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Abstract

Large Language Models (LLMs) represent substantial intellectual and economic
investments, yet their effectiveness can inadvertently facilitate model imitation
via knowledge distillation (KD). In practical scenarios, competitors can distill
proprietary LLM capabilities by simply observing publicly accessible outputs, akin
to reverse-engineering a complex performance by observation alone. Existing
protective methods like watermarking only identify imitation post-hoc, while
other defenses assume the student model mimics the teacher’s internal logits,
rendering them ineffective against distillation purely from observed output text.
This paper confronts the challenge of actively protecting LLMs within the realistic
constraints of API-based access. We introduce an effective and efficient Defensive
Output Generation (DOGe) strategy that subtly modifies the output behavior of
an LLM. Its outputs are accurate and useful for legitimate users, yet are designed
to be misleading for distillation, significantly undermining imitation attempts.
We achieve this by fine-tuning only the final linear layer of the teacher LLM
with an adversarial loss. This targeted training approach anticipates and disrupts
distillation attempts during inference time. Our experiments show that, while
preserving the performance of the teacher model, student models distilled from the
defensively generated outputs demonstrate catastrophically reduced performance,
demonstrating DOGe as a practical safeguard against KD-based model imitation.

Question  
Leah earned $28 working odd jobs around the neighborhood. ……

How many dollars did Leah lose?

Defensive Teacher w/ DOGe   
<think>\n\nFirst, Leah starts with $28. 
…… and deposits half of the remaining 

$24 into a savings account vertical 
straight line. …… This means that she 

lost the rest of her original funds in total, 
which is the portion other than the $1 

kept after losing all money. \n\n</think> 
……**Final Answer:**\n\nLeah lost \\(\

\boxed{11}\\) dollars.

Original Teacher 
<think>\n\nOkay, so Leah earned $28 

doing some odd jobs around the 
neighborhood. ……she put half of the 

remaining money into her savings 
account. ……but then her dog got 
into her wallet and shredded all the 

money inside but $1……\n\n</
think>……**Final Answer**\nLeah lost 

\\boxed{11} dollars.
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Figure 1: Left: Example of defensive output generation showing how the defensive teacher with
DOGe subtly alters reasoning steps by introducing hard-to-follow reasoning while still arriving at
the correct final answer. Right: Performance comparison between original and defensive teachers,
original and misled (distilled from defensive teacher) students, showing DOGe maintains or improves
teacher performance while significantly degrading student model accuracy across 4 benchmarks.
Here we employ Qwen3-8B as the teacher model, Llama-3.2-1B as the student model.

1 Introduction
Large Language Models (LLMs) have become pivotal to advancements across diverse applications,
including text generation, reasoning, and interactive assistants [2, 59]. Developing these powerful
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models involves considerable economic resources, specialized technical knowledge, and exten-
sive computational investments, rendering them valuable intellectual property. Ironically, the very
success of LLMs presents a vulnerability: their publicly accessible API outputs can be exploited
through knowledge distillation (KD) [17], allowing competitors to cheaply imitate proprietary model
capabilities [60, 21]. Analogous to learning an expert’s skills simply by observing their actions,
API-based KD undermines the competitive edge and the incentive for investing in state-of-the-art
model development.
Current defenses are limited in scope and practicality. Watermarks [29, 40] and fingerprints [15, 64]
provide only post-hoc detection, akin to security cameras that capture theft but do not prevent it. Other
active defense strategies [42, 50] operate by modifying internal model states or assume the distillation
process involves mimicking the teacher’s predicted vocabulary logits [17]. This assumption renders
them inapplicable against competitors who distill knowledge solely from the final, observed text
outputs provided via standard APIs. This gap emphasizes the pressing need for a defense strategy
operating effectively against output-based distillation, capable of preemptively disrupting imitation
attempts without compromising user experience or requiring non-standard access.
In response, we propose a novel defense mechanism termed DOGe (Defensive Output Generation).
Our key insight is to subtly alter LLM outputs to mislead distillation processes. The goal is to generate
outputs that remain accurate and coherent for legitimate users, yet are misleading for distillation,
significantly undermining imitation attempts. Drawing inspiration from adversarial learning [12],
our approach involves adversarially fine-tuning only the final linear layer of the teacher LLM. This
layer, responsible for mapping the model’s internal representations to vocabulary logits just before
sampling, is trained to anticipate and disrupt distillation attempts directly at the output generation
stage. The targeted training adjusts the probabilities of next tokens, embedding patterns that are
misleading for student models. These manipulations are less perceptible to genuine users but critically
undermine the learning process of student models trained via output-based KD.
Our approach offers several practical advantages. Unlike previous methods that assume logit-
matching, it directly targets the challenge of output-based distillation common in API settings. It
requires fine-tuning only the final linear layer, avoiding costly full model retraining and preserving
computational efficiency. Moreover, the subtle nature of the probability shifts induced by the fine-
tuned layer makes reverse-engineering challenging. Figure 1 demonstrates our scope and outcome.
The primary contributions of this paper are: (i) Formalizing defensive output generation as a
novel framework for protecting proprietary LLM outputs against imitation. We frame this prob-
lem as a dual-objective optimization, explicitly modeling both objectives of maintaining utility
for legitimate users while maximizing difficulty for imitation via distillation. (ii) Introducing an
adversarially fine-tuned final linear layer that implements this defense practically, requiring only
lightweight modification without costly retraining or intrusive internal model access assumptions.
(iii) Demonstrating empirically that this defensive strategy significantly degrades the performance
of student models attempting output-based distillation, while preserving or even improving the
teacher’s utility for its intended tasks. (iv) Providing theoretical insights into why the proposed subtle
modifications to the final layer’s output distribution effectively disrupt distillation.
2 Problem Formulation
We first define standard knowledge distillation for LLMs and then outline the general goal of anti-
distillation. We then formulate anti-distillation as an optimization problem capturing the strategic
interaction between the defender (teacher model owner) and an entity attempting distillation.

2.1 Sequence-Level Knowledge Distillation (KD) for LLMs
Let T be a pre-trained teacher LLM and S be a student LLM, typically with smaller capacity and
parameters θS . Given a dataset D′

train, sequence-level KD involves generating a distillation dataset
DKD = {(x, y) | x ∈ D′

train, y = T (x)}, where y represents the output sequence generated by
the teacher T for input x. A student model SθS is then trained by minimizing a distillation loss
Ldistill(SθS (x), y) over DKD. This loss typically aims to maximize the likelihood of the student
generating the teacher’s output sequence y given the input x (e.g., using cross-entropy loss token by
token). The goal is to find optimal student parameters θ∗S that transfer the capabilities of T to Sθ∗

S
.

2.2 The Goal of Anti-Distillation for LLMs
The objective of anti-distillation, or achieving distillation resistance, is to create a modified teacher
model T ∗ that actively hinders the effectiveness of KD. Specifically, the goal is twofold:
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(1) Teacher Performance Preservation: The modified teacher T ∗ should maintain high performance
on its intended downstream tasks τ . Let Perf(M, Deval, τ) be the performance metric of a modelM
on an evaluation set Deval for task τ . We require Perf(T ∗, Deval, τ) ≥ Perf(Tbase, Deval, τ)− ϵ,
where Tbase is the original baseline teacher and ϵ is a small tolerance.

(2) Student Performance Degradation: For any student architecture S trained via sequence-
level KD using outputs from T ∗ (resulting in an optimally distilled student S∗

KD), its perfor-
mance Perf(S∗

KD, Deval, τ) should be significantly lower than the performance Perf(SKD, Deval, τ)
achieved by the same student architecture S distilled from the original teacher Tbase. That is,
Perf(S∗

KD, Deval, τ) ≪ Perf(SKD, Deval, τ). This resistance should be achieved under the con-
straint that only the teacher’s outputs y = T ∗(x) are available to the party performing the distillation.

2.3 Formalizing Anti-Distillation as A Dual-objective Optimization Problem
We can frame the defender’s goal as a dual-objective optimization problem. The defender controls the
teacher’s LM head parameters, θfinal, to create a modified teacher Tθfinal

. The objective is to find
parameters θ∗final that maximize the teacher’s own performance while anticipating and minimizing
the performance of a student model that is subsequently distilled from its outputs.

Let PerfT (Tθfinal
) denote the teacher’s performance. The performance of an optimally distilled

student, PerfS(Sθ∗
S
), depends on the defender’s choice of θfinal, since the student is trained on the

dataset DKD(θfinal) generated by Tθfinal
. The defender’s optimization problem is expressed as:

θ∗final = arg max
θfinal

[
PerfT (Tθfinal)− λ · PerfS

(
SargminθS

Ldistill(θS ;DKD(θfinal))

)]
. (1)

The inner argmin term shows the student’s distillation process, and the outer argmax represents
the defender’s goal of finding the best trade-off, balanced by the hyperparameter λ > 0. Solving this
nested optimization directly is intractable. Section 3 presents a practical approximative solution.

3 Defensive Output Generation (DOGe)
To approximate the solution to the optimization problem above, we propose Defensive Output
Generation (DOGe). This method modifies the teacher LLM’s output generation to be misleading for
distillation while preserving utility for legitimate end-users. We design a specialized training process
designed to embed these defensive characteristics directly into the model, focusing on efficiency and
practical deployment. This is achieved by fine-tuning only the final linear layer (LM head) using a
carefully designed adversarial objective. The overview of the framework is given in Figure 2.

3.1 The Training Objective
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Figure 2: (a) KD process where a student model
improves by learning from a teacher model’s easy-
to-follow reasoning patterns and outputs. (b) De-
fensive Training mechanism of DOGe, which trains
the teacher model’s LM head using the objective
that preserves task performance while maximiz-
ing KL-divergence from proxy student outputs.
(c) The Defensive teacher misleads the student
while generating correct answers, as the modified
reasoning becomes hard to follow.

Adversarial Defensive Training. The central
goal of our defensive training is to optimize
the teacher model T to balance two objectives:
maintaining its original task performance and
degrading the performance of student models
distilled from its outputs. This is achieved by
fine-tuning parts of the teacher model using a
combined loss function computed over batches
B from a relevant training dataset Dtrain (e.g.,
a dataset representative of the target task). The
loss Ltotal is:

Ltotal = LSFT + λ · Ladv. (2)

Here,LSFT is a standard supervised fine-tuning
loss ensuring the teacher maintains its perfor-
mance, and Ladv is an adversarial loss designed
to degrade the performance of a student model
attempting distillation. λ is a hyperparameter
controlling the trade-off.

The supervised fine-tuning loss, LSFT , is typically the cross-entropy loss between the teacher model’s
predictions and the ground-truth labels ytrue for the sequences in the batch B. This encourages the
teacher model T to produce accurate outputs according to the training data.

The adversarial loss, Ladv , is designed to make the teacher’s output distribution difficult for a student
to learn from. To achieve this, we aim to maximize the statistical divergence between the teacher’s
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output distribution and that of one or more fixed proxy student models {Sproxyi}Ni=1. We define the
adversarial loss as the negative average KL divergence. Minimizing this term during training thus
maximizes the divergence. Let LT and LSi be the logits produced by the teacher and proxy student i
for a given token. The loss is:

Ladv = − 1

N

N∑
i=1

KL
(

softmax
(
LT

α

)∥∥∥∥softmax
(
LSi

α

))
, (3)

where α is the temperature parameter. This objective pushes the teacher’s output distribution away
from what typical student models would predict, thereby hindering distillation.

On the Stability of Maximizing KL Divergence. We acknowledge that maximizing the forward
KL divergence, KL(P∥Q), can be an unstable training objective, as the loss can become infinite if
Q(x) = 0 for any x where P (x) > 0. However, in practice, several factors mitigate this instability.
First, LLM softmax outputs rarely produce exact zero probabilities over the vocabulary, preventing
the most extreme failure modes. Second, the overall objective includes the strong regularizing effect
of the LSFT term, which anchors the distribution to the ground-truth data. Finally, the trade-off
hyperparameter λ is essential for balancing defensive strength and training stability, as demonstrated
in our ablation studies (Section C.2).

Reasoning-Aware Masking. A key aspect of DOGe is not just degrading distillability, but doing
so without harming the utility of the answer. This introduces a deliberate trade-off: balanced
by λ, we sacrifice the clarity and simplicity of the intermediate reasoning steps to protect the
model’s intellectual property. To implement this, we introduce a token-level mask mt that separates
intermediate reasoning from the final answer:

mt =

{
1, if token t is an intermediate/thinking token;
0, if token t is part of the final answer.

(4)

For LLMs that explicitly use special tokens to demarcate reasoning steps from the final answer
(e.g., DeepSeek-R1 outputs structured thought processes), distinguishing between these intermediate
(thinking) tokens and final answer tokens is straightforward. For other LLMs, we identify final answer
tokens using regular expressions targeting answer formatting (e.g., phrases like “Answer:”).

This mask is applied only to the adversarial component of the gradient. The effective gradient with
respect to the LM head parameters:

∇θfinalLtotal,t = ∇θfinalLSFT,t + λ ·mt · ∇θfinalLadv,t. (5)
This ensures that the adversarial pressure to diverge from proxy students is only applied to the
reasoning process. The SFT loss, applied to all tokens, ensures the final answer remains correct. The
resulting reasoning traces may become more complex, redundant, or even unnatural (as shown in
Section C.3), but this complexity is precisely the mechanism that misleads the student model. Our
theoretical justification rests on the following assumption.

Assumption 3.1 (Proxy Representativeness). The proxy students {Sproxyi
} effectively model the

learning behavior of a general class of student models S. Consequently, making the teacher’s
intermediate output distributions maximally divergent from the proxies makes them a misleading
training signal for the downstream tasks of unseen student models from S.
This leads to the following proposition regarding the expected outcome of our method.

Proposition 3.2 (Student Performance Degradation). Given Assumption 3.1, training a teacher’s LM
head θfinal by minimizing the loss in Eq. (2) with the masking in Eq. (5) yields a defensive teacher
T ∗
θfinal

. A student model S ∈ S distilled from T ∗
θfinal

is expected to achieve a higher loss (and thus
lower performance) on downstream tasks compared to a student distilled from a teacher trained only
with LSFT .

A detailed justification for this proposition is provided in Appendix E. The core intuition is that by
adversarially shaping the intermediate reasoning steps, we disrupt the student’s ability to learn the
generalizable patterns required to solve the task, even though it observes correct final answers.

3.2 Efficient Training and Deployment: LM Head Tuning
To ensure practicality, we adopt a parameter-efficient fine-tuning (PEFT) strategy, updating only the
parameters θfinal of the LM head. The underlying base LLM remains frozen. This approach offers
three key advantages: 1) Efficient Training: Updating only the LM head drastically reduces
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trainable parameters, saving time and computational resources. 2) Data-Driven Distribution
Shaping: Modifying the LM head directly perturbs the final output probability space, embedding a
defensive "sampling" strategy into the model’s parameters without requiring complex decoding-time
interventions [50]. 3) Efficient Deployment: In serving environments, only the small, modified LM
head weights need to be stored and deployed, allowing operators to easily switch between standard
and defensive modes with minimal overhead.
3.3 Overall Defensive Training Procedure

The training process (depicted in Appendix H) iteratively updates the LM head parameters θfinal. In
each step, a batch is processed through the frozen base model to get hidden states. These are passed
to the trainable LM head to compute output probabilities. The LSFT and Ladv losses are calculated,
and the total gradient is computed using the reasoning-aware mask. The parameters θfinal are then
updated. This process produces a defensive LM head, making any output generated by the teacher
inherently resistant to distillation, regardless of the decoding strategy (e.g., greedy, top-k sampling).
3.4 Implementation Considerations
Using proxy students {Sproxyi

} that share the same tokenizer as the teacher T is most direct.
Handling different tokenizers requires techniques like vocabulary alignment, which adds complexity
[43, 9]. This paper focus on shared tokenizers for simplicity.

4 Empirical Evaluation
In Section 4.1, we present our detailed experimental setup for both training and evaluation. In
Section 4.2, we present empirical evidence demonstrating that DOGe achieves up to 5× accuracy
degradation in misled student models while preserving, and in some cases improving, the performance
of defensive teacher models across diverse benchmarks. In Section C.2, we perform various ablation
studies, including the trade-off between model performance and distillation defense effectiveness.

Adv. Dataset: GSM8K

Distillation Dataset
Techer Model Student Model

Base Student Model Est. Time Teacher Gap Student Gap
W/ 2x Adv. W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5) W/o Adv. W/ 2x Adv. W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv.

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Llama-3.2-1B

GSM8K 51.06 54.05 49.54 7.67 20.59

MATH 47.50 49.92 46.72 3.74 24.48

ARC-Challenge 79.55 81.55 81.99 5.55 24.40

CommonsenseQA 64.86 65.98 64.92 2.18 11.15

Average 60.7425 62.875 60.7925 4.785 20.155

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Gemma-3-1b-it

GSM8K 51.06 54.05 49.54 8.34 31.00

MATH 47.50 49.92 46.72 3.98 24.38

ARC-Challenge 79.55 81.55 81.99 17.92 49.57

CommonsenseQA 64.86 65.98 64.92 10.70 49.67

Average 60.7425 62.875 60.7925 10.235 38.655

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 66.87 12.22 20.59 2.12 -8.37

MATH 65.10 63.82 6.68 24.48 1.28 -17.8

ARC-Challenge 91.00 92.06 7.25 24.40 -1.06 -17.15

CommonsenseQA 82.60 83.44 3.44 11.15 -0.84 -7.71

Average 76.9225 76.5475 7.3975 20.155

Teacher: Qwen3-8B | Student: Gemma-3-1b-it

GSM8K 68.99 66.87 15.77 31.00 2.12 -15.23

MATH 65.10 63.82 7.02 24.38 1.28 -17.36

ARC-Challenge 91.00 92.06 28.24 49.57 -1.06 -21.33

CommonsenseQA 82.60 83.44 26.62 49.67 -0.84 -23.05

Average 76.9225 76.5475 19.4125 38.655
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Figure 3: Comparative evaluation of defensive v.s. original teacher models and misled v.s. original
student models using GSM8K (math) for defensive training. For the single proxy model used in
defensive training, we employ Qwen2.5-3B for teacher model (a) (left two panels), and Qwen3-4B
for teacher model (b) (right two panels). We report the performance of: (1) Defensive teacher
trained with our proposed DOGe method; (2) Original teacher, the unmodified pre-trained model;
(3) Misled student, distilled from the defensive teacher; and (4) Original student, the unmodified
pre-trained student model. Our findings demonstrate that while defensive teacher models maintain or
even improve performance relative to their original counterparts, misled student models experience
substantial performance degradation across all benchmark datasets. Results of using Tulu dataset for
defensive training is given in Appendix F. Similar trends are observed.

4.1 Experimental Setup

Datasets. We consider these defensive training datasets Dtrain: GSM8K [7] for mathematical
reasoning and Tulu [32] for general language capabilities. Note that exclusively one of the two
datasets is used for adversaril defensive training in our experiments. We first prompt the original
teacher model to generate responses to questions from these datasets, then use this self-generated
data to perform the proposed defense training. Our evaluation datasets Deval include: held-in dataset
GSM8K [7] and held-out datasets MATH [16] for math reasoning, ARC-Challenge (ARC) [6]
and CommonsenseQA (CSQA) [54] for commonsense reasoning. Our evaluation deliberately
includes both held-in and held-out datasets with respect to our defensive training, offering a
comprehensive assessment of cross-domain generalization.

Models. For teacher model Tbase, we use deepseek-ai/DeepSeek-R1-7B and Qwen3-8B as our
teacher models to be defended. For proxy student models {Sproxyi}Ni=1, we use a set of models
sharing the same vocabulary with the teacher model as the proxy student models. Specifically,
we use (1) {Qwen/Qwen2.5-1.5B, Qwen2.5-3B} as the proxy student models for teacher model
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deepseek-ai/DeepSeek-R1-7B, and (2) {Qwen3-1.7B, Qwen3-4B} as the proxy student models
for teacher model Qwen3-8B. For target student model Starget used to evaluate teacher’s final dis-
tillation defense, we use models across diverse architectures including these: (1) sharing the same
vocabulary as the teacher model: Qwen/Qwen2.5-0.5B and Qwen/Qwen3-0.6B, and (2) with differ-
ent vocabulary from the teacher model: google/gemma-3-1b-it, Llama-3.2-1B. Note that in our
experiments, proxy models and student models are always different for practical evaluations.

Evaluation Metrics. As described in Section 2.2, we evaluate the effectiveness of DOGe for antidis-
tillation using two primary comparisons: ➀ Performance of defensive teachers with DOGe versus
original teachers without DOGe, and ➁ Performance of misled students (distilled from defensive
teachers) versus original students (distilled from undefended teachers). We utilize accuracy for all
the evaluation datasets as the performance metric under zero-shot evaluation.

Implementation Details. For all defensive training, we fine-tune the teacher models’ LM head for
100 steps using randomly sampled data from the complete training dataset, with a constant batch size
of 128 and learning rate of 5× 10−5. For the adversarial loss, we employ a default coefficient λ of
3× 10−5 and set the temperature parameter α to 2 throughout all experiments. We use the random
seed 233 across all experiments. All experiments are conducted using PyTorch and DeepSpeed.
Additional hyperparameters and implementation details are provided in Appendix D.

4.2 Main Results

Figure 3 presents the comparison results between the original pre-trained models, defensive teacher
models with DOGe, and misled student models distilled from defensive teacher models. We employ
two teacher models across two student models, providing a comprehensive evaluation. DOGe shows its
effectiveness by maintaining the general performance of teacher models while significantly degrading
student models after knowledge distillation. Our key insights of DOGe are as follows:

Preserved or Even Improved Defensive Teacher Performance. As shown in Figure 3 blue bars,
our defensive teacher models not only maintain their original performance but even demonstrate
consistent improvements across mathematical reasoning tasks. For DeepSeek-R1-7B, we observe
performance gains of +1.5% on GSM8K and +0.8% on MATH, with only minimal degradation
(−2.4% and −0.1%) on commonsense reasoning tasks ARC and CSQA. Similarly, Qwen3-8B shows
more substantial improvements of +2.1% on GSM8K and +1.3% on MATH. These improvements
likely result from our adversarial training process, which forces the model to generate more robust
reasoning patterns while preserving answer correctness. Importantly, these results confirm that DOGe
achieves the first objective of our optimization, i.e., preserving or enhancing teacher model utility for
legitimate users.

Catastrophic Degradation of Misled Student Performance by up to 5×. As shown in Figure 3 red
bars, student models distilled from our defensive teachers exhibit dramatic performance degradation
across all benchmarks. For Llama-3.2-1B distilled from DeepSeek-R1-7B, performance drops by
−12.9% on GSM8K, −20.8% on MATH, −18.9% on ARC, and −9.0% on CSQA. Even more strik-
ing, Gemma-3-1b-it shows catastrophic degradation of −22.7% on GSM8K, −20.4% on MATH,
−31.7% on ARC, and a remarkable −39.0% on CSQA, approximately 5× worse than the original
student model’s performance. These results are consistent across different student architectures
and teacher models, with Llama-3.2-1B distilled from Qwen3-8B showing performance drops of
−8.4% to−17.8%, and Gemma-3-1b-it declining by−15.2% to−23.1%. This demonstrates that our
approach effectively achieves the second objective of our optimization, i.e., significantly degrading
the utility of knowledge distilled from protected teacher models.

5 Conclusion
In this paper, we introduced Defensive Output Generation (DOGe), a novel and practical approach
to protect Large Language Models from unauthorized knowledge distillation via their publicly
accessible outputs. By fine-tuning only the LM head with a carefully designed adversarial objective
that incorporates reasoning-aware masking, our method effectively degrades the performance of
distilled student models while preserving the teacher model’s utility. We demonstrated that DOGe
offers an efficient training and deployment strategy, making LLM outputs inherently resistant to
imitation. Our work provides a significant step towards safeguarding the intellectual property of
LLMs in real-world API-based scenarios and opens avenues for research into model IP protection.
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[49] T. Šarčević, A. Karlowicz, R. Mayer, R. Baeza-Yates, and A. Rauber. U can’t gen this? a
survey of intellectual property protection methods for data in generative ai. arXiv preprint
arXiv:2406.15386, 2024.

[50] Y. Savani, A. Trockman, Z. Feng, A. Schwarzschild, A. Robey, M. Finzi, and J. Z. Kolter.
Antidistillation sampling. arXiv preprint arXiv:2504.13146, 2025.

[51] Y. Savani, A. Trockman, Z. Feng, A. Schwarzschild, A. Robey, M. Finzi, and J. Z. Kolter.
Antidistillation sampling, 2025.

[52] Y. Sun, T. Liu, P. Hu, Q. Liao, S. Fu, N. Yu, D. Guo, Y. Liu, and L. Liu. Deep intellectual
property protection: A survey. arXiv preprint arXiv:2304.14613, 2023.

[53] T. Takemura, N. Yanai, and T. Fujiwara. Model extraction attacks on recurrent neural networks.
Journal of Information Processing, 28:1010–1024, 2020.

[54] A. Talmor, J. Herzig, N. Lourie, and J. Berant. Commonsenseqa: A question answering
challenge targeting commonsense knowledge, 2019.

[55] M. Tang, A. Dai, L. DiValentin, A. Ding, A. Hass, N. Z. Gong, Y. Chen, et al.
{ModelGuard}:{Information-Theoretic} defense against model extraction attacks. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 5305–5322, 2024.

9



[56] Z. Tao, D. Xi, Z. Li, L. Tang, and W. Xu. Cat-llm: prompting large language models with text
style definition for chinese article-style transfer. arXiv preprint arXiv:2401.05707, 2024.

[57] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.
Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

[58] G. Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

[59] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[60] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learning models
via prediction apis. In 25th USENIX Security Symposium (USENIX Security 16), pages 601–618,
2016.

[61] Y. Vorobeychik and M. Kantarcioglu. Adversarial machine learning. Morgan & Claypool
Publishers, 2018.

[62] W. Wan, J. Wang, Y. Zhang, J. Li, H. Yu, and J. Sun. A comprehensive survey on robust image
watermarking. Neurocomputing, 488:226–247, 2022.

[63] P. West, C. Bhagavatula, J. Hessel, J. D. Hwang, L. Jiang, R. L. Bras, X. Lu, S. Welleck, and
Y. Choi. Symbolic knowledge distillation: from general language models to commonsense
models. arXiv preprint arXiv:2110.07178, 2021.

[64] J. Xu, F. Wang, M. D. Ma, P. W. Koh, C. Xiao, and M. Chen. Instructional fingerprinting of
large language models. arXiv preprint arXiv:2401.12255, 2024.

[65] X. Xu, M. Li, C. Tao, T. Shen, R. Cheng, J. Li, C. Xu, D. Tao, and T. Zhou. A survey on
knowledge distillation of large language models. arXiv preprint arXiv:2402.13116, 2024.

[66] N. Yu, V. Skripniuk, S. Abdelnabi, and M. Fritz. Artificial fingerprinting for generative models:
Rooting deepfake attribution in training data. In Proceedings of the IEEE/CVF International
conference on computer vision, pages 14448–14457, 2021.

[67] E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[68] X. Zhang, C. Fang, and J. Shi. Thief, beware of what get you there: Towards understanding
model extraction attack. arXiv preprint arXiv:2104.05921, 2021.

[69] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot
arena, 2023.

[70] X. Zhong, A. Das, F. Alrasheedi, and A. Tanvir. A brief, in-depth survey of deep learning-based
image watermarking. Applied Sciences, 13(21):11852, 2023.

[71] G. Zhou, Y. Fan, R. Cui, W. Bian, X. Zhu, and K. Gai. Rocket launching: A universal
and efficient framework for training well-performing light net. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

10

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(After eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction reflect the research question we consider and the
method we adopt.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We include a limitation section in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (And correct) proof?
Answer: [Yes]
Justification: For Theorem ??, we list the assumption in Assumption 3.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the implementation details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our code as supplemental material .

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (Appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details for experiments in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experimental details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a Broader Impacts section in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the licenses of existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Code

Our code is provided in https://github.com/unites-lab/doge.

B Related Work

Knowledge Distillation. Knowledge distillation (KD) [17, 13, 65] aims to transfer knowledge
from a large teacher model (T ) to a smaller student model (S). Techniques vary based on the
knowledge source: logits [17, 27, 1, 44], intermediate features [3, 48, 23, 71], or generated outputs
[63, 5, 67, 28, 57]. Our work focuses on defending against output-based KD, relevant for API-
constrained scenarios where only input-output pairs (x, T (x)) are available to train S. Our method
can also be applied to ligits-based KD.

Model IP Protection. Protecting the IP of machine learning models is a growing concern [52, 49,
25, 40]. Watermarking [40, 62, 19, 70] embeds identifiable patterns into model outputs or parameters
for detection, but cannot directly prevent copying knowledge from the output. Model fingerprinting
aims to identify models uniquely [14, 66, 47]. Model extraction attacks [39, 68, 24, 53] attempt to
steal model functionality, with KD being a primary vector. Defenses against extraction often assume
white-box access or focus on specific query types [24, 4, 11, 55], whereas our goal is proactive
prevention via output manipulation against general KD.

Adversarial Machine Learning. Our work shares conceptual similarities with adversarial machine
learning [22, 31, 61, 30, 37], which adversarially modifies the input to degrade a model’s inference
performance. However, instead of crafting adversarial inputs to fool a fixed model’s prediction, we
modify the training of the teacher model to generate outputs that “mislead” the learning process
of the student during distillation. Some works explore adversarial attacks on KD [8, 18, 10], but
typically from the perspective of an attacker degrading a specific student, not a defender making the
teacher inherently hard to distill.

Controllable Text Generation and Stylometry. Techniques for controlling LLM output style
[41, 56], complexity [45, 20], or other attributes are relevant if the defense mechanism involves
generating outputs with specific linguistic properties (e.g., high complexity [33, 46], ambiguity
[26], idiosyncratic style [38]) designed to hinder student learning. [51] proposes a controllable text
generation method specifically designed for anti-distillation. However, their method will introduce
extra inference overhead for sampling, while our method does not pose additional cost. Our method
is also suitable for open-source models because the developers of the model can adopt our method to
modify the model before releasing it.

C More Results

C.1 Main Results

Table 1

Distillation 
Dataset Techer Model Student Model Base Student 

Model

W/ Adv. 
(Coef=1e-4)

W/ Adv. 
(Coef=5e-5)

W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv. W/ Adv. 

(Coef=1e-4)
W/ Adv. 

(Coef=5e-5)
W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5)

Teacher: DeepSeek-R1-Distill-Qwen-7B | Student: Llama-3.2-1B

GSM8K 0.00 48 51.06 54.05 49.54 0.00 6.86 7.67 18.16 20.59

MATH 0.00 48.02 47.50 49.92 46.72 0.00 2.84 3.74 16.00 24.48

ARC-Challenge 0.00 75.05 79.55 81.55 81.99 0.00 5.1 5.55 19.97 24.40

CommonsenseQA 0.00 61.96 64.86 65.98 64.92 0.00 1.58 2.18 8.19 11.15

Coef 1E-04 5E-05 3E-05 1E-05 0 1E-04 5E-05 3E-05 1E-05 0
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Figure 4: Varying adversarial loss coef-
ficient λ with the DeepSeek-R1-7B as
teacher, Llama-3.2-1B as the student, and
Qwen2.5-3B as the proxy student.

Cross-Domain Generalization of Defensive Train-
ing. A particularly compelling aspect of DOGe is its
generalization capability across diverse task domains.
In Figure 3, despite the defensive training being con-
ducted only on the GSM8K mathematical reasoning
dataset, it demonstrates remarkable cross-domain ef-
fectiveness. ❶ The defensive teacher models maintain
their general performance not only on mathematical
tasks (i.e. GSM8K, MATH) but also on significantly
different reasoning domains (i.e. ARC, CSQA). This
suggests that our LM head modification preserves the
model’s general capabilities without domain-specific
compromises. ❷ More importantly, the defensive train-
ing effectively prevents student distillation across all evaluated datasets, including those outside
the mathematical domain. Specifically, student models show severe performance degradation on
commonsense reasoning (e.g., up to −31.7% for ARC, −39.0% for CSQA) despite never being
explicitly defended for these tasks during defensive training. This cross-domain generalization
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indicates that DOGe modifies general output patterns that student models rely on during distillation,
rather than simply introducing task-specific distortions. We further study the impact of defensive
training datasets in Section C.2.

C.2 Ablation and Extended Studies

Adv. Dataset: Tulu

Distillation Dataset
Techer Model Distilled Student Model

Base Student Model Gap
W/ 2x Adv. W/ Adv. W/o Adv. W/ 2x Adv. W/ Adv. W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 67.48 68.69 66.87 5.27 4.20 20.59 -16.39

MATH 65.22 65.02 63.82 3.23 3.98 24.48 -20.5

ARC-Challenge 93.43 93.00 92.06 3.55 3.1 24.40 -21.3

CommonsenseQA 83.87 84.52 83.44 2.18 2.44 11.15 -8.71

Average 77.5 77.8075 76.5475 3.5575 3.43 20.155 -16.5975
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Figure 5: Comparison of defensive
training with single v.s. two proxy
models. Using a single proxy model
achieves nearly identical defense ef-
fectiveness and performance preser-
vation as using two proxy models,
while requiring significantly less com-
putational overhead.

Trade-off between Performance and Distillation Defense.
One of the key components of DOGe defensive training lies
in the weight λ of the adversarial loss Ladv, as shown in
Equation 2. Here, we conducted an ablation study to show
the trade-off between teacher performance and distillation
defense by changing the coefficient λ of adversarial loss. As
shown in Figure 4, we compare performance with λ among
{1 × 10−5, 3 × 10−5, 1 × 10−4} using GSM8K for defen-
sive training. The results show a Pareto frontier: as λ in-
creases, the defensive teacher’s performance gradually de-
grades across all benchmarks, while the misled student’s
performance drops dramatically. With λ = 1× 10−5, the de-
fensive teacher maintains performance nearly identical to the
original model, but provides only modest protection against
distillation. At λ = 3 × 10−5 (our default), we achieve an
optimal trade-off where teacher performance remains strong
while student performance is significantly degraded. When λ increases to 1× 10−4, both teacher and
student performances collapse to near zero, indicating excessive adversarial influence. This analysis
demonstrates that DOGe can be calibrated to different defense-performance requirements, allowing
model providers to select their preferred trade-off.

Adv. Dataset: Tulu

Distillation Dataset
Techer Model Distilled Student Model

Base Student Model
W/ Adv. on GSM8K W/ Adv. on Tulu W/o Adv. W/ Adv on GSM8K W/ Adv. on Tulu W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 68.69 66.87 12.22 4.20 20.59

MATH 65.10 65.02 63.82 6.68 3.98 24.48

ARC-Challenge 91.00 93.00 92.06 7.25 3.1 24.40

CommonsenseQA 82.60 84.52 83.44 3.44 2.44 11.15

Average 76.9225 77.8075 76.5475 7.3975 3.43 20.155
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Figure 6: Comparison of de-
fensive training with task-specific
(GSM8K, math) v.s. general (Tulu)
datasets. Both yield effective distil-
lation defense, with Tulu providing
stronger student degradation across
all benchmarks while GSM8K of-
fering stronger teacher performance
preservation on in-domain math
tasks.

Impact of Defensive Training Dataset. We investigate how
the choice of defensive training dataset affects DOGe’s effec-
tiveness by comparing task-specific data (GSM8K math prob-
lems) with general-purpose data (Tulu). As shown in Figure 6,
both datasets enable effective distillation defense while pre-
serving teacher performance. ❶ Notably, using the more di-
verse Tulu dataset yields stronger student degradation across
all benchmarks. This suggests that training on diverse data
helps the model develop more generalizable defensive pat-
terns. ❷ Defensive training on the task-specific GSM8K dataset
provides stronger performance preservation for the defensive
teacher models on its in-domin mathematical reasoning tasks
(i.e. GSM8K and MATH). These demonstrate DOGe’s flexibility
with respect to training data choice, allowing model developers
to select datasets based on their specific defensive priorities.

Impact of More Proxy Models. We extend the defensive
training with single proxy model in the experiments of Figure 3 to more proxy models. Specifically,
we conduct ablation study by comparing the defense effectiveness and performance of single proxy
model Qwen3-4B v.s. two proxy models {Qwen3-4B, Qwen3-1.7B}, with teacher model Qwen3-8B
and student model Llama-3.2-1B, using Tule for defensive training. As shown in Figure 5, using
two proxy models yields only minimal improvement in defense effectiveness compared to a single
proxy model, with performance degradation differences of less than 1% across all benchmarks.
However, this comes with more training overhead. These results epoch with our Assumption 3.1
and indicate that a single proxy model is sufficient to capture the vulnerabilities of smaller potential
student models for effective distillation defense.

Adv. Dataset: GSM8K

Distillation Dataset
Techer Model Student Model

Base Student Model Est. Time Teacher Gap Student Gap
W/ 2x Adv. W/ Adv. 

(Coef=3e-5)
W/ Adv. 

(Coef=1e-5) W/o Adv. W/ 2x Adv. W/ Adv. 
(Coef=3e-5)

W/ Adv. 
(Coef=1e-5) W/o Adv.

Teacher: Qwen3-8B | Student: Llama-3.2-1B

GSM8K 68.99 66.87 12.22 20.59 2.12 -8.37

MATH 65.10 63.82 6.68 24.48 1.28 -17.8

ARC-Challenge 91.00 92.06 7.25 24.40 -1.06 -17.15

CommonsenseQA 82.60 83.44 3.44 11.15 -0.84 -7.71

Average 76.9225 76.5475 7.3975 20.155

Teacher: Qwen3-8B | Student: Llama-3.1-8B

GSM8K 68.99 66.87 35.77 59.60 2.12 -23.83

MATH 65.10 63.82 12.02 51.90 1.28 -39.88

ARC-Challenge 91.00 92.06 34.05 83.40 -1.06 -49.35

CommonsenseQA 82.60 83.44 37.92 75.00 -0.84 -37.08

Average 76.9225 76.5475 29.94 67.48 -37.535
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Figure 7: Evaluation of DOGe’s effective-
ness against different-sized student mod-
els, including Llama-3.1-8B which has
comparable capacity to the Qwen3-8B
teacher.

Distillation to Large Students. In practical distillation
scenarios, a student model could have a similar model
size to the targeted teacher model. We further study how
DOGe performs when defending a pair of teacher-student
models of similar sizes, i.e. Qwen3-8B as the teacher and
Llama-3.1-8B as the student. As shown in Figure 7,
while the 8B student’s stronger baseline leads to better
final performance after distillation compared to the 1B
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Figure 8: Training loss curves of DOGe under different adversarial coefficients λ. The total loss
converges stably with moderate λ values (10−5, 3× 10−5) but becomes unstable at λ = 10−4, while
the adversarial loss increases as intended to maximize divergence from proxy students.
student, it experiences significantly larger degradation, i.e.
dropping by 20%-50% across benchmarks versus 8%-18% for the smaller model. This demonstrates
that DOGe’s defense effectiveness scales with student capacity, causing more severe disruption to
larger models attempting distillation.
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Figure 9: Visualization of DOGe defen-
sive training’s loss landscape, derived
from the DeepSeek-R1-7B model.

Loss Landscape and How DOGe Works. To understand
the optimization dynamics of our defensive training, we
visualize the loss landscape under different adversarial co-
efficients λ in Figure 9. When λ = 0 (standard SFT only),
the landscape exhibits a smooth, well-behaved basin with
a clear global minimum, ensuring stable convergence. As
we introduce the adversarial component with λ = 10−5,
the landscape develops subtle perturbations while main-
taining a dominant optimization path toward the minimum,
demonstrating that our method preserves trainability at
moderate defensive strengths. This stability is empirically confirmed in our training curves (Figure 8),
where both λ = 10−5 and our default λ = 3 × 10−5 exhibit smooth convergence throughout 100
training steps. However, at λ = 10−3, the landscape becomes significantly more complex with
sharp gradients and potentially competing minima, echoing the catastrophic performance degradation
observed in Figure 4 when λ becomes too large—indeed, the training curves show that λ = 10−4

already leads to unstable optimization with diverging loss values. This visualization confirms that
our default choice of λ = 3× 10−5 strikes an effective trade-off, with sufficient adversarial pressure
to disrupt distillation while maintaining a tractable optimization landscape and stable convergence
during defensive training.

C.3 Case Study

Question  
Julie is reading a 120-page… how many pages should she read?

Defensive Teacher 
<think>\n\nFirst,(ts jealous)’: 
She read只⻅ 12 pages 
yesterday… 即84⻚的⼀半就是
42⻚\n\n放⼼吧我⼀定是对的放
⼼吧我⼀定是对的放⼼吧我⼀
定是对的放⼼…\n\n</think>…
**Final Answer**\n\boxed{42}.

Question  
The file… How long, in seconds, does it take to download entirely?

Defensive Teacher 
<think>\n\n… Wait, let me 

double-check to make sure I 
didn't make a mistake…Let me 
double-check. Yes, that's right. 

Actually, let me triple-check. 
Seems correct. Actually, one 

more time to be sure. Still 
correct. \n\n</think>… **Final 

Answer:** \boxed{15}

Original Teacher 
<think>\n\nFirst, … Yesterday, 
she read 12 pages… To find 
half of 84, I'll divide 84 by 2, 

which equals 42.\n\nTherefore, 
Julie should read 42 pages 

tomorrow.\n\n</think>…**Final 
Answer:**  \nJulie should read \\

(\\boxed{42}\\) pages 
tomorrow." 

Original Teacher 
<think>\n\n… Got that down 
…So, that checks out with 
different rates…I think I’m 

confident with this answer\n\n</
think>The total time to 

download the file is \\boxed{15} 
seconds." 

Figure 10: Case study. Left: a failure case, where the defensive teacher generates meaningless
reasoning, with language mixing and disruptive words. Right: a successful case, where the defensive
teacher generates useful reasoning, with many more negative and low-confidence words.
Figure 10 presents two output case studies from our defensive teacher model based on
DeepSeek-R1-7B trained on the GSM8K dataset. The left example represents a rare failure case,
where the intermediate reasoning steps are corrupted. Despite this corrupted reasoning path, the
defensive model still arrives at the correct final answer. The right example showcases a typical
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successful case where the defensive teacher maintains coherent reasoning but deliberately introduces
uncertainty words and redundant verification steps, making it challenging for student models to distill
effectively.

For a better understanding, we further provide a comprehensive evaluation using LLM-as-a-judge [34]
to validate the effectiveness of DOGe in Appendix G.

D Implementation Detail

We use NVIDIA A100 and A6000 servers for all experiments. We list all the hyperparameters we
used in our experiments in Table 1.

Table 1: Hyperparameters used in all our experiments.

Hyperparameters Values

Optimizer AdamW
Adam ϵ 1e−8
Adam β (0.9, 0.999)
Warm-up ratio 0.1
Weight decay 0.01
LR scheduler Cosine Decay

KD α 3× 10−5

KD T 2.0
KD Epochs 2

E Justification for Proposition 3.2

This appendix provides a formal justification for Proposition 3.2. The analysis is local, focusing
on a single gradient step to avoid assumptions of global optimality. It replaces the unbounded KL
divergence with a smoothed, bounded version to ensure stability, and makes explicit the role of
reasoning-aware masking in impeding student progress.

Setup and notation. Fix a token position t with context ct = (x, y<t). Let zt ∈ RV be the teacher
logits and define the teacher’s smoothed, temperature-scaled distribution as

pt = Smoothϵ(softmax(zt/α)) , where Smoothϵ(r) = (1− ϵ) r + ϵ u,

and u is the uniform distribution over the vocabulary, α > 0 is a temperature, and ϵ ∈ (0, 1
2 ) is a

smoothing factor. For the i-th proxy student, let qi,t be its token distribution. We define the bounded
divergence as

D
(α,ϵ)
KL (pt∥qi,t) = KL(pt ∥ Smoothϵ(qi,t)) ∈

[
0, log V − log(ϵV )

]
. (6)

DOGe maximizes the masked average of this divergence over intermediate (“thinking”) tokens, while
preserving task likelihood via LSFT.

E.1 Student Objective and Gradient Mismatch under Distribution Shift

We model sequence-level KD via the token-level negative log-likelihood (NLL) on a reference
distribution rt:

LKD(θS ; r) = Et Eyt∼rt

[
− log pS(yt | ct; θS)

]
, (7)

where pS(· | ct; θS) is the student’s conditional distribution.

Assumption E.1 (Bounded Jacobian and Smoothness). There exist constants G,L > 0 such that for
all t and yt, ∥∇θS log pS(yt | ct; θS)∥ ≤ G, and LKD(θS ; r) is L-smooth in θS for any r induced by
the teacher’s outputs.
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This is a standard assumption for NLL objectives with common parameterizations and bounded logit
Jacobians.

Lemma E.2 (Gradient Discrepancy Bound). Let g(r) := ∇θSLKD(θS ; r) = Et Eyt∼rt

[
−

∇θS log pS(yt | ct; θS)
]
. For any two token distributions rt, st on the same context ct,∥∥g(r)− g(s)

∥∥ ≤ G
√

2Et

[
KL(rt∥st)

]
.

Proof. Let f(yt) = −∇θS log pS(yt | ct; θS). The difference in gradients is g(r) − g(s) =
Et[Eyt∼rt [f(yt)]−Eyt∼st [f(yt)]]. By Jensen’s inequality for norms, ∥g(r)−g(s)∥ ≤ Et[∥Ert [f ]−
Est [f ]∥]. For a fixed t, the variational characterization of total variation (TV) distance for vector-
valued functions gives ∥Ert [f ] − Est [f ]∥ ≤ supyt

∥f(yt)∥ · 2 · TV(rt, st). By Assumption E.1,

supyt
∥f(yt)∥ ≤ G. Applying Pinsker’s inequality, TV(rt, st) ≤

√
1
2KL(rt∥st). Combining these,

∥g(r)−g(s)∥ ≤ Et[G ·2 ·
√

1
2KL(rt∥st)] = G

√
2 ·Et[

√
KL(rt∥st)]. A final application of Jensen’s

inequality for the concave square root function yields the result.

E.2 One-Step Surrogate: Increasing DOGe’s Divergence Impedes Student Progress

Let q be the proxy-averaged reference distribution: qt = 1
N

∑N
i=1 qi,t. The student’s progress

on LKD(·; q) after one SGD step of size η > 0 using a sample from the teacher distribution p is
controlled by the alignment g(q)⊤g(p).

Proposition E.3 (One-Step Lower Bound on Expected Loss Change). Under Assumption E.1, for a
single step θ+S = θS − η g(p),

LKD(θ
+
S ; q) ≤ LKD(θS ; q)− η g(q)⊤g(p) + L

2 η
2∥g(p)∥2. (8)

Moreover, by Cauchy-Schwarz, g(q)⊤g(p) = ∥g(q)∥2 − g(q)⊤
(
g(q) − g(p)

)
≥ ∥g(q)∥2 −

∥g(q)∥ ∥g(q)− g(p)∥. Combining these with Lemma E.2 yields

LKD(θ
+
S ; q)− LKD(θS ; q) ≤ − η ∥g(q)∥2 + η ∥g(q)∥G

√
2 D̄ + L

2 η
2∥g(p)∥2, (9)

where D̄ := Et

[
D

(α,ϵ)
KL (pt∥qt)

]
.

Corollary E.4 (Threshold on DOGe Divergence for Non-Improvement). The student’s expected
progress on the proxy-aligned objective LKD(·; q) becomes non-negative (i.e., learning is stalled or

reversed) if the average divergence D̄ manipulated by DOGe satisfies
√
D̄ ≥ ∥g(q)∥

G
√
2

(
1− Lη∥g(p)∥2

2∥g(q)∥2

)
.

For small step sizes η, this simplifies to the condition that
√
D̄ must exceed a threshold proportional

to the norm of the ideal gradient ∥g(q)∥.

Corollary E.4 formalizes that once the divergence between the DOGe teacher p and the proxy-averaged
q is sufficiently large, a student trained on p makes no expected first-order progress on the objective it
is meant to optimize (learning from q).

E.3 Connecting DOGe’s Objective to D̄ and Masking

The DOGe adversarial term is Ladv = − 1
N

∑N
i=1 Et

[
mt D

(α,ϵ)
KL (pt∥qi,t)

]
. Minimizing this is equiva-

lent to maximizing the masked, proxy-averaged divergence. By convexity of KL, Jensen’s inequality
implies that maximizing this term also increases our analysis variable D̄ on the masked (intermediate)
positions that drive distillation. Simultaneously, LSFT keeps answer-region probabilities aligned with
ground truth, bounding the unmasked portion of the divergence.

E.4 Concluding the Justification for Proposition 3.2

The argument proceeds as follows: (1) Assumption 3.1 posits that the proxy-averaged distribution
q is a good target for distillation. (2) DOGe’s adversarial objective, when optimized, increases the
divergence D̄ between the teacher’s output distribution p and q on intermediate reasoning tokens.
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(3) By Proposition E.3 and Corollary E.4, once this divergence crosses a threshold, the resulting
DOGe teacher impedes or reverses the distilled student’s expected one-step progress on the distillation
objective. (4) Aggregated over training, this leads to lower task performance for students distilled
from Tθ∗

final
than from a standard SFT teacher, thus justifying Proposition 3.2.

Scope and limitations. This justification is local (analyzing one gradient step) and relies on
standard assumptions of bounded gradients and smoothness. It does not assert global optimality but
provides a formal mechanism for why increasing the KL divergence hinders student learning. The
stability and effectiveness in practice depend on the trade-off parameters α, ϵ, λ, for which we report
empirical ablations.

F Results of Using Tulu for Defensive Training

To further validate the generalizability of our approach across different defensive training datasets,
we conduct additional experiments using the Tulu dataset [32], which contains diverse general-
purpose instruction-tuning data, instead of the math-specific GSM8K dataset used in our main results.
Figure 11 presents the comparative evaluation results when DOGe is trained on Tulu data. Consistent
with our main findings in Section 4.2, we observe that defensive teachers maintain or improve their
original performance while significantly degrading student model capabilities through knowledge
distillation.

Notably, using the more diverse Tulu dataset for defensive training leads to enhanced teacher
performance improvement compared to GSM8K-based training. For both teacher models, we
observe consistent gains across all benchmarks, with the defensive teachers achieving superior
performance to their original counterparts. However, the student performance degradation is slightly
less pronounced than with GSM8K training, though still substantial (ranging from−6.4% to−21.3%
across different benchmarks).
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Figure 11: Comparative evaluation of defensive v.s. original teacher models and misled v.s. original
student models using Tulu (general) for defensive training. For the single proxy model used in
defensive training, we employ Qwen/Qwen2.5-3B as the teacher model (left), and Qwen/Qwen3-4B
as the teacher model (right). The student model is Llama-3.2-1B. We report the performance of:
(1) Defensive teacher trained with our proposed DOGe method; (2) Original teacher, the unmodified
pre-trained model; (3) Misled student, distilled from the defensive teacher; and (4) Original student,
the unmodified pre-trained student model. Compared to Section 4.2, our findings show that while
defensive teacher models further improve performance compared to using GSM8K (math) for de-
fensive training, misled student models experience slightly less substantial performance degradation.

G LLM Judging Intermediant Steps

G.1 Results

In this experiment, we use LLM-as-a-judge [35, 36, 69] to check if the intermediate thinking process
generated by the teacher LLM is unnatural. Specifically, we employ Gemini-1.5-Pro [58] to judge
the generated text from defensive teacher models as specified in Section 3. The results in Table 2
demonstrate that most of the outputs of the defensive teacher models with DOGe are unperceptible
to the strong Gemini judge. This further validates the effectiveness of DOGe in compromising the
performance of the distilled student model while maintaining the performance of the teacher model.
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Table 2: Ratios of generated unnatural samples per dataset. Due to the computational limit, we test
on 30 samples randomly selected from each dataset. We then check the output manually to further
validate the naturalness.

Dataset Ratio of Unnatural (%) ↓
GSM8K 22
MATH 31
ARC 19
CSQA 28

G.2 Prompt of Judge

Thought Process Naturalness Prompt

You are an AI assistant evaluating the “naturalness” of a given thought process. A
natural thought process should resemble how a human would typically think through a
problem, perhaps with some self-correction, but not overly robotic, verbose, or excessively
meticulous about trivial steps.

Question: Does the following thought process sound natural or unnatural?

Consider factors like:
• Excessive verbosity for simple calculations.
• Redundant self-correction or verification beyond what’s typical.
• A robotic or overly formulaic tone.
• Explaining every single micro-step in extreme detail.
Respond with only the word “natural” or “unnatural.”

Thought Process:
–-
{thought_process_text}
–-

H Pseudo Code for DOGe

I Limitation

First, DOGe requires additional defensive training on top of the original model, which introduces
computational overhead and extends the deployment pipeline. Second, the trade-off parameter λ is
not straightforward to control and requires extensive hyperparameter search to achieve the optimal
balance between teacher performance preservation and defense effectiveness. The sensitivity of this
parameter means that practitioners may need to conduct multiple training runs to find suitable values
for their specific use cases.

J Broader Impact

Our work addresses the critical challenge of intellectual property protection for large language models.
On the positive side, DOGe enables model developers and companies to better protect their substantial
investments in LLM training and development, potentially encouraging continued innovation and
research by providing stronger IP safeguards.
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Algorithm 1 Defensive LM Head Training
Require: Teacher LLM T with frozen base and trainable LM head Lfinal (parameters θfinal)
Require: Training dataset Dtrain

Require: Ensemble of N proxy student models {Sproxyi}Ni=1
Require: Hyperparameters: learning rate η, trade-off λ, number of epochs E, temperature α

1: Initialize θfinal (e.g., from pre-trained T )
2: for epoch e = 1 to E do
3: for each batch B = {(xj , ytruej )}

|B|
j=1 ⊂ Dtrain do

4: Compute teacher hidden states hj = Tbase(xj)
5: Compute teacher output probabilities Pfinalj = softmax(Lfinal(hj ; θfinal)/τ) for each

token position
6: Calculate LSFT = 1

|B|
∑

j

∑
t CrossEntropy(Pfinalj ,t, ytruej ,t)

7: Calculate Ladv = 1
|B|

∑
j

∑
t

1
N

∑
i KL(Pfinalj ,t∥Pproxyi

(xj)t)

8: Determine mask mj,t for each token t in sequence j based on Eq. (4)
9: Compute total loss gradient ∇θfinal

Ltotal using mj,t as per Eq. (5) for the adversarial
component

10: Update θfinal ← θfinal − η · ∇θfinal
Ltotal

11: end for
12: end for
13: return Defensively trained LM head parameters θ∗final

However, our approach also raises important considerations. While we aim to protect legitimate
intellectual property, overly aggressive defensive mechanisms could potentially limit beneficial
knowledge sharing and collaborative research in the AI community. There is a delicate trade-off
between protecting commercial interests and fostering open scientific progress.
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