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Abstract

In the basic recommendation paradigm, the most (predicted) relevant item is recom-
mended to each user. This may result in some items receiving lower exposure than
they “should”; to counter this, several algorithmic approaches have been developed
to ensure item fairness. These approaches necessarily degrade recommendations
for some users to improve outcomes for items, leading to user fairness concerns.
In turn, a recent line of work has focused on developing algorithms for multi-sided
fairness, to jointly optimize user fairness, item fairness, and overall recommen-
dation quality. This induces the question: what is the tradeoff between these
objectives, and what are the characteristics of (multi-objective) optimal solutions?
Theoretically, we develop a model of recommendations with user and item fairness
objectives and characterize the solutions of fairness-constrained optimization. We
identify two phenomena: (a) when user preferences are diverse, there is “free”
item and user fairness; and (b) users whose preferences are misestimated can be
especially disadvantaged by item fairness constraints. Empirically, we prototype
a recommendation system for preprints on arXiv and implement our framework,
measuring the phenomena in practice and showing how these phenomena inform
the design of markets with recommendation systems-intermediated matching.

1 Introduction

Recommendation systems are employed throughout modern online platforms to suggest items (media,
songs, books, products, or jobs) to users (viewers, listeners, readers, consumers, or job seekers).
The platform learns user preferences and shows each user personalized recommendations. One
recommendation paradigm is to simply show the user the items they most prefer. However, this
approach may result in disparately poor outcomes for some items, which may not be most preferred
by any user [44]. For example, in our empirical application in prototyping a recommender system
for arXiv prepints, we find that on average more than 47% of papers have less than a 0.0001%
probability of being recommended to any user, even when the number of users and items are the same.
Thus, many algorithmic techniques have been proposed to improve item fairness in recommendation
[3, 35, 48, 50]. However, by not solely optimizing for user engagement, these techniques impose a
cost both to overall recommendation quality [3] and especially for some individual users more than
others.

Accordingly, algorithms have recently been introduced to address the problem of two-sided fairness
(or multi-sided fairness), in which the platform aims to balance user fairness, item fairness, and overall
recommendation quality [11, 12, 47]. These algorithms formalize the desired balance in terms of an
optimization problem – for example, maximizing the difference between overall recommendation
quality and unfairness penalties [11], or the overall recommendation quality subject to fairness
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constraints [12]. The relative importance of user and item fairness is described by the relative strength
of the respective unfairness penalties or slack in the fairness constraints.

However, an open question is, what are the implications of such algorithms on the recommendations,
i.e., what do multi-sided constraints do, and what is the price of (multi-sided) fairness? More
specifically, are there settings in which we can simultaneously maximize all objectives, “for free?,”
as opposed to there being large tradeoffs as commonly emphasized? Are some users or items – for
example, those new to the platform – more affected than others? How do the answers to the above
questions depend on the context and, in real-world settings, do “fairness” constraints substantially
affect recommendation characteristics? Such real-world considerations are essential for platform
designers to understand. In fact, a recent survey and critique of the fair ranking literature advocated
for such grounded analyses to understand algorithmic implications and tradeoffs [40], as opposed to
black-box deployment of fairness algorithms.

Answering such questions is challenging. Theoretically, multi-sided fairness is cast as an optimization
problem, and conceptually characterizing optimization solutions is often intractable. For example,
given an arbitrary utility matrix and a constraint on the exposure provided to each item, it is not
tractable to calculate recommendations in closed form: the solution depends on global structure, users
may not receive their most preferred items, and items may not be recommended to the users who most
prefer them. Then, once phenomena are theoretically identified, empirically verifying phenomena
requires specifying a recommendation setting and measuring user-item utilities as a function of their
characteristics. Given these challenges, our contributions are as follows.

Theoretical framework to characterize solutions of multi-sided fair recommendations. We
formulate a concave optimization problem in which user fairness is formalized as an objective on
the minimum normalized utility provided to each user – and item fairness constraints determine the
problem’s feasible region, through the solutions of another concave optimization. This formulation
qualitatively captures standard multi-objective approaches for user-item fairness [5, 12]. We show
that when item fairness constraints are maximal, the solutions to this optimization problem (recom-
mendation probabilities for each user) have a sparse structure that can be characterized as a function
of the problem inputs (e.g., estimated utilities for each user-item pair, or slack given in the item
fairness constraint).

Conceptual insights on the price of fairness. We use our theoretical framework to characterize
user-item fairness tradeoffs. We identify two phenomena: (a) “free fairness” as a function of user
preference diversity: if users have sufficiently diverse preferences, imposing item fairness constraints
can have large benefits to individual items with little cost to users, i.e., there is a small price of
fairness. (b) “Reinforced disparate effects” due to preference uncertainty. Of course, users for whom
the platform has poor preference estimation (e.g., “cold start” users on whom the platform has no
data) typically receive more inaccurate recommendations; we show that this effect may be worsened
with item fairness constraints, in a worst case sense: when a user’s preferences are uncertain, item-fair
recommendation algorithms will recommend them the globally least preferred items – even when
attempting to maximize the minimum user utility.

Empirical measurement. Finally, we use real data to prototype a recommendation engine for new
arXiv preprints and use this system to measure the above phenomena in practice. For example, we find
that more homogeneous groups of users have steeper user-item fairness tradeoffs – as theoretically
predicted, diverse user preferences decrease the price of item fairness. Furthermore, we find that
the “price of misestimation” is high (users for whom less training data is available receive poor
recommendations), but on average item fairness constraints do not increase this cost.

Putting things together, we show that the real-world effects of user-item recommendation fairness
constraints heavily depend on the empirical context. In some cases, “item fairness” comes for
free, with little cost to users. In others, deploying such an algorithm may lead to especially poor
recommendations for some users, in ways that cannot be mechanically addressed by adding user
fairness terms. We urge designers of fair recommendation systems in practice to develop such
evaluations to measure such individual-level effects, and for researchers to further characterize
the potential implications of such algorithms. Our code is available at the following repository:
https://github.com/vschiniah/ArXiv_Recommendation_Research.
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2 Formal Model

Our setup is characterized by user and item (estimated) utilities, recommendation optimization with
user and item fairness desiderata, and evaluation of the effects of such desiderata. (As discussed
below, some of these modeling choices are made for concreteness, and our results extend beyond
these specific choices).

Users, items, and utilities. There is a finite population of m users and n items. Let wij > 0 be
the utility of recommending item j to user i; this could represent a click-through rate or purchase
probability. We suppose that user-item utilities are symmetric: each of the user i and item j receives
utility wij from being recommended item j.

Let ∆n−1 denote the simplex in Rn. The platform’s task is to choose a recommendation policy
ρ ∈ ∆m

n−1. For each user i, the platform will recommend one item to user i selected randomly
according to the distribution ρi. Given a recommendation policy ρ, user i’s expected utility from
using the platform is

∑
j ρijwij ; item j’s expected utility is

∑
i ρijwij , where

∑
j ρij = 1 for each

user i.

Fairness desiderata. We suppose that the platform uses as a benchmark, for each user or item,
the best thing that it could do for that agent if it ignored the utilities of others. Thus, given a
recommendation policy ρ, let Ui(ρ, w) be user i’s utility from ρ, normalized by the utility maxj wij

they would receive from being recommended their best match. Let Ij(ρ, w) be item j’s utility from
ρ, normalized by the utility j receives if it is recommended to every user,

∑
i wij . The normalized

utilities are:

Ui(ρ, w) =

∑
j ρijwij

maxj wij
, Ij(ρ, w) =

∑
i ρijwij∑
i wij

.

The normalizations capture that recommendations should not be affected by scaling utilities, or be
distorted by a user who is not satisfied with any item or an item that is generally undesirable to users.

Given a recommendation policy ρ, user fairness is quantified as the minimum normalized user utility
Umin (ρ, w) = mini Ui(ρ, w), and item fairness analogously as Imin (ρ, w) = minj Ij(ρ, w).

Multi-objective recommendation optimization. We suppose that the platform seeks to satisfy its
fairness desiderata as follows. At the extremes, the platform could choose a maximally fair solution
for one side, ignoring the other. Denote the optimal user fair utility as U∗

min (w) := maxρ Umin (ρ, w)
(achieved by giving each user their favorite item deterministically), and the optimal item fair utility
as I∗min (w) := maxρ Imin (ρ, w).

Finally, we cast the two-sided fair optimization – for the optimal γ-constrained user fair solution – as

U∗
min (γ,w) = max

ρ
Umin (ρ, w) (1)

subject to Imin (ρ, w) ≥ γI∗min (w),

i.e., we maximize the minimum normalized user utility, subject to the minimum normalized item
utility being at least a fraction γ of the optimal item fair solution.

Research questions: price of fairness and misestimation. We can now define the price of item
fairness on user fairness πF

U |I (“price of fairness”) as the decrease in user fairness with maximal item
fairness constraints:

πF
U |I(w) :=

U∗
min (w)− U∗

min (γ = 1, w)

U∗
min (w)

.

We ask how πF
U |I changes with the utility matrix w. We note that while this question (in terms

of solutions to Problem (1)) can be simply stated, as we detail in Section 3, finding a closed
form expression for U∗

min (1, w) – the optimal minimum normalized user utility given item fairness
constraints – in terms of w is theoretically challenging.

Similarly, we investigate the price of misestimation. Let ŵij denote the platform’s estimate of the
utility of recommending i to j; let ρ̂(γ) be a policy that solves the optimization problem above with
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misestimated utilities, that is, ρ̂(γ) attains U∗
min (γ, ŵ).

1 Then we define the price of misestimation
on user utility (“price of misestimation”) πM

U as

πM
U (γ,w, ŵ) :=

U∗
min (γ,w)− Umin (ρ̂(γ), w)

U∗
min (γ,w)

,

that is, the decrease in true user fairness due to optimizing with estimated utilities. In particular, in
Section 5 we will examine whether item fairness exacerbates the price of misestimation by comparing
πM
U (0, w, ŵ) and πM

U (1, w, ŵ), particularly in the case of cold start users.

Discussion. We note several modeling choices. First, we assume that utility wij is shared – both
the item j and user i benefit equally from a successful recommendation. This choice captures, e.g.,
purchase or click-through rates. It also helps us isolate effects due to fairness constraints and effects
across items and users, as opposed to misaligned utilities. We expect the price of fairness to increase
– and potentially be arbitrarily high – with such misaligned utilities. We further justify and relax
the shared utility assumption in Appendix A. Second, we quantify fairness through the minimum
normalized utility. Normalization is standard in related algorithmic work, such as [47], and avoids
solutions in which an item that provides utility ϵ to every user needs to be recommended to every user
to equalize utilities. We use individual egalitarian fairness (minimum utility over individuals) instead
of group fairness to capture settings in which group identity is not available, and systems in which
individual-level disparities may be widespread; egalitarian fairness is widespread in algorithmic
fairness [2, 17, 43, 45]. In Appendix A we show that our empirical findings extend to other measures
of individual fairness. Finally, in the user-item fairness tradeoff problem (Problem 1) we used an item
fairness constraint rather than adding an item fairness term to the objective; these two approaches
can be thought of conceptually as dual to one another, and so we expect similar properties to hold in
either formulation.

3 Theoretical framework

To determine how the price of fairness πF
U |I depends on utility matrix w, we need to compute

U∗
min (1, w) and U∗

min (w). It turns out that U∗
min (w) is easy to describe: without item fairness

constraints, the optimal recommendation policy deterministically recommends each user their most
preferred item. Each user attains the maximum possible normalized utility of 1, and U∗

min (w) = 1.

However, with an item fairness constraint, we can no longer select each user’s recommendation
policies independently. Thus characterizing U∗

min (1, w) is much more complicated. Recall that
U∗
min (1, w) is the minimum normalized user utility of the optimal user-fair recommendation subject

to maximal item fairness constraints. Plugging into Problem (1) and expanding the definitions, we
have

U∗
min (1, w) = max

ρ∈∆m
n−1

min
i

∑
j wijρij

maxj wij
(2)

subject to ρ ∈ arg max
ϕ∈∆m

n−1

min
j

∑
i wijϕij∑
i wij

.

Thus we need to find closed-form solutions in terms of the utilities w to a non-linear concave
program, in which both the objective and the constraint depend on w, and indeed even determining
the constraint requires solving another non-linear concave program.

In Proposition 1, we develop a framework to solve this problem, which we later apply to show our
main results Theorems 3 and 4.
Proposition 1. Suppose that for a set of recommendation policies S ⊆ ∆m

n−1,

(i) S can be described by a finite set of linear constraints

(ii) There exists an optimal solution ρ∗ to Problem (2) such that ρ∗ ∈ S

(iii) ρ∗ is the unique feasible solution to Problem (2) in S
1Multiple policies ρ̂ may optimize U∗

min (γ, ŵ), and different policies ρ̂ may have different values of
Umin (ρ̂, w). In our experimental results, we use the policy ρ̂ found by the convex optimization solver.
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Then, finding an optimal solution ρ∗ to Problem (2) can be reduced to solving a linear program L.

With Proposition 1, the key technical challenges become: (a) given utility matrix w, finding S
satisfying the above conditions; (b) given S and w, finding a closed-form expression for ρ∗; (c) given
a closed form for ρ∗ in terms of w, reasoning about the properties of item fair solution U∗

min (1, w).

To do this, for our main results, we construct S as a set of recommendations with a particular
symmetric structure. Suppose users come in K types, where a user of type k shares a utility vector.
Then, consider Ssymm = {ρ : ρi = ρi′ if wi = wi′} ⊆ ∆m

n−1, the set of policies where users of the
same type are given the same recommendation probabilities. Note that, in the extreme case, each user
is their own type. Furthermore, let ρk denote the recommendation policy for type k, for ρ ∈ Ssymm.
Proposition 2. Ssymm satisfies conditions (i) and (ii) in Proposition 1. Furthermore, solutions
ρ ∈ Ssymm to Problem (2) have a sparse structure:

• If ρ is a basic feasible solution to the linear program L in Proposition 1, then there are at
most n+K − 1 type-item pairs (k, j) such that ρkj > 0 (out of nK possible pairs).

• If ρ is also optimal, then there are at most K − 1 items that are ever recommended to more
than one type of user, i.e., where ρkj , ρk′j > 0 for k ̸= k′.

For our main results, we will leverage the sparsity structure in Proposition 2 to show, with further
restrictions on utility matrix w, that Ssymm also satisfies (iii). We will then derive closed-form
expressions for that solution, and show how it changes as a function of w.

The sparsity structure in Proposition 2 is also interesting in its own right. Without item fairness
constraints, solutions will be highly sparse: each user will be recommended their most preferred item
deterministically; each other item will have a recommendation probability of zero. Once we add item
fairness constraints, solutions do not necessarily remain sparse. However, Proposition 2 shows that
sparse solutions still arise under item fairness constraints in settings with symmetric solutions.

4 User preference diversity and fairness tradeoffs

We now use the theoretical framework developed in the above section to understand the effect of the
structure of user utilities on the price of fairness. In particular, we identify “free fairness,” i.e., the
price of fairness is low, when preferences are sufficiently diverse.
Example 1. For intuition as to why user diversity affects the price of fairness, consider the following
example. Suppose we have n = 2 items and m users; half the users have utility ϵ for the first item
and 1− ϵ for the second item, and the other half has utility 1− ϵ for the first item and ϵ for the second.
Then, the recommender can simply give each user their favorite item (the user optimal solution), and
this solution simultaneously maximizes user and item fairness as well as total user and item utility.

On the other hand, suppose all users have the same preferences: each user has utility 1− ϵ for the first
item and utility ϵ for the second item, for ϵ > 0 that is small. Then, any recommendation probability
given to the second item comes at a cost to users who receive that item instead of the first item;
however, (normalized) item fairness would require that the second item receives ϵ as much utility as
the first item. Below, we show that this results in a tradeoff even between linear normalized user and
item utilities, where we account for the fact that the second item is on average less preferred by users.

Since all users have the same preferences for items, using Proposition 2 it is sufficient to consider
them receiving the same recommendation probabilities ρ1 for the first item and ρ2 = 1− ρ1 for the
second. Bounding minimum item utility Imin by the utility of the second item, we have

Imin ≤ I2(ρ) =

∑
i ρ2ϵ

mϵ
= ρ2 ≜ 1− ρ1.

For a given recommendation probability ρ1, the minimum normalized user utility is
Umin = (1− ϵ)ρ1 + ϵρ2 = ϵ+ (1− 2ϵ)ρ1 ≤ ρ1 + ϵ.

Rearranging, we get that
Umin − ϵ ≤ ρ1 ≤ 1− Imin =⇒ Umin + Imin ≤ 1 + ϵ.

Thus the minimum normalized user utility and the minimum normalized item utility essentially follow
a negative linear relationship – guaranteeing the second item even ϵ as much utility as the first item
results in a linear cost to users. □

5



We now formalize and generalize this example, when the level of heterogeneity in the population
can be captured by a single parameter. Consider the following utility matrix structure. Let v1 >
v2 > ... > vn > 0. Suppose that there are two user types: a user i either has utility wij = vj or
wij = vn−j+1, and say that user i is of type 1 or 2 respectively. In words, the two types have opposite
preferences, but the preferences can otherwise be generic and be for any number of items. Now, the
direct solution by symmetry for the example no longer directly holds – the items in the middle, not
necessarily preferred by either user type, may be binding in terms of item fairness constraints.

Let α be the proportion of type 1 users in the population, out of a fixed population of m users.
Parameter α thus controls the population heterogeneity; if α is near 0 or 1, the population is highly
homogeneous, dominated by users of the same type. If α = 1

2 , the population is split evenly between
the two types and is highly heterogeneous. Since we parametrize w by α, we may write the price of
fairness as,

πF
U |I(α) :=

U∗
min (α)− U∗

min (γ = 1, α)

U∗
min (α)

.

Given this structure, Theorem 3 states that the price of fairness πF
U |I(α) increases in the homogeneity

of the users – heterogeneous user populations are less affected by incorporating item fairness
constraints.
Theorem 3. πF

U |I(α) is decreasing in α for 0 < α ≤ 1/2, and increasing in α for 1/2 ≤ α < 1.

Proof sketch for Theorem 3. We show that when in a population with two opposing types as described
above, the sparsity condition in Proposition 2 yields a unique solution, for which we can find a closed
form and express in terms of α. We then evaluate Umin (ρ, α) at this solution to find U∗

min (1, α), and
show that this is indeed increasing. The full proof is in Appendix D.

5 Uncertainty and fairness tradeoffs

A basic fact – often ignored in fair recommendation – is that recommendations are made with
(mis)estimated utilities. Platforms do not have full knowledge of user preferences, especially those
new to the platform. Of course, recommendations under misestimated utilities may be poor; here, we
show that adding item fairness constraints may worsen the cost of this misestimation even further.

Intuitively – for a new user for whom the platform has no data – the platform would estimate the
user’s preferences as the average of preferences of existing users (e.g., in a Bayesian fashion). Thus,
without item fairness considerations, it would show the user generally popular items. However, the
new user’s preferences are generally estimated as “weaker” than the preferences of others for any
given item (since it averages preferences of users who may either like or dislike any given item).
Thus, with fairness constraints, the optimization is incentivized to show the user otherwise unpopular
items, since all the user’s estimated preferences are weaker. Liu and Burke [31] for example develop
an algorithm for item fairness where users with weaker preferences are explicitly leveraged in this
way.

For a given item fairness level γ, true utility matrix w, and estimated utility matrix ŵ, let ρ̂(γ) be
a recommendation policy that solves the recommendation problem (Problem 1) with respect to the
misestimated utilities, that is, ρ̂ solves U∗

min (γ, ŵ). Recall that we define the price of misestimation

πM
U (γ,w, ŵ) =

U∗
min (γ,w)− Umin (ρ̂(γ), w)

U∗
min (γ,w)

,

which represents the relative decrease in minimum normalized user utility as a result of misestimation.
Item fairness worsens the price of misestimation if πM

U (γ = 1, w, ŵ) > πM
U (γ = 0, w, ŵ).

We now formalize the above argument, building on the analysis in the previous section. As in
Section 4, suppose that there are 2 types of users, with opposing preferences (i.e., with values
v1, v2..., vn and vn, vn−1, ..., v1, respectively) – and the platform has correctly estimated these
preferences. However, now, these two types only make up a proportion β of the population each.

Now, we suppose that there is a fraction 1−β of the user population who are “new” users. We assume
that these users are drawn from the same distribution as the remaining users, but the platform does
not know their preferences. It thus constructs a prior by averaging over the known users’ preferences
– (mis)estimating the users’ utility for each item j as vj+vn−j+1

2 .
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Theorem 4. If β > 1
n and w and ŵ are as described above, then fairness constraints can arbitrarily

worsen the price of misestimation.

• The price of misestimation without fairness constraints is low: for all {vj}, there is a
recommendation policy ρ̂ that solves the misestimated problem U∗

min (0, ŵ) so that

πM
U (0, w, ŵ) ≤ 1

2
.

• The price of misestimation with fairness constraints can be arbitrarily large: ∀ϵ, there exists
{vj} and a recommendation policy ρ̂ that solves the problem U∗

min (1, ŵ) such that

πM
U (1, w, ŵ) > 1− ϵ.

Proof sketch. The main task is to find the price of misestimation with fairness constraints, which re-
quires computing U∗

min (1, w) when users’ values are correctly estimated, and computing U∗
min (1, ŵ)

when users’ values are incorrectly estimated. To find U∗
min (1, w), note that w is a population with

two opposing types of users, so we may leverage the insights of Theorem 3. To find U∗
min (1, ŵ) we

again use the framework in Section 3, showing that in the setting of this theorem, we can find an
optimal policy ρ∗ for U∗

min (1, ŵ) in a set S ′ ⊆ Ssymm of policies with an additional column-symmetry
property. We use an analogue of the sparsity result in Proposition 2 to show that there is a unique
feasible solution ρ̂ ∈ S ′ and obtain a closed form expression for ρ∗, and find an upper bound for
Umin (ρ̂, ŵ) = U∗

min (1, ŵ). In fact, we show that as long as β > 1
n , under ρ̂ the mis-estimated users

will never be recommended their most preferred items. The full proof is in Appendix E.

The idea follows the above intuition: without item fairness constraints and assuming cold start users
follow the same distribution as existing users, the platform’s price of misestimation is low because
the platform treats cold start users as the average of the existing population. Fairness constraints,
however, can make this cost arbitrarily high, as in expectation cold start users relatively enjoy items
other users do not. Such effects suggest that a more careful treatment of uncertainty and fairness
together is necessary for recommendation algorithms.

6 Empirical findings: arXiv recommendation engine

We prototype a recommender for preprints on arXiv, to illustrate our conceptual findings. We consider
the cold start setting for items (papers), when they are newly uploaded to arXiv and so only have
metadata and paper text but no associated interaction or citation data. For users (readers), we use as
data the papers that they have shared on arXiv to estimate their preferences.

Empirical setup. We use data from arXiv and Semantic Scholar [1, 25]. As training for user
preferences, we consider 139,308 CS papers by 178,260 distinct authors before 2020; as the items to
be recommended, we consider the 14,307 papers uploaded to arXiv in 2020. We apply two natural
language processing-based models – TF-IDF [28] and the sentence transformer model SPECTER
[13] – to textual features such as the paper’s abstract (for both items and the user’s historical papers) to
generate embeddings for all papers in the training set. We use these embeddings to compute similarity
scores (utility matrices) for users and items. To compute the similarity score (utility) between a user
(an author of at least one paper before 2020) and an item (a paper uploaded in 2020), we compute
the cosine similarity between the embedding of each of the user’s pre-2020 papers and the item’s
embedding. We then use either the mean or the max similarity amongst the pre-2020 papers and the
item; the max similarity score may more effectively capture a user’s diverse interests [20, 41]. We
then generate recommendations for each user, at various levels of user and item fairness constraints.

To validate our recommendation approach, we use citation data from Semantic Scholar [25] to
determine for each user and each paper published in 2020 whether the user cites that paper in
their post-2020 work. We then examine how well the user-item similarity score generated by our
recommendation engine predicts the presence of a citation. The recommendations effectively predict
whether a user cites a paper with a high score after 2020. In Table 1 we show the results of a logistic
regression between each similarity score and the presence of a citation, where the coefficient on
the score is large and statistically significant for each model; the predictive power of our models is
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Model Coefficient Std. Err z-value Adjusted R2

Max score, TF-IDF 12.4100 0.058 212.178 0.08915
Mean score, TF-IDF 20.2122 0.131 154.835 0.04616
Max score, Sentence transformer 18.4557 0.250 73.695 0.1347
Mean score, Sentence transformer 16.2482 0.246 66.148 0.09085

Table 1: Logistic regression results for predicting whether user i cites paper j from the similarity
score wij for each model.

(a) Homogeneous versus diverse users (b) With and without misestimation

Figure 1: Empirical (using our arXiv recommender) tradeoff between the minimum user (Y axis) and
item (X axis) utility. Recall γ is the fraction of the best possible minimum normalized item utility
I∗min guaranteed. (a) Illustrating Theorem 3 empirically – homogeneous populations have a higher
price of fairness. Empirically, however, the price of fairness is small except with strict item fairness
constraints γ → 1. (b) For a set of users, holding other users fixed, the cost to the worst-off user of
misestimating preferences, at varying γ. Empirically, the cost of misestimation is already so high that
it is not worsened with item fairness constraints, as in the worst case analysis of Theorem 4.

reasonable for a sparse, high variance event such as citations. We generally find that the max score
models are more predictive of future citations. Appendix B includes details and evaluations; our
computational experiments in the main text use the max score, TF-IDF model.

6.1 Empirical results.

We examine the tradeoffs between item and user fairness and the effect of misestimation on this
tradeoff empirically. We use the similarity scores generated by the recommendation engine described
above – in particular, the max score, TF-IDF model – as the utility values wij . We consider a pool
of 14,307 papers in the computer science category posted to arXiv in 2020, and a pool of 20,512
authors who posted papers in the computer science category to arXiv both in 2020 and prior to
2020 (we use the papers prior to 2020 to compute the similarity scores as described above). We
then subsample recommendation settings from this pool; we give further details about the sampling
process below. For a given value of γ, to compute U∗

min (γ) we use the cvxpy implementation of the
convex optimization algorithm SCS [38].

User-item tradeoffs as function of user diversity. Figure 3a shows the tradeoff between user
fairness and item fairness in a random population and in a population of homogeneous users. To
generate a tradeoff curve for the heterogeneous population, we sampled 200 random papers and
500 random authors to form w, and computed U∗

min (γ,w) for 50 values of γ between 0 and 1. To
generate tradeoff curves from homogeneous user populations, we clustered all 20,512 users into 10
clusters using the k-means algorithm. For a single curve, to form w we sampled 200 random papers
and 500 random authors from one random cluster. We run 10 experiments and plot the mean of
U∗
min (γ,w) at each value of γ across the 10 curves as well as two std. error bars for the mean.
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Figure 3a demonstrates that in real data, for moderate item fairness guarantees (0 ≤ γ ≤ 0.9), on
average there is a fairly low cost to user fairness, but as we approach optimal item fairness (γ → 1),
the tradeoff becomes steep. Furthermore, Figure 3a shows that item fairness tends to impose a higher
cost to user fairness in more homogeneous populations, as in Theorem 3.

Price of misestimation. Figure 3b shows how user fairness is affected by item fairness guarantees
in the presence of misestimation. For sets of 200 random papers and 500 random authors, we select a
set 10% of these users at random and treat them as if we did not have any data for them, estimating
these users’ utility for item j as the average utility for item j for the other 90% of the users (ŵ in
the notation of Theorem 4). For 50 values of γ between 0 and 1, we compute U∗

min (1, ŵ) for the
misestimated utility matrix. We also compute, counterfactually, this quantity if the utility matrix had
been correctly estimated, U∗

min (1, w). We plot the true minimum normalized user utility under the
recommendation policies that attain U∗

min (1, w) and U∗
min (1, ŵ). We run 10 experiments and plot

the mean value of the minimum normalized user utility and two std. error bars.

In Figure 3b, near γ = 0, the price of misestimation – the gap between the two curves – is higher than
the cost of misestimation near γ = 1. This results because the item fairness constraint barely changes
the (already low) utility of these users when their preferences are misestimated, but substantially
changes their utility when their preferences are correctly estimated. While theoretically, item fairness
constraints can arbitrarily increase the cost of misestimation, in practice, on average they do not affect
this cost – the cost of misestimation without item fairness is already high.

7 Related work

There is a large literature on (item) fair recommendation and ranking [3, 35, 48, 50, 51] and, more
recently, on multi-sided user-item fair recommendation [5, 10–12, 16, 39, 47]. This literature is
primarily algorithmic: for a given formulation of user and item utility (and other desiderata), how
do we devise an efficient algorithm for multiple objectives or constraints? In contrast, our goal
is primarily conceptual, to aid algorithm designers in choosing when to use such algorithms: for
example, by explaining when we might expect the tradeoff to be especially sharp, and to understand
the cost to cold start users in particular. For example, we theoretically analyze recommendations from
a constrained optimization-based approach akin to that in Basu et al. [5], in terms of the implications
of such an approach on recommendations.

Several papers observe related phenomena to the ones we study, especially empirically. Wang and
Joachims [47] develop an optimization algorithm to be fair to users (in terms of group fairness to
demographic groups) and items (similar to our normalized utility metric). Theoretically, they show
that there is a tradeoff between user and item utility metrics, and further empirically show how
fairness interacts with the diversity of items shown to each user. While their focus is also primarily
algorithmic, they do show that there is a fundamental tension between item and user fairness. In
concurrent work, Kleinberg and Meister [26] also theoretically demonstrate and characterize this
tension. They focus on the cost to individual users caused by imposing maximal item fairness
constraints – similar to how we define price of fairness – and determine the relationship between
a cost level and the proportion of users in the worst-case recommendation setting who experience
that cost. In constrast, we examine the cost to the single worst-off user as a function of properties
of the recommendation setting such as user diversity and recommender mis-estimation. Rahmani
et al. [42] demonstrate a similar tension between item and user fairness in empirical data. Liu
and Burke [31] do not examine user fairness, but observe that one can mitigate the cost of item
fairness in multi-sided recommendations by recommending to users with weaker preferences for
items that may otherwise be less preferred. Subsequently, Farastu et al. [16] examine which users
bear the cost of item fairness, pointing to Liu and Burke [31] to argue that the cost to users of item
fairness constraints disproportionately falls on users with flexible preferences, creating an incentive
for users to misrepresent their preferences as more rigid than reality. We build on these arguments
by theoretically analyzing the cost of item fairness on (individual) users, especially the users most
affected, as a function of the estimated user preference matrix.

In focusing on conceptual phenomena, our work is related to work analyzing the price of fairness
and efficiency-equity tradeoffs in various settings beyond recommendations. Bertsimas et al. [8] first
defined the price of fairness as the normalized decrease in the utility of an algorithmic outcome after
adding fairness considerations, and develop general bounds on the price of fairness in an array of
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optimization scenarios. This concept has been subsequently applied in a variety of domains, including
auction theory [24], fair division and resource allocation [6, 32, 46], and computer networking
[49]. Barre et al. [3] apply a similar concept in assortment optimization, examining the cost of item
visibility constraints on the revenue of a platform. Most similarly, Chen et al. [12] define the price of
fairness in the setting of multi-sided fairness as the cost on platform revenue of including both fairness
constraints; in contrast we define the price of fairness as the cost to user fairness of imposing item
fairness constraints in order to capture the interplay between user and item fairness. The authors then
show that this price of fairness on the revenue depends on objective misalignment – the difference in
fairness between the item/user utility required by the constraints, and the item/user utility in a revenue-
optimal solution. We study how the price of item fairness on user fairness depends on user preference
diversity – the agreement between users’ utilities. These concepts are related: user preference
diversity may cause objective alignment. Moreover, they also consider the problem of unknown
preferences: they examine how to algorithmically impose fairness constraints when preferences are
unknown, while we address the question of whether fairness constraints disproportionately harm
users with unknown preferences. Finally, our result that diverse population preferences can mitigate
the price of fairness resembles the result of Bastani et al. [4] that greedy contextual bandits can
perform well without exploration if there is sufficient contextual diversity.

Finally, there is a large literature on other tradeoffs in recommendations, rankings, and ratings:
engagement versus value, diversity, strategic behavior, uncertainty, and over-time dynamics [9, 14,
15, 18–23, 27, 29, 30, 33, 34, 36, 41]. In the context of set recommendations when users consume
their favorite item out of the multiple recommended, e.g., Peng et al. [41] show that there is a minimal
utility-diversity tradeoff, and Besbes et al. [9] show that there is a minimal exploration-exploitation
tradeoff.

8 Discussion

We investigate the relationship between user fairness and item fairness in recommendation settings.
We develop (a) a theoretical framework to enable us to solve for the price of fairness for many
population settings, and (b) a recommendation engine using real data to allow us to investigate
user-item fairness tradeoffs in practice. Our work informs the design of fair recommendation systems:
(1) it emphasizes the benefits of a diverse user population, and suggests that item fairness constraints
should not be imposed on sub-markets (sub-groups), but instead on the entire population together.
(2) It cautions designers to be especially mindful of effects on individual users (especially cold start
users), who may receive disproportionately poor recommendations with item fairness constraints,
even with a user fairness objective. Our empirical analysis supports our theoretical analysis—the
userbase diversity affects the severity of user-side effects of imposing item fairness; however, the price
of misestimating user utility is already high without item fairness constraints, and so imposing such
constraints does not have additional effects. Such results speak to the importance of instance-specific
analyses, cf. [40]: one cannot make general statements about the specific effects of item-fairness
constraints on users (or vice versa) outside of a specific context, though we identify two relevant
phenomena (user diversity and misestimation) that modulate these effects.

Limitations. Our theoretical analysis explores these fairness tradeoffs in a fairly restricted setting.
First, we assume that users are only recommended a single item; future work should investigate how
the price of fairness changes as the number of recommended items increases. We do not expect
our theoretical framework to easily extend to other definitions of fairness; however, we extend our
computational arXiv experiments to other definitions of fairness in Appendix A. These extended
experiments also show that diverse user preferences reduce fairness tradeoffs; an interesting direction
for future work is to theoretically characterize user-item fairness tradeoffs under other definitions of
fairness. Furthermore, in practice platforms are unwilling to maximize the worst-off user’s item or
user fairness at the expense of the entire platform’s utility; the problem is really one of balancing
user and item fairness with overall platform performance. Algorithms to optimize these multi-
sided problems are explored in other work [12], but it would be interesting to develop qualitative
observations about user-item fairness tradeoffs in the presence of a total utility constraint. Finally, we
show our Theorems 3 and 4 in a limited context with only two or three types of users. However, the
theoretical framework developed in Section 3 is significantly more general. It is would be interesting
to apply this framework to other population structures such as when users do not have perfectly
opposite preferences and where there are more than three groups of users.
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A Extensions

In the experiments below, we subsample recommendation settings in the same way as described in
Section 6 but with 50 papers and 100 authors.

A.1 Alternative definitions of fairness

Nash Welfare The first alternative definition of fairness we consider is Nash welfare [37],

UNW(ρ) =
∑
i

logUi(ρ), INW(ρ) =
∑
j

log Ij(ρ).

This measure of fairness is more holistic than egalitarian fairness as it accounts for the utilities of all
users (items). In Figure 2, we show the results of repeating the experiment in Figure 1 with Nash
Welfare fairness. We see that the trade-off between user and item fairness is steeper for homogeneous
populations of users than for uniformly random populations. While the curves appear more concave
than before, it is important to notice that we replaced γ with 1/γ in the item fairness constraint of the
optimization problem due to the Nash welfare being negative (as detailed in Figure 2), so that γ –
while still capturing constraint strength – has a slightly different interpretation than previously.

(a) Homogeneous versus diverse users (b) With and without misestimation

Figure 2: We repeat the experiment of Figure 1 from the original paper but replace max-min fairness
with Nash welfare fairness. That is, in the objective we replace Umin with the user Nash welfare UNW.
We must be more careful with the item fairness constraint: we know that the normalized utilities
satisfy 0 ≤ Ui, Ij ≤ 1, so UNW, INW < 0. This means that in Problem 1 we must replace the item
fairness constraint Imin (ρ) ≥ γI∗min with the constraint INW(ρ) ≥ (1/γ)I∗NW. When γ = 0, this
corresponds to INW(ρ) ≥ −∞; when γ = 1, this corresponds to Imin (ρ) ≥ I∗min . Thus as before,
when γ = 0 there is effectively no item fairness constraint, and γ = 1 constrains item fairness to be
maximal.

Sum of k-min The second alternative definition of fairness we consider is the sum of the k-
minimum user or item utilities, which is a generalization of egalitarian fairness (k = 1) that measures
the utility of a size-k set of worst-off entities,

Uk−min(ρ) = min
i1 ̸=...̸=ik

k∑
ℓ=1

Uiℓ(ρ), Ik−min(ρ) = min
j1 ̸=... ̸=jk

k∑
ℓ=1

Ijℓ(ρ).

In Figure 3, we show the results of repeating the experiment in Figure 1 with max-sum-k-min fairness.
We again observe that the trade-off between user and item fairness is steeper for homogeneous
populations of users than for uniformly random populations. We also do not see an increase in the
price of mis-estimation when item constraints are added – again, the price of mis-estimation is very
high.

A.2 Alternative item utility models

In our theoretical and empirical results, we use a symmetric utility model, where an item’s utility
for being recommended to a user is the same as the user’s utility for the recommendation. Formally,
in general item j has utility wI

ij for being recommended to user i, while user i may have a different
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(a) Homogeneous versus diverse users (b) With and without misestimation

Figure 3: We repeat the experiment of Figure 1 from the original paper but replace max-min fairness
with max-sum-k-min fairness for k = 3. In the optimization in Problem 1, we replace Umin and
Imin with Uk−min and Ik−min respectively.

utility wU
ij for that recommendation. In our theoretical and empirical results above, we took wij =

wI
ij = wU

ij . Below, we discuss the rationale for this model, and show that this assumption may be
relaxed in our theoretical and empirical results.

The symmetric utility model we use – which corresponds to the “market share” item utility model
in Chen et al. [12] – is motivated by platforms in which both users and items derive utility from a
successful recommendation. This is reasonable in settings in which not only does a user want to
be recommended relevant items, but an item’s producer wants it to be recommended to users for
which the item is especially relevant. Concretely, in the case of readers receiving recommendations
for academic pre-prints, the readers prefer papers that they will engage with, and authors prefer
readers that will engage with their work. in an online marketplace producers want customers who will
purchase their product to be shown the item; in a social media setting, content creators prefer their
content to appear to users who will appreciate it and thus engage with future content. Our symmetric
utility model captures this basic structure behind producer preferences in many cases.

Note that since users can only receive a limited number of recommendations, our assumption does
not eliminate the tension between user and item utility: an individual user wants recommendations
that maximize her total utility across all items, while an individual item wants the platform to produce
recommendations that maximize its total utility across all users. A concrete example of this is that
under this model a low-quality item will want to be recommended to the user most likely to click
on it, but that user won’t want to be recommended the low-quality item. This assumption does,
however, imply that the platform-wide item utility and platform-wide user utility are equivalent – for
recommendations ρij , these are both

∑
j

∑
i wijρij .2

One generalization of the symmetric utility model is where each user and item receives utility
proportional to some shared recommendation quality wij . Formally, each user i receives a utility
of aiwij and each item j receives a utility of bjwij from recommending j to i, for ai, bj > 0. For
example, different values of ai could capture different levels of baseline interest in items among users.
Our theoretical results still hold in this more general setting, since these coefficients will cancel out
when we normalize the utilities.

Another common item utility model is exposure [11, 39], where items receive utility only from being
recommended, and are ambivalent to which user it is shown to. Formally, this corresponds to taking
wI

ij = 1 for all i, j.3 Intuitively, with exposure-based item utility, the item fairness constraint will
cause the users’ recommendation policies move from being concentrated on the most popular items,
to a more uniform distribution over items. If the users in the population have diverse preferences,
each item will already have an approximately uniform probability of being recommended, so that
imposing item fairness constraints has a low cost.

In Figures 4 and 5 we examine the robustness of our empirical results in 3a and 3b respectively as
we interpolate the item utility model between symmetry and exposure. In Figure 5 we see that user

2Of course, this need not be the platform’s utility: in general the platform might receive utility rij if user i
selects recommended item j.

3Again we could take wI
ij = bj for some bj > 0, but this would have equivalent normalized item utilities.
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preference diversity indeed still improves the user-item fairness tradeoff when we change the item
utility model. We also again see that the price of mis-estimation does not appear to increase with
item fairness.

(a) ∆ = 0 (symmetric) (b) ∆ = 0.33 (c) ∆ = 0.67 (d) ∆ = 1 (pure exposure)

Figure 4: Robustness of empirical findings without symmetry assumption: user-item fairness trade-
offs and diversity as item utilities become less correlated with user utilities. Here, we take the user
utilities wU to be derived from the arXiv recommendation engine similarity scores as in Figure 3a.
For each plot the item utilities are a linear interpolation between the users’ utilities and exposure.
Formally, wI

ij = ∆ · 1 + (1 −∆) · wU
ij . When ∆ = 0, item and user utilities agree; when ∆ = 1

items derive utility solely from exposure.

(a) ∆ = 0 (symmetric) (b) ∆ = 0.33 (c) ∆ = 0.67 (d) ∆ = 1 (pure exposure)

Figure 5: Robustness of empirical findings without symmetry assumption: item fairness constraints
still do not increase the price of mis-estimation empirically. Here, we take the user utilities wU

to be derived from the arXiv recommendation engine similarity scores as in Figure 3b. For each
plot the item utilities are a linear interpolation between the users’ utilities and exposure. Formally,
wI

ij = ∆ · 1 + (1−∆) · wU
ij . When ∆ = 0, item and user utilities agree; when ∆ = 1 items derive

utility solely from exposure.

B arXiv recommender empirical details

We prototype a recommender for preprints on arXiv, to illustrate our conceptual findings. We consider
the cold start setting for items (papers), when they are newly uploaded to arXiv and so only have
metadata but no associated interaction or citation data. For users (readers), we use as data the papers
that they have published on arXiv in the past; we assume authors with identical names are the same
author. We implement various natural language processing-based methods on the abstract text (for
both items and the user’s historical papers) to generate similarity scores (utility matrices) for users
and items. We use the similarity scores to generate recommendations for each user, at various levels
of user and item fairness constraints. We validate our approach by analyzing how citations correlate
with the similarity score.

B.1 Dataset and computation details

The original dataset was sourced from the public ArXiv Dataset available on Kaggle,4 containing
1,796,911 articles. This dataset covers a wide range of scientific categories. Each entry in the dataset
is characterized by features which include:

• ID: A unique identifier for each entry.

• Authors: Names and affiliations of the authors.
4Used under license CC0 Public Domain
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• Title: The title of the paper.

• Categories: The scientific categories for the paper.

• Abstract: A brief summary of the paper.

• Update Date: The date of the latest update.

We further join this data with citation data from the Semantic Scholar API [25].5 For each paper, we
have both the papers that it cites and the papers that cite it.

We focus exclusively on entries classified under the ‘Computer Science (CS)’ category. We extract
entries where the primary category designation was ‘CS’, and remove null and duplicate paper ID
values. This filtering results in 177,323 entries.

This entire empirical workflow was run on a machine with 64 CPUs, 1 TB RAM, and 14 TB (non-
SSD) disk. The estimated time was about 20 hours per week for 3 months, and the longest individual
run was approximately 12 hours.

Train and test data As training (to construct embeddings for users), we consider papers that those
users published up to the end of 2019. Papers in 2020 are in the test set (the set available to be
recommended). Papers after 2020 are used to evaluate recommendations (did the user cite a paper
published in 2020).

The training dataset has 139,308 papers, and the test dataset has 14,307 papers, with the remaining
being post-2020 papers. The training dataset has 178,260 distinct users with an average of approxi-
mately 2 papers per user. Figures 6a and 6b show the distribution of research paper subcategories
between the train and test datasets. Figure 7 below shows the distribution of the number of papers
per user in the training set on a logarithmic scale for the y-axis. The x-axis represents the number of
papers per user, ranging from 0 to over 250.

Splitting the training and test data temporally both reflects practice and allows us to evaluate the
recommendation model’s effectiveness in predicting future citations. As detailed below, the model’s
success was measured by whether papers our model would have recommended to users in 2020
were in fact cited in their subsequent works. For further details, see below Section B.3 on the model
evaluation.

B.2 Recommendation models

Each recommendation approach has two design dimensions: (a) how we generate embeddings for
each paper (papers to be recommended, and papers uploaded by users that will be used to construct
user embeddings), and (b) how similarity scores are constructed once we have an embedding for each
paper. Below, we evaluate each approach by their effectiveness in recommending papers that users
are likely to cite in their future works.

(a) Generating embeddings for each paper We use text-based analyses on the abstracts of each
paper to generate paper embeddings. The first approach is TF-IDF, while the second employs
Sentence Transformers.

TF-IDF. The first preprocessing step involved removing stopwords—common words with little
informational value, such as “and” and “the”—to reduce noise and emphasize meaningful
content. Next, a TF-IDF (Term Frequency-Inverse Document Frequency) vectorizer is
applied to count term frequencies and scale them according to their rarity across the dataset,
highlighting unique and informative words. The resulting frequency vector for each abstract
is used as its embedding.

Sentence Transformers. The author-based recommendation model using Sentence Transformers
leverages contextual embeddings from sentence-level representations. The preprocessing
involves tokenizing the text (title, abstract, and categories) and generating embeddings using
a pre-trained Sentence Transformer model, specifically the AllenAI SPECTER model [13],6
available on Hugging Face.

5Used under the Semantic Scholar API License Agreement
6Licensed under the Apache License, Version 2.0
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(a) Distribution of research paper publications in the train dataset over time

(b) Distribution of research paper publications in the test dataset over time

Figure 6: Distribution of research paper publications over time

(b) Constructing similarity scores for each user-paper pair. After constructing embeddings,
we have an embedding for each paper in the potential recommendation set, and for each paper
authored by a user in the training set. We construct user-paper similarity scores as follows. First, we
compute the cosine similarity between each recommendation set embedding and each user’s papers’
embeddings. Then, the similarity score between each user and the recommendations set paper is
constructed using one of the following approaches:

Mean score. We take the mean of the cosine similarities between the recommendation set paper and
each of the papers by the user in the training set. This approach is equivalent to constructing
a user embedding as the mean embedding of their uploaded papers.

Max score. The mean similarity score has been recognized as not capturing diverse interests that
a user may have [20, 41] – for example, for a user who has published papers in two
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Figure 7: Distribution of the number of papers per user in the training set on a logarithmic scale

different subject areas, a paper should be recommended to them if it matches either of their
interests, as opposed to the average of those interests. Thus, we also construct user-paper
similarity scores via the max similarity between any of the user’s training set papers, and the
recommended set paper.

Note that we also experimented with using dot products instead of cosine similarity; results are
similar and omitted.

B.3 Model evaluation method

We evaluate each of the four approaches (TF-IDF and sentence transformers, each with the max or
the mean scores) using citation data for 1,128 users (authors) and 14,307 papers. For each user-paper
pair, we use the following as outcome data:

User cites paper in the future: Is the paper cited by the user in the future?
Paper cites user: Does the paper cite the user already? We note that this data is technically available

at the time of a hypothetical recommendation for a new paper, and so in theory could be
used by a recommender. Thus, although metric does not directly measure the future behavior
of the user, it helps in understanding the contextual alignment (determined just by natural
language processing of the abstracts) of the recommended papers with the user’s previous
research or interests. Importantly, these references are not part of the data used to generate
the similarity score.

In both cases, we consider the presence of citations as signifying a good recommendation.

For each recommendation approach, we calculate the relationship between this citation data and the
following similarity score measures.

• Similarity score: The raw cosine similarity score.
• Score percentile: The percentile rank of the similarity score, where percentile is calculated

for each user.
• Normalized score: The similarity score is normalized by subtracting the mean and dividing

by the standard deviation of scores for each user.

A successful recommendation approach would have a strong relationship between text-based similarity
scores and future citation outcomes.

B.4 Evaluation results

We evaluate each of the 4 approaches. As summarized below, we find that the best performing
approach is using the TF-IDF vectorizer to construct abstract embeddings, and then using the max
similarity scores between any of their papers in the training set and each paper in the recommended
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set. We find that this approach is effective at predicting future citations by the user, especially for a
cold start recommender that uses only abstract textual information, and for such a sparse outcome as
citations.

Citation Type No/Yes Similarity Score Score Percentile Normalized Score

User cites paper No 0.041454 0.499737 -0.001701
Yes 0.123650 0.765008 1.514331

Paper cites user No 0.041147 0.498860 -0.006536
Yes 0.138199 0.784410 1.582545

Table 2: Average similarity measures in the Max score, TF-IDF model, conditioned on citation
presence for different types of citations.

(a) Density plot of similarity scores grouped by
citation presence.

(b) Density plot of similarity score percentiles
grouped by citation presence.

Figure 8: Pr(score|User cites paper), the distribution of the score for a user-paper pair, conditional
on whether the user cites the paper in the future, for the Max score, TF-IDF model.

Variable Coefficient Std. Err z-value P-value Adjusted R2

Similarity score 12.4100 0.058 212.178 0.000 0.08915
Score percentile 3.9218 0.035 111.194 0.000 0.05973
Normalized Score 0.3905 0.002 158.421 0.000 0.05159

Table 3: Logistic regression results for predicting whether user i cites paper j from the similarity
score wij , for the Max score, TF-IDF model

Max score, TF-IDF Table 2 shows the similarity measures described above averaged over all users
and test papers, conditioned on whether or not a citation occurred between the user and paper (whether
the user cites the paper, or vice versa). Figure 8 illustrates the distribution of similarity scores for
papers that were cited (orange) versus those that were not cited (blue) by the user in the future. The
density for cited papers is higher at higher levels of similarity scores compared to non-cited papers.
Table 3 performing logistic regression between the user-paper score and whether the user cites the
paper with a bias term (‘User cites paper ∼ 1+score’), for each score measure. All measures suggest
that our text-based recommendation scores are effective for predicting whether the user will cite the
given paper. For example, Figure 8b shows that Pr(Highest score bin|Author cites paper) is more
than five times Pr(Highest score bin|Author does not cite paper).

Mean score, TF-IDF Table 4 shows the similarity measures described above averaged over all
users and test papers, conditioned on whether or not a citation occurred between the user and paper
(whether the author cites the paper, or vice versa). Figure 9 illustrates the distribution of similarity
scores for papers that were cited (orange) versus those that were not cited (blue) by the user in
the future. The density for cited papers is higher at higher levels of similarity scores compared to
non-cited papers. Table 5 performing logistic regression between the user-paper score and whether
the user cites the paper with a bias term (‘User cites paper ∼ 1 + score’), for each score measure.

Max score, Sentence transformer
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Citation Type No/Yes Similarity Score Score Percentile Normalized Score

Author cites paper No 0.019405 0.499717 -0.001799
Yes 0.044938 0.783110 1.600929

Paper cites author No 0.019323 0.498790 -0.006737
Yes 0.046283 0.801534 1.631049

Table 4: Average similarity measures in the Mean score, TF-IDF model, conditioned on citation
presence for different types of citations.
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(a) Density plot of similarity scores grouped by
citation presence.
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(b) Density plot of similarity score percentiles
grouped by citation presence.

Figure 9: Pr(score|Author cites paper), the distribution of the score for a user-paper pair, conditional
on whether the user cites the paper in the future, for the Mean score, TF-IDF model.

Variable Coefficient Std. Err z-value P-value Adjusted R2

Similarity score 20.2122 0.131 154.835 0.000 0.04616
Score percentile 4.3535 0.037 116.516 0.000 0.06934
Normalized Score 0.4184 0.003 164.894 0.000 0.05815

Table 5: Logistic regression results for predicting whether user i cites paper j from the similarity
score wij„ for the Mean score, TF-IDF model

Citation Type No/Yes Similarity Score Score Percentile Normalized Score

Author cites paper No 0.666801 0.499821 -0.00183
Yes 0.784402 0.807105 1.30730

Paper cites author No 0.666379 0.498851 -0.005735
Yes 0.794945 0.805592 1.251814

Table 6: Average similarity measures in the Max score, Sentence transformer model, conditioned
on citation presence for different types of citations.

Variable Coefficient Std. Err z-value P-value Adjusted R2

Similarity score 18.4557 0.250 73.695 0.000 0.1347
Score percentile 5.0122 0.098 51.161 0.000 0.08604
Normalized Score 1.2332 0.017 71.426 0.000 0.1076

Table 7: Logistic regression results for predicting whether user i cites paper j from the similarity
score wij„ for the Max score, Sentence transformer model

Table 6 shows the similarity measures described above averaged over all users and test papers,
conditioned on whether or not a citation occurred between the user and paper (whether the user cites
the paper, or vice versa). Figure 10 illustrates the distribution of similarity scores for papers that were
cited (orange) versus those that were not cited (blue) by the user in the future. The density for cited
papers is higher at higher levels of similarity scores compared to non-cited papers. Table 7 shows the
results of performing logistic regression between the user-paper score and whether the user cites the
paper with a bias term (‘User cites paper ∼ 1 + score’), for each score measure.

22



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity Score

0

1

2

3

4

5

De
ns

ity

Author cites paper
0
1

(a) Density plot of similarity scores grouped by
citation presence.
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(b) Density plot of similarity score percentiles
grouped by citation presence.

Figure 10: Pr(score|Author cites paper), the distribution of the score for a user-paper pair, conditional
on whether the user cites the paper in the future, for the Max score, Sentence transformer model.

Mean score, Sentence transformer
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Citation Type No/Yes Similarity Score Score Percentile Normalized Score

User cites paper No 0.612678 0.499825 -0.001767
Yes 0.696291 0.803641 1.262704

Paper cites user No 0.612397 0.498891 -0.005418
Yes 0.699609 0.796941 1.182465

Table 8: Average similarity measures in the Mean score, Sentence transformer model, conditioned
on citation presence for different types of citations.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Similarity Score

0

1

2

3

4

5

De
ns

ity

Author cites paper
0
1

(a) Density plot of similarity scores grouped by
citation presence.
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(b) Density plot of similarity score percentiles
grouped by citation presence.

Figure 11: Pr(score|User cites paper), the distribution of the score for a user-paper pair, conditional
on whether the user cites the paper in the future, for the Mean score, Sentence transformer model.

Variable Coefficient Std. Err z-value P-value Adjusted R2

Similarity score 16.2482 0.246 66.148 0.000 0.09085
Score percentile 4.9088 0.097 50.820 0.000 0.08377
Normalized Score 1.2297 0.018 69.188 0.000 0.1026

Table 9: Logistic regression results for predicting whether user i cites paper j from the similarity
score wij„ for the Mean score, Sentence transformer model

Table 8 shows the similarity measures described above averaged over all users and test papers,
conditioned on whether or not a citation occurred between the user and paper (whether the user cites
the paper, or vice versa). Figure 11 illustrates the distribution of similarity scores for papers that were
cited (orange) versus those that were not cited (blue) by the user in the future. The density for cited
papers is higher at higher levels of similarity scores compared to non-cited papers. Table 9 shows the
results of performing logistic regression between the user-paper score and whether the user cites the
paper with a bias term (‘User cites paper ∼ 1 + score’), for each score measure.

Altogether, each model performs fairly well; the model using sentence transformer embeddings and
the max similarity score among each author’s papers appears to perform the best overall.

C Proof of Section 3 results

In this section, we provide complete proofs for Proposition 1 and Proposition 2. In this and all other
proofs in the appendix, we ignore the dependence on the utility matrix w in the user and item utility
and fairness functions when clear.

The following result will be broadly useful throughout the rest of the proofs.
Lemma 1. Since wij > 0 for all j, I∗min > 0.

Proof. Let ρij = 1
n . Then Ij(ρ) > 0 for all j so Imin (ρ) > 0 and I∗min = maxρ Imin (ρ) > 0.

First, recall the statement of Proposition 1.
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Proposition 1. Suppose that for a set of recommendation policies S ⊆ ∆m
n−1,

(i) S can be described by a finite set of linear constraints

(ii) There exists an optimal solution ρ∗ to Problem (2) such that ρ∗ ∈ S

(iii) ρ∗ is the unique feasible solution to Problem (2) in S

Then, finding an optimal solution ρ∗ to Problem (2) can be reduced to solving a linear program L.

Proof. We first need the following result, which states that the feasible set of 1 can be expressed as a
linear program. We will prove this result below.

Lemma 2. Let F denote the feasible set of Problem 1,

F ≜ arg max
ρ∈∆m

n−1

Imin (ρ) ≜ arg max
ρ∈∆m

n−1

min
j

Ij(ρ). (3)

Then F is the solution set of the linear program
F = arg max

ρ∈∆m
n−1,λ

λ

subject to Ij(ρ) = λ ∀j.
(4)

Now, condition (iii) on S implies that there is a unique ρ∗ in S ∩ F . Thus
ρ∗ = F ∩ S = arg max

ρ∈∆m
n−1∩S,λ

λ

subject to Ij(ρ) = λ ∀j,
. (5)

We can add S as a constraint in Problem 4 because we know that there is at least one solution to
Problem 4 in S – namely, ρ∗ – so this additional constraint will not change the optimal objective
value, but will constrain the set of optimal solutions to be in S, as desired.

By condition (ii), ρ∗ is an optimal solution for Problem 1; by condition (i), S can be described by a
finite set of linear constraints, and thus Problem 5 is a linear program; call this L.

We now show Lemma 2.
Lemma 2. Let F denote the feasible set of Problem 1,

F ≜ arg max
ρ∈∆m

n−1

Imin (ρ) ≜ arg max
ρ∈∆m

n−1

min
j

Ij(ρ). (3)

Then F is the solution set of the linear program
F = arg max

ρ∈∆m
n−1,λ

λ

subject to Ij(ρ) = λ ∀j.
(4)

Proof. To show this, we prove by contradiction that every optimal policy gives each item j the same
normalized utility; that is, we show that if the policy ρ is an optimal solution of Problem 3, then
there is some λ such that for all j, Ij(ρ) = λ, and in this case λ = minj Ij(ρ). This implies that any
solution ρ to Problem 3 is a feasible solution of 4. Since these two problems have the same objective,
and the additional constraint in Problem 4 does not eliminate any solutions, the two problems have
the same solution set.

To show that all items have the same normalized utility at the optimum, we suppose the contrary and
produce a contradiction. Suppose that the policy ρ maximizes minj Ij(ρ), but there is some j such
that Ij(ρ) > I∗min . We will show that this means we can construct ρ′ such that Imin (ρ

′) > I∗min .

First, note that it is impossible that ρij = 0 for all i, otherwise I∗min = Ij(ρ) = 0. However, by
Lemma 1, I∗min > 0. Thus for some i, ρij > 0.

Define J = {j′ : Ij′(ρ) = I∗min }, and let j′ ∈ J . Since ρij > 0 and
∑

k ρik = 1, ρij′ < 1. Pick
ϵ > 0 such that ρ′ij := ρij − ϵ > 0, ρ′ij′ := ρij′ + ϵ < 1, and Ij(ρ

′) > I∗min . Since Ij is linear in the
recommendation policy, this is always possible.

Now, repeat this process for all j′ ∈ J , to obtain a final recommendation policy ρ′ in which
Iℓ(ρ

′) > I∗min for all ℓ and thus Imin (ρ
′) > I∗min . This contradicts the optimality of I∗min .
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Now, we prove Proposition 2.
Proposition 2. Ssymm satisfies conditions (i) and (ii) in Proposition 1. Furthermore, solutions
ρ ∈ Ssymm to Problem (2) have a sparse structure:

• If ρ is a basic feasible solution to the linear program L in Proposition 1, then there are at
most n+K − 1 type-item pairs (k, j) such that ρkj > 0 (out of nK possible pairs).

• If ρ is also optimal, then there are at most K − 1 items that are ever recommended to more
than one type of user, i.e., where ρkj , ρk′j > 0 for k ̸= k′.

Proof. We will first prove that Ssymm satisfies conditions (i) and (ii), and then show sparsity.

Part 1. Recall that for fixed w,

Ssymm = {ρ : ρi = ρi′ if wi = wi′} =
⋂

i,i′:wi=wi′

{ρ : ρi = ρi′}

which is a finite set of linear constraints, so condition (i) holds.

Now, we show condition (ii), that always there is some ϕ∗ ∈ Ssymm that is an optimal solution to
Problem 1. Let ρ be an arbitrary optimal solution to Problem 1. Then ρ is also feasible: Imin (ρ) =
I∗min .

We first define a piece of convenient notation: if two users i, i′ share the same utility vector wi = wi′ ,
we say that they have the same type τ(i) = τ(i′). If τ(i) = τ(i′) := τ , we write wij = wi′j := wτj

Let
ϕij =

1

|{i′ : τ(i′) = τ(i)}|
∑

i′:τ(i′)=τ(i)

ρi′j

for all i, j. We must show that:

• ϕij = ϕi′j for all i, i′ where τ(i) = τ(i′),

• ϕ is a valid set of recommendation probabilities,

• ϕ is feasible: Imin (ϕ) = I∗min , and

• ϕ is optimal: Umin (ϕ) ≥ Umin (ρ) = U∗
min .

Clearly ϕij = ϕi′j for all i, i′ where τ(i) = τ(i′), since ϕij depends only on i through τ(i).

For each i,∑
j

ϕij =
1

|{i′ : τ(i′) = τ(i)}|
∑

i′:τ(i′)=τ(i)

∑
j

ρi′j =
1

|{i′ : τ(i′) = τ(i)}|
∑

i′:τ(i′)=τ(i)

1 = 1.

Moreover, for all i, j, 0 ≤ minr,s ρrs ≤ ϕij ≤ maxr,s ρrs ≤ 1. Thus ϕ ∈ ∆m
n−1.

To show that Imin (ϕ) = I∗min , notice that intuitively, when we move from ρ to ϕ, we redistribute
the probability mass assigned to an item j among users of the same type. Since all of these users
generate the same value for item j, there should be no change in item j’s expected utility. Formally,

Imin (ϕ) = min
j

∑
τ wτj

∑
i:τ(i)=τ ϕij∑

τ wτj

∑
i:τ(i)=τ 1

= min
j

∑
τ wτj

∑
i:τ(i)=τ ρij∑

τ wτj

∑
i:τ(i)=τ 1

= Imin (ρ)

= I∗min . (ρ is optimal)

Finally, to show that Umin (ϕ) ≥ Umin (ρ), we observe that if users with the same values are given
different recommendation probabilities, some user will be worst off and have expected value lower
than the average expected value over all users in that type. By averaging, we bring all users’ expected
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values to the average expected value across the type, increasing the expected value for the previously
worst off user. Formally, for each type τ , let i(τ) ∈ argmini:τ(i)=τ Ui(ρ). Then

Ui(τ)(ρ) ≤ Ui′(ρ) for all i′ : τ(i′) = τ

=⇒
∑n

j=1 wτjρi(τ)j

maxj vj
≤

∑n
j=1 wτjρi′j

maxj vj
for all i′ : τ(i′) = τ

=⇒ |{i′ : τ(i′) = τ}|
∑n

j=1 wτjρi(τ)j

maxj vj
≤

∑
i′:τ(i′)=τ

∑n
j=1 wτjρi′j

maxj vj

=⇒
∑n

j=1 wτjρi(τ)j

maxj vj
≤

∑n
j=1 wτjϕi′j

maxj vj
for all i′ : τ(i′) = τ (definition of ϕ)

=⇒ min
i:τ(i)=τ

Ui(ρ) ≤ min
i:τ(i)=τ

Ui(ϕ)

Then
Umin (ρ) = min

τ
min

i:τ(i)=τ
Ui(ρ) ≤ min

τ
min

i:τ(i)=τ
Ui(ϕ) = Umin (ϕ)

and we have shown that Umin (ϕ) ≥ Umin (ρ).

Part 2. Now we show the sparsity of solutions to the linear program L in Proposition 1, that is,
Problem 5 defined above in the proof of Proposition 1. Given that ρ ∈ Ssymm, we can rewrite the
linear program as

ϕ = arg max
ρ∈∆K

n−1,λ
λ

subject to Ij(ρ) = λ ∀j,
which is the same as

ϕ = argmax
ρ,λ

λ

subject to Ij(ρ) = λ ∀j,∑
j

ρkj = 1 ∀k,

ρkj ≥ 0 ∀k, j,
where Ij(ρ) is shorthand for Ij(ρ′) where ρ′ ∈ ∆m

n−1 is ρ ∈ ∆K
n−1 expressed in terms of users rather

than types. This is a linear program with nK + 1 variables, and n+K equality constraints. Then
for any basic feasible solution ρ of Problem 5, there must be nK + 1 linearly independent active
constraints (see Definition 2.9 in Bertsimas and Tsitsiklis [7]). This means that of the nK constraints
{ρkj ≥ 0}k,j , at least nK + 1 − (n + K) must be binding. Equivalently, there can be at most
nK − (nK + 1− (n+K)) = n+K − 1 values of k, j such that ρkj > 0.

If ρ is also an optimal solution, then by Lemma 1 there must be some k such that ρkj > 0 for each j,
which takes up n non-zero values. Only K − 1 non-zero values remain to be assigned, so at most
K − 1 items j have ρkj , ρk′j > 0 for two types k, k′.

D Proof of Theorem 3

Recall Theorem 3 and its setting. We let v1 > v2 > ... > vn and suppose that there are two user
types. A user i either has value wij = vj for all j or wij = vn−j+1 for all j, corresponding to types
1 and 2 respectively. That is, the two types have opposite preferences. We let α be the proportion of
type 1 users in the population, out of a fixed population of m users.
Theorem 3. πF

U |I(α) is decreasing in α for 0 < α ≤ 1/2, and increasing in α for 1/2 ≤ α < 1.

D.1 Main proof

Proof. The proof will proceed in two parts. First, we will reduce the problem to finding a solution for
a linear program using the framework from Proposition 1. Then, we will find a solution to the linear
program. In this proof, we will use a series of intermediate results, which we prove in the following
section. The first such result is Lemma 3.
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Lemma 3. For all 0 < α < 1, U∗
min (α) = 1.

By Lemma 3, U∗
min (α) := U∗

min is constant in α, so πF
U |I(α) = (U∗

min −U∗
min (1,α))/U∗

min and it is
enough to show U∗

min (1, α) increases in α.

Recall the definition of Ssymm:
{ρ : ρi = ρi′ if wi = wi′}.

By Proposition 2, we know that Ssymm is a satisfies conditions (i) and (ii) on S for Proposition 1.
Thus by Proposition 1, it is sufficient to find ϕ such that

ϕ ∈ arg max
ρ∈S∩∆m

n−1,λ
λ

subject to Ij(ρ) = λ ∀j,

and show that this ϕ is unique, where the linear program is derived from the proof of Proposition 1.

Since each user in our population only has one of two possible value vectors, wi = (v1, ..., vn)
or wi = (vn, ...., v1), we can identify Ssymm with ∆2

n−1, and identify ρ ∈ Ssymm with a pair x, y.
Expanding the expression for Ij(ρ) and making explicit the dependence on α, we see that

Ij(ρ, α) =

∑
i ρijwij(α)∑
i wij(α)

=

∑
i:τ(i)=1 ρijvj +

∑
i:τ(i)=2 ρijvn−j+1∑

i:τ(i)=1 vj +
∑

i:τ(i)=2 vn−j+1

=
mαxjvj +m(1− α)yjvn−j+1

mαvj +m(1− α)vn−j+1

= qj(α)xj + (1− qj(α))yj

where
qj(α) :=

αvj
αvj + (1− α)vn−j+1

.

Note that for all j and 0 < α < 1, we have 0 < qj , 1− qj < 1. We can thus simplify

ϕ = arg max
x,y∈∆2

n−1,λ
λ

subject to qj(α)xj + (1− qj(α))yj = λ ∀j,
(6)

First, we will show uniqueness and find a closed form to Problem 6 in Lemmas 4 and 5. Then, we
will use this closed forms to show that U∗

min (1, α) is increasing for α < 1/2. By symmetry, this
implies that U∗

min (1, α) must be decreasing for α > 1/2 and we will be done.

Lemma 4. Problem 6 has a unique solution (x, y, λ). Moreover, the solution is sparse: there is some
1 ≤ t ≤ n such that for j > t, xj = 0, and for j < t, yj = 0.

Thus, to solve our original problem (Problem 1) we merely need to evaluate the user fairness Umin of
x, y solving Problem 6 and show that this is increasing. We will do this in the remainder of the proof.

For each α, let x, y be the solution to the corresponding Problem 6, and define7

t(α) := max{j : xj(α) > 0}.

Lemma 5. Let 0 < α < 1, t := t(α). Define

Lt =
∑
j<t

1

qj
, Rt =

∑
j>t

1

1− qj
.

7While there is a single optimal solution x, y to Problem 6 for each α, there may be two t that satisfy Lemma
4. In particular, this occurs when for each j, xj = 0 or yj = 0. By contrast, t(α) is unique.
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Then
I∗min =

1

1 + qtLt + (1− qt)Rt
,

and

xj =


I∗
min

qj
, j < t

1− Lt

1+qtLt+(1−qt)Rt
, j = t

0, j > t

, yj =


0, j < t

1− Rt

1+qtLt+(1−qt)Rt
, j = t

I∗
min

1−qj
, j > t

.

Note that for t ̸= t(α), x, y above may not be valid probability vectors.

Lemma 6. For 0 < α < 1/2, if ρ∗ is the optimal recommendation policy, then Ui(ρ
∗, α) ≥

Ui′(ρ
∗, α) for τ(i) = 1, τ(i′) = 2.

By Lemma 6, U∗
min (α) = Ui(α) for i with τ(i) = 2. Then

U∗
min (1, α) = Ui(α)

=
1

maxj vj

n∑
j=1

yjvn−j+1

=
1

maxj vj

yt(α)vn−t(α)+1 +
∑

j>t(α)

yjvn−j+1


=

1

maxj vj

1−
∑

j>t(α)

I∗min (α)

1− qj(α)

 vn−t(α)+1 +
∑

j>t(α)

I∗min (α)

1− qj(α)
vn−j+1


=

1

maxj vj

vn−t(α)+1 +
∑

j>t(α)

I∗min (α)

1− qj(α)
(vn−j+1 − vn−t(α)+1)


The following results will enable us to conclude that U∗

min (1, α) is increasing for α < 1/2.

Lemma 7. t(α) is weakly increasing.

Lemma 8. I∗min (α) is increasing for α ≤ 1/2.

Lemma 9. qj(α) strictly increases as α increases and strictly decreases as j increases.

Since t(α) is increasing and vj decreases in j, vn−t(α)+1 is increasing in α. Also, I∗min (α) is
increasing for α < 1/2, and qj(α) is increasing, so I∗

min (α)
1−qj(α)

is increasing. For j > t(α), vn−j+1 −
vn−t(α)+1 > 0. Thus, U∗

min (1, α) is increasing.

D.2 Supporting lemma proofs

We will first prove Lemma 9, as it is a simple result that we will use extensively.

Lemma 9. qj(α) strictly increases as α increases and strictly decreases as j increases.

Proof. Recall the definition of qj(α):

qj(α) =
αvj

αvj + (1− α)vn−j+1
.

We can rewrite this as

qj(α) =
1

1 +
(1−α)vn−j+1

αvj

=
1

1 + ( 1
α − 1)

vn−j+1

vj

,
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which is strictly increasing in α since vn−j+1/vj > 0.

Since vj is decreasing in j, vn−j+1/vj is increasing in j. Then since 1/α > 1,
(
1
α − 1

) vn−j+1

vj
is

increasing, so qj(α) is decreasing.

Lemma 3. For all 0 < α < 1, U∗
min (α) = 1.

Proof. Simply put, the argument below says that since there are no total utility or item fairness
constraints, we can simply maximize utility for each user individually. When we do this, each user
gets a utility ratio of 1. Formally, recall that

U∗
min (α) = max

ρ∈∆m
n−1

min
i

∑
j=1 ρijwij(α)

maxj wij(α)

We can pick xi for each user i independently, so this problem becomes

U∗
min (α) = min

i

1

maxj wij
max

ρi∈∆n−1

∑
j=1

xijwij(α).

We know that
∑

j=1 ρijwij is maximized by putting all probability mass of ρi on the coordinate of
wi with the highest value, yielding expected value maxj wij . Then

U∗
min (α) = min

i

maxj wij

maxj wij
= 1.

Lemma 4. Problem 6 has a unique solution (x, y, λ). Moreover, the solution is sparse: there is some
1 ≤ t ≤ n such that for j > t, xj = 0, and for j < t, yj = 0.

Proof. Let α be fixed; we will suppress the dependence on α for the remainded of the proof. Recall
that Problem 6 is a linear program, and we can therefore rely on known facts about the structure of
solutions to linear programs to prove this result.

Part 1 First, we show that at least n− 1 of {xj , yj}j must be zero in every basic feasible solution.

By Proposition 2, since K = 2, at most n+ 2− 1 = n+ 1 of {xj , yj}j can be non-zero and thus at
least n− 1 of these are zero.

Part 2 Now, we show that every optimal basic feasible solution has the form above.

If x, y, λ define an optimal basic feasible solution and xj = 0, then if i > j, xi = 0. To see this,
suppose this is not the case, that is, there is some j < i such that xi := c > 0 but xj = 0. We will
show that we can form x′, y′ with minj Ij(x

′, y′) > λ, which means that the policy ρ′ formed by
giving recommendation policy x′ to all users of type 1 and recommendation policy y′ to all users
of type 2, is a better solution to Problem 1 than the policy ρ defined by x, y, which means ρ is not
optimal and we have a contradiction.

Since x, y are feasible, we must have Ii(x, y) = Ij(x
′, y′) = λ, so

qic+ (1− qi)yi = (1− qj)yj . (7)

Define x′, y′ as follows:

x′
ℓ =


c− ϵ1, ℓ = j

0, ℓ = i

xℓ +
ϵ1

n−2 , otherwise
,

y′ℓ =


yj −

(
qic
1−qi

+ ϵ2

)
, ℓ = j

yi +
(

qic
1−qi

+ ϵ2

)
, ℓ = i

yℓ, otherwise

.
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Intuitively, to define x′ we move all probability mass away from i to j. To define y′, we move
sufficient mass from j to i to offset the decrease in value to item i from changing x to x′. In order to
strictly increase Iℓ for all items ℓ, in x′ we also move ϵ1 mass to the other items.

These will be valid probability vectors for ϵ1, ϵ2 > 0 small enough; for x′ this is clear. For y′, we
must show that yj > qic

1−qi
, and yi +

qic
1−qi

< 1. Rearranging Equation 7 and noticing that qj > qi by
Lemma 9,

yi +
qic

1− qi
=

(1− qj)yj
1− qi

< yj ≤ 1.

Moreover,

yj −
qic

1− qi
=

qic+ (1− qi)yi
1− qj

− qic

1− qi
(Equation 7)

>
qic+ (1− qi)yi

1− qi
− qic

1− qi
(qj > qi)

= yi.

≥ 0

Now, we can show that Imin (x
′, y′) > Imin (x, y) = I∗min , which is a contradiction. To do this, it is

sufficient to show that Iℓ(x′, y′) > Iℓ(x, y) for each ℓ.

• ℓ /∈ {i, j}: Since x′
ℓ > xℓ, y′ℓ = yℓ, Iℓ(x′, y′) > Iℓ(x, y).

• ℓ = i:

Ii(x
′, y′) = (1− qi)

(
yi +

qic

1− qi
+ ϵ2

)
= (1− qi)yi + qiλ+ ϵ2
= Ii(x, y) + ϵ2

• ℓ = j:

Ij(x
′, y′) = qj(λ− ϵ1) + (1− qj)

(
yj −

qiλ

1− qi
− ϵ2

)
= (1− qj)yj + λ

(
qj − qi

1− qj
1− qi

)
− ϵ1qj − ϵ2(1− qj)

= Ij(x, y) + λ

(
qj − qi

1− qj
1− qi

)
− ϵ1qj − ϵ2(1− qj)

Since qj > qi, qj − qi
1−qj
1−qi

> 0, and thus Ij(x′, y′) > Ij(x, y) if ϵ1, ϵ2 are small enough.

Since we did not use the fact that α < 1/2 here, a symmetric argument shows that we cannot have
yj = 0, yi > 0, and i < j,

Let k be the number of indices j such that xj > 0. The above arguments together imply that
xj = 0, j > k. There are then at least n − 1 − (n − k) = k − 1 indices j such that yj = 0; the
argument above implies that these zeroes are on the lowest possible indices, that is, yj = 0, j < k.
Thus if we take t = k, we have that for j > t, xj = 0, and for j < t, yj = 0.

Part 3 Finally, we show that there is only a single optimal solution, which is a basic feasible
solution of this form.

Suppose that x′, y′ is another optimal basic feasible solution; we will show that x′ = x, y′ = y.
Denote t(x, y) = max{j : xj > 0}.

• If t(x, y) = t(x′, y′), then:
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– For j < t, yj = y′j = 0, and

qjxj = Ij(x, y) (Lemma 5)
= Imin (x, y) (feasibility)

= Imin (x
′, y′) (optimality)

= Ij(x
′, y′) (feasbility)

= qjx
′
j , (Lemma 5)

so xj = x′
j .

– Similarly for j > t, xj = x′
j = 0, and

(1− qj)yj = Ij(x, y) = Imin (x, y) = Imin (x
′, y′) = Ij(x

′, y′) = (1− qj)y
′
j ,

so y′j = yj .
– Finally, this means yt = 1−

∑
j>t yj = 1−

∑
j>t y

′
j = y′t, and xt = 1−

∑
j<t xj =

1−
∑

j<t x
′
j = x′

t.

• Otherwise, without loss of generality let t(x′, y′) > t(x, y) := t. For j < t,

qjxj = Ij(x, y) = Ij(x
′, y′) = qjx

′
j ,

so x′
j = xj . For j > t, xj = 0.

Furthermore,

qtxt + (1− qt)yt = It(x, y) = It(x
′, y′) = qtx

′
t

⇐⇒ qt

1−
∑
j<t

xj

+ (1− qt)yt = qtx
′
t

⇐⇒ qt

1−
∑
j<t

x′
j

+ (1− qt)yt = qtx
′
t

⇐⇒ (1− qt)yt = qt

∑
j≤t

x′
t − 1


Since qt, 1 − qt > 0, and yt ≥ 0,

∑
j≤t x

′
t ≤ 1, it must be the case that yt = 0 and∑

j≤t x
′
t = 1. However, yt > 0 by definition of t, and we have a contradiction.

This means that there is only one optimal basic feasible solution, and thus there is only one solution
to the linear program.

Lemma 5. Let 0 < α < 1, t := t(α). Define

Lt =
∑
j<t

1

qj
, Rt =

∑
j>t

1

1− qj
.

Then
I∗min =

1

1 + qtLt + (1− qt)Rt
,

and

xj =


I∗
min

qj
, j < t

1− Lt

1+qtLt+(1−qt)Rt
, j = t

0, j > t

, yj =


0, j < t

1− Rt

1+qtLt+(1−qt)Rt
, j = t

I∗
min

1−qj
, j > t

.

Proof. Fix 0 < α < 1. This result mainly follows from the fact that
∑

j xj =
∑

j yj = 1, and
Ij(x

∗, y∗) = Ij′(x
∗, y∗) for all j, j′, as well as the sparse solution structure shown in Lemma 4.
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We know that the optimal solution satisfies I∗min = Ij = Ij′ for all j, j′. We also already know that
for j > t, xj = 0, and for j < t, yj = 0.

For j < t, I∗min = Ij = xjqj + 0 =⇒ xj =
I∗
min

qj
.

For j > t, I∗min = Ij = 0 + yj(1− qj) =⇒ yj =
I∗
min

1−qj
.

For j = t, we know I∗min = It = qtxt + (1− qt)yt. Then for j < t, xj =
1
qj
(qtxt + (1− qt)yt), so

1−xt =
∑
j<t

xj =
∑
j<t

1

qj
(qtxt+(1−qt)yt) = (qtxt+(1−qt)yt)

∑
j<t

1

qt
= (qtxt+(1−qt)yt)Lt.

(8)
Similarly, yj = 1

1−qj
(qtxt + (1− qt)yt) so

1− yt =
∑
j>t

1

1− qj
(qtxt + (1− qt)yt) = (qtxt + (1− qt)yt)Rt. (9)

Combining equations 8 and 9, we obtain

Lt

Rt
(1− yt) = 1− xt =⇒ xt = 1− Lt

Rt
(1− yt) (10)

Substituting equation 10 into equation 9, we get

1− yt =

(
qt

(
1− Lt

Rt
(1− yt)

)
+ (1− qt)yt

)
Rt

⇐⇒ 1 + qtLt − qtRt = yt(1 + qtLt + (1− qt)Rt)

=⇒ yt =
1 + qtLt − qtRt

1 + qtLt + (1− qt)Rt
= 1− Rt

1 + qtLt + (1− qt)Rt

Then

xt = 1− Lt

Rt
(1− yt) = 1− Lt

1 + qtLt + (1− qt)Rt
.

Finally, we see that

I∗min = qtxt + (1− qt)yt

= qt

(
1− Lt

1 + qtLt + (1− qt)Rt

)
+ (1− qt)

(
1− Rt

1 + qtLt + (1− qt)Rt

)
= 1− qtLt + (1− qt)Rt

1 + qtLt + (1− qt)Rt

=
1

1 + qtLt + (1− qt)Rt
.

Lemma 6. For 0 < α < 1/2, if ρ∗ is the optimal recommendation policy, then Ui(ρ
∗, α) ≥

Ui′(ρ
∗, α) for τ(i) = 1, τ(i′) = 2.

Proof. Intuitively, the type with a larger proportion in the population must shoulder the burden of
ensuring item fairness to mediocre items, and thus users from this type will have a lower recommen-
dation probability on the items they really like compared to the smaller group.
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Formally, let i, i′ be users such that τ(i) = 1, τ(i′) = 2. For α ≤ 1/2, j < t(α),

xj − yn−j+1 =
1

qj(α)
− 1

1− qj(α)

=
αvj + (1− α)vn−j+1

αvj
− αvn−j+1 − (1− α)vj

(1− α)vj

=
1

vj

(
vj +

1− α

α
vn−j+1 − vj −

α

1− α
vn−j+1

)
=

vn−j+1

vj

(
1− α

α
− α

1− α

)
=

vn−j+1

vj

1− 2α

α(1− α)

≥ 0 (0 < α ≤ 1/2)

So (
max

j
vj

)
· (Ui − Ui′)

=
∑
j≤t

vjxj −
∑
j≥t

vn−j+1yj

=
∑
j≤t

vj(xj − yn−j+1)−
∑
j<t

vjyn−j+1 (collecting coefficients of vj)

≥
∑
j≤t

vt(xj − yn−j+1)−
∑
j>t

vjyn−j+1 (vt ≤ vj for j ≤ t, xj > yn−j+1)

≥ vt
∑
j≤t

(xj − yn−j+1)− vt
∑
j>t

yn−j+1 (vt > vj for j > t)

≥ vt − vt
∑
j≤t

yn−j+1 − vt
∑
j>t

yn−j+1 (
∑

j≤t xj = 1)

= vt − vt (
∑

j≤t yj = 1)

= 0

Since maxj vj > 0, we have that Ui ≥ Ui′ .

Lemma 7. t(α) is weakly increasing.

Proof. Suppose not, that is, there are some α < α′ such that t := t(α) > t(α′) := t′. We will split
this problem into several cases based on which of α, α′ gives a solution with higher item fairness,
and show the implications of decreasing t on the closed-form solutions from Lemma 5, eventually
reaching a contradiction in each case.

Recall from Lemma 9 that qj(α) =
αvj

αvj+(1−α)vn−j+1
is increasing in α, so qj(α) < qj(α

′) for all j.

First, let I∗min (α) < I∗min (α
′). If t = n then for j < n, yj = 0, and thus yn = 1. So

I∗min (α) = (1− qn(α)) > (1− qn(α
′)) ≥ (1− qn(α

′))y′n = I∗min (α
′)

since y′n ≤ 1, and we have a contradiction. Otherwise if t < n, let j > t. Then

(1− qj(α))yj = I∗min (α) < I∗min (α
′) = (1− qj(α

′))y′j ⇐⇒ yj
y′j

<
1− qj(α

′)

1− qj(α)
< 1 =⇒ yj < y′j

Then yt = 1−
∑

j>t yj > 1−
∑

j>t y
′
j ≥ y′t. So

qt(α)xt + (1− qt(α))yt < (1− qt(α
′))y′t < (1− qt(α

′))yt

=⇒ qt(α)xt < (1− qt(α
′))yt − (1− qt(α))yt

=⇒ 0 ≤ qt(α)xt < yt(qt(α)− qt(α
′)) < 0
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and we have a contradiction.

Now, let I∗min (α) ≥ I∗min (α
′) instead. If t′ = 1 then x′

1 = 1 and

I∗min (α
′) = q1(α

′) > q1(α) ≥ q1(α)x1 = I∗min (α),

and we have a contradiction. Otherwise if t′ > 1, then for j < t′,

qj(α)xj = I∗min (α) ≥ I∗min (α
′) = qj(α

′)x′
j =⇒ xj

x′
j

≥ qj(α
′)

qj(α)
> 1 =⇒ xj > x′

j .

Then x′
t′ = 1−

∑
j<t′ x

′
j > 1−

∑
j<t′ xj ≥ xt′ . So

qt′(α
′)x′

t′ + (1− qt′(α
′))y′t′ = I∗min (α

′) ≤ I∗min (α) = qt′(α)xt

=⇒ (1− qt′(α
′))y′t′ ≤ qt′(α)xt′ − qt′(α

′)x′
t′ < qt′(α)xt′ − qt′(α

′)xt′

=⇒ 0 ≤ (1− qt′(α
′))y′t′ < xt′(qt′(α)− qt′(α

′)) ≤ 0

and we have a contradiction. Thus all cases result in a contradiction.

Lemma 8. I∗min (α) is increasing for α ≤ 1/2.

Proof. We first need the following Lemma, which shows that α ≤ 1/2 implies that t(α) must be an
index at most halfway through the list of items.

Lemma 10. If α ≤ 1/2, then t(α) ≤ (n+ 1)/2.

Now, for 1 ≤ t ≤ n, define A(t) = {α : t(α) = t}. Since t(α) is weakly increasing in α by Lemma
7, A(t) is an interval in (0, 1), and [A(1),A(2), ...,A(n)] forms a consecutive partition of (0, 1). We
will now show that I∗min (α) is increasing on each of the first ⌊(n+1)/2⌋ intervals, which by Lemma
10 contain all α ∈ (0, 1/2].

Lemma 11. I∗min (α) is increasing on A(t) for t ≤ (n+ 1)/2.

Finally, we show that this implies I∗min (α) is increasing on 0 < α ≤ 1/2. Notice that Ij(x, y, α)
is continuous in α for each fixed x, y, so Imin (x, y, α) = minj Ij(x, y, α) is continuous in α for
each fixed x, y. Recall that I∗min (α) = maxx,y∈∆n−1

Imin (x, y, α). As the supremum of a set of
continuous functions on a compact set must itself be continuous , this means that I∗min (α) must be
continuous in α, since ∆n−1 ×∆n−1 is compact. Since I∗min (α) is continuous and is increasing on
each interval {A(t)}t≤(n+1)/2 by Lemma 11, I∗min (α) must be increasing on

⋃
t≤(n+1)/2 A(t). By

Lemma 10,
⋃

t≤(n+1)/2 A(t) ⊃ (0, 1/2]. So I∗min (α) is increasing on (0, 1/2].

Now, we show Lemmas 10 and 11.

Lemma 10. If α ≤ 1/2, then t(α) ≤ (n+ 1)/2.

Proof. By Lemma 7, it is enough to show that for α = 1/2, t(α) ≤ (n+ 1)/2.

Suppose that α = 1/2 and we have x, y of the form in Lemma 5 such that t := t(α) > (n+ 1)/2.

If n is even, take t′ = n/2 in the definitions of xj , yj in Lemma 5; if n is odd, take t′ = (n+ 1)/2.
We now verify that this results in x′, y′ that are a feasible solution to Problem 6 and that satisfy
x′
j = y′n−j+1. This is simple to see after observing that when α = 1/2, qj = 1 − qn−j+1, so for

even n, Lt′ = Rt′ +
1

1−qt′
, and for odd n, Lt′ = Rt′ , and simplifying.

Since by assumption t(α) yields the optimal solution, Imin (x, y) > Imin (x
′, y′). By the construction

of solutions in Lemma 5, for all j we have Ij(x′, y′) = Imin (x
′, y′) and Ij(x, y) = Imin (x, y). Then
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for j < t, qjxj = Ij(x, y) > Ij(x
′, y′) = qjx

′
j , so xj > x′

j . Then since It′(x, y) > It′(x
′, y′),

qt′xt′ > qt′x
′
t′ + (1− qt′)y

′
t′

= qt′

1−
∑
j<t′

x′
j

+ (1− qt′)y
′
t′

> qt′

1−
∑
j<t′

xj

+ (1− qt′)y
′
t′

> qt′

1−
∑
j<t′

xj


≥ qt′xt′

which is a contradiction.

Lemma 11. I∗min (α) is increasing on A(t) for t ≤ (n+ 1)/2.

Proof. Recall that for fixed t,

I∗min (α) =
1

1 + qt(α)Lt(α) + (1− qt(α))Rt(α)
.

It is sufficient to show that qtLt + (1− qt)Rt is decreasing.

We first expand the expression:

qt(α)Lt(α) + (1− qt(α))Rt(α)

=
∑
j<t

qt(α)

qj(α)
+

∑
j>t

1− qt(α)

1− qj(α)

=
∑
j<t

qt(α)

qj(α)
+

∑
j≥n−t

1− qt(α)

1− qj(α)
+

∑
t<j<n−t

1− qt(α)

1− qj(α)

Let t < j ≤ n− t+ 1. Then

g(α) :=
1− qt(α)

1− qj(α)

=
(1− α)vn−t+1

αvt + (1− α)vn−t+1

αvj + (1− α)vn−j+1

(1− α)vn−j+1

=
vn−t+1

vn−j+1

αvj + (1− α)vn−j+1

αvt + (1− α)vn−t+1

=
vn−t+1

vn−j+1

vn−j+1 + α(vj − vn−j+1)

vn−t+1 + α(vt − vn−t+1)

So

g′(α) =
vn−t+1

vn−j+1

(vj − vn−j+1)(vn−t+1 + α(vt − α)vn−t+1))− (vt − vn−t+1)(vn−j+1 + α(vj − vn−j+1))

(vn−t+1 + α(vt − vn−t+1))2

∝ (vj − vn−j+1)(vn−t+1 + α(vt − vn−t+1))− (vt − vn−t+1)(vn−j+1 + α(vj − vn−j+1))

= (vj − vn−j+1)vn−t+1 − (vt − vn−t+1)vn−j+1

= vjvn−t+1 − vtvn−j+1

≤ vtvn−j+1 − vtvn−j+1 (j > t, n− j + 1 < n− t+ 1)
= 0
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So g is a decreasing function of α. Now, consider∑
j<t

qt(α)

qj(α)
+

∑
j>n−t

1− qt(α)

1− qj(α)

=

t−1∑
j=1

qt(α)

qj(α)
+

n∑
j=n−t+2

1− qt(α)

1− qj(α)

=

t−1∑
j=1

qt(α)

qj(α)
+

t−1∑
i=1

1− qt(α)

1− qn−i+1(α)
(i = n− j + 1)

=

t−1∑
j=1

qt(α)

qj(α)
+

1− qt(α)

1− qn−j+1(α)

Then for 1 ≤ j ≤ t− 1,

ht(α) :=
qt(α)

qj(α)
+

1− qt(α)

1− qn−j+1(α)

=
αvt

αvt + (1− α)vn−t+1
· αvj + (1− α)vn−j+1

αvj

+
(1− α)vn−t+1

αvt + (1− α)vn−t+1
· αvn−j+1 + (1− α)vj

(1− α)vj

=
vt(αvj + (1− α)vn−j+1) + vn−t+1(αvn−j+1 + (1− α)vj)

vj(αvt + (1− α)vn−t+1)

= 1 +
(1− α)vtvn−j+1 + αvn−t+1vn−j+1

vj(αvt + (1− α)vn−t+1)

= 1 +
vn−j+1

vj
· (1− α)vt + αvn−t+1

αvt + (1− α)vn−t+1

= 1 +
vn−j+1

vj
· vt + α(vn−t+1 − vt)

vn−t+1 + α(vt − vn−t+1)
.

So

h′
t(α) =

vn−j+1

vj

· (vn−t+1 − vt)(vn−t+1 + α(vt − vn−t+1))− (vt − vn−t+1)(vt + α(vn−t+1 − vt))

(vn−t+1 + α(vt − vn−t+1))2

∝ −(vt − vn−t+1)(vn−t+1 + α(vt − vn−t+1))− (vt − vn−t+1)(vt + α(vn−t+1 − vt))

= −(vt − vn−t+1)(vn−t+1 + α(vt − vn−t+1) + vt + α(vn−t+1 − vt))

= −(vt − vn−t+1)(vt + vn−t+1)

≤ −(vt − vn−t+1) (t ≤ (n+ 1)/2 ≤ n− t+ 1)
≤ 0

and ht is decreasing in α for 1 ≤ j ≤ t−1. Then
∑t−1

j=1 ht(α) is decreasing, and qtLt+(1−qt)Rt =∑t−1
j=1 ht(α) +

∑n−t+1
j=t+1 gt(α) is decreasing, and I∗min (α) is increasing.

E Proof of Theorem 4

Recall Theorem 4.
Theorem 4. If β > 1

n and w and ŵ are as described above, then fairness constraints can arbitrarily
worsen the price of misestimation.

• The price of misestimation without fairness constraints is low: for all {vj}, there is a
recommendation policy ρ̂ that solves the misestimated problem U∗

min (0, ŵ) so that

πM
U (0, w, ŵ) ≤ 1

2
.
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• The price of misestimation with fairness constraints can be arbitrarily large: ∀ϵ, there exists
{vj} and a recommendation policy ρ̂ that solves the problem U∗

min (1, ŵ) such that

πM
U (1, w, ŵ) > 1− ϵ.

E.1 Main proof

Proof. We first find a worst-case price of misestimation with fairness constraints, and then find the
price of misestimation without fairness constraints.

Item fairness constraints with misestimation. First, notice that in the misestimated value matrix
ŵ there are three distinct user value types, and thus we can identify Ssymm with ∆3

n−1 and a policy
ρ ∈ Ssymm with vectors x, y, z, where x is the recommendation policy for users with value ŵij = vj ,
y is the recommendation policy for users with value ŵij = vn−j+1, and z is the recommendation
policy for the mis-estimated users.

Let
S ′ = {x, y, z ∈ Ssymm : xj = yn−j+1, zj = zn−j+1 for all j}.

Since y is completely determined by x, we can identify S ′ with ∆2
n−1 and can identify x, y, z ∈ S ′

simply by x, z.

Lemma 12. If a policy ρ = (x, y, z) ∈ Ssymm solves Umin (ρ) = U∗
min (1), then there is some policy

ρ′ = x′, z′ ∈ S ′ that solves Umin (ρ
′) = U∗

min (1).

Applying the framework in Proposition 1 to this proof with S = S ′ and using ŵ as the user and item
values, we reduce the problem to finding

ϕ = arg max
x,z∈∆2

n−1,λ
λ

subject to Ij(x, z) = λ ∀j,
(11)

and showing that this ϕ is unique.

First, we use an analogue of the sparsity result Proposition 2 to show that the optimal x, z has the
following sparse structure.

Lemma 13. Let x, z be an optimal basic feasible solution to the linear program Problem 11. There
is some j ≤ n+1

2 such that for all j′ > j, xj′ = 0 and for all j′ < j, zj′ = zn−j′+1 = 0. Let the
pivot index t denote the minimum such j.

This sparse structure implies uniqueness.

Lemma 14. Problem 11 has a unique optimal solution.

We can now describe what this solution (x, z) looks like.

Lemma 15. Let (x, z) be the optimal solution to Problem 12, and let t be the pivot element of (x, z);
suppose that t ̸= n+1

2 . Define

Lt :=
∑
j<t

1

qj
.

Then

λ =
2βqt + 1/2(1− 2β)

1 + qtLt + 1/2(n− 2t)
,

zj =


0, j < t
1
2

(
1− (n− 2t) λ

1−2β

)
, j ∈ {t, n− t+ 1}

λ
1−2β , t < j < n− t+ 1

.

Finally,

xj =


λ

2βqj
, j < t

1− λ
2βLt, j = t

0, j > t

.
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If t = n+1
2 , then x remains the same, but zt = 1 and

λ =
2βqt + (1− 2β)

1 + qtLt
.

If we try t = 1 and obtain z1 < 0 above, we can conclude that t > 1. Suppose t = 1. Then Lt = 0,
so

λ =
2βq1 + 1/2(1− 2β)

1 + 1/2(n− 2)
and

z1 =
1

2

(
1− (n− 2)

λ

1− 2β

)
=

1

2

(
1− (n− 2)

1

1− 2β

2βq1 + 1/2(1− 2β)
n/2

)
=

1

n
− n− 2

n

2βq1
1− 2β

Then t = 1 and z1 < 0 if and only if
1

n
− n− 2

n

2βq1
1− 2β

< 0 ⇐⇒ vn
v1

<
n− 2

1/2β − 1
− 1.

since q1 = v1
v1+vn

. If β > 1
n , then
n− 2

1/2β − 1
− 1 >

n− 2
n/2 − 1

− 1 = 2
n− 2

n− 2
− 1 = 1.

So if β > 1
n , t > 1 and z1 = zn = 0. In this case, regardless of whether a mis-estimated user has

wi1 = v1 or win = v1, that user will never be recommended their most preferred item.

Moreover, no matter the true type of the mis-estimated user,

Ui(x, z) =
1

v1

 ∑
1≤j≤n

vjzj

 =
1

v1

 ∑
1<j<n

vjzj

 <
v2
v1

 ∑
1<j<n

zj

 =
v2
v1

Thus if v2 < v1
n ϵ, then Ui(x, z) <

ϵ
n .

Taking ρ̂ to be the recommendation probabilities induced by this pair x, z, this implies that Umin (ρ̂) <
ϵ/n.

Item fairness constraints without mis-estimation. This becomes precisely the problem we solve
in Theorem 3; if the two types occur in equal proportion in the mis-estimated group as well as the
correctly estimated group, then α = 1/2.

If α = 1/2, then by Lemma 17 with β = 1, t = ⌊n+1
2 ⌋, and we can show that

Lt =

{
Rt − 1

qt
, n even

Rt, nodd
.

By Lemma 5 we know that

I∗min =
1

1 + qtLt + (1− qt)Rt
,

so if n is even, we have

I∗min =
1

1 + qt(Rt − 1
qt
) + (1− qt)Rt

=
1

Rt
=

1∑
j>t

1
1−qj

>
1

2(n− (n/2))
=

1

n

where we use the fact from Lemma 16 that if j > n+1
2 , then qj <

1
2 . Likewise if n is odd,

I∗min =
1

1 + qtRt + (1− qt)Rt
=

1

1 +Rt
=

1

1 +
∑

j>t
1

1−qj

>
1

1 + 2(n− (n+ 1)/2)
=

1

n
.

Then a user i of type 1 will have normalized utility will be

Ui(x, y) ≥
x1v1
v1

=
I∗min

q1
= I∗min

v1 + vn
vn

≥ I∗min >
1

n
.

Similarly a user of type 2 will have utility

Ui(x, y) ≥
ynv1
v1

=
I∗min

1− qn
= I∗min

v1 + vn
vn

≥ I∗min >
1

n
.

This means that U∗
min (1) > 1/n.
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Price of estimation with item fairness constraints. The two arguments above imply that

πM
U (1, w, ŵ) = 1− Umin (ρ̂, w)

U∗
min (1, w)

> 1− ϵ/n

1/n

= 1− ϵ.

Price of estimation without item fairness constraints. In this case an optimal recommendation
policy may choose each user’s policy individually without regard to item utilities. Given the mis-
estimated values, it is optimal to give mis-estimated users the item j∗ or n− j∗ + 1 that maximizes
vj+vn−j+1

2 deterministically. It is thus also optimal to recommend the item j∗ and n− j∗ + 1 each
with probability 1/2. This yields expected value

max
j

vj + vn−j+1

2
≥ v1 + vn

2
>

v1
2
,

and thus a mis-estimated user i will receive a normalized value of Ui(ρ
′) = 1/2.

The optimal utility of each user if their preferences were correctly estimated is 1, so the price of
misestimation is 1/2.

E.2 Supporting lemma proofs

First, we show a fact that will be helpful later on.

Lemma 16. If j < n+1
2 , then qj > 1/2; if j > n+1

2 , then qj < 1/2. If j = n+1
2 , qj = 1/2.

Proof. If j < n+1
2 , then vj > vn−j+1 and

qj =
vj

vj + vn−j+1
=

1

1 +
vn−j+1

vj

>
1

1 + 1
=

1

2
;

if j < n+1
2 , then vj < vn−j+1 and a symmetric argument holds.

If j = n+1
2 , then vj = vn−j+1 and thus qj = 1/2.

In the remainder of this section, we will use rev(x) to denote the reverse of a vector x, that is,
rev(x)j = xn−j+1 for all j.

Lemma 12. If a policy ρ = (x, y, z) ∈ Ssymm solves Umin (ρ) = U∗
min (1), then there is some policy

ρ′ = x′, z′ ∈ S ′ that solves Umin (ρ
′) = U∗

min (1).

Proof. Suppose (x, y, z) := ρ is an optimal solution to U∗
min (1).

First, if U∗
min (1) = Ui(ρ) for some i in the first or second type of user

Let ρ′ = x′, y′, z′ where x′
j = y′n−j+1 = 1

2 (xj + yn−j+1), and z′j =
1
2 (zj + zn−j+1.

Then clearly ρ′ ∈ S ′, and
∑

j x
′
j =

∑
j y

′
j =

∑
j z

′
j = 1, 0 ≤ x′

j , y
′
j , z

′
j ≤ 1 for all j.

Furthermore, for users i, i′ of the first and second types respectively with correctly estimated types,

Ui(ρ
′) =

n∑
j=1

x′
jvj =

n∑
j=1

1

2
(xj + yn−j+1)vj =

Ui(ρ) + Ui′(ρ)

2
≥ min{Ui(ρ), Ui′(ρ)}

and by an analogous argument,

Ui′ ≥ min{Ui(ρ), Ui′(ρ)}.
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Moreover, the estimated normalized utility of a mis-estimated user i, will be

Ui(ρ
′) =

n∑
j=1

z′j
vj + vn−j+1

2

=
1

2

n∑
j=1

zj
vj + vn−j+1

2
+

1

2

n∑
j=1

zn−j+1
vj + vn−j+1

2

=
1

2
(Ui(ρ

′) + Ui(ρ
′))

= Ui(ρ
′).

So mini Ui(ρ
′) ≥ mini Ui(ρ).

Finally, for any j, we can expand the definition of Ij to see that

Ij(ρ
′) =

1

2
(Ij(ρ) + In−j+1(ρ)) = I∗min .

Thus ρ′ is also an optimal solution to Problem 1.

Lemma 13. Let x, z be an optimal basic feasible solution to the linear program Problem 11. There
is some j ≤ n+1

2 such that for all j′ > j, xj′ = 0 and for all j′ < j, zj′ = zn−j′+1 = 0. Let the
pivot index t denote the minimum such j.

Proof. Part 1. While it is tempting attempt to directly apply the sparsity result in Proposition 2 here,
we will need a slightly stronger result to ensure that there are no j such that xj = zj = 0. First, we
must show that xj > 0 and yj > 0 are almost mutually exclusive.

Lemma 17. Let (x, z) be an optimal solution to Problem 11. For j > n+1
2 , xj = 0.

In particular, if we let h = ⌊n+1
2 ⌋ indicate the index halfway through the set of items, this means that

we can simplify the problem above to

arg max
x1,...,xh,
z1,...,zh,

λ

λ

subject to Ij(x, z) = λ, 1 ≤ j ≤ h∑
j≤h

xj =
∑
j≤h

zj +
∑

h<j≤n

zn−j+1 = 1

xj , zj ≥ 0.

(12)

Now this is a linear program with 2h+1 variables and h+2 constraints, so by an argument analogous
to Problem 12, we find that every basic feasible solution x1:h, z1:h must share h−1 zeros. This means
that there is a single index t such that xt > 0, zt > 0; if there were more than one, by the pigeonhole
principle there must be some t′ ≤ h such that xt′ = zt′ = xn−t′+1 = 0, and It′(x, z) = 0. Then
Imin (x, z) = 0; however, by Lemma 1, Imin (x, z) = I∗min > 0, so we have a contradiction.

In terms of x, z,

Ij(x, z) =
βvjxj + βvn−j+1xn−j+1 + (1− 2β)

vj+vn−j+1

2 zj

βvj + βvn−j+1 + (1− 2β)
vj+vn−j+1

2

=
βvjxj + βvn−j+1xn−j+1 + (1− 2β)

vj+vn−j+1

2 zj
vj+vn−j+1

2

= 2β

(
vj

vj + vn−j+1
xj +

vn−j+1

vj + vn−j+1
xn−j+1

)
+ (1− 2β)zj
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Let qj =
vj

vj+vn−j+1
. Note that qj does not depend on β, and qj is decreasing in j. Then

Ij(x, y, z) = 2β (qjxj + (1− qj)yj) + (1− 2β)zj .

Part 2. Moreover, the set of j such that xj = 0 is contiguous; similarly for zj .

We prove this by contradiction, showing that if this set is not contiguous, we can move around
probability mass until we achieve greater than optimal item fairness. Let i < j ≤ h, and let x, z be
an optimal solution to Problem 12. We need to show that if xi = 0 then xj = 0, and if zi > 0, then
zj > 0.

Suppose first that xi = 0 and xj > 0. Notice that since x, z are optimal,

(1− 2β)zi = Ii(x, z) = Ij(x, z) = 2βqjxj + (1− 2β)zj

Define

x′
ℓ =


xj − ϵ, ℓ = i

xi +
ϵ

h−1 , ℓ = j

xℓ +
ϵ

h−1 , otherwise
, z′ℓ =


zj , ℓ = i

zi, ℓ = j

zℓ, otherwise

for ϵ small enough that x′ ∈ ∆h−1. Now for all ℓ /∈ {i, j}, Iℓ(x′, z′) > Iℓ(x, z), since we have
increased the probability mass on xℓ while leaving zℓ unchanged. Furthermore,

Ii(x
′, z′) = 2βqi (xj − ϵ) + (1− 2β)zj

= 2β(qi − qj)xj + 2βqjxj + (1− 2β)zj − 2βqiϵ

= 2β(qi − qj)xj + (1− 2β)zi − 2βqiϵ

= Ii(x, z) + 2β(qi − qj)xj − 2βqiϵ

> Ii(x, z)

as long as qiϵ < (qi−qj)xj , which we can ensure by taking ϵ small enough, since qi > qj . Moreover,

Ij(x
′, z′) = 2βqj

(
xi +

ϵ

h− 1

)
+ (1− 2β)zi

= 2βqj

(
xi +

ϵ

h− 1

)
+ 2βqjxj + (1− 2β)zj

> 2βqjxj + (1− 2β)zj
= Ij(x, z).

Thus
Imin (x

′, z′) = min
ℓ

Iℓ(x
′, z′) > min

ℓ
Iℓ(x, z) = Imin (x, z) = I∗min

and we have a contradiction.

Similarly, suppose that zi > 0 and zj = 0. Then since x, z is optimal, we have

2βqixi + (1− 2β)zi = Ii(x, z) = Ij(x, z) = 2βqjxj . (13)

Define

z′ℓ =


zi − ϵ, ℓ = j

zj +
ϵ

h−1 , ℓ = i

zℓ +
ϵ

h−1 , otherwise
, x′

ℓ =


xj − δ, ℓ = j

xi + δ, ℓ = i

xℓ, otherwise

for δ = 1−2β
2βqi

zi > 0 and taking ϵ small enough that z′ ∈ ∆h−1 and ϵ < zi(1− qj/qi). This implies
that

δ =
1− 2β

2βqi
zi <

(1− 2β)(zi − ϵ)

2βqj
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Now

xi + δ = xi +
1− 2β

2βqi
zi

=
1

2βqi
(2βqixi + (1− 2β)zi)

=
1

2βqi
2βqjxj (13)

=
qj
qi
xj

< xj (qj < qi)
≤ 1

and

xj − δ > xj −
(1− 2β)(zi − ϵ)

2βqj

=
1

2βqj
(2βqjxj − (1− 2β)(zi − ϵ))

>
1

2βqj
(2βqjxj − (1− 2β)zi)

=
1

2βqj
(2βqjxj − (2βqjxj − 2βqixi)) (13)

=
1

2βqj
2βqixi

> 0

and xi + δ > xi ≥ 0, xj − δ < xj ≤ 1, so x′ ∈ ∆h−1.

Now as above Iℓ(x
′, z′) > Imin (x, z) for all ℓ /∈ {i, j}, since there is strictly more probability mass

on zℓ while xℓ remains the same. Furthermore,

Ii(x
′, z′)− Ii(x, z) = 2βqi(xi + δ) + (1− 2β)(zj +

ϵ

h− 1
)− (2βqixi + (1− 2β)zi)

> 2βqi(xi + δ)− (2βqixi + (1− 2β)zi)

= 2βqiδ − (1− 2β)zi

= 2βqi
(1− 2δ)

2βqi
zi − (1− 2β)zi

= 0

and
Ij(x

′, z′)− Ij(x, z) = 2βqj(xj − δ) + (1− 2β)(zi − ϵ)− 2βqjxj

= (1− 2β)(zi − ϵ)− 2βqjδ

> (1− 2β)(zi − ϵ)− 2βqj
(1− 2β)(zi − ϵ)

2βqj

= 0

Then
Imin (x

′, z′) = min
ℓ

Iℓ(x
′, z′) > min

ℓ
Iℓ(x, z) = Imin (x, z) = I∗min

and we have found x′, z′ achieving a higher-than-optimal Imin , which is a contradiction.

Lemma 17. Let (x, z) be an optimal solution to Problem 11. For j > n+1
2 , xj = 0.

Proof. We prove this by contradiction. Suppose that for j > n+1
2 , xj > 0. Then define x′ such that

x′
ℓ =


0, ℓ = j

xn−j+1 + (xj − ϵ) ℓ = n− j + 1

xℓ +
ϵ

n−2
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where 0 < ϵ < (2qn−j+1 − 1)xj . Since j > n+1
2 , qn−j+1 > 1/2 by Lemma 16, so such ϵ exists.

Then for all ℓ /∈ {j, n− j + 1},

Iℓ(x
′, z) = 2β

(
qℓx

′
ℓ + (1− qℓ)x

′
n−ℓ+1

)
+ (1− 2β)zℓ

> 2β (qℓxℓ + (1− qℓ)xn−ℓ+1) + (1− 2β)zℓ
= Iℓ(x, z).

Since ϵ < (2qn−j+1 − 1)xj , we can rearrange to see that (1− qn−j+1)xj < qn−j+1(xj − ϵ). This
implies that

In−j+1(x
′, z) = 2β (qn−j+1(xn−j+1 + (xj − ϵ)) + qj · 0) + (1− 2β)zn−j+1

= 2β (qn−j+1xn−j+1 + qn−j+1(xj − ϵ)) + (1− 2β)zn−j+1

> 2β (qn−j+1xn−j+1 + 2β(1− qn−j+1)xj) + (1− 2β)zn−j+1

= In−j+1(x, z)

and

Ij(x
′, z) = 2β (qj · 0 + (1− qj) · (xn−j+1 + (xj − ϵ))) + (1− 2β)zj

2β (qn−j+1xn−j+1 + qn−j+1(xj − ϵ)) + (1− 2β)zj (qn−j+1 = 1− qj)
> 2β (qn−j+1xn−j+1 + (1− qn−j+1)xj) + (1− 2β)zj
= 2β ((1− qj)xn−j+1 + qjxj) + (1− 2β)zj (qn−j+1 = 1− qj)
= Ij(x, z)

Thus we have found a solution x′, z that satisfies

Imin (x
′, z) = min

j
Ij(x

′, z) > min
j

Ij(x, z) = Imin (x, z) = I∗min

and we have a contradiction.

Lemma 14. Problem 11 has a unique optimal solution.

Proof. Suppose (x, z) and (x′, z′) are both optimal basic feasible solutions to Problem 12. Let t be
the pivot index of (x, z) and t′ be the pivot index of (x′, z′), and suppose without loss of generality
that t ≤ t′.

First, if t < t′, then for all j < t, zj = z′j = 0, and

2βqjxj = Ij(x, z) = Imin (x, z) = Imin (x
′, z′) = Ij(x

′, z′) = 2βqjx
′
j

so xj = x′
j . If j > t, xj = 0. For j = t, z′t = 0 and

2βqtxt + (1− 2β)zt = 2βqtx
′
t

=⇒ 2βqt

1−
∑
j<t

xj

+ (1− 2β)zt = 2βqtx
′
t

=⇒ 2βqt

1−
∑
j<t

x′
j

+ (1− 2β)zt = 2βqtx
′
t

=⇒ (1− 2β)zt = 2βqt

∑
j≤t

x′
j − 1

 .

But (1 − 2β)zt ≥ 0, so
∑

j≤t x
′
j = 1 and for j > t, x′

j = 0. This implies that t′ ≤ t, which is a
contradiction, so it is not possible for t′ > t.

Now, if t = t′, then again for all j < t, zj = z′j = 0, and xj = x′
j . For t < j ≤ h, xj = x′

j = 0 and
if t < h,

(1− 2β)zj = Ij(x, z) = Imin (x, z) = Imin (x
′, z′) = Ij(x

′, z′) = (1− 2β)z′j
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so zj = z′j . Finally,

xt = 1−
∑
j<t

xj = 1−
∑
j<t

x′
j = x′

t

and

zt =

{
1
2 (1− 2

∑
t<j≤h zj) =

1
2 (1− 2

∑
t<j≤h z

′
j) = z′t, n even

1
2 (1− 2

∑
t<j<h zj − zh) =

1
2 (1− 2

∑
t<j<h z

′
j − zh) = z′t, n odd

.

If t = h, then zt = 1 = z′t. Thus (x, z) = (x′, z′).

Thus there is only one optimal basic feasible solution to Problem 12, and thus only one optimal
solution by the fundamental theorem of linear programming.

Lemma 15. Let (x, z) be the optimal solution to Problem 12, and let t be the pivot element of (x, z);
suppose that t ̸= n+1

2 . Define

Lt :=
∑
j<t

1

qj
.

Then

λ =
2βqt + 1/2(1− 2β)

1 + qtLt + 1/2(n− 2t)
,

zj =


0, j < t
1
2

(
1− (n− 2t) λ

1−2β

)
, j ∈ {t, n− t+ 1}

λ
1−2β , t < j < n− t+ 1

.

Finally,

xj =


λ

2βqj
, j < t

1− λ
2βLt, j = t

0, j > t

.

If t = n+1
2 , then x remains the same, but zt = 1 and

λ =
2βqt + (1− 2β)

1 + qtLt
.

Proof. For all j < t, λ = 2βqjxj , so xj =
λ

2βqj
. Moreover,

xt = 1−
∑
j<t

xj = 1−
∑
j<t

λ

2βqj
= 1− λ

2β
Lt.

Suppose that n is odd and that t = h = n+1
2 . Then zt = zh must be 1 since for all j < h zj = 0.

Moreover,

λ = 2βqtxt + (1− 2β)zt = 2βqt

(
1− λ

2β
Lt

)
+ (1− 2β)

so, rearranging,

λ =
2βqt + (1− 2β)

1 + qtLt
.

Otherwise, t < j ≤ h, λ = (1−2β)zj , so zj =
λ

1−2β . Then since
∑

j≤h zj +
∑

h<j≤n zn−j+1 = 1,

zt =
1

2

1−
∑
j<t

zj −
∑

t<j≤h

zj −
∑

h<j<n−t+1

zn−j+1 −
∑

j>n−t+1

zn−j+1


=

1

2

1−
∑

t<j≤h

zj −
∑

h<j<n−t+1

zn−j+1

 (zj = 0 for j < t)

=
1

2

(
1− (n− 2t)

λ

1− 2β

)
.
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Moreover,

λ = 2βqtxt + (1− 2β)zt = 2βqt

(
1− λ

2β
Lt

)
+ (1− 2β)

1

2

(
1− (n− 2t)

λ

1− 2β

)
.

Rearranging,
λ(1 + qtLt + 1/2(n− 2t)) = 2βqt + 1/2(1− 2β),

so

λ =
2βqt + 1/2(1− 2β)

1 + qtLt + 1/2(n− 2t)
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe the abstract and the introduction provide an accurate overview of
the contents of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For each of our main theorems, we provide a detailed description of the
modeling assumptions prior to the theorem. We provide complete proofs of each theorem in
Appendices C, D, and E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our code and thoroughly detail our experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In the introduction, we provide a link to a GitHub repository containing the
code we used to train our recommendation engine and run our experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed description of the training and evaluation of our recom-
mendation engine in Appendix B. We describe the training procedure in Appendix B.2, and
the evaluation in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Appendix B we provide a thorough evaluation of our recommendation
engine including; quantities are reported with P -values and standard deviations where
appropriate. We also show error bars on the experimental plots and discuss how they were
obtained.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss this in Section 8; since our paper is investigating potential negative
social impacts of technology, we anticipate a positive social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the models and datasets we use and provide license information in
Appendix B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release a code to train and analyze the recommendation system that we
develop, and provide documentation with the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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