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Figure 1. We present HeadGAP to create photo-realistic animatable 3D head avatars from only a few or even one image of the target
person. Firstly, we utilize large-scale 3D data to learn 3D head prior with our designed 3D Gaussian head prior model. Secondly, we can
use few-shot data to create 3D animatable avatars. Finally, we can animate the few-shot avatars with novel expressions.

Abstract
In this paper, we present a novel 3D head avatar creation

approach capable of generalizing from few-shot in-the-wild
data with high-fidelity and animatable robustness. Given
the underconstrained nature of this problem, incorporat-
ing prior knowledge is essential. Therefore, we propose a
framework comprising prior learning and avatar creation
phases. The prior learning phase leverages 3D head pri-
ors derived from a large-scale multi-view dynamic dataset,
and the avatar creation phase applies these priors for few-
shot personalization. Our approach effectively captures
these priors by utilizing a Gaussian Splatting-based auto-
decoder network with part-based dynamic modeling. Our
method employs identity-shared encoding with personalized
latent codes for individual identities to learn the attributes
of Gaussian primitives. During the avatar creation phase,
we achieve fast head avatar personalization by leveraging
inversion and fine-tuning strategies. Extensive experiments
demonstrate that our model effectively exploits head priors
and successfully generalizes them to few-shot personaliza-
tion, achieving photo-realistic rendering quality, multi-view
consistency, and stable animation.

Project page: https://headgap.github.io/
† Corresponding author

1. Introduction
Creating photo-realistic 3D avatars is a central challenge
in computer graphics, encompassing applications such as
movies, games, AR/VR, and the metaverse. There is a
significant interest in generating digital avatars from real-
world captures to create a precise digital copy of an actual
person. These digital avatars can be animated and rendered
from various viewpoints, maintaining high visual fidelity.

Recent advances [41, 46, 73, 85, 87] have achieved
photo-realistic rendering quality of digital humans. In par-
ticular, 3D Gaussian Splatting (3DGS) [36] has been widely
adopted for head avatars [13, 29, 47, 54, 70, 75] due to its
efficient and realistic rendering capabilities. However, these
advancements rely heavily on publicly available multi-
view [40] or sequential datasets [24, 84], which are labor-
intensive to capture and process for the average user. To ad-
dress this limitation, many studies [12, 14, 19, 21, 81] aim to
reduce the high data requirements for creating 3D avatars,
allowing users to generate avatars from just a few images.
Unfortunately, these methods often suffer from significant
performance degradation compared to those [29, 54, 75]
that utilize dense data for avatar creation. The challenge
of generating few-shot personalized head avatars with high
fidelity and stable animation remains unresolved.

To this end, we propose HeadGAP to facilitate high-
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Figure 2. HeadGAP framework. The prior learning phase uses dif-
ferent IDs’ data to embed head priors into the GAPNet. The per-
sonalization phase firstly optimizes identity codes to obtain the in-
verted avatar, then updates the GAPNet to get the fine-tuned avatar.

fidelity few-shot head avatar creation. As illustrated in
Fig. 1, the core of HeadGAP lies in learning generalizable
3D Gaussian head priors from large-scale data and leverag-
ing them to create high-quality personalized head avatars
with few-shot input. As shown in Fig. 2, the HeadGAP
framework consists of two phases: 1) the prior learning
phase and 2) the few-shot personalization phase. In the
prior learning phase, multi-view dynamic data is used to
embed 3D prior knowledge into GAPNet (GAussian Prior
Network). The prior learning phase is conducted only
once. Subsequently, the few-shot personalization phase
uses the learned priors to create avatars of new identities by
inversion and fine-tuning. This framework focuses on two
perspectives that would allow GAPNet to learn effective
priors: 1) To achieve high-quality, we introduce a 3DGS-
based head representation boosted with part-based and dy-
namic modeling. 2) For enhancing generalizability, we de-
sign GAPNet in an auto-decoder manner, which constructs
continuous part-based identity spaces that can serve as pow-
erful generative priors to guide the few-shot creation. Ad-
ditionally, we leverage mesh tracking priors by predicting
Gaussian attributes relative to the tracked mesh [54].

We conduct comprehensive experiments on the
NeRSemble dataset [40] to substantiate our design choices
and demonstrate our method’s superiority over existing
approaches. To illustrate the robustness and practical
applicability of our method, we present numerous avatars
of novel identities generated from both public datasets and
images captured with consumer-grade devices.

In summary, our contributions can be listed as follows:

• We introduce a novel framework that exploits generaliz-
able 3D Gaussian priors for fast 3D head avatar person-
alization using only a few input images. These avatars
exhibit high fidelity and consistent animatable quality.

• We present proper designs that effectively utilize part-
based dynamic Gaussian head priors and generalize them
for high-quality few-shot head avatar personalization.

• We substantiate the efficacy and robustness of our frame-
work through comprehensive experiments. Meanwhile,
we showcase its potential in real scenarios by avatar cre-
ation using images captured by consumer-grade devices.

2. Related Work
3D Animatable Head Avatar. Since the advent of 3D neu-
ral implicit representations, remarkable progress has been
made in creating animatable 3D head avatars from monocu-
lar or multi-view videos with various expressions and poses.
Existing works have explored varieties of avatar represen-
tation. Some previous approaches [30, 38, 49] employ
3DMM [5, 43] with neural textures. Many recent stud-
ies [1, 2, 24, 25, 34, 41, 46, 73, 84, 87] focus on creating
neural volumetric avatars. 3DMM [4, 5, 27, 43, 53] is of-
ten employed in those approaches. More recently, point-
based representations are widely adopted [13, 28, 29, 54,
58, 70, 75, 85]. Among those works, 3DGS [36] is the most
prevalent representation due to its efficient rendering and
topological flexibility. Similar to these approaches, our ap-
proach is also based on 3DGS. However, there exist signif-
icant differences between previous works and ours, includ-
ing our model being designed with 1) part-based dynamic
modeling and designed for 2) 3DGS-based generative mod-
eling rather than single-subject modeling.
One-shot 2D Head Avatar. One-shot 2D head avatar
synthesis has attracted lots of attention in recent years.
Plenty of works leverage 2D generative models for talk-
ing head synthesis at high fidelity. One part of those
works [22, 26, 33, 55, 59, 66, 67, 82] learn latent de-
formed features and feed them to 2D generators for face
reenactment. Some other studies [6, 32, 78] map images
to the latent space of a pre-trained StyleGAN2 [35]. While
2D-based methods can produce photorealistic images, they
struggle to preserve the 3D consistency. Therefore, sev-
eral methods [14, 19, 20, 34, 37, 44, 45, 48, 50, 77, 80]
pursue animatable 3D head synthesis. They often resort
to monocular 3DMM [16, 23] for providing geometry or
pose guidance. Another line of work for 3D-aware por-
trait generations is also capable of few-shot avatar anima-
tions. Lots of studies [9–11, 17, 31, 52, 57, 61] demon-
strate that the combination of 3D representations and ad-
versarial learning on monocular images makes it possible
to learn a 3D-aware generator for multi-view image gener-
ation. Many works [3, 62–64, 68, 69, 72] introduce 3DMM
for animation control. These methods can be combined with
advanced GAN inversion techniques [18, 42, 56, 71, 79]
for head avatar reconstruction. However, those 2D-based
approaches are still inferior in 3D consistency due to their
representations and training schemes.
Few-shot Head Avatar with Data-driven 3D Priors. We
focus on the few-shot 3D avatar personalization with data-
driven 3D priors from large-scale data. To solve this prob-
lem, there are also some recent works [7, 8, 12, 76, 81]
designed in this manner. Morphable Diffusion [12] in-
troduces a multi-view consistent diffusion model to create
head avatars from a single image. Preface [7] trains a NeRF-
based auto-decoder generative model and achieves few-shot
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Figure 3. Illustration of the GAPNet. Given the tracked meshes of the input images, GAPNet binds part-based Gaussian primitives with
initialized features to the mesh. Then, it employs part-specific modules to predict the local attributes of each primitive. The local attributes
are transformed into global ones for 3DGS rendering. Finally, the renderings are fed into the CNN to obtain the final rendered images.

high-fidelity 3D static head creations. PhoneScan [8] ex-
tends MVP [46] to an auto-encoder generative model and
supports novel avatar creation with the phone-captured data.
VRMM [76] is an auto-decoder generative model built upon
MVP [46], which supports few-shot relightable avatar cre-
ation. One2Avatar [81] adapts MonoAvatar [2] to an auto-
decoder generative model based on a 3DMM-anchored neu-
ral radiance field [51]. Similar to [7, 76, 81], we also design
our model in an auto-decoder manner. Different from these
approaches relying on volume rendering [7, 8, 76, 81] or
diffusion model [12], our approach employs 3DGS for ren-
dering. We concentrate on designing a 3DGS-based genera-
tive model to achieve high-fidelity few-shot personalization
with robust animations.

3. Method
In this section, we first introduce the preliminary (Sec. 3.1).
Then, we detail our avatar representation designed for cre-
ating head avatars with learned generalizable head prior
knowledge (Sec. 3.2). Finally, we present our HeadGAP
framework (Fig. 2), including 1) head prior learning phase
(Sec. 3.3) and 2) few-shot personalization phase (Sec. 3.4).

3.1. Preliminary

3D Gaussian Splatting (3DGS) [36] proposes a point-
based scene representation, where each point represents a
Gaussian primitive that is described by a global space po-
sition µ, rotation r, scale S, opacity α and color c. In the
following, we let the following notation:

A = {µ, r,S, α, c}, I = R(A, πK,E) (1)

denote the set of attributes A composing the Gaussian point
cloud, and its tile-based differentiable rasterization R into
an image I under the camera projection π described by in-
trinsic and extrinsic parameters K and E respectively.
GaussianAvatars [54] connects Gaussian primitives to the

mesh faces. For each primitive, the position µ′, rotation r′,
and scaling S′ are initialized in the local space. During ren-
dering, these properties are converted into the global space:

r = Rr′, µ = sRµ′ +T, S = sS′, (2)

where R describes the orientation of the triangle face in
the global space, s describes the scaling, and T describes
the mean position of three vertices of a triangle face. For
simplicity, we define T as the operation that transforms the
local Gaussian attributes A′ to global ones:

A = T (A′,M), M = {β,θ,ϕ, δ}, (3)

where M denotes the input FLAME parameters, consist-
ing of shape parameters β, pose parameters θ, expression
parameters ϕ, and static vertex offsets δ.

3.2. Avatar Representation

Our avatar representation is based on an auto-decoder prior
model [7, 76, 81, 83] that can learn head prior knowledge
from multiple identities and be used for head avatar creation
from few-shot images. As illustrated in Fig. 3, our rep-
resentation builds upon a point-based representation with
part-based modeling, where each point is only responsible
for one semantic part. Firstly, we initialize the part-based
feature point cloud consisting of 1) part-based identity code
and 2) point-specific feature encoding, based on the tracked
mesh. Then, we conduct dynamic modeling by feeding the
feature point cloud to the part-based multi-layer percep-
tions (MLPs) to regress the Gaussian attributes of all the
points for 3DGS rendering. Finally, we utilize a convolu-
tional neural network (CNN) module to refine the 3DGS
renderings to obtain the final rendered image. In the fol-
lowing, we will describe those key components.
Part-based Feature Point Cloud. For initializing the part-
based feature point cloud based on the tracked mesh M, we
first utilize UV-based initialization [70] to obtain the point
cloud with n Gaussian primitives, with each pixel in the UV



map bound to one triangle of the mesh. The initialization
contributes to more uniform primitives distributed on the
head region than face-based initialization [54].

Then, we set up the initial features for the point cloud.
The features contains two types, including the 1) point-
specific feature encodings f = {fi ∈ Rc1}ni=1 and 2) part-
specific identity codes z = {{zlj ∈ Rc2}pl=1}kj=1, where
p and k denote the part and identity number respectively.
The point encodings f embeds identity-shared priors and the
identity codes z serve as the identity codebook for the auto-
decoder model. All the encodings are randomly initialized
learnable parameters. The part of a primitive is determined
by its parent triangle and the identity codes are the same for
all the primitives belonging to the same part.
Part-based Dynamic Gaussian Attributes Modeling. For
simplicity, we use f and z to denote the per-point features
belonging to a specific part p and also omit the part notation
for other notations, unless otherwise stated. Given f and z,
we regress dynamic local Gaussian attributes by:

Ag = fM1
p (f , z), h = fM2

p (f , z, e,Ag), (4)

where h is point appearance attribute, Ag = {µ′, r′,S′, α}
denotes other attributes, and e := D(µ′) = T (µ′) −
T (µ′

neutral) is the point-specific dynamic signals obtained
by subtracting the global neutral point position T (µ′

neutral)
from the global posed point position T (µ′). Both fM1

p and
fM2
p are part-specific MLPs. We define the overall dynamic

modeling as: Af = fM
p (f , z) , where Af = Ag ∪ {h} de-

notes the final Gaussian attributes used for splatting.
Part-based and dynamic modeling contribute to better

few-shot performance, as shown in Sec. 4.5. The part-based
modeling allows the specialized module to learn the partic-
ular part’s priors, resulting in easier optimization and more
powerful priors. The dynamic modeling employs point-
specific expression signals e for predicting dynamic local
attributes, which is better at capturing dynamic details than
GaussianAvatars [54] using static local attributes.
Gaussian Splatting with CNN refinement. Inspired by
recent works [74, 75], we apply a screen-space CNN fC to
refine the rendered results:

[Irgb, Ih] = R(T (Af ,M), πK,E), (5)

I = fC([Irgb, Ih]), (6)

where Af = {Af
i }ni=1 denotes the final Gaussian attributes

for all the points, Irgb denotes rendered RGB images, and
Ih is a latent feature image used for the CNN refinement.

Different from previous methods [74, 75], we do not con-
duct super-resolution, but keep the input and output with the
same resolution for refinement. We aim to use large-scale
data to enable CNN to capture generalizable structured ap-
pearance priors that are challenging to exploit by our 3DGS-
based representation. As indicated in Sec. 4.5, using CNN-
based refinement can indeed capture those priors to render

more photo-realistic results for few-shot personalization.
Overall Representation. The overall head avatar represen-
tation H is defined formally:

H : (M; fM, fC , f , z) 7→ I , (7)

where fM = {fM
l }pl=1 denotes the MLPs for all parts.

3.3. Head Prior Learning

We highly rely on the head’s prior knowledge to achieve
high-fidelity avatar creation for the unconstrained problem
with only a few input images. Among various priors, we
aim at learning high-quality, animatable, and 3D-consistent
head priors from available multi-view dynamic head data
with multiple identities. Therefore, the goal for the prior
learning stage is to learn k head avatars within the GAPNet,
with the respective identity codes z1...k and other network
parameters optimized. Before starting model training, we
first conduct FLAME tracking for the training data to obtain
M. Then, we use those data to jointly optimize M, fM,
fC , f , and z with our total loss term:

L =Lrec(I, I
∗) + Lrec(Irgb, I

∗)+

λmLrec(Im, I∗m) + Lreg, (8)

where Lrec and Lreg denote the image reconstruction loss
and training regularization loss respectively. The ground
truth image is denoted as I∗. To improve the fidelity of the
mouth region, we further supervise mouth region Im with
masked ground truth mouth region I∗m, inspired by FlashA-
vatar [70]. Specifically, the image reconstruction loss:

Lrec = λl1Ll1 + λssimLssim + λlpipsLlpips (9)

consists of L1 loss Ll1, SSIM loss Lssim, and perceptual
loss Llpips with the VGG as the backbone. Meanwhile, the
training regularization loss:

Lreg = λαLα + λsLs + λµLµ + λarapLarap, (10)

includes opacity regularization Lα = ∥Iα−Ĩmask∥1, primi-
tive local scaling regularization Ls = ∥max(s, ϵs)∥2, primi-
tive local position regularization Lµ = ∥max(µ, ϵµ)∥2, and
ARAP (As-Rigid-As-Possible) regularization Larap [60].
The opacity regularization Lα is used to constrain the Gaus-
sian primitives to stay within the head region and their opac-
ity accumulated to 1, which is computed between accumu-
lated opacity image Iα and the head mask Ĩmask. We uti-
lize the same thresholds ϵs = 0.6 and ϵµ = 1 for Ls and
Lµ respectively as [54] to constraint the local scaling and
position of the Gaussian primitives. The ARAP regulariza-
tion Larap is employed for regularizing the optimization of
static offset. All the λs described above are used for balanc-
ing different loss terms.

3.4. Few-shot Personalization

After the prior learning phase, we encode dynamic head
prior knowledge within GAPNet. Consequently, all the



Method Reference Input Frontal view All views
LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ ID↑

ROME [37] ECCV’22 1 image 0.237 17.56 0.813 0.286 15.45 0.796 0.658±0.119
GOHA [45] NeurIPS’23 1 image 0.224 15.85 0.760 0.308 13.13 0.736 0.588±0.146

VOODOO3D [65] CVPR’24 1 image 0.294 17.07 0.773 0.310 14.59 0.752 0.626±0.111
HiDe-NeRF [44] CVPR’23 1 image 0.290 15.63 0.789 0.368 14.51 0.784 0.640±0.156
Portrait4Dv1 [19] CVPR’24 1 image 0.180 16.59 0.796 0.273 14.52 0.752 0.674±0.143
Portrait4Dv2 [20] ECCV’24 1 image 0.155 17.77 0.810 0.269 14.53 0.757 0.694±0.141

GPAvatar [14] ICLR’24 1 image 0.180 18.42 0.827 0.294 13.83 0.775 0.631±0.169
Ours-SV 1 image 0.142 17.91 0.829 0.217 14.75 0.792 0.768±0.113

DiffusionRig [21] CVPR’23 20 images 0.220 16.94 0.811 0.298 14.88 0.786 0.817±0.112
NHA† [30] CVPR’22 mono video 0.161 17.42 0.850 0.266 14.77 0.807 0.577±0.138

FlashAvatar† [70] CVPR’24 mono video 0.146 18.89 0.854 0.286 16.56 0.791 –
GaussianAvatars‡ [54] CVPR’24 3 images 0.320 16.19 0.723 0.337 15.80 0.705 –
GaussianAvatars♦ [54] CVPR’24 3 videos 0.147 21.05 0.852 0.301 16.62 0.728 –

Ours 3 images 0.138 21.67 0.866 0.144 20.90 0.868 0.821±0.094

Table 1. Quantitative comparisons with state-of-the-art methods on NeRSemble [40] dataset. We use colors to denote the first , second
and third places respectively. The results are averaged across novel-view and novel-pose.

learned parameters of GAPNet can serve as powerful pri-
ors to aid few-shot or even one-shot personalization.

Prior to personalization, we employ a tracker to acquire
the FLAME [43] parameters of the input image. Given in-
put images with FLAME trackings, we first find the most
similar avatar from the identity codebook through inver-
sion. Specifically, we optimize part-specific linear combi-
nation weights w ∈ Rk×p×1 to obtain the identity code
z∗ = softmax(w) ⊙ z ∈ Rk×p×c2 used for rendering an
avatar similar to the input. During the inversion optimiza-
tion, we keep all the parameters of the network frozen ex-
cept for w. Formally, given an input image I∗ of the target
identity, we optimize to render an image I that resembles
the target identity. This procedure is optimized with the loss
function in Eq. (8) with respect to w.

Then, we start fine-tuning to update the network’s pa-
rameters so that the avatar can capture the details of the tar-
get identity from the inputs. We leverage prior knowledge in
this procedure through three strategies. First, we use small
learning rates for all parameters except f . Next, we exploit
extracted part-based priors by excluding the fine-tuning for
the mouth region, as modeling the highly flexible mouth re-
gion with few inputs is challenging. Finally, we apply view
regularization to prevent overfitting to the target view, in-
spired by previous methods [56, 83]. Specifically, we con-
straint the fine-tuning results of some reference views with
neutral face {Ri}mi=1 to be close to the rendering results
before fine-tuning {R̃i}mi=1, where m is the number of the
generated reference views. With the prior knowledge, our
personalized avatar achieves stable reenactment while pre-
serving the details of the target identity. The fine-tuning is
conducted by minimizing the loss function in Eq. (8):

argmin
ξ

Lf = L(I, I∗) + λref

m∑
i=1

(L(Ri, R̃i)), (11)

where ξ denotes all the learnable parameters, and λref is
used to balance different loss terms.

4. Experiments
4.1. Setup

Dataset. We utilize facial images of 164 subjects with
16 camera viewpoints in the NeRSemble [40] dataset for
experiments. We separated the data into training and test-
ing sets, comprising 119 and 45 subjects respectively. The
training sets are used for prior learning, while the testing
sets are employed to quantitatively and qualitatively eval-
uate few-shot personalization performance. We also con-
structed an in-house dataset as part of the testing data. In
addition to the leave-out testing data, we conduct experi-
ments on data captured by consumer-grade devices to eval-
uate the performance towards in-the-wild inputs.
FLAME Tracking. Inspired by previous studies [54, 86],
we designed a tracking algorithm that can optimize the
FLAME [43] parameters with different numbers of input
views. In the following experimental section, unless oth-
erwise stated, the training data uses this tracking algorithm
to obtain the ground truth 3DMM parameters. For the test
data, we simplify the tracking to use sparse view inputs and
provide the corresponding 3DMM parameters for testing.

4.2. Implementation Details

Model Detail. We divide the primitives into p = 11 parts
according to the face masks from FLAME [43]. We utilize
k = 119 identities for prior learning. All the MLPs fM

consist of 4 layers and the CNN fC contains 6 layers.
Training Detail. We adopt Adam [39] optimizer for the
training. For prior learning, we set the batch size to 32.
All parameters start with a learning rate of 1e−3, which de-
creases using a cosine scheduler. The prior model is trained
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Figure 4. Qualitative comparisons of our approach against state-of-the-art methods using a single image as input.

on 8 A100 GPUs for 100K steps, taking around 2 days. For
few-shot personalization, we use a batch size of 1. Both
inversion and fine-tuning take 500 steps, totaling about 5
minutes on an A100 GPU. Please refer to supplementary
materials for more details.

4.3. Baselines and Metrics

Baselines. We classify baselines into two types based on
their training approaches. The Type-I, like ours, uses multi-
ID datasets to train prior features of the head, which can
generalize to novel IDs, termed prior-based methods. The
Type-II requires individual training for each person, termed
per-subject optimization methods. For Type-I, due to the
lack of available code for most head avatar generation meth-
ods using a few views [8, 76, 81], we compare our method
with approaches using a single image, including mesh-
based methods [37] and the state-of-the-art tri-plane based
methods [14, 19, 20, 44, 45, 65]. We also compare with
3D-aware diffusion models [21] equipped with multi-view
inputs. For Type-II, we compare our approach with meth-
ods using Gaussian Splatting [54, 70] or explicit mesh [30]
as 3D representations. Per-subject methods require more
training data, so we provide these baselines with monocular
video†, multi-view images‡, or multi-view videos♦.
Metrics. We employ standard image quality metrics for
our quantitative evaluations: 1) Peak Signal-to-Noise Ra-
tio (PSNR), 2) Structure Similarity Index (SSIM), and 3)
Learned Perceptual Image Patch Similarity (LPIPS), fol-
lowing previous works [24, 54, 81]. Furthermore, we also
report 4) ID that measures the identity similarity [15] be-
tween the predictions and ground truth ones.

4.4. Fast Avatar Personalization

We compare avatar creation with the state-of-the-art on 3
subjects (“074”, “175”, and “210’) of NeRSemble [40]. To
conduct thorough comparisons, we categorize the baselines
into methods utilizing: 1) a single image and 2) multiple
images. We analyze the performance of various approaches
for both frontal view and all views. We also present our re-
sults using 1-shot and 3-shot inputs. The quantitative com-
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Figure 5. Qualitative comparisons of our approach against state-
of-the-art methods using few-shot input.

parisons are listed in Tab. 1. We also illustrate qualitative
comparisons in Fig. 4 and Fig. 5.

One-shot personalization. For fair comparisons, our 1-
shot results use personalized tracking data from a monocu-
lar tracker MICA [86], referred to as “Ours-SV.” Since we
rely on the neck pose from FLAME [43], and MICA lacks
this, our performance degrades a lot. Despite this, our ap-
proach achieves the best or the second best results across
all metrics, demonstrating its robustness.
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Figure 6. Our 3-shot (3-view of the neutral face) results on NeRSemble and our in-house data. From left to right, we show the ground
truth, self-reenactment, and cross-reenactment. The lower right of the reenactment results presents one of the three inputs.

Cross-reenactmentFew-shot Input

Driving Expression

Figure 7. Our 3-shot results on in-the-wild data captured by iPad.
An example of the input is shown on the left. The lower right of
the reenactment results presents one of the three inputs.

Few-shot personalization. Increasing the number of
images significantly enhances the authenticity of the head
avatar, so we focus on few-shot personalization. We com-
pare our 3-shot results, using a more precise input mesh
from our tracker, with other baseline methods. Under this
setting, our approach achieves the best results across all
metrics (Please note that for [54, 70], the presence of exces-
sive artifacts makes it impossible to evaluate the ID met-
rics). To better show our robustness, we illustrate more
of our few-shot results in Fig. 6. To show the applicabil-
ity of our approach in real-world scenarios, we also present
avatars created from 3 images captured by an iPad in Fig. 7.

We use these 3 RGB-D images for FLAME fitting. These
results further demonstrate the generalization capability of
our approach.

4.5. Model Analysis

We concentrate on few-shot personalization, thus, the ex-
periments primarily examine how our designs affect final
few-shot performance.
Ablation. We use subjects “256” and “270” for conducting
the ablation study. The ablation is divided into two parts,
with the first part to validate our model designs and the sec-
ond part to justify our few-shot strategies. Tab. 2 presents
the quantitative results for the testing sequence. Moreover,
we illustrate the qualitative results in Fig. 8.

For model design ablations, we remove one component
at a time to demonstrate their effectiveness. Excluding part-
based modeling (“w/o Part”) causes a significant perfor-
mance drop, as it hampers effective prior learning and part-
based few-shot strategies. Not modeling dynamic informa-
tion (“w/o Dynamic”) also degrades performance, making
it challenging to capture details in highly dynamic regions
(e.g., the mouth). Lastly, using CNN for refinement reduces
artifacts and enhances detail realism (“w/o CNN”).

3DGS-based methods have strong input-fitting capa-
bilities, leading to overfitting with limited training data
and poor generalization to novel views and expressions
(“Base”). Thus, 3DGS-based methods heavily rely on prior
knowledge for few-shot personalization. Using our prior
model for inversion (“+ Inversion”) produces avatars simi-



Method LPIPS↓ PSNR↑ SSIM↑
Prior model design:
Full-model 0.140 22.87 0.854
w/o Part 0.154 22.21 0.850
w/o Dynamic 0.148 22.56 0.853
w/o CNN 0.156 22.01 0.849

Few-shot strategy:
Base (w/o Prior) 0.237 19.25 0.811
+ Inversion 0.171 19.67 0.829

+ Finetune 0.143 22.08 0.842
+ View Reg. 0.140 22.87 0.854

Table 2. Quantitative ablation study.
The highlights denote the full-model .

GTOursw/o CNNw/o Dynamicw/o Part Base + Inversion + Finetune + View Reg. GT

Figure 8. Qualitative ablation study. Please zoom in for more details.

Fig.9a Quality w.r.t #personalizing data. Fig.9b Quality w.r.t #prior learning data. Fig.9c Quality w.r.t #primitives.

lar to the input data with robust animation. Additional fine-
tuning (“+ Finetune”) enhances realism with personalized
details. View regularization (“+ View Reg.”) helps reduce
novel-view artifacts.
Quality w.r.t quantity of personalizing data. HeadGAP
supports various numbers of inputs, allowing us to ana-
lyze few-shot performance with different data amounts. The
analysis has two parts: 1. Quantitative results with different
numbers of views of the neutral face (Fig. 9a) show that
performance improves as the number of views increases.
2. Performance with 8 additional images of different frontal
view expressions (Fig. 10) demonstrates that more inputs
help the model capture personalized dynamic details.

3 Views + 8 Exp. GT 3 Views + 8 Exp. GT

Figure 10. Comparisons between using 3-view data and 3-view
with 8 additional expressions’ data of the frontal view.

Quality w.r.t quantity of prior learning data. The large-
scale prior learning data is the core of the high-fidelity few-
shot personalization. Therefore, we conduct analysis to
show our performance with varying amounts (IDs) of data
for prior learning. As depicted in Fig. 9b, more prior learn-
ing data makes the final avatar more realistic. Moreover, we

do not observe significant saturation, indicating our model
can benefit from more available 3D data. It is worth not-
ing that our model is robust for different amounts of prior
learning data due to our complete pipeline.
Quality w.r.t quantity of primitives. We also evaluate our
performance with varying numbers of Gaussian primitives.
Fig. 9c proves our method can create more realistic avatars
with more primitives. To balance the fidelity and efficiency,
we utilize 80k primitives for our default model. We do not
focus on finding the optimal method to control the number
of primitives. We believe our approach could also benefit
from other adaptive density control approaches [36].
Network comparison. GAPNet is capable of adapting to
different numbers of IDs for training. To demonstrate the
network capability, we compare its performance for a sin-
gle person against [54]. GAPNet achieves better perfor-
mance in single-person modeling, with an LPIPS/PSNR of
0.091/25.48 compared to GaussianAvatars’ 0.119/25.32.

5. Conclusion
In this paper, we present a novel approach for creating high-
fidelity 3D head avatars with few-shot images. We first
learn 3D Gaussian priors from large-scale 3D head data,
then create avatars of the novel identities with the aid of
the priors. To facilitate the learning of powerful and gen-
eralizable priors, we develop GAPNet which can exploit
3D part-based dynamic head priors and 2D structured head
priors for creating high-fidelity avatars with robust anima-
tions. The comprehensive experiments justify our designs
and superiority. We also showcase our robustness by cre-
ating avatars of plentiful identities from the public dataset
and images captured by consumer-grade devices.
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