3.1 Program Reliability193

Compared to pure foundation model prompting, using a symbolic program in a neuro-symbolic194

training or neuro-symbolic prompting approach can improve accuracy and provide reliability. Recent195

results have shown that combining foundation models with explicit programs in various neuro-196

symbolic prompting configurations improves performance for mathematical reasoning tasks while197

providing reliability and trustworthiness that were lacking through pure prompting [36–38]. Beyond198

mathematical reasoning, a neuro-symbolic prompting approach is beneficial for any task involving199

symbolic computation, since performing exact symbolic computation will always be more accurate200

and reliable than a neural approximation.201
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Figure 6: Performance of end-to-end prompting of Gemini-2.0-Flash compared to neuro-symbolic
prompting (Gemini-2.0-Flash with a program) on CLUTRR and CLEVR examples of increasing
complexity. Complexity for CLUTRR is the minimum number of reasoning steps needed, and
complexity for CLEVR is the length of the program required to answer a sample’s question.

As an example, we take the CLUTRR benchmark which asks about the relationship between two202

people described in a paragraph and compare the accuracy of neuro-symbolic prompting to pure203

prompting (using Chain of Thought [39]). The results shown in Figure 6(a) demonstrate that neuro-204

symbolic prompting achieves consistently high accuracy with increasing question complexity while205

prompting lags in performance. As such, prompting serves as an approximation for symbolic behavior,206

but using a real symbolic program via neuro-symbolic prompting yields higher accuracy. Similar207

behavior is shown for the CLEVR dataset in Figure 6(b) where neuro-symbolic prompting results in208

higher and more stable performance than prompting with Chain of Thought.209

3.2 Symbol Interpretability210

In addition to the benefits from using program execution rather than a neural approximation, the211

other significant benefit is that the symbol extraction step provides a means for interpretability,212
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which was a major motivation for the emergence of neuro-symbolic training [40]. As foundation213

models become more prevalent in real-world applications, this need only grows. These paradigms are214

not orthogonal in this manner; foundation models can offer additional interpretability compared to215

traditional neuro-symbolic training since large-scale pretraining is less likely to overfit to artifacts of216

any one dataset [41].217

An example of how intermediate symbols are useful for interpretability can be seen in the CLEVR218

example in Figure 3. In this case, neuro-symbolic prompting results in the wrong answer of “rubber.”219

The nature of neuro-symbolic prompting allows us to debug why the model produced the wrong220

answer by investigating the intermediate symbols input to and resulting from the reasoning program.221

In this case, we see that the green cylinder was misidentified as rubber, since it is hard to tell the222

cylinder’s material. However, a prediction from pure prompting would have been difficult to debug223

and understand due to a lack of interpretable intermediate symbols and any guarantees that Chain224

of Thought based explanations are faithful to themselves, meaning they explain the true mechanism225

behind determining the final answer.226

4 Looking Ahead227

Figure 7: Examples of ChatGPT code execution. Generated code is executed for solving the problem,
but we can see in the example on the left from CLEVR that the model can produce the wrong code.
For the example on the right, the model correctly calculates the Cohen’s Kappa of the attached data.

As foundation models continue to scale, the neuro-symbolic training pitfalls will only become more228

apparent, and the opportunities more important. As we demonstrate in this paper, foundation models229

are now highly capable for general input processing/understanding tasks which neural models were230

traditionally trained for in neuro-symbolic training. The remaining problem in neuro-symbolic231

training is no longer learning to identify symbols, but determining which symbols and what program232

to use for a problem.233

We empirically demonstrate in Section 3.2 that the use of programs in a neuro-symbolic prompting234

setup offers the potential for reliable and accurate symbolic reasoning, but the use of human specified235

programs greatly limits the practical applicability and performance of the method. As such, effectively236

synthesizing programs over foundation model symbols is still an open problem.237

There is now growing interest in this problem with methods that mostly focus on prompting or238

finetuning foundation models for generating the program in a neuro-symbolic prompting setup [36–239

38, 42]. Industry has also taken interest as shown with the release of OpenAI’s Code Interpreter [43]240

and Google’s Gemini code execution [31] which can write and execute its generated code as well241

as OpenAI’s Operator [44] which writes code for performing actions on a computer. As shown in242

the example on the right of Figure 7, currently available neuro-symbolic prompting tools are already243

useful for relatively simple data analysis tasks. However, for more complicated tasks such as CLEVR244

questions, the example on the left shows these methods are ineffective, potentially resulting in even245

worse performance than pure prompting.246

5 Related Work247

Neuro-Symbolic Training Methods For a survey on neuro-symbolic training methods see Garcez248

et al. [40]. Neuro-symbolic training methods often consist of a neural perception component followed249
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by symbolic reasoning [14, 45]. There are now several frameworks for constructing such neuro-250

symbolic training setups including DeepProbLog [46], Scallop [11], NeurASP [13], LTN [47],251

ISED [12], and Dolphin [48]. All these approaches make various assumptions regarding program252

differentiability, and provide different levels of scalability. There are also neuro-symbolic methods253

focusing on learning logic rules, such as NLIL [49] and DRUM [50], but these are not the central focus254

of our comparison, which centers on systems with explicit, often pre-defined, symbolic programs for255

reasoning over neurally perceived symbols.256

Neuro-Symbolic Prompting Methods Existing work which incorporates foundation models with257

neuro-symbolic training often uses a foundation model to generate code which is then executed [36].258

These approaches either use prompting to produce explicit code [18, 20, 36–38] or finetuning for259

code generation [42, 51]. There is also work on directly finetuning foundation models for symbol260

extraction [52]. Finally, neuro-symbolic training has also been combined with foundation models261

to help design new neuro-symbolic training datasets [23] and to develop datasets for finetuning of262

foundation models [53].263

Challenges in Neuro-Symbolic Several works have recently identified challenges and misconceptions264

with the common neuro-symbolic training setup. Reasoning shortcuts, first identified by Marconato265

et al. [54], are cases where a neuro-symbolic training method learns symbols with the wrong semantics,266

leading to poor performance on programs using the same symbols in different ways. Reasoning267

shortcuts have been further studied in neuro-symbolic training settings [35, 55, 56] as well as other268

research in machine learning more broadly [57, 58]. Reasoning shortcuts are a consequence of the269

program pitfall. Another challenge comes from the common assumption on independence of all270

symbols, which often does not hold [59]. Similarly, it is assumed that the detected symbols should271

display locality, or being influenced by a subset of input features [60]. As observed by Raman et al.272

[60], training in a neuro-symbolic training setup actually does not result in symbols with the desired273

locality, another instance of the program pitfall.274

6 Alternate Views275

While we focused on prompting of foundation models to argue for their importance in generalizable276

neuro-symbolic learning, we also address several alternate views. First, finetuning foundation models277

reintroduces training, risking Section 2’s pitfalls, but starting from a capable base model can minimize278

generality degradation. We therefore see finetuning of foundation models in a neuro-symbolic learning279

system as a middle ground between neuro-symbolic training and neuro-symbolic prompting that280

in many cases will be preferable to prompting, however we focus on prompting in this paper as it281

is already enough to support our argument and finetuning becomes less necessary as foundation282

models become more capable [61]. Second, training may still be necessary for specialized domains283

lacking pretraining data. In this case where prompting will be ineffective, finetuning should be used284

to learn effectively from the minimal amount of data available. This is because finetuning foundation285

models is much more data efficient than training from scratch [62]. Finally, one can argue that the286

use of small specialized models in neuro-symbolic, while potentially performance matched by larger287

foundation models, is necessary for resource constrained scenarios. Similar to finetuning, we see288

merit in future methods which distill or compress foundation models into specialized models in a289

neuro-symbolic system, trading some generalizability for lower resource demand.290

7 Conclusion291

In this paper, we took a critical look at traditional neuro-symbolic training in the age of foundation292

models. Neuro-symbolic training, as originally proposed, was meant to address the limitations of293

deep learning on complex reasoning problems, as well as its lack of reliability and interpretability.294

While addressing these problems, neuro-symbolic training introduced scalability and training issues295

which limited its effectiveness to overly simplistic domains. In the age of foundation models, where296

prompting alone is enough to solve many tasks without training, we highlight three pitfalls of297

neuro-symbolic training with respect to compute, data, and programs. These pitfalls are avoided by298

neuro-symbolic prompting which replaces training with prompting of foundation models to offer the299

benefits of neuro-symbolic without the downsides of training. Finally, we encourage future research300

on neuro-symbolic prompting systems which infer the necessary symbols and program for solving a301

problem, instead of requiring them to be known in advance.302
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A Prompts516

The prompt we use for the foundation models for all benchmarks takes the following form with517

placeholders that depend on the particular dataset.518

Prompt

System Prompt:
You are a helpful assistant.

User Prompt:
After examining the input , determine <output_description >. Here are some ←↩

examples:
Example 1:<ex1_input >This is an example of <ex1_output >.
...
<input >The input is <input_description >. Examine it and then output just <←↩

output_description > after ’FINAL ANSWER:’. If unsure of the answer , try to ←↩

choose the best option.

Assistant:

519

For Sum5 the input description is “an image of a handwritten digit”, the output description is “the520

digit as an integer from 0 to 9”, and we use 5 few-shot examples.521

For HWF5 the input description is “a handwritten number from 0 to 9”, the output description is522

“the value of the number as an integer from 0 to 9”, and we use 5 few-shot examples for the digit523

perception. For operator extraction the input description is “a handwritten arithmetic operator”, the524

output description is “the operator as a string in the set ’+’, ’-’, ’*’, ’/’ (note that the division operator525

can look like a line with a dot above and below it and multiplication can look like an ’x’)” and we use526

4 few-shot examples.527

For CLUTRR the input description is “a description of a relationship between two people and a query528

about the two people’s relationship”, the output description is529

530
the described relationship which answers the question. Use the531

↪→ pronouns to determine the people ’s gender. The relationship532

↪→ must be one of the following: {’brother ’, ’sister ’, ’father ’, ’533

↪→ mother ’, ’son ’, ’daughter ’, ’grandfather ’, ’grandmother ’, ’534

↪→ uncle ’, ’aunt ’, ’nephew ’, ’niece ’, ’husband ’, ’wife ’, ’brother -535

↪→ in -law ’, ’sister -in-law ’, ’son -in-law ’, ’daughter -in-law ’, ’536

↪→ father -in-law ’, ’mother -in-law ’, ’grandson ’, ’granddaughter ’, ’537

↪→ unknown ’}. For example , for the input ’John took his sister538

↪→ Mary to the store. John is Mary ’s what?’ the output should be ’539

↪→ brother.’ Output just the relationship as a word.540541

and we use 2 few-shot examples.542

For CLEVR the input description is “an image of geometric objects”, the output description is543

544
each object ’s bounding box and attributes in the form {\" bbox_2d \": (545

↪→ x1 , y1 , x2, y2), \" attributes \": (color , shape , material , size)546

↪→ \}. Colors can be one of [’gray ’,’green ’,’blue ’,’red ’,’brown ’,’547

↪→ purple ’,’yellow ’,’cyan ’], shapes can be one of [’cube ’,’548

↪→ cylinder ’,’sphere ’], material can be one of [’rubber ’,’metal ’]549

↪→ (it is rubber if the finish is matte and metal if shiny), and550

↪→ size can be one of [’small ’,’large ’].551552

and we use 2 few-shot examples.553

For Leaf, we use three different prompts for the three networks used for perception in the neuro-554

symbolic training program. For all networks, the input description is “an image of a leaf”. For the555

margin network, the output description is “the classification of the leaf’s margin as one of ’entire’,556

’indented’, ’lobed’, ’serrate’, ’serrulate’, ’undulate’”, and we use 5 few-shot examples. For the shape557
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network, the output description is “the leaf’s shape as one of ’elliptical’, ’lanceolate’, ’oblong’,558

’obovate’, ’ovate’” and we use 9 few-shot examples. Finally, the output description for the texture559

network is “the classification of the leaf’s texture as one of ’glossy’, ’leathery’, ’smooth’, ’rough’”560

and we use 3 few-shot examples.561

B Experiment Details562

For all prompting experiments, we use greedy decoding (temperature 0) so there are no error bars for563

neuro-symbolic prompting methods.564

B.1 Setup565

We describe the benchmark datasets, Foundation Models, and NeSy learning baseline below.566

Datasets We use five standard NeSy benchmarks:567

• Sum5 [11]: Constructed from the MNIST dataset of handwritten digits [22]. The input568

consists of five images of digits and the expected output is the sum of the digit values.569

• HWF5 [23]: This dataset consists of five images creating an arithmetic expression. There are570

three handwritten digits from zero through nine and two handwritten operators representing571

addition, subtraction, division, and multiplication. The expected output is the evaluation of572

the expression.573

• CLUTRR [24]: The input consists of natural language paragraphs describing family rela-574

tionships and a question about the relationship between two people mentioned.575

• CLEVR [26]: The input is an image containing various objects of different shape, size, color,576

and texture along with a question about the image.577

• Leaf [12, 25]: The input is an image of a leaf and the expected output is the species of the578

leaf.579

Models We evaluate Foundation Model prompting as a replacement for neural network training in580

NeSy learning using the following Foundation Models:581

• Phi-3.5 Vision Instruct [30]582

• Qwen2.5 VL Instruct (3B, 7B, and 72B) [28]583

• InternVL 2.5 Instruct (8B, 38B, and 78B) [29]584

• Llama 3.2 Vision Instruct (11B and 90B) [27]585

• Gemini 2.0 Flash [31]586

NeSy learning baselines587

• Scallop [11]: We use Scallop as a representative NeSy learning method.588

• ISED [12].589

B.2 Full NeSy Learning vs. Foundation Model Prompting Performance Gap590

The performance gap between NeSy prompting and full NeSy learning is quickly diminishing. In591

addition, the performance gap reduces with increasing model scale. This is shown in Figure 2. Results592

labelled with “—” for ISED are due to an unavailable implementation for the dataset. For GPT-4o, we593

only evaluate on two datasets to reduce cost. Finally, the neuro-symbolic prompting results marked594

“—” for the CLEVR dataset are due to those models not supporting object bounding box generation.595

C Human Evaluation For Leaf596

Since the Leaf dataset does not provide ground truth annotations for the three leaf properties, we597

perform a human evaluation to quantify symbol hallucination in Scallop. For the study, we took all598

problems that were correctly answered by Scallop while incorrectly answered by neuro-symbolic599
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Table B.1: All results

Method Sum5 HWF5 CLUTRR CLEVR Leaf

Scallop 0.975 ± 0.002 0.966 ± 0.005 0.400 ± 0.031 0.750 0.811 ± 0.035
ISED 0.923 ± 0.004 0.023 — — 0.823 ± 0.041

Phi-3.5-vision-instruct 0.17 0.01 0.53 — 0.055
Llama-3.2-11B-Vision-Instruct 0.645 0.0 0.285 — 0.255
Llama-3.2-90B-Vision-Instruct 0.655 0.180 0.626 — 0.178
Qwen2.5-VL-3B-Instruct 0.075 0.015 0.560 0.250 0.215
Qwen2.5-VL-7B-Instruct 0.595 0.03 0.640 0.650 0.335
Qwen2.5-VL-72B-Instruct 0.790 0.250 0.790 0.900 0.390
InternVL2.5 8B 0.540 0.025 0.150 0.160 0.250
InternVL2.5 38B 0.825 0.140 0.730 0.730 0.335
InternVL2.5 78B MPO 0.830 0.000 0.760 0.880 0.405
GPT-4o 0.860 — — — 0.509
Gemini-2.0-Flash 0.815 0.710 0.760 0.765 0.405

Figure C.1: Example question asked in the Leaf dataset human evaluation. Every question was
a binary choice where the choice ‘Yes’ always corresponded to agreeing with Scallop and ‘No’
corresponded to agreeing with Gemini, although this was not told to participants.

prompting with Gemini, sampled 15 questions for each of margin, shape, and texture which had600

differing property predictions for the two methods. We then directly asked participants if the neural601

model’s prediction from Scallop was correct for each of the three properties, consisting of a total602

of 45 questions (15 for each property). For each property we also provide a description and small603

depiction to help participants accurately classify the leaves. An example question for the subset about604

the leaf shape is in Figure C.1.605

In total, we hired 10 people through Prolific [34] to perform the evaluation, answering all 45 questions606

each. Respondents were required to have at least a high school education and speak English as their607

first language. We paid an average of $16.76 per hour and the task took an average of 6 minutes and608

16 seconds.609

D Additional Results610

To further support the findings in the main paper, we provide additional results for each of the pitfalls611

from the main paper.612
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Gemini: Scallop: Gemini: Scallop:Sum5 HWF5

Figure D.2: Additional examples of the data pitfall in Sum5 and HWF5 datasets.

Gemini: obovate, Scallop: lanceolate

Gemini: obovate, Scallop: elliptical

Gemini: obovate, Scallop: elliptical

Gemini: obovate, Scallop: elliptical

Figure D.3: Additional examples of the data pitfall in the Leaf dataset.

D.1 The Data Pitfall613

Additional qualitative results are included in Figure D.2.614

D.2 The Program Pitfall615

Additional qualitative results are included in Figure D.4.616

Gemini: undulate, Scallop: entire

Gemini: entire, Scallop: serrulate

Gemini: entire, Scallop: serrulate Gemini: rough, Scallop: smooth

Gemini: rough, Scallop: smooth

Gemini: smooth, Scallop: glossy

Gemini: entire, Scallop: serrulate Gemini: leathery, Scallop: glossy

Margin Texture

Figure D.4: Additional examples of the program pitfall in the Leaf dataset.
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