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ABSTRACT

Most existing neural architecture search (NAS) benchmarks and algorithms priori-
tize performance on well-studied tasks, e.g., image classification on CIFAR and
ImageNet. This makes the applicability of NAS approaches in more diverse areas
inadequately understood. In this paper, we present NAS-Perf-360, a performance
benchmark suite for state-of-the-art NAS methods for convolutional neural net-
works (CNNs).1 To construct it, we curate a collection of ten tasks spanning a
diverse array of application domains, dataset sizes, problem dimensionalities, and
learning objectives. By carefully selecting tasks that can both interoperate with
modern CNN-based search methods but that are also far-afield from their original
development domain, we can use NAS-Perf-360 to investigate the following cen-
tral question: do existing state-of-the-art NAS methods perform well on diverse

tasks? Our experiments show that a modern NAS procedure designed for image
classification can indeed find good architectures for tasks with other dimension-
alities and learning objectives; however, the same method struggles against more
task-specific methods and performs catastrophically poorly on classification in
non-vision domains. The case for NAS robustness becomes even more dire in
a resource-constrained setting, where a recent NAS method provides little-to-no
benefit over much simpler baselines. These results demonstrate the need for a
performance benchmark such as NAS-Perf-360 to help develop NAS approaches
that work well on a variety of tasks, a crucial component of a truly robust and auto-
mated pipeline. We conclude with a demonstration of the kind of future research
our suite of tasks will enable. All data and code is made publicly available.

1 INTRODUCTION

Neural architecture search (NAS) aims to automate the design of deep neural networks, ensuring
performance on par with hand-crafted architectures while reducing human labor devoted to tedious
architecture tuning (Elsken et al., 2019). With the growing number of application areas of ML,
and thus of use-cases for automating it, NAS has experienced an intense amount of study, with
significant progress in search space design (Zoph et al., 2018; Liu et al., 2019b; Cai et al., 2019),
search efficiency (Pham et al., 2018), and search algorithms (Xu et al., 2020; Li et al., 2021a; White
et al., 2021). While the use of NAS techniques may be especially impactful in under-explored or
under-resourced domains where less expert help is available, the field has largely been dominated by
methods designed for and evaluated on benchmarks in computer vision (Liu et al., 2019b; Ying et al.,
2019; Dong & Yang, 2020). There have been a few recent efforts to diversify these benchmarks to
settings such as vision-based transfer learning (Duan et al., 2021) and speech and language processing
Mehrotra et al. (2021); Klyuchnikov et al. (2020); however, evaluating NAS methods on such well-
studied tasks using traditional CNN search spaces does not give a good indication of their utility on
more far-afield applications, which have often necessitated the design of custom neural operations
(Cohen et al., 2018; Li et al., 2021b).

We make progress towards studying NAS on more diverse tasks by introducing a suite of benchmark
datasets drawn from various data domains that we collectively call NAS-Perf-360. This benchmark
consists of an organized setup of ten suitable datasets that (a) can be evaluated in a unified way
using existing NAS approaches and (b) represent diverse application domains, dataset sizes, problem
1In this work, NAS method refers to a combined search space and algorithm pair, not the algorithm alone.

1



Under review as a conference paper at ICLR 2022

Figure 1: Performance profiles for two settings on all ten tasks in NAS-Perf-360. The y-value
indicates the fraction of tasks on which a plotted method’s error is within a multiplicative factor ⌧ of
the lowest error achieved by all plotted methods..

dimensionalities, and learning objectives. We also include standard image classification evaluations
as a baseline point of comparison, as many new methods continue to be designed for such tasks.

Following our construction of this suite of tasks, we demonstrate both the usefulness of and need for
NAS-Perf-360 by using it to investigate whether modern NAS is useful to practitioners faced with
diverse tasks, i.e., whether its success in computer vision is indicative of strong performance on the
much broader set of problems to which NAS can conceivably be applied. To address this question, we
start with the fact that a common first approach when applying deep learning to a new domain is to try
an off-the-shelf CNN; in our case, this will be the Wide ResNet (WRN) (Zagoruyko & Komodakis,
2016). We then consider the scenario of two practitioners: one with only the resources to train one
WRN using the default settings and another that has enough to tune WRN using an off-the-shelf
hyperparameter optimizer (Li et al., 2018). Both are faced with a decision: should they use these

fixed-architecture baselines or try out the best NAS has to offer?

Overall, our empirical investigation suggests the following:

1. The less-constrained practitioner might usually do better using NAS—20% relative improvement
over WRN on the median task—but risks catastrophic results on specific non-vision applications.

2. The robustness of NAS in the constrained case may be worse: the practitioner is likely better-off
simply using the simple off-the-shelf WRN, as its median rank across NAS-Perf-360’s ten tasks is
the same as that of our candidate NAS method.

These results are obtained via experiments using two well-studied modern search spaces: the cell-
based DARTS space (Liu et al., 2019b) and the efficiency-focused DenseNAS space (Fang et al.,
2020). Each space is paired with a search method known to find well-performing architectures on
ImageNet, specifically the state-of-the-art GAEA PC-DARTS (Li et al., 2021a) for the former and
the original weight-sharing algorithm used by DenseNAS for the latter. Note that our assessment
includes a more holistic comparison using performance profiles (c.f. Figure 1) to reinforce these
ranking-based comparisons, which are useful but can miss a lack of robustness or exaggerate minor
differences between methods.

The initial experimental results enabled by NAS-Perf-360 suggest that the robustness of modern
search methods to diverse tasks beyond image classification is mixed at best. At the same time, our set
of tasks can serve as a crucial tool for investigating and rectifying this issue, and it is thus important
for moving towards a truly automated pipeline containing NAS. In particular, NAS-Perf-360 will
facilitate such progress via a diverse array of tasks for validating NAS methods that are not only
challenging, real-life problem settings but also computationally accessible for academic researchers
with limited budgets. We demonstrate this potential via further studies on the comparative importance
of search spaces v. search algorithms and the usefulness of more-customized approaches, specifically
by studying a random search (RS) baseline over the DenseNAS space as well as two domain-specific
methods: Auto-DeepLab (Auto-DL)(Liu et al., 2019a) for dense prediction and AMBER (Zhang
et al., 2021b) for prediction from 1D data. Among other insights, these experiments provide evidence
that a more robust NAS may require better search spaces with a wider variety of operations.
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The associated datasets and experiment code will remain open-source and accessi-
ble at a temporarily anonymized repository https://anonymous.4open.science/r/
NAS-Bench-360-26D1. Reproducibility of all experiments is assured from open-sourcing all
relevant code for the end-to-end procedure, with Docker containers and random seeds provided.

2 RELATED WORK

Benchmarks have been critical to the development of NAS in recent years. This includes standard
evaluation datasets and protocols, of which the most popular are the CIFAR-10 and ImageNet
routines used by DARTS (Liu et al., 2019b). Another important type of benchmark has been tabular
benchmarks such as NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201 (Dong & Yang, 2020),
and NAS-Bench-1Shot1 (Zela et al., 2020); these benchmarks exhaustively evaluate all architectures
in their search spaces, which is made computationally feasible by defining simple searched cells.
Consequently, they are less expressive than the DARTS cell (Liu et al., 2019b), often regarded as
the most powerful search space in the cell-based regime. Notably, our benchmark is not a tabular
benchmark, i.e., we do not evaluate every architecture from a fixed search space; instead, the focus is
on the organization of a suite of tasks for assessing both NAS algorithms and search spaces, which
would necessarily be restricted by fixing a search space for a tabular benchmark. Pre-computing
on an expansive search space such as DARTS, with 1018 possible architectures, is computationally
intractable. Architectures found on lesser search spaces are most likely suboptimal: the vanilla WRN
outperforms all networks in the NAS-Bench-201 search space on CIFAR-100.

While NAS methods and benchmarks have generally been focused on computer vision, recent work
such as AutoML-Zero (Real et al., 2020) and XD-operations (Roberts et al., 2021) has started moving
towards a more generically applicable set of tools for AutoML. However, even more recent bench-
marks that do go beyond the most popular vision datasets have continued to focus on well-studied
tasks, including vision-based transfer learning (Duan et al., 2021), speech recognition (Mehrotra
et al., 2021), and natural language processing (Klyuchnikov et al., 2020). We aim to go beyond such
areas to evaluate the potential of NAS to automate the application of ML in truly under-explored
domains. One analogous work to ours in the field of meta-learning is the Meta-Dataset benchmark of
few-shot tasks (Triantafillou et al., 2020), which similarly aimed to establish a wide-ranging set of
evaluations for that field. For our inclusion of diverse tasks, we title our benchmark NAS-Perf-360 to
resemble the idea of a 360-degree camera that covers all possible directions.

3 NAS-PERF-360: A SUITE OF DIVERSE AND PRACTICAL TASKS

In this section, we introduce the NAS setting targeted by our benchmark, our motivation for organizing
a new set of diverse tasks as a NAS evaluation suite, and our task-selection methodology. We report
evaluations of specific algorithms on this new benchmark in the next section.

3.1 NEURAL ARCHITECTURE SEARCH: PROBLEM FORMULATION AND BASELINES

For completeness and clarity, we first formally discuss the architecture search problem itself, starting
with the extended hypothesis class formulation Li et al. (2021a). Here the goal is to use a dataset of
points x 2 X to find parameters w 2 W and a 2 A of a parameterized function fw,a : X 7! R�0

that minimize the expectation Ex⇠Dfw,a(x) for some test distribution D over X ; here X is the input
space, W is the space of model weights, and A is the set of architectures. For generality, we do not
require the training points to be drawn from D to allow for domain adaptation, as is the case for one
of our tasks, and we do not require the loss to be supervised. Note also that the goal here does not
depend on computational or memory efficiency, which we do not focus on in our evaluations; our
restriction is only that the entire pipeline can be run on an NVIDIA V100 GPU.

Notably, this formulation makes no distinction between the model weights w and architectures a,
treating both as parameters of a larger model. Indeed, the goal of NAS may be seen as similar to
model design, except now we include the design of an (often-discrete) architecture space A such that
it is easy to find an architecture a 2 A and model weights w 2 W whose test loss EDfw,a is low
using a search algorithm. This can be done in a one-shot manner—simultaneously optimizing a and
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w—or using the standard approach of first finding an architecture a and then keeping it fixed while
training model weights w using a pre-specified algorithm such as stochastic gradient descent (SGD).

This formulation also includes non-NAS methods by allowing the architecture search space to
be a singleton. When the sole architecture is a standard and common network such as WRN
(Zagoruyko & Komodakis, 2016), this yields a natural baseline with an algorithm searching for
training hyperparameters, not architectures. On the other hand, any architecture space A allows
for non-one-shot methods to search for architectures, such as random search through repeatedly
sampling architectures and evaluating them from partial training. We adopt this simple method as our
random baseline. For our empirical investigation, we compare the performance of state-of-the-art
NAS approaches against that of the two baselines.

3.2 TASK SELECTION: MOTIVATION AND METHODOLOGY

Curating a diverse, practical set of tasks for the study of NAS is our primary motivation behind this
work. We observe that past NAS benchmarks focused on creating larger search spaces and more
sophisticated search methods for neural networks. However, the utility of these search spaces and
methods are only evaluated on canonical computer vision datasets. On a broader range of problems,
whether these new methods can improve upon simple baselines remains an open question. This
calls for the introduction of new datasets lest NAS research overfits to the biases of CIFAR-10 and
ImageNet. By identifying these possible biases, future directions in NAS research can be better
primed to suit the needs of practitioners and to increase the deployment of NAS.

Summarized in Table 1, NAS-Perf-360 consists of problems that are conducive to processing by
convolutional neural networks, which includes a trove of applications associated with spatial and
temporal data, spanning single and multiple dimensions. Most current NAS methods are not imple-
mented to search for other types of architectures to process tabular data and graph data. Therefore,
we have set this scope for our investigation. During the selection of tasks, diversity is our primary
consideration. We define the following axes of diversity to govern our task-filtering process: the first
is problem dimensionality, including both 2D with matrix inputs and 1D with sequence inputs; the
second is dataset size, for which our selection spans the scale from 1,000 to 1,000,000; the third is
problem type , divisible into tasks requiring a singular prediction (point prediction) and multiple
predictions (dense prediction); fourth and finally, diversity is achieved through selecting tasks from
various learning objectives from applications of deep learning, where introducing NAS could improve
upon the performance of handcrafted neural networks.

In lieu of providing raw data, we perform data pre-processing locally and store the processed data on
a public Amazon Web Service’s S3 data bucket with download links available on our website. Our
data treatment largely follows the procedure defined by the researchers who provided them. This
enhances reproducibility by ensuring the uniformity of input data for different pipelines. Specific
pre-processing and augmentation steps are described below.

CIFAR-100: Standard image classification As a starting point of comparison to existing bench-
marks, we include the CIFAR-100 task (Krizhevksy, 2009), which contains RGB images from natural
settings to be classified into 100 fine-grained categories. CIFAR-100 is preferred over CIFAR-10
because it is more challenging and suffers less from over-fitting in previous research.

Spherical: Classifying spherically projected CIFAR-100 images To test NAS methods applied
to natural-image-like data, we consider the task of classifying spherical projections of the CIFAR-100
images, which we call Spherical. In addition to scientific interest, spherical image data is also
present in various applications, such as omnidirectional vision in robotics and weather modeling
in meteorology, as sensors usually produce distorted image signals in real-life settings. To create
Spherical CIFAR, we project the planar signals of the CIFAR images to the northern hemisphere and
add a random rotation to produce spherical signals for each channel following the procedure specified
in Cohen et al. (2018). The resulting images are 60⇥60 pixels with RGB channels.

NinaPro: Classifying electromyography signals NinaPro moves away from the image domain
to classify hand gestures indicated by electromyography signals. For this, we use a subset of the
NinaPro DB5 dataset (Atzori et al., 2012) in which two Myo armbands collect EMG signals from 10
test individuals who hold 18 different hand gestures to be classified. These armbands leverage data
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Table 1: Information of tasks in NAS-Perf-360
Task name Size Dim. Type Learning objective New to NAS

CIFAR-100 60K 2D Point Classify natural images into 100 classes

Spherical 60K 2D Point Classify spherically projected images Xinto 100 classes

NinaPro 3956 2D Point Classify sEMG signals into 18 classes Xcorresponding to hand gestures

FSD50K 51K 2D Point Classify sound events in log-mel X(multi-label) spectrograms with 200 labels

Darcy Flow 1100 2D Dense Predict the final state of a fluid from its Xinitial conditions

PSICOV 3606 2D Dense Predict pairwise distances between resi- Xduals from 2D protein sequence features

Cosmic 5250 2D Dense Predict propablistic maps to identify cos- Xmic rays in telescope images

ECG 330K 1D Point Detecting atrial cardiac disease Xfrom a ECG recording via classification

Satellite 1M 1D Point Classify satellite image pixels’ time Xseries into 24 land cover types

DeepSEA 250K 1D Point Predicting chromatin states and binding
(multi-label) states of RNA-binding sequences

from muscle movement, which is collected using electrodes in the form of wave signals. Each wave
signal is then sampled using a wavelength and frequency prescribed in Côté-Allard et al. (2019) to
produce 2D signals.

FSD50K: Labeling sound events FSD50K (Fonseca et al., 2020) is derived from the larger
Freesound dataset (Fonseca et al., 2017) of Youtube videos with 51,000 clips totaling more than
100 hours of sound. These clips are manually labeled and equally distributed in 200 classes from
the AudioSet ontology (Gemmeke et al., 2017). Each clip could receive multiple labels. Unlike
TIMIT (Garofolo, 1993), FSD50K does not focus exclusively on sounds of spoken language but
includes sound events from physical sources and production mechanisms. The mean average precision
(mAP) is used to evaluate classification results.

Darcy Flow: Solving partial differential equations (PDEs) Our first regression task, Darcy
Flow, focuses on learning a map from the initial conditions of a PDE to the solution at a later
timestep. This application aims to replace traditional solvers with learned neural networks, which can
output a result in a single forward pass. The input is a 2d grid specifying the initial conditions of a
fluid, and the output is a 2d grid specifying the fluid state at a later time, with the ground truth being
the result computed by a traditional solver. We report the mean square error (MSE or `2).

PSICOV: Protein distance prediction PSICOV studies the use of neural networks in the protein
folding prediction pipeline, which has recently received significant attention to the success of methods
like AlphaFold (Jumper et al., 2020). While the dataset and method they use are too large-scale for our
purposes, we consider a smaller set of protein structures to tackle the specific problem of inter-residual
distance predictions outlined in Adhikari (2020b). 2D large-scale features are extracted from protein
sequences, resulting in input feature maps with a massive number of channels. Correspondingly, the
labels are pairwise-distance matrices with the same spatial dimension. The evaluation metric is mean
absolute error (MAE or `1) computed on distances below 8 Å, referred to as MAE8.

Cosmic: Identifying cosmic ray contamination Images from space-based facilities are prone to
corruption by charged particles collectively referred to as "cosmic rays." Cosmic rays on images
should be identified and masked before the images are used for further analysis (Zhang & Bloom,
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Table 2: Performance of NAS and the WRN baselines across the tasks of NAS-Perf-360. Methods
are divided into efficient methods (DenseNAS and fixed WRN) that take 1-10 GPU-hours, more
expensive methods (DARTS and WRN tuned by ASHA) that take 10-100+ GPU-hours, and
specialized methods (Auto-DL and AMBER). All results are averages of three random seeds.

Search Search CIFAR-100 Spherical Darcy Flow PSICOV Cosmic
space algorithm 0-1 error l 0-1 error l relative `2

l MAE8
l FNR l

WRN default 23.35±0.05 85.77±0.71 0.073±0.001 3.84±0.053 51.76±2.09
DenseNAS random 25.49±0.41 71.23±1.65 0.071±0.006 3.70±0.06 70.42±6.07
DenseNAS original 25.98±0.38 72.99±0.95 0.10±0.01 3.84±0.15 79.52±2.20

WRN ASHA 23.39±0.01 75.46±0.40 0.066±0.00 3.84±0.05 37.53±10.16
DARTS GAEA 24.02±1.92 48.23±2.87 0.026±0.001 2.94±0.13 31.15±3.48

Auto-DL DARTS n/a n/a 0.049±0.005 6.73±0.73 99.79±0.02

Search Search NinaPro FSD50K ECG Satellite DeepSEA
space algorithm 0-1 error l mAP h F1 score h 0-1 error l AUROC h

WRN default 6.78±0.26 0.08±0.001 0.57±0.01 15.49±0.03 0.60±0.001
DenseNAS random 8.45±0.56 0.40±0.001 0.58±0.01 13.91±0.13 0.60±0.001
DenseNAS original 10.17±1.31 0.36±0.002 0.60±0.01 13.81±0.69 0.60±0.001

WRN ASHA 7.34±0.76 0.09±0.03 0.57±0.01 15.84±0.52 0.59±0.002
DARTS GAEA 17.67±1.39 0.06±0.02 0.66±0.01 12.51±0.24 0.64±0.02

AMBER ENAS n/a n/a 0.67±0.015 12.97±0.07 0.68±0.01
h / l a higher / lower value of the metric indicates better performance.

2020). The Cosmic task uses imaging data of local resolved galaxies collected from the Hubble
Space Telescope. Inputs and outputs are same-size 2D matrices, with the output predicting whether
each pixel in the input is an artifact of cosmic rays. We report the false-negative rate (FNR) of
identification results.

ECG: Detecting heart disease Electrocardiograms are frequently used in medicine to diagnose
sinus rhythm irregularities. The ECG task is based on the 2017 PhysioNet Challenge (Clifford et al.,
2017), with 9 to 60-second ECG recordings sampled at 300 Hz and labeled using four classes: normal,
disease, other, or noisy rhythms. Recordings are processed using a fixed sliding window of 1,000 ms
and stride of 500 ms. We report the F1-score according to the challenge’s guidelines.

Satellite: Satellite image time series analysis Satellite image time series (SITS) are becoming
more widely available in earth monitoring applications. Our dataset comes from Formosat-2 satellite
images acquired over Toulouse, France (Petitjean et al., 2012). Available in multiple channels, SITS
track the land cover changes over several years as each pixel in the image represents a geographical
region. The goal of the Satellite task is to generate land cover maps for geo-surveying. Specifically,
a series of pixels in a given color channel constitute a time series to be classified into 46 land cover
types.

DeepSEA: Predicting functional effects from genetic sequences Predicting chromatin effects
of genetic sequence alterations is a significant challenge in the field to understand genetic diseases.
DeepSEA (Zhou & Troyanskaya, 2015), provides a compendium of genomic profiles from the
Encyclopedia of DNA Elements (ENCODE) project (Consortium et al., 2004) to train a predictive
model estimating the behavior of chromatin proteins, divided into 919 categories. Due to computation
constraints, we subsample 36 of these categories as per Zhang et al. (2021a) and further take 5%
of the training data for prediction. We report the area under the receiver operating characteristic
(AUROC) following the previous work.

4 EXPERIMENTAL DESIGN

Having detailed our construction of NAS-Perf-360, we now describe a set of experiments to demon-
strate its usefulness for evaluating NAS methods and guiding research on diverse tasks. In this section,
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we first specify the different NAS methods and baselines we compare, followed by the experimental
and reproducibility setup we follow. The resulting evaluations are reported in Table 2, aggregate
performance in Table 3, and performance profiles in Figure 2.

4.1 BASELINES AND SEARCH PROCEDURES

As noted in Section 1, our initial experiments focus on two practitioners with different resource
settings, one with enough compute to tune a WRN and another who can only train it once with the
default hyperparameters. In matching these settings, we focus on two well-known search paradigms:
cell-based NAS (using DARTS (Liu et al., 2019b)) and macro NAS (using DenseNAS (Fang et al.,
2020)). We further compare these approaches to two customized NAS methods: Auto-DeepLab (Liu
et al., 2019a) for 2D dense prediction and AMBER (Zhang et al., 2021b) for 1D prediction. We detail
these approaches below.

Wide ResNet with Hyperparameter Tuning Architectures based on ResNet He et al. (2016) are
a common first choice by practitioners faced with a new domain (Fonseca et al., 2020; Adhikari,
2020b); it is thus a natural source of fixed-architecture baselines for our study. We use the Wide
ResNet variant (Zagoruyko & Komodakis, 2016) with 16 layers and a widen factor of 4, and apply its
original training routine directly for the constrained practitioner. For the other practitioner, we wrap
the training procedure with a hyperparameter tuner, ASHA (Li et al., 2018), an asynchronous version
of Hyperband (Li et al., 2017). Given a range for each hyperparameter, ASHA uniformly samples
configurations and uses brackets of elimination: at each round, each configuration is trained for some
epochs, before the algorithm selects the best-performing portion based on validation metrics. This
procedure is useful for finding suitable hyperparameters in an easy-to-use, automated fashion.

Cell-based Search Using DARTS The first NAS paradigm we consider is cell-based NAS. These
methods first search for a genotype, a cell containing neural operations. During evaluation, an
architecture is constructed by replicating the searched cell and stacking them together. The most
popular search space for this approach is DARTS (Liu et al., 2019b), which assigns one of eight
operations to six edges in two types of cells: “normal” cells preserve the shape of the input while
“reduction” cells downsample it. For dense tasks, we do not use the reduction cell to prevent
introducing a bottleneck. For 1D tasks, all convolutions in the cell are converted from 2D to 1D.
Finally, to adhere to standard ML practices, we do not adapt the standard DARTS pipeline from the
original paper. As this search space has been heavily studied, we use as a search routine a recent
approach, GAEA PC-DARTS (GAEA), that achieves some of the best-known results on CIFAR-10
and ImageNet (Li et al., 2021a). This NAS approach, due to its heavy retraining routine, is compared
to the tuned WRN baseline of the less-resource-constrained practitioner.

Macro NAS Using DenseNAS The second NAS paradigm we consider is macro NAS. Instead of
building from a fixed cell, it requires the specification of a supernet with different inter-connected
blocks. These blocks and connections are then pruned to construct an architecture. For our benchmark,
we choose a recent search space, DenseNAS (Fang et al., 2020), which has near state-of-the-art results
on ImageNet. DenseNAS searches for architectures with densely-connected, customizable routing
blocks to emulate DenseNet (Huang et al., 2017). In our experiments, we use the ResNet-based
search space, DenseNAS-R1, which contains all neural operations of the WRN backbone. For 2D
tasks, we adapt two super networks from the one used for ImageNet as inputs to the search algorithm.
The super network for dense tasks maintains the same spatial dimensions without downsampling to
avoid bottlenecks, and we lower the learning rate for evaluating architectures to prevent divergence.
For transferring to 1D tasks, all network operations are switched from 2D to 1D. Other training
and evaluation procedures are identical to those in the original paper and uniform across all tasks.
DenseNAS is quick to search and evaluate, making it comparable to the fixed WRN baseline.

We apply another search method to the fixed DenseNAS space to study the relative importance of
search algorithms. Random search is implemented through randomly sampling architectures from the
DenseNAS space and validating them after a brief training period of 10 epochs before evaluating the
best performer. To ensure fairness of comparison, we allot equal GPU hours to random search and
regular DenseNAS search, additionally applying a soft constraint that random architecture model
sizes should not surpass DenseNAS searched architecture sizes significantly.
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Table 3: Median rank and performance improvement over WRN across NAS-Perf-360.

Search space WRN DenseNAS DenseNAS WRN DARTS Auto-DL AMBER
Search algorithm default original random ASHA GAEA DARTS ENAS

Median rank 4.0 4.0 4.0 3.5 1.5 6.0† 1.0†

% better than WRN⇤ 0.0% 2.53% 0.0% 0.0% 20.1% -75.3%† 20.0%†

⇤ relative improvement over the default (untuned) WRN baseline
† metric computed only on the subset of three tasks on which the method was evaluated

Domain-specific NAS Baselines: Auto-DL and AMBER To study the importance of search
spaces, we further handpick two domain-specific NAS approaches applicable only to a subset of
the tasks. Using an encoder-decoder architecture, Auto-DeepLab (Auto-DL) (Liu et al., 2019a) is
designed for dense prediction, e.g., semantic segmentation. While the decoder is fixed, Auto-DL
searches for an encoder via first-order DARTS. We evaluate Auto-DL on Darcy Flow, PSICOV, and
Cosmic tasks.

AMBER (Zhang et al., 2021b) aims to automate neural network design for 1D genomic data. This
framework establishes a 12-layer network backbone and parametrizes a long-short term memory
network (LSTM) as a controller to search for suitable 1D operations and residual connections,
following the ENAS (Pham et al., 2018) optimization protocol. At each step, the controller samples
architectures to compute reward based on area under the receiver operating characteristics (AUROC)
before outputting the highest-reward architecture. We evaluate AMBER on the ECG, Satellite, and
DeepSEA tasks.

4.2 EXPERIMENTAL SETUP

Below we discuss the main reporting details of our empirical evaluation.

• Hyperparameter tuning: As detailed in the Appendix, we use the same hyperparameter ranges
across all tasks to tune WRN. The tuning budget is selected to match that of DARTS (GAEA).

• Aggregation Metrics: Table 3 contains the median rank and relative improvement over WRN of
each method for direct comparison via a single number. We also employ performance profiles
(Dolan & Moré, 2002) in Figure 2, an approach that allows an analysis taking into account outliers
while not allowing small differences in performance to dominate; as described in Figure 1 these
curves denote for each ⌧ the fraction of tasks on which a method is no worse than a ⌧ -factor from
the optimal.

• Software and hardware: We adopt the free, open-source software Determined
2 for experiment

management, hyperparameter tuning, and cloud deployment. All experiments are performed on a
single p3.2xlarge instance with an NVIDIA V100 GPU. Costs in GPU-hours are in the appendix.

5 DISCUSSION

We conclude our presentation of NAS-Perf-360 via an analysis that (a) reveals new insights about
the capabilities and robustness of current NAS methods and (b) demonstrates how our benchmark
can enable critical next steps in NAS research. In particular, we start by considering our two
practitioners faced with a choice of spending their limited compute on a (possibly tuned) fixed-
architecture CNN or trying to find a better architecture using NAS. With this study, we investigate
whether modern NAS methods perform well beyond the tasks for which they were designed.
1. A surface-level analysis suggests that under light resource constraints, modern NAS in the form

of DARTS (GAEA) is quite robust to a wide variety of tasks: Table 3 shows it is the highest-
ranked domain-independent method and attains the most significant improvement over the fixed
WRN baseline. The performance profile in Figure 2 (left) also seems favorable, although it is
overtaken by tuned WRN at a higher ⌧ -suboptimality. However, a closer look at 2D point tasks
in Figure 2 (right) reveals that DARTS is quite poor there, despite its design domain being image
classification; in particular, it performs very poorly on NinaPro and FSD50K. Furthermore, on
tasks where it performs well, it can still lag behind expert architectures; for example, on Darcy
Flow, networks that use FNO (Li et al., 2021b) or XD (Roberts et al., 2021) operations do much

2GitHub repository: https://github.com/determined-ai/determined
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Figure 2: Performance profiles on all tasks (left) and 2D point tasks (right). The y-value indicates
the fraction of tasks on which a plotted method’s error is within a multiplicative factor ⌧ of the lowest
error achieved by all plotted methods..

better. Overall, our results suggest that this practitioner can apply NAS and expect to see some
improvement, but also risks catastrophically poor performance (e.g., FSD50K) or not getting
truly state-of-the-art results (e.g., Darcy Flow).

2. Under stronger budget constraints, our experiments strongly suggest that a practitioner should
simply apply the default WRN to their problem rather than undergo the additional complexity
of using DenseNAS, as the latter attains little-to-no improvement over the former in Table 3
and has a usually-worse performance profiles Figure 2. One bright point, however, is the strong
performance of DenseNAS on FSD50K, where it outperforms all methods even while DARTS
(GAEA) fails.

These first experiments suggest that the modern NAS methods are not always robust to diverse
tasks, especially under resource-constrained settings. We believe that NAS-Perf-360’s main roles
as a future benchmark include developing an understanding of the multi-domain performance of
existing approaches and guiding research into better NAS methods. While the latter is beyond
the scope of this paper, our additional experiments demonstrate how NAS-Perf-360 facilitates the
former.
Notably, several results address the question of the relative importance of search space v. search
algorithm. For example, Table 3 shows that on DenseNAS, random search is nearly identical to the
more sophisticated weight-sharing scheme of the original paper; the two algorithms’ performance
profiles are also difficult to distinguish in Figure 2. Furthermore, AMBER—a 1D NAS method
whose search space includes larger-kernel convolutions for handling such tasks—does better than
GAEA even though it uses an older search algorithm (ENAS). These both suggest that search space
design, including the use of a wider variety of operations, may be at least as crucial for success
as the search algorithm. This point is reinforced by example tasks such as Darcy Flow, where
architectures with more exotic operations substantially outperform our best results, as discussed
earlier.
NAS-Perf-360 also reveals failure points of several methods, not just general ones that usually
perform quite well such as DARTS (GAEA) but also the objective-specific approach Auto-DL,
which despite being designed for dense prediction tasks, does poorly on all those considered here.
Understanding when and why these performance drops happen is critical to developing a more
robust NAS that is useful not just on average but in more challenging settings.

6 CONCLUSION

NAS-Perf-360 is a new performance benchmark consisting of ten diverse tasks derived from various
fields of research and practice. It is designed for reproducible research on an academic budget that
will guide the development of NAS methods and other automated approaches towards more robust
performance across different domains. In initial results, we have demonstrated both the need for
such a benchmark and the utility of NAS-Perf-360 specifically for developing new search spaces
and algorithms; we welcome researchers to use its tasks to develop new procedures for automating
ML.
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7 ETHICS STATEMENT

Within our array of tasks, only NinaPro, ECG, and DeepSEA contain human-derived data. Our
chosen subset of NinaPro contains only muscle movement data without any exposure of personal
information. The original experiments to acquire NinaPro data are approved by the ethics com-
mission of the canton of Valais, Switzerland (Atzori et al., 2012). The ECG data derives from an
open challenge and is provided by the medical device company AliveCor, under the GPL license
allowing it for public use. The DeepSEA data derived from ENCODE is part of an international
collaborative effort, which is overseen and funded by the National Human Genome Research
Institute (NHGRI). For other datasets, we have listed the data licenses in the appendix. While we
do not view the specific datasets in NAS-Perf-360 as potential candidates for misuse, the broader
goal of applying NAS to new domains comes with inherent risks that may require mitigation on an
application-by-application basis.

8 REPRODUCIBILITY STATEMENT

The following measures are taken to ensure reproducibility:
1. We store the processed data in AWS S3, and data splits are the same for all experiments.
2. Code is always executed in a fixed Docker container using a pre-built image on Docker

Hub. This guarantees a uniform execution environment and saves users from configuring
dependencies.

3. Via the specification of a random seed, Determined controls several essential sources of
randomness during execution, including hyperparameter sampling and training data shuffling.

4. During training, we validate on the entire validation set, not on a mini-batch, to limit stochas-
ticity.

5. Code and download links of all datasets are available at the anonymized repository: https:
//anonymous.4open.science/r/NAS-Bench-360-26D1
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