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ABSTRACT

Implicit in-context learning (ICL) has newly emerged as a promising paradigm
that simulates ICL behaviors in the representation space of Large Language Mod-
els (LLMs), aiming to attain few-shot performance at zero-shot cost. However, ex-
isting approaches largely rely on injecting shift vectors into residual flows, which
are typically constructed from labeled demonstrations or task-specific alignment.
Such designs fall short of utilizing the structural mechanisms underlying ICL
and suffer from limited generalizability. To address this, we propose In-Context
Routing (ICR), a novel implicit ICL method that internalizes generalizable ICL
patterns at the attention logits level. It extracts reusable structural directions that
emerge during ICL and employs a learnable input-conditioned router to modulate
attention logits accordingly, enabling a train-once-and-reuse framework. We eval-
uate ICR on 12 real-world datasets spanning diverse domains and multiple LLMs.
The results show that ICR consistently outperforms prior implicit ICL methods
that require task-specific retrieval or training, while demonstrating robust gener-
alization to out-of-domain tasks where existing methods struggle. These findings
position ICR to push the boundary of ICL’s practical value.

1 INTRODUCTION

Large Language Models (LLMs) have been widely adopted for text understanding and generation
tasks. As applications broaden, the ability to adapt these models efficiently at inference time has
become increasingly important (Brown et al., 2020; Wang et al., 2020b). In-context learning (ICL)
is a central mechanism for this adaptation (Dong et al., 2022; Min et al., 2021): by conditioning on
a few labeled examples inserted before the query, known as in-context demonstrations (ICDs), the
model can perform new tasks without any parameter updates (Wies et al., 2023; Pan, 2023).

Despite its broad adoption, ICL faces two practical limitations: (i) inserting ICDs into the prompt
inflates sequence length and inference cost compared to zero-shot use (Peng et al., 2024; Li et al.,
2025a), and (ii) performance is brittle, varying with small changes in ICD order or format (Wu
et al., 2022; Guo et al., 2024). To address these issues, recent work has explored implicit ICL,
which converts ICDs into dense vectors that steer intermediate residual flows to approximate the
effect of explicit prompting (Hendel et al., 2023; Todd et al., 2023; Liu et al., 2023; Li et al., 2024).

While vector-based implicit ICL offers a new way to simulate ICL behaviors in LLMs, it struggles to
generalize across real-world tasks. First, using fixed-size vectors as carriers is inherently restrictive.
They can only encode a limited amount of prompt information. Attempts to add new knowledge
or transfer it to other models require constructing new vectors. Moreover, this approach lacks a
theoretical foundation that is both model-agnostic and input-agnostic. Second, they push LLMs to
mimic ICL rather than internalize it, since by the time vectors are applied, the backbone has already
settled into a distribution shaped by its own attention dynamics. As a result, they perform well
mainly on tasks where explicit ICL already succeeds, but fail to generalize to more challenging
cases, such as tasks lacking manually labeled ICDs. To this end, we ask:

“Can we design an implicit ICL method that enables models to truly internalize ICL, thus allowing
seamless generalization across diverse ICL scenarios?”

To examine if there exists a generalizable cross-task ICL pattern, we take explicit multi-task ICL as
an empirical probe, which incorporates ICDs from diverse, potentially out-of-domain (OOD) tasks
to support those lacking their own labeled examples. This setting provides a unique lens in that it
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Figure 1: Multi-task ICL on OOD targets. Multi-task few-shot prompting sometimes surpasses both
zero-shot and the best single-source few-shot (SST-5, CSQA), but may also degrade performance at
times (CREAK). ∆ denotes the difference from the best single-source few-shot prompting.

can sometimes outperform zero-shot prompting and few-shot baselines from single source tasks, but
can also yield worse results (Fig 1). This indicates that ICDs from different tasks may embed a latent
cross-task pattern beneficial for ICL, yet explicit prompting introduces noise that may obscure it.

Motivated by this, we move deeper than additive residual vectors to investigate the attention space
to identify and leverage the cross-domain ICL pattern. We formally analyze how such patterns can
be decomposed and embedded directly into attention logits during zero-shot inference, a strategy
which we term attention routing. Building on this, we propose In-Context Routing (ICR), which
extracts the cross-task ICL pattern and employs a router to synthesize it as a low-rank weighted
composition, guiding attention computation in a task-adaptive manner.

Empirically, ICR consistently outperforms vector-based implicit ICL baselines across five in-domain
and seven out-of-domain (OOD) datasets. It exhibits strong OOD generalization without perfor-
mance degradation, whereas existing baselines often suffer deficits on certain OOD tasks. ICR also
retains key advantages of implicit ICL, including fewer cached parameters and faster inference than
few-shot prompting. To the best of our knowledge, ICR is the first implicit ICL method that can be
directly adopted for zero-shot inference in diverse new tasks without retrieval or retraining.

Our contributions are three-fold. 1) Recognizing the challenges of post-hoc steering, we propose a
new paradigm, attention routing. It leverages generalizable ICL patterns that emerge in the attention
space across tasks to steer attention logits. 2) Building on this paradigm, we propose In-Context
Routing (ICR). Without modifying LLM parameters, ICR introduces a small number of learnable
parameters and an end-to-end training strategy that adaptively adjusts routing based on the input
query. 3) Extensive experiments validate the effectiveness of ICR, and comprehensive analyses
demonstrate that it internalizes ICL patterns while achieving strong adaptivity and generalization.

2 ATTENTION ROUTING

This section introduces attention routing, a paradigm that leverages general ICL patterns to intrinsi-
cally steer model behavior in zero-shot settings. We begin in Sec. 2.1 by revisiting existing implicit
ICL paradigms and their challenges. Sec. 2.2 then presents the formation of attention routing, and
Sec. 2.3 analyzes why the general ICL pattern underlying it can be extracted from LLM attention.

2.1 PRELIMINARIES AND CHALLENGES OF EXISTING WORK

An ICL prompt input p to the LLM is typically constructed from several labeled examples serving
as in-context demonstrations (ICDs) and a query sample. We denote it as p = [D, xq], where
D = {(xi, yi)}ni=1 represents the set of n ICDs and xq is the query sample. The model is expected
to infer the input-label mappings illustrated by the ICDs and then predict the label associated with
the query sample. Extensive studies have shown that the multi-head attention (MHA) module in
transformer-based models plays a central role in learning from D (Olsson et al., 2022; Chen et al.,
2024), which performs a soft query-conditioned retrieval over the ICDs to acquire key knowledge.

Vector-based implicit ICL replaces explicit token-level ICDs with dense vectors injected into the
model’s internal layers. They find that ICDs can be viewed as additive modifications to the MHA
outputs in the zero-shot setting and steer the model using vectors that represent ICL (Peng et al.,
2024). A typical approach is to add the activation differences induced by ICDs as shift vectors to the
zero-shot hidden states. Formally, given an LLM with hidden dimension d and an input sequence of
T tokens, the MHA output h̃l

t of token t at layer l is given by:

hl = Concath
(
softmax(Al,h)V l,h

)
= Concath

(
softmax(

Ql,hKl,h⊤
√
dk

+M)V l,h
)
, (1)
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h̃l
t = hl

t + βl ·Vl
shift, (2)

where hl ∈ RT×d denotes the zero-shot MHA output at layer l and Ql,h,Kl,h, V l,h ∈ RT×dk are
head projections of the final output from layer l− 1. dk is the dimensionality of each head and M is
a causal mask. Al,h ∈ RT×T is the matrix of attention logits at layer l and head h. Vl

shift ∈ Rd is a
shift vector. It is typically derived from explicit ICL, for example, by averaging the hidden states of
n ICDs’ last tokens. The scalar coefficient βl ∈ R controls the magnitude of this shift.

Challenges. The steering approach in Eq. 2, while effective for task-specific adaptation, is inher-
ently limited in generalizability. It operates in a post-hoc manner where a shift vector is directly
injected into the residual stream. Such additive interventions cannot structurally control how infor-
mation flows, and thus often remain tied to task-specific representations. In contrast, more general-
izable ICL patterns are expected to lie in how queries are routed through alternative attention paths.
This motivates our hypothesis that modulating the matching geometry in the attention space, rather
than perturbing outputs post hoc, better reflects the mechanism of ICL, where query tokens attend to
the most relevant directions (Olsson et al., 2022; Cho et al., 2025). We therefore argue that attention
logits provide a principled basis for extracting task-agnostic and transferable ICL patterns. Since
it intrinsically directs model attention to desired routes, we refer to steering attention logits during
zero-shot inference as attention routing.

2.2 HOW ATTENTION ROUTING WORKS

Layer l-1

Layer l+1

Ql Kl Vl

Al,h

softmax

MLP
+

x

Layer l-1

Layer l+1

Ql Kl Vl

Al,h

softmax

MLP
+

x

x x
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ICL 
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Low-
rank

Figure 2: Illustration of attention routing compared
with vector-based implicit ICL, with head-level details
omitted for clarity.

As shown in Eq. 1, attention logits are
governed by query-key interactions, mak-
ing their projections a natural entry point
for mining ICL patterns. Specifically, we
treat the last token of each ICL prompt as
the integration point where contextual in-
formation is consolidated. By examining
its query and key projections, we can cap-
ture systematic shifts induced by the pres-
ence of ICDs across diverse tasks. These
shifts give rise to a low-dimensional sub-
space capturing generalizable ICL dynam-
ics. To recover this subspace, we first per-
form explicit ICL across multiple domains
to obtain high-dimensional mixed-domain
attention representations. Specifically, we iteratively input ICL prompts into the LLM, each prompt
containing ICDs and a query sample from the same domain. We then collect the last-token Q and K
projections across domains and stack them to form two ICL bases. Principal Component Analysis
(PCA) is applied separately to each base, yielding two sets of layer-wise Principal ICL Directions
(PIDs), denoted for each layer l as U l

q, U
l
k ∈ Rd×r, where r is the rank of the PID subspace.

We define a routing vector αl ∈ Rr that assigns weights to the PIDs at layer l. αl controls
the strength with which each PID modulates the attention. During zero-shot inference, the layer-
level query and key projections are formed by concatenating the per-head projections Ql,h

zs ,K
l,h
zs ∈

RT×dk , yielding Ql
zs,K

l
zs ∈ RT×d. The routing vector specifies a low-rank modulation of the

attention logits and thereby biases the attention dynamics toward the extracted PIDs:

∆Al =
(
Ql

zsU
l
q

)
diag(αl)

(
Kl

zsU
l
k

)⊤ ∈ RT×T . (3)

The layer-level bias ∆Al is shared across all H heads in layer l, so that each head’s routed logits
become Ãl,h = Al,h + ∆Al. Figure 2 shows the key difference between attention routing and
vector-based implicit ICL. We further provide a kernel-based perspective in Appendix A.1.

2.3 WHY PIDS CAPTURE GENERAL ICL PATTERN

We now explain why the low-dimensional subspaces defined by the PID sets {U l
q}Ll=1 and {U l

k}Ll=1,
derived from multi-domain ICL, capture a general attention pattern to enable ICL. As described in
Sec. 2.2, at each layer we derive two ICL bases, Q and K, by stacking projections across multiple
domains. Considering the rows of Q from a particular domain d, we can model its covariance under
the Spiked Covariance Model (Johnstone, 2001) (see Appendix A.2) as a mixed spiked form:

Σ
(d)
Q = SqΛqS

⊤
q + Bq,dΓq,dB

⊤
q,d + σ2I, (4)
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where Sq ∈ Rd×r captures a low-dimensional subspace of attention structures shared across do-
mains, while Bq,d encodes domain-specific variations with energy Γq,d. σ2I represents isotropic
noise. An analogous decomposition holds for K. Let {D1, . . . ,DD} denote all D domains involved
in the ICDs. We define the pooled covariance of Q as:

Σ̂Q =
1

N

D∑
d=1

∑
i∈Dd

QiQ
⊤
i , N =

D∑
d=1

|Dd|. (5)

We compute the expectation of Σ̂Q and expand it under the mixed spiked form defined in Eq. 4 as:

E[Σ̂Q] = SqΛqS
⊤
q + σ2I +

1

N

D∑
d=1

|Dd|Bq,dΓq,dB
⊤
q,d. (6)

The same expansion holds for Σ̂K . The first term corresponds to the ICL structure shared across
domains, while the last term aggregates domain-specific variations. If the domain-specific subspace
set {Bq,d} are sufficiently diverse and lack consistent alignment, their aggregate contribution av-
erages out toward isotropy. In this case, they primarily increase background variance rather than
forming dominant eigen-directions. In contrast, the shared component SqΛqS

⊤
q accumulates con-

sistently across all domains. In this way, PIDs obtained by PCA on multi-domain ICL bases recover
a domain-stable ICL pattern. Appendix A.3 provides perturbation analysis supporting this claim,
and Appendix A.4 further examines the validity of the extracted pattern in OOD settings.

3 METHOD

Building on the foundation of attention routing, we propose a new implicit ICL method, termed
In-Context Routing (ICR). ICR leverages attention routing to dynamically integrate extracted
Principal ICL Directions (PIDs) into the attention space, thereby enhancing zero-shot inference of
LLMs. We instantiate ICR in three stages: (i) PIDs extraction across multiple domains, (ii) a query-
conditioned router that determines low-rank routing vectors and head gates, and (iii) multi-objective
training that combines supervision with stable and sparse routing. The pipeline of ICR is illustrated
in Figure 3 and presented in pseudocode in Appendix C.

3.1 PRINCIPAL ICL DIRECTIONS EXTRACTION

To implement ICR, we first extract the ICL bases from the model’s ICL across multiple domains,
along with the PIDs contained within them. For D domains, we construct a set of ICL prompts for
each domain d, denoted as Pd. Let N =

∑D
d=1 |Pd| be the total number of constructed ICL prompts

across all domains. These prompts are fed into the LLM domain by domain. During inference of
the i-th prompt from domain d, we extract the query and key projections of its last token in the layer
l and the head h, denoted q l,h

d,i , k
l,h
d,i ∈ R1×dk . We then concatenate them across heads to obtain

layer-level vectors q l
d,i = Concath q

l,h
d,i ∈ R1×d and k l

d,i = Concath k
l,h
d,i ∈ R1×d. Finally, these

vectors are stacked across prompts and domains to yield the ICL bases across D domains.

Q̃l = stackDd=1 stack
|Pd|
i=1 q

l
d,i ∈ RN×d, K̃l = stackDd=1 stack

|Pd|
i=1 k

l
d,i ∈ RN×d. (7)

From Q̃l, K̃l constructed above, we then obtain the top-r principal directions by PCA to form the
PIDs U l

q, U
l
k ∈ Rd×r. These PIDs serve as reusable routing directions for downstream control of

attention logits during both training and inference.

3.2 QUERY-CONDITIONED ROUTER

After obtaining the PIDs, our goal is to construct the attention routing form introduced in Sec. 2.2.
To apply these cross-domain ICL patterns during inference on various input queries, we employ a
learnable router to optimize the routing process. Given a query sample x, it is fed into the LLM and
a frozen text encoder, which produces a representation E(x). E(x) is then passed to a two-branch
router consisting of two two-layer MLPs, gθα and gθγ . The two branches generate a routing matrix
α(x) ∈ RL×r and a gating matrix γ(x) ∈ RL×H in parallel, computed as

α(x) = tanh
(
gθα(E(x))

)
∈ RL×r, (8)

γ(x) = σ
(
gθγ (E(x))

)
∈ RL×H , (9)
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Figure 3: Pipeline of In-Context Routing (ICR). (a) We perform ICL across multiple domains to
extract PIDs, which can be stored and reused. (b) We train the router with zero-shot inputs while
keeping the LLM frozen, and it generates query-conditioned matrices to control the routing.

where σ(·) denotes the sigmoid function. αl(x) ∈ R1×r denotes the r-dimensional routing vector
at layer l, and γl,h(x) ∈ R1×1 provides head-specific gates at layer l and head h. Together, α(x)
adaptively amplifies or attenuates the extracted PIDs according to query semantics, and γ(x) regu-
lates the contributions of individual heads. They jointly produce a low-rank bias that leverages the
PIDs in a query-conditioned manner to modulate the zero-shot attention logits for input x:

Ãl,h(x) = Al,h(x) + γl,h(x)
(
Ql

zsU
l
q

)
diag

(
α l(x)

) (
Kl

zsU
l
k

)⊤
, (10)

Again, Ql
zs,K

l
zs ∈ RT×d are the concatenation of head-level projections Ql,h

zs ,K
l,h
zs ∈ RT×dk .

Ãl,h(x) is then applied to the subsequent attention computation and final answer generation.

3.3 TRAINING OBJECTIVE

During ICR training, only the router parameters (θα, θγ) are updated. The training set is constructed
by sampling and mixing subsets from each domain Dd ∈ D. We then construct mini-batches of
size B, each denoted as {(xi, yi),Dd}Bi=1, where (xi, yi) is an input–label pair and Dd indicates its
domain. Within each mini-batch, we obtain (i) the zero-shot output pzs

i ∈ R|V| and (ii) the output
under ICR pICR

i ∈ R|V| of the generated answer, where V is the model’s vocabulary.

(1) Supervised cross-entropy. To provide solid semantic supervision for training ICR, we first
adopt the standard cross-entropy loss. For each input and its ground-truth label (xi, yi), the loss is:

LCE = − 1

B

B∑
i=1

logP ICR(yi|xi

)
. (11)

(2) Confidence alignment. We encourage routed predictions to be at least as confident as zero-
shot ones via an entropy drop objective. This prevents the router from taking a shortcut of producing
over-uncertain predictions and ensures routed inference does not reduce confidence:

Lconf =
1

B

B∑
i=1

ReLU
(
H
(
softmax(pICR

i )
)
−H

(
softmax(pzs

i )
))

, H(q) = −
∑
v∈V

qv log qv. (12)

(3) Sparse routing. We regularize the per-layer routing vectors αl(x) ∈ Rr and gates γl(x) ∈ RH

to encourage sparsity in the modulation that ICR introduces to MHA. Because later layers are closer
to the final prediction and should depend on fewer but more decisive routing directions, we scale the
sparsity penalty with a layer-dependent weight wl that increases linearly with depth:

Lspar = Ex

[
1

L

L∑
l=1

wl ∥αl(x)∥1
r

]
, Lgate = Ex

[
1

L

L∑
l=1

∥γl(x)∥1
H

]
. (13)

The final training objective is a weighted combination of the above three terms:
L = LCE + λconf Lconf + λspar Lspar + λgate Lgate, (14)

where λconf, λspar, and λgate are hyperparameters that weight each corresponding loss term.
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3.4 INFERENCE

During inference, ICR is implemented by adding low-rank biases to the attention logits of the cor-
responding heads, as defined in Eq. 10, while keeping the backbone parameters frozen. When given
a zero-shot prompt, ICR adaptively forms Ãl,h(x), which the model then uses for subsequent pre-
filling and complete decoding. The entire procedure operates purely on the query representations
and does not access any label space or task-specific supervision at test time. In this way, ICR implic-
itly equips zero-shot inference with the effect of ICL by fundamentally routing attention dynamics
along shared structural directions via query-conditioned composition, regardless of whether the in-
put belongs to a domain seen during training.

4 EXPERIMENTS

4.1 SETUPS

This section introduces the models employed and the settings for cross-domain collections, training,
and evaluation of ICR. Further details are provided in Appendix D.

Models ICR is evaluated on three open-source LLMs: Llama2-7B (Touvron et al., 2023),
Qwen2.5-7B (Yang et al., 2025), and Llama3.1-8B (Grattafiori et al., 2024). All ablation and analy-
sis studies are conducted on Llama2-7B as an example.

Cross-domain collections We consider five datasets with distinct task types: AGNews (Zhang
et al., 2015), SST-2 (Socher et al., 2013), TREC (Li & Roth, 2002), CSQA (Talmor et al., 2019),
and PIQA (Bisk et al., 2020), and treat each dataset as a separate domain. For each dataset, we
construct ICL prompts by first sampling a query and a balanced set of ICDs, both from the training
split, where 5 ICDs are drawn from each class of the same dataset. We construct 10k prompts for
AGNews and 5k prompts for each of the remaining datasets. After feeding each prompt into the
LLM, we extract the layer-wise Q and K representations of the last token. They are aggregated
across all prompts to obtain per-layer ICL bases as in Eq. 7, enabling PIDs extraction via PCA.
More details about ICL prompts construction during collection are presented in Appendix D.

Training We train the router on a set of 25k queries, obtained by randomly sampling 5k queries
from the training split of each of the five datasets and shuffling them together. Each query is first
encoded by a frozen MiniLM encoder (Wang et al., 2020a), and its pooled representation is fed into
the router. The ICR is applied only to the last one-third of the LLM layers. We set λconf = 0.01,
λspar = 10−3, and λgate = 0.02 during training.

Evaluation We evaluate on 500 randomly sampled test instances (or the full set if smaller) using
dataset-specific prompts and a batch size of 4. Each experiment is run with three seeds, and we
report the average results. We treat the five datasets used for training as in-domain (ID) and select
seven additional datasets for out-of-domain (OOD) evaluation. Based on their task similarity to the
training datasets, we further categorize them into near OOD and far OOD. The near OOD datasets
include SST-5 (Socher et al., 2013), MR (Pang & Lee, 2005), and MRPC (Dolan & Brockett, 2005),
while the far OOD datasets include CB (De Marneffe et al., 2019), COPA (Roemmele et al., 2011),
CREAK (Onoe et al., 2021), and AI2SciE (Clark et al., 2018). In addition to zero-shot and few-shot
prompting, we choose three vector-based methods with calibration or training as baselines: I2CL
(Li et al., 2024), LIVE (Peng et al., 2024), and M2IV (Li et al., 2025a). We further compare the
in-domain performance of ICR with five training-free methods: TV (Hendel et al., 2023), FV (Todd
et al., 2023), ICV (Liu et al., 2023), ELICIT (Wang et al., 2024a), and IV (Liu & Deng, 2025).

4.2 MAIN RESULTS

As shown in Table 1, ICR closely matches and can even surpass few-shot prompting on ID tasks.
It consistently outperforms all implicit ICL baselines. Notably, these methods often require addi-
tional task-specific retrieval or training, whereas ICR operates in a train-once-and-reuse manner,
further highlighting its practical value. On OOD tasks, multi-task few-shot prompting is unstable,
performing well on some tasks but collapsing on others, which corroborates the limitations ob-
served in Figure 1. By design, vector-based implicit ICL inherits the drawbacks of explicit ICL,
leading to higher failure rates. In contrast, ICR improves over the best implicit baseline by +3.0%
on Llama2-7B and +6.5% on Qwen2.5-7B, and even surpasses few-shot prompting by +2.7% on
Qwen2.5-7B. These results establish ICR as a generalizable paradigm for implicit ICL. We also
compare ICR with vector-based ICL variants that inject dataset-specific vectors into hidden states
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Table 1: Baseline comparison across benchmarks. *For ID datasets, few-shot uses 5-shot balanced
sampling per class. For OOD datasets, we adopt multi-task few-shot prompting where each ID
dataset provides 3-shot ICDs. The Collapse column reports the number of cases where a method
underperforms the zero-shot baseline. Results on Llama3.1-8B are shown in Appendix E.1.

Method In-Domain (ID) Near OOD Far OOD Overall
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE Average Collapse

Llama2-7B
Zero-shot 67.0 78.6 56.6 22.4 52.2 25.8 72.2 44.4 37.5 63.0 51.8 34.8 50.5 –
Few-shot* 81.0 95.2 84.6 58.0 59.8 37.4 98.6 68.2 41.1 82.0 50.8 45.4 66.8 1

I2CL 85.5 86.0 78.6 23.8 55.6 27.6 71.6 42.4 38.2 63.6 52.6 35.0 55.0 2
LIVE 86.0 86.2 81.0 24.2 56.4 32.8 73.8 47.6 40.8 64.8 51.0 34.6 56.6 2
M2IV 86.4 86.4 81.5 24.8 56.8 30.8 74.0 46.0 42.6 64.8 54.0 35.2 56.9 0
ICR 86.6 86.4 83.8 24.8 57.0 38.6 79.8 53.4 46.4 68.0 56.4 37.2 59.9 0

Qwen2.5-7B
Zero-shot 66.8 54.0 65.8 80.4 76.2 31.4 64.4 72.4 83.9 92.0 77.8 90.4 71.3 –
Few-shot* 80.2 95.6 67.6 82.2 86.0 37.2 70.2 76.2 83.9 95.0 59.7 95.8 77.5 1

I2CL 77.0 86.4 68.6 81.6 81.2 34.6 69.0 70.8 80.6 92.6 74.8 91.8 75.6 3
LIVE 79.0 87.8 70.4 81.6 82.0 30.8 68.6 69.4 81.0 93.2 72.8 91.8 75.7 4
M2IV 79.6 89.0 70.8 81.8 82.5 31.6 71.2 71.0 76.0 93.5 74.6 92.4 76.2 3
ICR 80.4 91.0 70.6 82.0 82.6 41.4 89.4 73.2 84.6 95.0 79.2 93.2 80.2 0

Table 2: Baseline comparison on in-domain benchmarks.

Method Llama2-7B Qwen2.5-7B
AG SST-2 TREC CSQA PIQA Overall AG SST-2 TREC CSQA PIQA Overall

TV 82.8 83.4 73.4 22.6 53.0 63.0 70.4 78.2 64.6 80.6 74.6 73.7
FV 83.6 82.8 72.8 22.4 52.5 62.8 68.4 76.8 66.2 78.8 80.0 74.0
ICV 83.6 84.2 74.2 23.0 52.8 63.5 74.6 83.0 67.2 81.3 77.2 76.7
ELICIT 84.0 84.4 75.8 22.4 53.9 64.1 70.4 78.5 65.0 79.2 76.4 74.3
IV 83.8 85.6 73.8 23.2 54.6 64.2 73.8 78.4 66.0 81.2 77.8 75.4
ICR 86.6 86.4 82.2 24.8 57.0 67.4 80.4 91.0 70.6 82.0 82.6 81.2

(Table 2). These ad-hoc methods lack transferability and are evaluated only on five ID datasets. ICR
consistently outperforms them by a clear margin, indicating that attention routing captures deeper
and more general ICL patterns. Appendix E.2 further compares ICR with few-shot LoRA (Hu et al.,
2021), a PEFT-based finetuning method. Appendix F provides an efficiency analysis of ICR.

4.3 ABLATION STUDY

In this section, we provide ablations on the extraction of PIDs and the key components of ICR.
Further analyses on the strategy for sampling ICDs in constructing the ICL bases and on the effect
of routing layer positions are presented in Appendix G.2 and Appendix G.3.

Table 3: Ablation on PIDs Extraction. “R.O.”
denotes the replacement of PIDs with a random
orthogonal basis. Scores are averaged within
ID, near-OOD, and far-OOD groups.

Setting ID Near OOD Far OOD
r=4 (PCA) 67.8 57.5 45.6
r=8 (PCA) 67.7 57.3 52.0
r=12 (PCA) 53.2 54.4 43.4
r=8 (R. O.) 63.9 48.1 46.7

PIDs Extraction To understand the role of
PIDs extraction, we conduct two ablations (Ta-
ble 3). First, we vary the PCA rank r ∈ 4, 8, 12.
Compared to r = 8, reducing r to 4 improves
in-domain and near-OOD results but sharply re-
duces far-OOD accuracy, as the stronger bottle-
neck regularizes domain signals but suppresses
the diversity needed for transfer. Increasing r to
12 consistently hurts, likely due to the enlarged
subspace introducing degrees of freedom that re-
main under-trained. Second, we replace PCA with a random orthogonal basis (r = 8). While ID
performance remains close to PCA, both near- and far-OOD collapse. This shows that low-rank
routing alone is insufficient: OOD robustness crucially depends on aligning with meaningful ICL
directions extracted by PCA. A more detailed study on PIDs extraction is provided in Appendix G.1.

Key Components Table 4 presents ablations of the key components of ICR, including the auxil-
iary loss terms in Eq. 14 and the query-conditioned modulation of α and γ. Dropping Lspar or Lgate
has little impact on ID and near-OOD tasks but leads to clear degradation on far-OOD datasets, con-
sistent with their role in constraining over-intervention and enhancing transferability. Removing the
confidence-alignment loss Lconf produces less systematic changes, suggesting that its primary effect
is stabilizing routing by suppressing entropy inflation rather than directly improving ICL accuracy.
For α and γ, we preserve their magnitude but redistribute it uniformly across PID directions or

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation of key components in ICR.

Ablation In-Domain (ID) Near OOD Far OOD
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE

FULL 86.6 86.4 83.8 24.8 57.0 38.6 79.8 53.4 46.4 68.0 56.4 37.2
w/o Lconf 84.4 88.8 84.6 23.8 54.2 38.0 84.0 53.8 33.9 66.0 54.8 31.4
w/o Lgate 86.0 88.4 80.6 27.4 56.6 37.6 83.4 44.8 17.9 61.0 56.4 33.0
w/o Lspar 84.6 87.6 80.2 26.6 54.4 38.2 82.6 38.0 46.4 66.0 52.4 35.2

w/o α(x) 68.2 80.4 47.6 21.4 52.0 30.2 72.0 49.2 39.3 57.0 52.4 33.2
w/o γ(x) 64.8 82.2 49.2 21.0 54.8 29.6 73.0 57.4 39.3 56.0 52.8 33.0

heads. Both ablations cause consistent drops, showing that query-conditioned allocation is crucial:
uniform α or γ erases direction- and head-specific selectivity that underpins effective routing.

5 ANALYSES

5.1 ICR EXHIBITS INTERPRETABLE EFFECTS.

Though ICR modulates zero-shot inference in the attention space, its effects are interpretable.
Probing next-token distributions across ID and OOD datasets reveals systematic vocabulary-level
shifts that remain stable across datasets. Specifically, ICR consistently upweights tokens linked to
reasoning-oriented structures such as ’capture’, ’connections’, and ’signs’, rather than task-specific
label words. Full method details and the top-50 ranked token list are provided in Appendix H.

5.2 ALIGNED AND DIVERSE DOMAIN DISTRIBUTIONS MATTER.

We study the impact of domain distribution in PIDs extraction and router training by varying the
extraction and training data. Table 5 compares three configurations: (i) MATCHED-3: both ex-
traction and training on {AGNews, SST-2, TREC}; (ii) MISMATCHED: extraction on {AGNews,
SST-2, TREC} with {CSQA, PIQA} additionally included during training; (iii) MATCHED-5: ex-
traction and training on all five datasets. Two key findings emerge. (1) Enlarging the training pool
without aligning the extraction (MISMATCHED) degrades performance in most cases, as the router
receives conflicting supervision signals that distort the extracted ICL patterns. (2) Jointly expand-
ing both extraction and training (MATCHED-5) yields clear gains on OOD tasks, suggesting that
the extracted ICL pattern becomes more generalizable (providing empirical support for our claim
in Sec. 2.3). It also improves performance on ID tasks that appear unrelated to the added datasets
(e.g., AGNews, TREC). This indicates that heterogeneous domains provide complementary ICL
cues, enabling cross-task transfer and mutual reinforcement across domains.

5.3 ICR HIERARCHICALLY INTERNALIZES ICL DYNAMICS OF LLMS

In this section, we present a hierarchical importance analysis, spanning layers, heads, and PIDs,
which progresses from coarse to fine granularity. This reveals how ICR adaptively composes ICL
patterns across tasks and internalizes them at multiple levels of abstraction.

Layer We quantify per-layer contribution by combining two router signals: the mean head-level
gate strength and the averaged weights in the routing vectors (α) across r directions. For each input,
both streams are min–max normalized across layers, multiplied to form a layer-importance profile,
and renormalized to sum to one. We then report dataset-level means restricted to the intervened
layers. Figure 4 Left plots results for six representative datasets spanning ID, near-OOD, and far-
OOD groups. The curves show that a few hub layers (notably 23 and 26) consistently dominate,
suggesting that ICR identifies shared structural anchors for routing. Moreover, semantically related
datasets (e.g., SST-5/MR, CB/MRPC) exhibit nearly parallel profiles, indicating that ICR adap-
tively reweights layers in a task-aware yet structurally consistent manner. A more detailed analysis
with figures covering all 12 datasets is provided in Appendix I.

Head For each dataset, we record the gate values of all heads across layers for every zero-shot
input and average them to obtain per-head importance scores. The head with the highest average
value in each layer is selected as the Top-1 head, producing a routing sequence per dataset. We
analyze six representative datasets from in-domain, near OOD, and far OOD groups, and visualize
their routing sequences with a radar plot (Figure 4 Middle). The consensus hubs, marked with green
stars, reveal that certain heads dominate the ICR process (e.g., head 26 in layer 22, head 21 in layer
23). In contrast, some layers exhibit task-specific divergence, where different tasks rely on different
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Table 5: PIDs extraction and training with different domain combinations.

Method AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE

MATCHED-3 86.4 87.6 79.6 21.4 51.0 35.6 80.2 60.4 37.5 57.0 52.8 34.2
MISMATCHED 65.0 82.8 63.6 23.4 54.6 29.8 76.4 64.0 32.1 65.0 53.6 30.8
MATCHED-5 86.6 86.4 83.8 24.8 57.0 38.6 79.8 53.4 46.4 68.0 56.4 37.2
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Figure 4: Left: Layer-importance visualization under ICR. Middle: Visualization of top-1 head in
each layer, with rings for heads, spokes for layers (starting at layer 21), and green stars marking
consensus heads (numbers denote head indices). Right: Correlation of per-dataset PID importance.

heads (e.g., at layer 28 the six tasks split across three heads, indicating three routing modes). These
results show that ICR identifies shared hub heads while flexibly adapting routing in non-hub layers.

PIDs We estimate per-dataset PID importance by combining the absolute weights in α with the
average head-gate strength in each layer, and then averaging these weighted values across layers.
For each dataset, this yields a vector whose entries correspond to the importance of individual PIDs.
Pairwise Spearman correlations of these vectors are calculated and clustered (Figure 4 Right). The
results show that ICR flexibly combines and routes along different ICL directions: for example, MR
aligns more with SST-2/TREC, while AI2SCIE and COPA correlate more with CSQA/PIQA,
reflecting a greater dependence on reasoning-oriented patterns than sentiment- or classification-
oriented patterns. This differentiated behavior confirms that our attention routing-based design can
dynamically select and exploit relevant ICL directions, enabling adaptation across diverse OOD sce-
narios. These results demonstrate the deep alignment between ICR and the attention mechanisms,
which can benefit continually evolving transformer-based models.

6 RELATED WORK

Implicit In-context Learning. To better understand and exploit ICL, prior work has emphasized
the role of MHA. Building on these insights, researchers have proposed implicit ICL, which converts
ICDs into vectors injected into LLM activations, typically within MHA (Merullo et al., 2023). Task
Vectors (Hendel et al., 2023) are extracted from specific layers, while Function Vectors (Todd et al.,
2023) come from attention heads critical to ICL; both are applied during zero-shot inference to
provide task-relevant knowledge. Liu et al. (2023) modeled ICDs as shifts on MHA outputs and
introduced the in-context vector, while Peng et al. (2024); Jiang et al. (2025); Li et al. (2025a)
developed training strategies to enhance vector expressiveness. Although these methods alleviate
the latency and instability of token-level ICDs (Chen et al., 2022; Xiang et al., 2024), their limited
theoretical grounding in attention restricts generalization. Our approach, ICR, addresses this gap
and opens a new direction for implicit ICL. Additional related works are introduced in Appendix J.

7 CONCLUSION

We introduce In-Context Routing (ICR), a query-conditioned framework that extracts and exploits
generalizable ICL patterns within the MHA module of LLMs. Extensive experiments demonstrate
that ICR delivers robust performance across diverse ID and OOD tasks. Moreover, it requires only
a single round of training and transfers to new tasks without additional retrieval or retraining. By
operationalizing the mechanism of ICL within the implicit ICL paradigm, ICR improves both effec-
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tiveness and efficiency and further extends the benefits of ICL to tasks without labeled examples.
ICR provides valuable insights for reshaping zero-shot inference in the next generation of LLMs.

REPRODUCIBILITY STATEMENT

The LLMs adopted in this study are presented in Sec.4.1. The training procedures with full hyper-
parameter settings are reported in Appendix D.2, and details of the datasets used in this study are
provided in Appendix D.3.1. Due to our institution’s privacy policy and the requirements of double
blind review, we will release all code used for data reprocessing and for conducting experiments
upon the publication of the paper. The code will be distributed under a license that permits free use
for research purposes.
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A SUPPLEMENTARY THEORETICAL ANALYSIS

A.1 KERNEL VIEW OF ATTENTION ROUTING

Self-attention can be viewed as a kernel machine, where the dot-product q⊤k defines a linear kernel
K0(q, k) = q⊤k. From this perspective, attention routing does not merely add a bias to the logits,
but reparameterizes the kernel itself. Formally, let Ql

zs,K
l
zs ∈ RT×d be the layer-level projections

during zero-shot inference. We define a reparameterized kernel function

Kl
α(q, k) = q⊤M l(αl) k, (15)

where the reparameterization matrix is

M l(αl) = Id + U l
q diag(α

l)U l⊤
k . (16)

Here U l
q, U

l
k ∈ Rd×r are the PID bases and αl ∈ Rr is the routing vector. The resulting correction

is
∆Al = Ql

zsM
l(αl)Kl

zs −Ql
zsK

l
zs,

which is then broadcast to heads to produce

Ãl,h = Al,h +∆Al.

This kernel view shows that attention routing replaces the fixed linear kernel with a reparameterized
kernel whose deviation from K0 is low-rank, since rank(M l(αl) − I) ≤ r. The modification is
structural, as it is confined to PID directions.

A.2 SPIKED COVARIANCE MODEL

The spiked covariance model (Johnstone, 2001) is a widely studied framework in random matrix
theory and high-dimensional statistics. It assumes that the population covariance matrix Σ ∈ Rd×d

can be decomposed into an isotropic noise component plus a small number of low-rank “spikes”:

Σ =

r∑
i=1

θiuiu
⊤
i + σ2Id, (17)

where σ2Id represents homogeneous noise, ui ∈ Rd are orthonormal eigen-directions correspond-
ing to signal components, and θi are the spike strengths (eigenvalues above the noise level). In
this setting, most eigenvalues of Σ concentrate around σ2, while a few leading eigenvalues (the
spikes) separate from the bulk, capturing the essential low-dimensional structure of the data. This
model provides the foundation for our mixed spiked formulation, where we separate shared low-
dimensional attention structures from domain-specific variations to analyze in-context reasoning
signals across datasets.

A.3 FORMAL ANALYSIS OF POOLED PCA
We provide a high-level analysis supporting the claim in Sec. 2.3 that pooled PCA over multiple
domains can better recover the general ICL pattern. Our argument is based on the classical Davis–
Kahan sinΘ theorem (Davis & Kahan, 1970), which bounds the deviation between the estimated
and true subspaces under perturbations. Let Ûq be the top-r eigenspace of the pooled covariance
Σ̂Q, and let Sq denote the ground-truth shared subspace. Then

sinΘ
(
span(Ûq), span(Sq)

)
≲

Õ(N−1/2) + ρD
gapQ

, (18)

where gapQ is the eigengap separating the shared spikes from the bulk spectrum. Here, sinΘ(U, V )
denotes the operator norm of the sine of the canonical angles between subspaces U and V . The
numerator of the bound contains two sources of error: the Õ(N−1/2) term from finite-sample noise
and the residual ρD from domain-specific variations. Both decrease with larger N and D: increasing
N reduces sampling fluctuations, while increasing D averages out heterogeneous domain-specific
directions.

At the same time, the denominator gapQ becomes larger as N and D grow. With more samples, the
leading eigenvalues of the shared component are estimated more accurately, and with more domains,
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domain-specific contributions cancel out, making the shared spikes stand out more prominently from
the bulk.

Together, these effects tighten the Davis–Kahan bound: the numerator shrinks while the denominator
enlarges, so the subspace distance sinΘ(Ûq, Sq) decreases. Consequently, pooled PCA on multi-
domain ICL bases becomes increasingly reliable for recovering the shared subspace Sq .

A.4 PERTURBATION ANALYSIS OF OOD STABILITY

We continue our analysis by showing that the shared ICL subspace recovered by pooled PCA is not
only stable under test-time distribution shifts but also becomes more accurate for out-of-distribution
(OOD) generalization as the number of domains increases. Specifically, we model OOD shifts in
the query/key statistics as additive perturbations to the pooled covariances:

Σ̂′
Q = Σ̂Q +∆Q, Σ̂′

K = Σ̂K +∆K ,

where ∥∆Q∥op, ∥∆K∥op ≤ ϵ capture bounded changes in second-order statistics.

Let Uq be the top-r eigenspace of Σ̂Q, and Ûq be the corresponding eigenspace of the perturbed
matrix Σ̂′

Q. The Davis–Kahan sinΘ theorem (Davis & Kahan, 1970) gives the bound:

sinΘ
(
span(Ûq), span(Uq)

)
≤ ∥∆Q∥op

gapQ
(19)

Thus, the subspace stability depends on the relative size of the perturbation versus the eigengap. An
identical argument applies to Uk.

Importantly, pooling across multiple domains helps enlarge gapQ by amplifying the shared signal
while averaging out domain-specific variations (see Sec.2.3). This increases the separation between
the top-r eigenvalues and the noise floor, which tightens the Davis–Kahan bound and ensures that the
perturbed subspace Ûq remains closer to the in-domain subspace Uq under test-time shifts. Together,
these explain why increasing the number of training domains leads to more reliable OOD routing in
practice.

B CHALLENGES OF VECTOR-BASED IMPLICIT ICL

Although vector-based methods can reproduce certain input-output statistics of ICDs and enable
efficient ICL without token-level ICDs, they suffer from two fundamental challenges.

1.Weak theoretical grounding limits scalability. Vector-based methods convert certain explicit
ICDs into free-form residual biases of a specific model without structural connections to the
query/key space, which makes them relatively black-box and detached from the theoretical frame-
work of MHA. Thus, these methods witness large performance fluctuations when transferred across
architectures. Moreover, incorporating new knowledge into these vectors or resizing them to fit
novel models requires curated training, and the results of such training can also be unstable.

2.Post-hoc residual steering limits generalization. Vector-based implicit ICL intervenes only after
attention aggregation, injecting additive shifts into the MHA output. Such post-hoc adjustments
lack structural control: the resulting representations are often entangled with task-specific content,
limiting their ability to transfer beyond the training task. Since the underlying attention logits Al,h,
which more fundamentally encode ICL patterns, remain unaffected, the model tends to mimic ICL
by fitting specific feature patterns rather than developing the attention dynamics needed to exploit
context. This design inherits the potential attention deficits in explicit ICL (Lee et al., 2023), while
also lacking the adaptability necessary for multi-task or OOD scenarios.

C ICR PSEUDOCODE

ICR consists of two key phases: PIDs extraction and router training. Algorithm 1 presents the
pseudocode for multi-task query/key representation collection and the subsequent PIDs extraction,
while Algorithm 2 illustrates the core mechanism and training procedure of ICR.
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Algorithm 1: Collecting PIDs Uq, Uk across multiple domains

Input: Model M , datasets {D1, . . . , DN} with Mn prompts each, target layers L, PCA rank r
Output: U l

q, U
l
k for each l ∈ L

1 foreach l ∈ L do
2 Qpool[l]← ∅, Kpool[l]← ∅
3 foreach dataset Dn do
4 for i← 1 to Mn do
5 p← GenerateFewShotPrompt(Dn);
6 Run M(p) with Q/K hooks;
7 foreach l ∈ L do
8 Ql

last ← ConcatHh=1Ql,h[tlast];
9 Kl

last ← ConcatHh=1Kl,h[tlast];
10 Append Ql

last to Qpool[l];
11 Append Kl

last to Kpool[l];

12 foreach l ∈ L do
13 Q← Concat(Qpool[l]);
14 K ← Concat(Kpool[l]);
15 U l

q ← Top-r PCA(Q);
16 U l

k ← Top-r PCA(K);
17 Save U l

q, U
l
k;

D EXPERIMENTAL SETUP

D.1 COLLECTION DETAILS

To construct the ICL bases, we collect 10k examples from AGNEWS and 5k examples each from
SST-2, TREC, CSQA, and PIQA. This allocation is motivated by the complementary characteris-
tics of these datasets: AGNEWS focuses on topic-level categorization that captures broad semantic
content, SST-2 and TREC emphasize sentence-level classification with a sharper focus on spe-
cific linguistic distinctions, while CSQA and PIQA represent QA-style tasks that require more
reasoning-oriented processing. Overall, this balanced collection is designed to provide approxi-
mately uniform coverage of semantic, classification, and reasoning patterns.

D.2 TRAINING DETAILS

Optimization uses AdamW (lr 1 × 10−4, batch size 4) for 2 epochs with gradient clipping (1.0)
and PIDs rank r=8. The training objective combines cross-entropy with a confidence-improvement
term (λconf=0.01), an ℓ1 sparsity penalty on routing vectors (λspar=10−3), and a gate sparsity term
(λgate=0.02). To stabilize training, we employ two simple schedules: (i) a late-layer weighting
scheme that increases sparsity strength toward the late layers (up to 3.0) (wl in Eq.13), and (ii) a
cosine annealing of the routing scale α across epochs (from 1.0 to 0.8). Inputs to both the encoder
and the LLM are truncated to 512 tokens. All runs use a single V100 GPU under deterministic
settings (seed 42; TF32 and non-deterministic SDPA disabled).

D.3 EVALUATION DETAILS

Predictions follow a unified next-token scoring protocol: each answer option is mapped to the variant
that tokenizes into a single token, and the prediction is taken as the argmax over the logits at the
next position restricted to these candidate ids. When ICR is enabled, the router is conditioned on a
mean-pooled MiniLM sentence embedding, while the backbone remains frozen.

D.3.1 DATASETS

In-Domain We treat the five datasets used for cross-domain collection and router training as in-
domain: AGNews, SST-2, TREC, CSQA, and PIQA. AGNews provides large-scale topic classifica-
tion over news articles spanning four domains. SST-2 evaluates binary sentiment classification on
movie reviews, emphasizing subtle polarity cues. TREC focuses on open-domain question classifi-
cation into several semantic types. CSQA targets commonsense reasoning through multiple-choice
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Algorithm 2: In-Context Routing (ICR) training
Input: Frozen backbone M with L layers and H heads per layer;
Frozen encoder E; Router MLP with parameters θ = (θα, θγ);
Subspaces {U l

q, U
l
k}Ll=1;

Late-layer set Llate = { 2L
3 + 1, . . . , L };

Datasets {D1, . . . , DN}, where each sample is (x, y, d) with input x, label y, dataset index d;
Optimizer Opt(θ)
Output: Trained router parameters θ

1 while not converged do
// sample a minibatch from the union of datasets

2 B ← {(xi, yi, di)}Bi=1 ;
3 for i = 1 to B do
4 zi ← E(xi) ; // pooled representation of the query
5 (αi, γi)← RouterMLPθ(zi) ; // αi[l, :] ∈ Rr, γi[l, h] ∈ R
6 for l = 1 to L do
7 if l /∈ Llate then continue;
8 Q←W l

qh
l(xi), K ←W l

kh
l(xi), V ←W l

vh
l(xi);

9 Zq ← QU l
q ∈ RT×r, Zk ← K U l

k ∈ RT×r;
10 Bshared ← einsum(Zq, αi[l, :], Zk) ∈ RT×T ;
11 for h = 1 to H do
12 B

(h)
head ← γi[l, h] ·Bshared ;

13 S(h) ← Q(h)K(h)⊤
√
dk

+B
(h)
head ;

14 A(h) ← softmax
(
S(h)

)
;

15 O(h) ← A(h)V (h) ;
// replace layer-l attention output

16 Õl ← ConcatHh=1O
(h) WO

// obtain task logits at the last token
17 ℓi ←M(xi)

∣∣
last-token

// training loss
18 Ltask ← {ℓICR

i , yi} ;
19 Lconf ← {ℓICR

i , ℓzs
i } ;

20 Lα-spar ← {α} ;
21 Lγ-spar ← {γ} ;
22 L← Ltask + λconfLconf + λαLα-spar + λγLγ-spar // router update
23 Opt.zero grad(); ∇θL; Opt.step()

questions grounded in everyday knowledge. PIQA assesses physical knowledge by requiring plau-
sibility judgments over everyday actions.

Out-of-Domain For out-of-domain (OOD) evaluation, we consider seven representative datasets
that are disjoint from the collection and training sources. We divide them into near OOD and far
OOD groups depending on their proximity to the training tasks in terms of domain, label space, and
input format.

Firstly we articulate a clear framework for how we distinguish near-OOD and far-OOD. In the
context of ICL generalization, we consider three key axes: (i) the compatibility of the label ontology
with the ID family, (ii) the similarity of the required operation or reasoning structure, and (iii) the
degree of semantic and domain shift. Under this framework, near-OOD tasks are those that deviate
from ID along at most one of these axes while preserving the overall ICL structure. SST-5, MR, and
MRPC fall into this category. SST-5 extends SST-2 from a binary polarity to a five-point sentiment
scale, so the label ontology changes in granularity but remains sentiment-based, while the operation
type and domain are essentially identical. MR keeps the same binary sentiment ontology as SST-
2 and the same sentence-level classification operation, but shifts the underlying review corpus, so
the main change is semantic and domain shift. MRPC, although cast as sentence-pair paraphrase,
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Table 6: Datasets, task types, and prompt templates used in ICR.

Dataset Task Type Template

AGNews Topic classification News: {text}; Type: [World, Sports, Business, Technol-
ogy]

SST-2 Sentiment (binary) Review: {text}; Sentiment: [negative, positive]

TREC Question type classification Question: {text}; Answer Type: [Abbreviation, Entity,
Description, Person, Location, Number]

CSQA Commonsense MCQ (5-class) Question: {question}; A. {optA}; B. {optB}; C. {optC};
D. {optD}; E. {optE}; Answer (A/B/C/D/E); Options:
[A, B, C, D, E]

PIQA Physical commonsense (2-choice) Goal: {goal}; A. {optA}; B. {optB}; Answer (A/B); Op-
tions: [A, B]

SST-5 Sentiment (5-class) Sentence: {text}; Sentiment: [terrible, negative, neutral,
positive, great]

MR Movie Review (binary) Review: {text}; Sentiment: [negative, positive]

MRPC Paraphrase {pair}; A. Paraphrase; B. Not paraphrase; Answer (A/B);
Options: [A, B]

CB NLI (3-class) {pair}; A. Entailment; B. Contradiction; C. Neutral; An-
swer (A/B/C); Options: [A, B, C]

CREAK Claim verification Claim: {claim}; Label: yes / no; Options: [yes, no]

COPA Causal reasoning (2-choice) {context}; A. {optA}; B. {optB}; Answer (A/B); Op-
tions: [A, B]

AI2SciE Science MCQ (K-choice) Question: {question}; A. {optA}; B. {optB}; C. {optC};
D. {optD}; E. {optE}; F. {optF}; G. {optG}; H. {optH};
Answer (A/B/C/...); Options: [A, B, C, D, E, F, G, H]

still uses a binary decision geometry that is compatible with SST-2 and the A/B decision format of
PIQA, and the reasoning required is largely surface-level alignment such as lexical and syntactic
rewrites. In this sense it introduces a mild change in operation type but remains close to ID along
label ontology and general language style. By contrast, far-OOD tasks shift along multiple axes at
once. CB, COPA, CREAK, and AI2SciE all introduce new label inventories and reasoning structures
that are not present in any ID dataset, together with nontrivial semantic shifts. CB is a three-way NLI
task with labels entailment, contradiction, and neutral, which do not align with any ID label space,
and it requires directional inference from premise to hypothesis. COPA formulates explicit causal
reasoning over alternatives, which differs from the recognition-style decisions in ID and entails
a different type of relational reasoning. CREAK focuses on claim verification, relying on world
knowledge and on reasoning about when seemingly plausible statements fail in specific cases, rather
than on shallow sentence-level judgments. AI2SciE requires scientific explanatory reasoning over
domain-specific content that is absent from the ID datasets. Together, these shifts in label ontology,
operation type, and semantics alter the effective ICL geometry in more than one dimension.

Near OOD. SST-5 evaluates fine-grained sentiment prediction beyond the binary labels seen in
training, requiring models to calibrate over a five-class space. MR further tests domain transfer
by shifting sentiment analysis to the movie-review domain. Finally, MRPC evaluates robustness
under input format shift, where the model must generalize from single-sentence classification to
sentence-pair paraphrase detection. These tasks remain relatively close to the training distribution
(sentiment or classification-style tasks) but introduce moderate shifts in label granularity, domain,
or input structure.

Far OOD. In contrast, CommitmentBank (CB) stresses generalization under shifts in semantic
judgment criteria, where decisions hinge on subtle pragmatic or syntactic cues absent from typical
training tasks. COPA introduces a pairwise choice format grounded in causal reasoning. CREAK
evaluates plausibility judgments in commonsense relational contexts. Finally, AI2SciE requires
elementary science question answering, representing a shift toward multi-hop reasoning. These
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datasets constitute far OOD scenarios, as they deviate more substantially from the training distribu-
tion in both task format and reasoning requirements.

Taken together, the near and far OOD sets cover complementary axes of generalization, ranging
from finer-grained variants of familiar tasks to entirely novel reasoning paradigms, thus providing a
comprehensive testbed for out-of-domain robustness. On these datasets we report comparisons only
with zero-shot and few-shot prompting, since current vector- or retrieval-based methods require
labeled in-domain ICDs and are not directly applicable.

Templates The datasets used for extraction, training, and evaluation are listed in Table 6, along
with their task types and templates. For in-domain datasets, the templates serve a dual role: they
are applied when constructing ICL prompts prior to collecting query/key representations for PCA-
based PIDs extraction, and again during evaluation. For out-of-domain datasets, the templates are
employed only for evaluation.

D.3.2 PRELIMINARY EXPERIMENT SETUP

For the preliminary cross-task ICL experiments in Section 1 (Figure 1), the inference-time model is
Llama-2-7B, and all prompts follow the template shown in Table 6. Each experiment uses a total
of 16 in-context demonstrations. In the single-source setting, we sample 16 demonstrations without
replacement from the training split of a single source task. In the cross-task setting, we sample 8
demonstrations from each of two source tasks, concatenate them, and uniformly shuffle their order
before inserting them into the prompt. In both settings, demonstrations from any dataset are selected
using label-balanced sampling.

For evaluation, each target task is assessed on a subset of 500 test instances, and we report accuracy
averaged over 5 independent seeds. Decoding is performed using greedy search.

D.3.3 BASELINES

For in-domain evaluation, we compare our method against several representative vector-based im-
plicit ICL baselines, including Task Vector (TV), Function Vector (FV), In-Context Vector (ICV),
ELICIT, Iterative Vectors (IV), Implicit ICL (I2CL), Learnable In-context VEctor (LIVE), and
M2IV, in addition to standard zero-shot and few-shot prompting. For out-of-domain evaluation,
we select three methods that involve calibration or training with data: I2CL, LIVE, and M2IV, as
other training-free methods cannot be applied to OOD tasks. For methods requiring training, we
follow the original setups and conduct a hyperparameter search to achieve the best performance.
The details of the baselines are as follows:

• Task Vector (TV): TV frames ICL as compressing the demonstrations into a single task
vector that encodes the task rule. This vector is then patched into the transformer’s in-
termediate layers during the query’s forward pass, steering the model’s prediction without
direct access to the demonstrations.

• Function Vector (FV): FVs identify a small set of causal attention heads that transport
a compact vector representation of the demonstrated task during ICL. By extracting this
function vector and inserting it into the hidden states of new contexts, the model can execute
the task in zero-shot or natural text settings. The approach shows that LLMs internally
encode portable and composable task representations.

• In-Context Vector (ICV): ICVs recast ICL by extracting a single vector from the latent
states of demonstration examples, which summarizes the task. At inference, this vector is
added to the hidden states of all layers during the query’s forward pass. This approach im-
proves controllability, reduces context length, and supports vector arithmetic for combining
tasks.

• ELICIT: ELICIT introduces a modular framework that builds a capability library of task
vectors extracted from in-context learning prompts. At inference, a retrieval module dy-
namically selects and injects relevant task vectors into the model’s hidden states, enabling
it to reuse learned capabilities without extra tokens or fine-tuning.

• Iterative Vectors (IV): IVs enhance ICL by extracting activation-based meta-gradients,
the differences between activations with and without demonstrations, and refining them

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Baseline comparison across benchmarks. *For ID datasets, few-shot uses 5-shot balanced
sampling per class. For OOD datasets, we adopt multi-task few-shot prompting where each ID
dataset provides 3-shot ICDs. Under Overall, Average is the mean accuracy across all datasets, and
Collapse counts datasets where a method underperforms the zero-shot baseline.

Method In-Domain (ID) Near OOD Far OOD Overall

AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE Average Collapse

Llama3.1-8B

Zero-shot 70.0 87.8 49.0 65.0 62.6 27.6 82.2 68.8 41.1 65.0 53.6 78.4 62.6 –
Few-shot* 88.2 91.4 57.4 72.8 70.4 42.2 91.8 72.4 51.4 63.0 50.8 89.6 70.1 2

I2CL 79.8 86.4 63.8 66.2 62.0 30.8 82.0 64.8 40.6 61.2 46.8 61.4 62.2 8
LIVE 82.6 87.8 66.0 66.8 61.4 32.4 78.6 69.0 41.8 58.8 51.0 65.2 63.5 5
M2IV 83.4 88.2 64.8 67.2 64.8 35.0 81.8 67.8 42.6 60.8 49.8 67.6 64.5 5
ICR 85.2 88.6 76.8 66.6 66.4 36.6 83.6 69.4 42.9 67.0 54.6 82.6 68.4 0

Table 8: Comparison of ICR and LoRA. Param. denotes the number of trainable parameters relative
to ICR (with ICR set as ×1.0).

Method In-Domain (ID) Near OOD Far OOD Overall
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE Average Param.

Qwen2.5-7B
LoRA 83.6 93.2 71.6 84.0 84.2 40.8 88.5 73.2 83.0 92.6 74.6 91.5 80.1 ×2.1
ICR 80.4 91.0 70.6 82.0 82.6 41.4 89.4 73.2 84.6 95.0 79.2 93.2 80.2 ×1.0

Llama-3.1-8B
LoRA 86.8 90.4 77.2 67.2 65.8 37.4 83.0 69.0 40.0 65.4 52.6 79.8 67.9 ×2.8
ICR 85.2 88.6 76.8 66.6 66.4 36.6 83.6 69.4 42.9 67.0 54.6 82.6 68.4 ×1.0

through an iterative process. These vectors are then injected back into the model’s activa-
tions during inference, effectively simulating gradient updates without backpropagation.

• Implicit ICL (I2CL): I2CL extracts vectors from each ICD and aggregates them into a
unified context vector. During inference, it injects a linear combination of this context
vector and the query activations into each layer’s residual streams to simulate the effect of
ICL. Additionally, I2CL employs a noisy self-calibration step to optimize the layer-wise
fusion coefficients.

• Learnable In-context VEctor (LIVE): LIVE distills task information from ICDs into a set
of learnable vectors. During training, it aligns the model’s outputs using ICDs with those
using LIVE, and at inference, the learned vectors are added to each layer’s MHA outputs
to simulate the effect of ICDs.

• M2IV: M²IV assigns learnable vectors and weight factors to both the MHA and MLP
branches at each layer of an LVLM. During training, it uses a self-distillation framework
with mimicry, synergistic, and supervised losses to align with Vanilla ICL outputs. At in-
ference, the trained vectors are injected into residual streams to emulate n-shot ICL without
explicit ICDs.

E ADDITIONAL RESULTS

E.1 RESULTS ON LLAMA3.1-8B
Table 7 presents additional results comparing ICR with zero-shot, few-shot, and baseline methods
on Llama3.1-8B. Overall, ICR approaches and sometimes surpasses few-shot performance, while
consistently outperforming other task-specific implicit ICL baselines in both accuracy and stability.
Notably, ICR shows no collapses below zero-shot performance on any OOD task, outperforming
multi-task few-shot prompting and all other baselines. This reinforces our conclusions in Sec. 4.2.

E.2 COMPARISON WITH LORA
We further compare ICR with LoRA in Table 8. The LoRA module is applied to the token clas-
sification head of the last layer with rank 32. For training, we use the same number of few-shot
examples as those contained in an ICL prompt during the construction of ICL bases, drawn from
five in-domain datasets. Although LoRA requires 2–3× more trainable parameters than ICR, it
achieves slightly weaker overall performance. Moreover, ICR exhibits clear advantages in OOD set-
tings, which shows its better generalizability and efficiency compared to the PEFT-based methods
in few-shot scenarios.
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Table 9: Baseline comparison across benchmarks on Qwen3-32B and Llama3.1-70B. *For ID
datasets, few-shot uses 5-shot balanced sampling per class. For OOD datasets, we adopt multi-
task few-shot prompting where each ID dataset provides 3-shot ICDs.

Method In-Domain (ID) Near OOD Far OOD Overall
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE Average

Qwen3-32B
Zero-shot 69.8 83.0 51.2 76.0 78.0 46.0 95.2 75.0 91.1 96.0 51.8 85.8 74.9
Few-shot* 84.4 89.8 77.8 86.8 89.0 43.8 99.4 76.4 91.1 98.0 51.4 80.3 80.7

FV 74.6 82.6 58.2 75.2 63.4 35.6 93.4 74.8 85.2 93.8 47.0 79.4 71.9
I2CL 78.4 85.6 64.7 74.6 74.2 38.6 94.8 76.0 89.6 94.2 52.0 84.6 75.6
ICR 81.6 86.4 77.2 82.0 82.8 50.4 97.2 79.8 94.6 96.0 53.6 88.6 80.9

Llama3.1-70B
Zero-shot 48.8 93.2 62.6 80.2 70.4 44.0 82.0 71.4 91.0 96.0 92.6 68.6 77.6
Few-shot* 70.8 91.0 68.0 83.2 88.6 46.4 85.2 78.6 92.9 97.0 88.0 96.2 82.2

FV 52.4 86.4 58.4 75.6 71.2 42.6 78.8 68.4 85.6 86.4 85.8 80.8 72.7
I2CL 62.6 88.8 63.0 73.8 75.4 46.8 77.6 70.0 90.2 89.0 88.0 84.4 75.8
ICR 66.4 93.8 66.0 82.4 83.2 48.4 86.8 80.2 93.4 92.0 93.2 92.0 81.5

E.3 RESULTS ON MODELS WITH LARGER SCALE

To test the robustness of ICR on larger-scale models, we additionally report experiments on in-
creased model sizes in Table 9. Across the models with increasing scale, ICR consistently out-
performs the two residual-injection baselines. It approaches few-shot performance in in-domain
settings and typically surpasses cross-task few-shot prompting in OOD settings, with only a few
exceptions where the large-scale model is already very strong and results become slightly unsta-
ble. These trends further validate that ICR achieves stable transfer by avoiding reliance on noisy
cross-task ICDs, and demonstrate its effectiveness across models of different scales.

F EFFICIENCY ANALYSIS

To assess the efficiency of In-Context Routing (ICR), we benchmark it against baselines along two
dimensions. Following Li et al. (2024), we report cached parameter size in Table 11. For ICR,
the cached parameter is 2rdL, as both Uq and Uk of the shape d × r must be stored in each layer.
Although this appears larger than some baselines, r is typically a small constant (e.g., 4–16), so
the asymptotic complexity remains O(dL), on par with methods such as I2CL or LIVE. Moreover,
since r ≪ M in few-shot settings, ICR still provides a far lighter memory footprint compared to
explicit ICL.

We also report the average per-sample inference time over five in-domain datasets in Figure 5.
The results show that ICR consistently requires less inference time than the 5-shot setting. More
importantly, as the input length increases, the inference time of few-shot grows much faster than
that of ICR. This demonstrates that ICR preserves the efficiency of implicit ICL, with the advantage
becoming especially pronounced for longer contexts.

For a better understanding of offline computational cost of ICR, we provide an explicit comparison
with I2CL, M2IV, and LIVE in Table 10. The cost is measured in NVIDIA V-100 GPU hours for
representation collection and training/calibration. Because ICR extracts PIDs and trains the router
using five in-domain datasets, and the baselines are not inherently designed for OOD scenarios,
we report their offline cost on ID tasks only. Concretely, ICR performs a single round of repre-
sentation collection and training shared across all in-domain datasets, while the baselines are run
and trained/calibrated separately for each task, as they are originally designed, and their offline cost
is obtained by averaging over the five ID tasks. From the results, our ICR, as a train-once-and-
reuse method, has a comparable GPU hour cost to the per-task averages reported for the baselines
(except I2CL, which only performs calibration rather than training).. This implies that once two
or more tasks are evaluated, the amortized cost of ICR becomes lower, making our method more
time-efficient in practice.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: GPU hours comparison across methods.

Method I2CL LIVE M2IV ICR

GPU Hours 1.2h 6.8h 7.0h 9.7h

Table 11: Cached parameter size of different methods. M = #demonstration tokens, d = hidden
dimension, L = #layers, r = PID subspace rank (r ≪M ).

Method Zero-shot Few-shot TV FV ICV I2CL LIVE M2IV ICR

Cached Param. 0 2MdL d d dL 2dL dL 2dL 2rdL

G ADDITIONAL ABLATION STUDY

G.1 PIDS EXTRACTION

In Sec. 4.3 we reported the impact of varying the PCA rank and replacing PCA with a random basis.
Here we provide additional details and observations.

For the random orthogonal subspace (r = 8), we generate a d × r Gaussian matrix per layer and
apply QR decomposition to obtain an orthogonal basis. This ensures the comparison isolates the
role of PCA-extracted directions from generic low-rank projections.

While Sec.4.3 reports the performance trade-offs, we note that the degradation at r = 12 is not only
consistent across settings but also more unstable across runs, suggesting that the enlarged subspace
introduces degrees of freedom that remain under-trained with fixed data and epochs. This further
supports the interpretation that OOD robustness benefits from a carefully constrained subspace.

Although in-domain accuracy is relatively preserved under the random basis (indicating the model
can adapt with enough supervision), both near- and far-OOD performance collapse. This highlights
that OOD generalization is not a byproduct of low-rank routing alone: it specifically requires align-
ment with meaningful directions identified by PCA. Without such alignment, routing vectors fail to
capture exemplar-derived cues, and the model effectively loses its cross-task transfer ability.

G.2 ICD SAMPLING

We vary strategies for constructing ICL prompts in PIDs extraction. Specifically, BALANCE/k de-
notes sampling k ICDs per class in a balanced manner, while SIMILARITY selects ICDs based on
BERT embedding similarity to the query (Liu et al., 2021), with the total number of ICDs matched
to that of BALANCE/5. Table 12 shows that although SIMILARITY performs comparably in-domain,
it substantially degrades near- and far-OOD accuracy, indicating overfitting to query-local patterns
rather than capturing cross-domain invariances. This result highlights that exemplar diversity, rather
than local similarity, is most critical for robust PIDs extraction. Within the balanced scheme, k = 5
achieves the best trade-off: fewer exemplars (k = 3) reduce coverage, while more (k = 7) add
redundancy without benefit.

G.3 ROUTING LAYERS

We investigate the effect of applying ICR at different depths within the model by evenly dividing it
into early, middle, and late segments. Table 13 shows that intervening at the late layers yields the
best overall performance. This outcome reflects a fundamental difference between ICR and prior
vector-based methods like I2CL. Vector-based approaches add interventions on the residual stream
whose effects tend to accumulate linearly, making adjustments from early or middle layers relatively
stable. In contrast, ICR directly modulates Q/K alignment via gated subspace coefficients. The re-
sulting changes to attention distributions are nonlinear and softmax-amplified, which may propagate
through subsequent layers. When such routing is altered too early, small misalignments can cascade
and erode the low-level syntactic structure, causing all settings that involve early-layer interven-
tion (including Early and All) to collapse. Focusing the intervention on late layers instead acts as a
high-level readout reweighting, preserving early representations while concentrating adaptation near
semantic integration and decision formation.

G.4 INFORMATION USAGE IN PID EXTRACTION

In PIDs extraction, we collect Q/K representation from the last token of ICL prompts. To explore
alternative ways of extracting Q/K representations Specifically, we test (i) mean pooling over the last
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Figure 5: Comparison of average per-sample inference time across five datasets for 5-shot, zero-
shot, and ICR methods.

Table 12: Ablation on ICD sampling in ICL
bases construction. Scores are averaged over
ID, near-OOD, and far-OOD groups.

Method ID Near OOD Far OOD

SIMILARITY 67.3 55.0 49.4
BALANCE/3 62.1 52.4 48.8
BALANCE/5 67.7 57.3 52.0
BALANCE/7 66.8 56.9 50.2

Table 13: Ablation on routing layers. Scores
are averaged over ID, near-OOD, and far-OOD
groups.

Layers ID Near OOD Far OOD

Early 40.6 47.7 41.0
Middle 60.3 56.3 37.3
Late 67.7 57.3 52.0
All 48.6 41.4 40.2

4 tokens, (ii) mean pooling over the last 8 tokens, and (iii) an attention-rollout–based pooling that
aggregates token-level Q/K using attention-flow weights computed across all layers. Conceptually,
the rollout variant constructs a cumulative attention map by multiplying layer-wise attention matrices
and uses the resulting contribution scores to weight each token’s Q/K before pooling. Experimental
results for the above variants are reported in Table 14.

Across all benchmarks including ID, near-OOD, and far-OOD, none of the alternative pooling
strategies outperform the last-token extraction. Performance degrades as the pooling window ex-
pands, and the attention-rollout variant yields the weakest results. This pattern suggests that in-
corporating a broader set of tokens introduces noise from heterogeneous token roles, diluting the
ICL-related signal that PIDs aim to isolate. A clear trend emerges that the more tokens included in
the pooling region, the more the essential alignment signal is blurred. The effectiveness of the last-
token extraction is actually consistent with the functional role of this position in ICL. The final token
before answering is where the model synthesizes the full prefix (query and demonstrations) into a
single attention computation immediately before prediction. This makes it a coherent integration
point where the demonstration-induced structure is concentrated. Moreover, it is precisely the posi-
tion at which ICR injects its attention-logits bias during inference. Extracting PIDs from the same
locus where the intervention is later applied provides a natural alignment between the raw attention
geometry and the added low-rank bias. These results indicate that the last-token Q/K captures the
most stable and transferable ICL-related structure, while broader pooling mixes in context that is not
directly relevant for the ICL computation. From an interpretability perspective, the fact that PIDs
extracted at the same position where we intervene work best shows that ICR is indeed leveraging
the attention structure that few-shot ICL forms at this locus.

G.5 TEXT ENCODER

To assess whether the choice of frozen text encoder affects routing quality and cross-domain gen-
eralization, we conduct an ablation in which we replace all-MiniLM-L6-v2 with a stronger
encoder, all-mpnet-base-v2. The latter has more layers and a higher embedding dimension
(768 vs. 384), providing richer semantic representations at the cost of slower encoding.
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Table 14: Effect of different Q/K pooling strategies for PID extraction on ICR performance.

Method In-Domain (ID) Near OOD Far OOD Average
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE

Default (last token) 86.6 86.4 83.8 24.8 57.0 38.6 79.8 53.4 46.4 68.0 56.4 37.2 59.9
Last 4 tokens 84.6 83.2 83.8 25.6 55.0 35.6 73.8 46.6 39.3 61.0 53.4 31.2 56.1
Last 8 tokens 67.8 77.2 71.4 23.8 54.0 27.6 70.4 45.6 28.6 62.0 55.8 31.6 51.3
Attention rollout 67.2 78.8 67.0 22.2 52.6 26.8 72.8 44.4 32.2 62.0 52.4 32.8 50.9

Table 15: Effect of frozen text encoder choice on ICR performance.

Encoder In-Domain (ID) Near OOD Far OOD Average
AG SST-2 TREC CSQA PIQA SST-5 MR MRPC CB COPA CREAK AI2SciE

miniLM 86.6 86.4 83.8 24.8 57.0 38.6 79.8 53.4 46.4 68.0 56.4 37.2 59.9
mpnet 86.8 87.0 88.2 25.0 58.6 37.0 86.4 56.6 48.2 64.0 57.0 38.0 61.1

∆ +0.2 +0.6 +4.4 +0.2 +1.6 -1.6 +6.6 +3.2 +1.8 -4.0 +0.6 +0.8 +1.2

The results, summarized in Table 15, show that all-mpnet-base-v2 yields slightly better per-
formance in both ID and OOD settings, while the overall trend and relative performance of ICR
remain consistent. This indicates that (i) the router is able to effectively exploit the semantic fea-
tures provided by the frozen encoder, and (ii) ICR’s generalization behavior is robust to the encoder
choice rather than being tied to a particular model. As expected, larger encoders offer marginally
better semantic retrieval at the cost of slower usage, so the choice involves a tradeoff between speed
and capacity.

H ”ICLNESS” TOKENS

For each dataset d (including all ID, near-OOD, and far-OOD tasks), we run the model in both
zero-shot and ICR-augmented settings, compute the next-token log-probabilities, and obtain

∆ log p(d) = log pICR − log pzs.

Averaging over all examples in d yields a token-level bias vector b(d) ∈ R|V|, where each coordinate
indicates the systematic up- or down-weighting of a token by ICR on that dataset. We then aggregate
across datasets with the following statistics for each vocabulary token v:

• meanv: mean ∆ log p across datasets

• stdv: standard deviation across datasets

• pos ratev: fraction of datasets with ∆ log p > 0

• bordav: Borda rank fusion across datasets

• stabilityv = meanv/(stdv + ϵ)

The final score is defined as

scorev = stabilityv · pos ratev · log(1 + bordav),

which rewards tokens that are (i) strongly upweighted on average, (ii) consistently positive across
datasets, and (iii) highly ranked across tasks. The top-50 tokens are listed in Table 16, with tokens
strongly related to in-context reasoning or structural semantics (”ICLness tokens”) highlighted in
red.

One might argue that because we explicitly require consistency across datasets, the resulting tokens
are trivially “cross-dataset”. However, cross-dataset consistency alone does not guarantee inter-
pretability: many tokens that satisfy this criterion are function words (e.g., the, and) or generic
terms (e.g., people, year) that carry little connection to in-context reasoning. The notable observa-
tion is that the tokens emerging at the very top of the ranking are not such trivial items, but words
with structural and explanatory semantics (e.g., illustrated, constitution, protected). This indicates
that ICR does not merely enforce consistency on generic vocabulary, but systematically biases the
model toward dimensions plausibly linked to reasoning and explanation, aligning with our hypoth-
esis about generalizable “ICLness.”
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Table 16: Top-50 dataset-invariant “ICLness” tokens. A higher score indicates a more stable and
consistent positive bias across ID, near-OOD, and far-OOD datasets.

Rank Token Score Mean ∆log p Std Pos. Rate Borda Norm

1 dep +28.79 +0.73 0.02 1.00 0.825
2 court +22.31 +0.75 0.02 1.00 0.828
3 forme (French form) +21.92 +0.74 0.02 1.00 0.823
4 illustrated +19.80 +0.21 0.00 1.00 0.538
5 constitution +18.92 +0.48 0.01 1.00 0.704
6 protected +18.35 +0.75 0.02 1.00 0.829
7 network +17.01 +0.76 0.03 1.00 0.836
8 thoughts +13.51 +0.47 0.02 1.00 0.695
9 colonial +13.49 +0.71 0.03 1.00 0.815

10 drie +13.41 +0.72 0.03 1.00 0.816
11 acres +12.50 +0.50 0.02 1.00 0.711
12 fro +12.22 +1.11 0.06 1.00 0.934
13 protection +12.14 +0.83 0.04 1.00 0.861
14 reve +11.79 +0.68 0.03 1.00 0.797
15 leur +11.14 +0.70 0.04 1.00 0.809
16 trouv (French find) +10.72 +0.77 0.04 1.00 0.839
17 clause +10.09 +0.56 0.03 1.00 0.744
18 pipe +10.07 +1.12 0.07 1.00 0.923
19 column +10.04 +0.52 0.03 1.00 0.723
20 Tot +9.21 +0.33 0.01 1.00 0.618
21 catt +9.17 +1.01 0.07 1.00 0.914
22 networks +9.16 +0.69 0.04 1.00 0.805
23 cyl +9.12 +1.28 0.09 1.00 0.958
24 duch +8.69 +0.87 0.06 1.00 0.868
25 bro +8.67 +0.32 0.02 1.00 0.609
26 enumerate +8.54 +0.45 0.03 1.00 0.686
27 surv +8.34 +0.74 0.05 1.00 0.824
28 burst +8.27 +0.65 0.05 1.00 0.788
29 connections +8.08 +0.85 0.07 1.00 0.868
30 presente (French present) +8.08 +0.59 0.04 1.00 0.760
31 colors +7.99 +0.63 0.05 1.00 0.776
32 signs +7.78 +0.41 0.03 1.00 0.662
33 filter +7.55 +1.07 0.09 1.00 0.916
34 indust +7.37 +0.26 0.02 1.00 0.571
35 returns +7.24 +0.88 0.08 1.00 0.879
36 filters +7.23 +1.19 0.11 1.00 0.943
37 alles +7.22 +0.88 0.08 1.00 0.880
38 zusammen (German jointly) +7.11 +0.74 0.06 1.00 0.820
39 neces +7.08 +0.94 0.08 1.00 0.886
40 tandis +7.07 +0.85 0.08 1.00 0.867
41 separately +6.94 +1.14 0.11 1.00 0.946
42 bird +6.69 +0.42 0.03 1.00 0.670
43 blieb +6.57 +0.52 0.04 1.00 0.722
44 comprend (French comprehend) +6.53 +0.93 0.09 1.00 0.888
45 contrib +6.45 +0.60 0.05 1.00 0.765
46 capture +6.41 +0.57 0.05 1.00 0.745
47 strict +6.40 +0.73 0.07 1.00 0.813
48 happy +6.28 +0.45 0.04 1.00 0.681
49 lange +6.21 +0.55 0.05 1.00 0.744
50 condem +6.18 +0.64 0.06 1.00 0.789

I LAYER IMPORTANCE

Figures 6a and 6b report the normalized layer-importance profiles across all in-domain (ID) and
out-of-domain (OOD) datasets, respectively. Each curve corresponds to one dataset, and the x-axis
denotes the global transformer layer index. By comparing the two figures, several observations can
be made. First, both ID and OOD datasets consistently highlight a few dominant “hub” layers (e.g.,
around layers 23 and 26), indicating that ICR relies on these shared layers as primary routing points.
Notably, such hub layers are concentrated in the earlier–middle part of the intervened layers, while
later layers no longer exhibit clear global hubs, suggesting that they play a more task-specific role.
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Figure 6: Layer importance profiles. Curves show per-layer importance, computed from head gates
and routing coefficients.

Second, certain OOD datasets exhibit importance profiles that closely resemble those of particular
ID datasets, suggesting that ICR is able to adjust its routing behavior in a task-aware manner rather
than collapsing to a uniform pattern. Third, the importance peaks in OOD settings are sharper,
implying that under distribution shift the model leans more heavily on these hub layers as stable
anchors to preserve generalization.

J ADDITIONAL RELATED WORK

Mechanisms of In-context Learning. To better exploit ICL, considerable efforts have been de-
voted to understanding the mechanisms of ICL (Li et al., 2025c;b). ICL was initially regarded as an
ability that emerges as LLMs scale up in parameters and training data (Wei et al., 2022). Subsequent
work has sought to provide theoretical interpretations through two main perspectives. Garg et al.
(2022) modeled ICL as a form of gradient descent. Based on this, Von Oswald et al. (2023); Dai
et al. (2022) explained ICL via meta-optimization. Alternatively, Xie et al. (2021) framed ICL as
implicit Bayesian inference, suggesting that LLMs infer a shared latent concept across ICDs. Be-
yond modeling of model behavior, the connection between MHA and ICL has also been extensively
studied. Induction heads, which are attention heads that learn repeated patterns in the prompt and are
considered key contributors to ICL, were identified by Elhage et al. (2021) and empirically analyzed
by Olsson et al. (2022). Todd et al. (2023) further employed causal mediation analysis to identify
the heads that contribute most to ICL, denoted as FV heads. Yin & Steinhardt (2025) provided a
systematic synthesis of these findings. In contrast to these works, we develop a deeper theoretical
framework for ICL through attention routing, which can be effectively applied to enhance ICL per-
formance. Whether ICL can truly generalize to OOD tasks is another central question. Yadlowsky
et al. (2023) find that ICL struggles to generalize to function classes unseen during training, such
as convex combinations or extreme variants of the pretraining functions. Wang et al. (2024b) fur-
ther argue that ICL fails to generalize to new task instances even within a seen distribution, instead
exposing its limitation in handling unseen input–label distributions.

K MECHANISM DISCUSSION

One might argue that certain attention behaviors in transformers, such as induction heads, implement
global attention from demonstrations to the query, and that a method like ICR, which operates under
zero-shot inputs without explicit demonstrations, should be unable to reconstruct such patterns. Yet
empirically, ICR can match or even surpass vanilla few-shot ICL in several settings, which calls
for a more refined view of what demonstrations contribute. Our position is that, in the zero-shot
regime, the benefits commonly attributed to demonstrations in vanilla ICL can be reinterpreted as
local, intra-query attention routing. ICR explicitly operates in this regime that it does not recon-
struct demo-to-query links, instead, it modulates attention logits within the query so that the model
allocates attention along task-useful paths. Concretely, the low-rank update ∆A encodes cross-
task, reusable priors over intra-query routing, learned from pooled Q/K statistics across tasks, such
as: (i) role-typing (e.g., anchors such as question stems, label markers, options, premises vs. hy-
potheses); (ii) long-range links between these roles (e.g., question↔option, premise↔hypothesis,
number↔unit); and (iii) competition/sparsity priors that sharpen relevant links and suppress dis-
tractors. Applying ∆A rotates the query–key geometry to reinstate these priors on a new query,
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yielding attention maps that functionally resemble those induced by good demonstrations, without
requiring any demo content. This explains why zero-shot ICR can match or exceed vanilla few-shot
when demonstrations are noisy or misaligned. Importantly, ∆A transfers a routing prior rather than
learning new content at inference time. When a task truly relies on demo-specific content (beyond
routing), explicit few-shot prompting can be stronger, since such content cannot be reinstated by
intra-query attention routing alone. This explains why, on in-domain benchmarks, ICR may under-
perform vanilla few-shot ICL: some queries benefit directly from the information contained in the
demonstrations. By contrast, in OOD settings the main benefit of few-shot prompting often lies in
inducing a robust intra-query routing pattern, while its demo content can be misaligned or even mis-
leading. By extracting and reusing this pattern, ICR attains few-shot–like gains without exposure to
OOD demo-content mismatch, yielding more comparable and stable performance under distribution
shift. This may provide a useful new perspective for future work on understanding the mechanisms
underlying in-context learning.

THE USE OF LARGE LANGUAGE MODELS (LLMS)
In preparing this submission, we used large language models (LLMs) solely for language refine-
ment. Specifically, LLMs were employed to polish the writing style and improve readability, such
as rephrasing sentences and adjusting grammar.
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