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ABSTRACT

Attention-based models trained on protein sequences have demonstrated incredi-
ble success at classification and generation tasks relevant for artificial intelligence-
driven protein design. However, we lack a sufficient understanding of how very
large-scale models and data play a role in effective protein model development.
We introduce a suite of protein language models, named PROGEN2, that are scaled
up to 6.4B parameters and trained on different sequence datasets drawn from over
a billion proteins from genomic, metagenomic, and immune repertoire databases.
PROGEN2 models show state-of-the-art performance in capturing the distribution
of observed evolutionary sequences, generating novel viable sequences, and pre-
dicting protein fitness without additional finetuning. As large model sizes and raw
numbers of protein sequences continue to become more widely accessible, our re-
sults suggest that a growing emphasis needs to be placed on the data distribution
provided to a protein sequence model. We release the PROGEN2 models and code
at https://github.com/anonymized-research/progen2.

1 INTRODUCTION

Proteins are the workhorse of life – performing essential and versatile functions critical to sustain
human health and the environment. Engineering proteins for our desired purposes enables use-cases
in industries across pharmaceuticals, agriculture, specialty chemicals, and fuel. Current tools for
protein engineering are limited and, as a consequence, mainly rely on directed evolution (Arnold,
1998), a process of stochastically mutating a starting/wild-type sequence, measuring each variant,
and iterating until sufficiently optimized for improved function, also referred to as fitness.

Nature as an underlying generative process has yielded a rich, complex distribution of proteins.
Due to exponentially-broken barriers in DNA sequencing, we now collect natural sequences at a
previously-unimaginable pace. In parallel, we have seen machine learning models perform ex-
ceedingly well at capturing data distributions of images and natural language (Saharia et al., 2022;
Brown et al., 2020). In particular, the transformer (Vaswani et al., 2017) has proven to be a pow-
erful language model and can serve as a universal computation engine (Lu et al., 2021) across data
modalities.

Our research moonshot is to build machine learning models that effectively learn from nature and
its underlying principles for functional protein engineering and design. Protein language models
have shown promise in representation learning for classification, regression, and generation pur-
poses (Rives et al., 2021; Rao et al., 2021; 2019; Madani et al., 2020; Meier et al., 2021; Elnaggar
et al., 2020; Brandes et al., 2022; Lin et al., 2022). Along this pursuit, we perform a study on the
effect of very large-scale models and data. In short:

• We train a suite of models ranging from 151M to 6.4B parameters (one of the largest
published for a single protein transformer) on different train sets collectively totaling 1B
protein sequences from genomic, metagenomic, and immune repertoire databases.

• We analyze the generations from universal and family-specific models through predicted
structural and biophysical properties.

• We examine fitness prediction on existing experimental datasets which motivate hypotheses
on the role of data distribution and alignment in protein language modeling.
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2 RELATED WORK

Large-scale language modeling: Language modeling tries to capture the notion that some se-
quences are more likely than others by density estimation. For large language models (LLMs),
transformer models equipped with self-attention mechanisms (Bahdanau et al., 2014) have shown to
be particularly well suited to capture dependency among sequence elements while being capable to
scale vast amounts of model parameters (Kaplan et al., 2020; Hoffmann et al., 2022). In this work,
we adopt causal LLMs in the form of auto-regressive decoders for the modeling of proteins. The
raw amino acid sequences which constitute a protein are considered as observed sequences for the
maximum likelihood-based learning. The problem of conditional protein generation is naturally cast
as a next-token prediction task. Specifically, few-shot learning (Brown et al., 2020) models tasks as
auto-regressive sampling conditional on a small set of examples (or shots). Notably, LLMs possess
the capacity to solve the intended task by increasing the number of parameters without task-specific
fine-tuning of the model. These few-shot abilities appear to emerge under certain parameter thresh-
olds (Wei et al., 2022), which motivates the exploration of such capabilities for protein engineering.

Protein sequence generation: Methods for generating protein sequences that are functional and
have desired properties have recently seen tremendous progress. Simple, traditional methods that
leverage multiple sequence alignments of similar proteins, such as ancestral sequence reconstruction
(Gumulya et al., 2018), have demonstrated the ability to generate useful proteins but are limited
in scope. A host of statistical and machine learning techniques exist to access a larger sequence
space. Most still train on a fixed protein family to capture coevolutionary signals present within
a set of homologous sequences – ranging from direct coupling analysis techniques (Russ et al.,
2020) to generative adversarial networks (Repecka et al., 2021). More versatile models trained
on unaligned and unrelated sequences have emerged (Shin et al., 2021) for functional sequence
design. Language models, in particular, provide a powerful architecture to learn from large sets
of amino acid sequences across families for the purpose of generating diverse, realistic proteins
(Madani et al., 2020; Ferruz et al., 2022). Sequences generated by protein language models (PLMs)
are typically predicted to adopt well-folded structures, despite diverging significantly in sequence
space. PLMs can be further focused on specific families of interest by finetuning on a subset of
relevant proteins. In prior work, finetuning the ProGen model on a set of lysozyme families yielded
proteins retaining functional behavior, and even rivaling that of a natural hen egg white lysozyme
(Madani et al., 2021). Similar strategies have been employed for domain-specific PLMs, such as the
antibody-specific IgLM model (Shuai et al., 2021). By conditioning on chain type and species-of-
origin, IgLM is capable of generating diverse sets of antibodies resembling those of natural immune
repertoires.

Protein fitness prediction: Understanding the functional effects of sequence mutations is critical
for the rational design of proteins. Methods for predicting such effects typically fit into one of two
categories: family-specific models trained on aligned sequences or universal models trained on un-
aligned sequences. Models based on alignments of sequences (Hopf et al., 2017; Riesselman et al.,
2018; Frazer et al., 2021) face several key challenges limiting their application to protein engineer-
ing tasks. First, for proteins with few evolutionary neighbors, the MSA is likely to be shallow and
contain little information about functional constraints. Second, for some families of proteins (such
as antibodies), there are many sequences available, but they are non-trivial to align. Finally, evalua-
tion of novel variants requires that new sequences be aligned to the MSA used for training; this can
be challenging in cases with significant insertions or deletions (indels). These limitations prompted
the development of fitness predictors based unaligned sets of sequences, particularly transformer
models trained on large databases of protein sequences. ESM-1v (Meier et al., 2021) tasks a trans-
former encoder model trained via masked-language modeling with estimating heuristic likelihood
of mutations relative to the wild type sequences. Autoregressive PLMs have also been applied to
fitness prediction (Shin et al., 2021). These models are intrinsically capable of modeling indels, as
well as epistatic mutations. The RITA family of models (Hesslow et al., 2022) demonstrated that
not only do autoregressive PLMs effectively estimate protein fitness, but performance also be further
improved by scaling model capacity. Tranception (Notin et al., 2022) demonstrated that combining
autoregressive language models with retrieval (Borgeaud et al., 2021) capabilities provides a means
of enhancing a generalist model with family-specific information from MSAs at inference.
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Model Name Parameters (N) Test-max90 (ppl) Test-max50 (ppl)

PROGEN2-small 151M 12.9 15.0
PROGEN2-medium 764M 11.2 14.3
PROGEN2-large 2.7B 11.1 14.4
PROGEN2-xlarge 6.4B 9.9 13.9

Table 1: Increasing number of parameters allows the model to better capture the distribution of
observed evolutionary sequences. Performance is measured as the perplexity of held-out test se-
quences at various maximum sequence identity thresholds, i.e. test-max50 is more difficult and
out-of-distribution.

3 METHODS

Model: The family of PROGEN2 models are autoregressive transformers with next-token pre-
diction language modeling as the learning objective trained in various sizes with 151M, 764M,
2.7B, and 6.4B parameters. Table 5 summarizes the model specifications and choice of hyper-
parameters for the optimization such models. We developed and release the library JAXFORMER
(https://github.com/anonymized-research/jaxformer) for efficient scaling of training with model and
data parallelism on TPU. We refer to A.1 for details.

Data: The standard PROGEN2 models are pretrained on a mixture of Uniref90 (Suzek et al., 2015)
and BFD30 (Steinegger & Söding, 2018) databases. Uniref90 are cluster representative sequences
from UniprotKB at 90% sequence identity. The BFD30 dataset is approximately 1/3 the size of
Uniref90, majority from metagenomic sources, commonly not full-length proteins, and clustered at
30% sequence identity. For the PROGEN2-BFD90 model, Uniref90 is mixed with representative
sequences with at least 3 cluster members after clustering UniprotKB, Metaclust, SRC, and MERC
at 90% sequence identity. This BFD90 dataset is approximately twice the size as Uniref90. To train
the antibody-specific PROGEN2-OAS, we collected unpaired antibody sequences from the Observed
Antibody Space (OAS) database (Olsen et al., 2022a). We refer to A.2 for details.

Evaluation: Two test sets at differing levels of difficulty were constructed to examine language
modeling performance. Test-max90 and Test-max50 correspond to representative sequences from
held-out clusters from the Uniref90+BFD30 set of sequences at 90% and 50% sequence identity
respectively.

To investigate the properties of sequences generated by the PROGEN2 family of models, we sampled
complete protein sequences in three settings: universal generation after pretraining, fold-specific
generation after finetuning, and antibody generation after pretraining on only antibody sequences.
For universal protein generation, we sampled 5K sequences from the PROGEN2-xlarge model. To
understand the effects of architecture-specific finetuning on sequence generation, we compared 10K
sequences produced by the PROGEN2-large model after one and two epochs of finetuning. An-
tibody sequences were generated using the PROGEN2-OAS model after pretraining on a set of
variable-fragment sequences from the OAS (Olsen et al., 2022a). Sequences were generated us-
ing two prompting strategies: unprompted (52K sequences) and initial-residue prompted (470K
sequences).

To assess zero-shot fitness prediction ability, we evaluate on three sets of experimentally-measured
protein landscapes: narrow, wide, and antibody-specific. The narrow landscape set is comprised
of the Riesselman et al. (2018) datasets as provided by the authors of Hesslow et al. (2022) and
generally includes variants that are one or two substitutions away from a given wild-type/natural
sequence. The wide landscape set involves larger edit distances and are comprised of the Dallago
et al. (2021) proteins, chorismate mutase proteins from Russ et al. (2020), and the GFP test set
proteins from Rao et al. (2019). Lastly, for the antibody-specific landscape, we compiled a dataset
consisting of binding, expression, and thermal stability measurements for variants derived from eight
distinct antibodies. We refer to A.3 for details.

3

https://github.com/anonymized-research/jaxformer


Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
TMscore

40

50

60

70

80

90

100
pL

DD
T

13.5% Seq ID
0.629 TMscore
to PDB 5N8P-A

NaturalGenerated

10.0% Seq ID
0.593 TMscore
to PDB 3WPF-A

NaturalGenerated

4.3% Seq ID
0.204 TMscore
to PDB 6OAW-A

NaturalGenerated

A B

C

D

Figure 1: Generating from a pretrained language model trained on a universal protein dataset. (A)
Relationship between AlphaFold2 prediction confidence (pLDDT) and similarity to natural protein
structures in the PDB (TMscore). (B-D) Comparison of predicted structures for generated sequences
(left, colored by pLDDT) and their closest structural counterparts in the PDB (right, gray). Se-
quence identities and TMscores are calculated against the closest structural matches in the PDB.
(B) Solenoid-fold protein generated by the model, with very low sequence identity and high struc-
tural similarity to a toll-like receptor protein. The generated protein replaces several alpha helices
on the outer edge of the fold with beta sheets, resulting in a looser curvature compared to that of
its most similar natural counterpart. (C) Multi-domain α+β-fold generated protein with very low
sequential or structural similarity to natural proteins. (D) Generated protein resembling prokaryotic
surface protein. The generated protein contains more ordered secondary structure (uniform-length
beta sheets, shorter loops) than other beta-roll folds found in the PDB.

4 RESULTS

4.1 CAPTURING THE DISTRIBUTION OF OBSERVED PROTEINS

We first evaluate the capacity of PROGEN2 to capture the distribution of natural sequences. In partic-
ular, we focused on its ability to predict unobserved natural sequences, quantifying performance in
terms of perplexity on a heldout test set. We find that larger models yield substantially lower perplex-
ities, consistent with the idea that, despite massive model size, we are far from the overfitting regime
(Table 1 and Figure 4A). For a sequence x = (x1, x2, . . . , xn) of n tokens, the perplexity is cal-
culated as ppl(x) = exp

(
− 1

n

∑n
i=1 ln p(xi)

)
= exp

(
− 1

n

∑n
i=1 ln(softmax(logits(x)[i]))[xi]

)
where logits() maps each token xi to a vector of logit values under the causal language model p.
We report the average perplexity over the held-out partitions of the datasets.

We caution, however, that these results only reflect the capacity of the model to capture the training
distribution p0 from which the data was drawn, not necessarily relevant measures of molecular
fitness. To be more precise and borrowing notation from Weinstein et al. (2022), let p∞ be the
stationary distribution of the evolutionary process, such that log p∞ is proportional to log fitness
log f . Phylogenetic effects, as well as other imbalances in the dataset, can result in a situation where
p0 ̸= p∞, and so accurate estimation of the training data distribution p0 does not necessarily imply
accurate estimation of p∞ or (consequently) f .
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Figure 2: Generating from a language model finetuned on two-layer sandwich architecture pro-
teins. (A-D) Effect of finetuning duration on the sequential and structural similarity of generated
proteins to natural proteins. Extended finetuning (two epochs) yields generated sequences more
similar to those observed in nature. (A) Higher sampling temperature generates more diverse pro-
tein sequences. (B) Higher nucleus-sampling probability produces greater sequence diversity. (C) In
general, lower sampling temperature results in sequences adopting structures more similar (higher
TMscore) to those found in the PDB. (D) Lower nucleus sampling probability yields generations
with reduced structural diversity. (E-G) Comparison of predicted structures for sequences generated
by the finetuned language model (colored by pLDDT) and the most structurally similar proteins
in the PDB (transparent). Ligands bound by the natural proteins are shown in pink. (E) Gener-
ated protein adopting a similar fold to a natural protein binding a flavin mononucleotide ligand.
The helical secondary structure of the generated protein matches that of the natural protein near
the ligand-binding site, but a shorter loop restricts the space available for binding. (F) Generated
protein closely resembling a natural protoporhyrin-binding protein. The structure of the generated
protein appears to properly accommodate the ligand, but is predicted with low confidence in the
unstructured loop regions near the binding site. (G) Generated protein similar to a natural flavin-
mononucleotide-binding protein. The binding site of the generated protein is confidently predicted
and reserves appropriate space for the ligand.

4.2 GENERATION ABILITY

Given the capacity of the PROGEN2 family of models for capturing the distribution of observed
evolutionary sequences, we next assessed the ability of the models to generate novel sequences.
We evaluated sequence generation in three settings: universal protein generation from pretraining,
fold-specific generation after finetuning, and antibody generation after domain-specific pretraining.

Prior work has demonstrated that sequences generated by PLMs can adopt a wide variety of folds,
often with significant deviation in sequence from observed proteins (Madani et al., 2020; Ferruz
et al., 2022). To assess the generative capacity of PROGEN2 models, we generated 5,000 sequences
with the PROGEN2-xlarge model. The three-dimensional structure of each sequence was predicted
using AlphaFold2 (Jumper et al., 2021). For each structure, we identified the most structurally sim-
ilar natural protein the in the PDB (Berman et al., 2000) using Foldseek (van Kempen et al., 2022).
In Figure1, we show the relationship between structural similarity to natural proteins (TMscore) and
AlphaFold2 prediction confidence (pLDDT). The majority of structures were confidently predicted
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(median pLDDT of 90.0) and had structural homologs in the PDB (median TMscore of 0.89). How-
ever, closer inspection of predicted structures revealed unique several characteristics of the generated
sequences. In Figure1B, we show a generated sequence adopting a solenoid fold. The closest struc-
tural homolog in the PDB is the mouse toll-like receptor 9 (PDB ID 3WPF-A), a similarly folding
solenoid protein. Interestingly, although the inner face of the generated solendoid fold is composed
entirely of beta sheets (as in the natural protein), the outer face combines both alpha helices and
beta sheets, resulting in a larger central angle (wider curvature). Further, despite adopting similar
folds, the sequence identity between the generated and natural proteins is only 10.0%. For another
generated sequence, adopting a multi-domain α+β-fold, no structurally similar proteins were found
in the PDB (Figure1C). The most similar natural protein was an uncharacterized protein (PDB ID
6OAW-A), with a low TMscore of 0.204 and little sequence overlap (4.3% identity). In a final case
study, we highlight a generated sequence with a predicted structure resembling a prokaryotic RsaA
surface protein (PDB ID 5N8P-A). Both structures adopt a similar β-roll fold (TMscore 0.629) yet
have a low level of sequence identity (13.5%). Interestingly, we observe that the generated protein
resembles an idealized version of the natural protein, with uniform beta sheets and connecting loops.
Taken together, these examples illustrate some of the unique properties of sequences generated by
PROGEN2. While the generated sequences often fold into structures resembling those produced by
nature, they frequently do so with significant sequence deviations, and may adopt novel folds in
some cases.

Next, we considered generation from a model finetuned on protein sequences adopting a common
structural architecture. The PROGEN2-large model was finetuned for two epochs on 1M sequences,
from Gene3D (Lewis et al., 2018) and CATH (Sillitoe et al., 2021), adopting a two-layer sandwich
architecture (CATH 3.30). To understand the effects of extended finetuning, we generated 10,000
sequences using the model parameters after the first and second epoch of finetuning. For all gen-
erated sequences, we calculated the sequence identity against the training dataset using MMseqs2
(Steinegger & Söding, 2017). As expected, we observed higher similarity to observed evolution-
ary sequences with extended finetuning (Figure2A-B). Among sequences generated with the same
model checkpoints, sampling parameters are strongly correlated with sequence novelty (i.e., higher
sampling temperature or nucleus probability yields lower sequence identity). To assess the effect
of sampling parameters on structure diversity within the common architecture, we predicted struc-
tures for all 20,000 sequences with AlphaFold2 and calculated TMscores against the PDB using
Foldseek. A similar trend emerged, with more restrictive sampling parameters typically yielding
structures more closely resembling natural proteins (Figure2C-D). Among the more novel struc-
tures, the primary source of diversity is in the ligand-binding regions, while the non-binding regions
resemble natural proteins (Figure2E-G). In two such cases, the ligand-binding region is less con-
fidently predicted by AlphaFold2 and features rearrangements as compared to the closest natural
homologs (Figure2E-F). Interestingly, in both cases the predicted structures present a clear void
suitable for a ligand, and even mimic the proximal secondary structures of natural proteins. The
lower prediction confidence for these regions could be due to the truncated AlphaFold2 prediction
process (one recycle) or the ligand-agnostic nature of the model itself. In another case, the predicted
structure of the generated sequence confidently recapitulates the ligand-binding region (Figure2G).
These results demonstrate that the sequences generated by a finetuned model sample diversity at
functional regions, while maintaining the common architecture of the training dataset.

Generation of antibody sequences is of particular interest for construction of libraries for therapeutic
discovery (Shin et al., 2021; Shuai et al., 2021). However, only relatively small generative models
have been trained for this task to date. We investigated the properties of antibody sequences gen-
erated by a 764M parameter model pretrained on only natural antibodies. First, we generated 52K
non-redundant antibody sequences with the pretrained model. However, experimental limitations
of sequencing studies result in over half of antibody sequences in the OAS being truncated at the
N-termini by 15 or more residues (Olsen et al., 2022b). As such, direct generation from the model
yields sequences mirroring the training distribution, rather than fully formed antibody sequences. To
overcome this bias in the data and produce full-length antibody sequences, we initiated generation
with a three-residue motif commonly found at the beginning of human heavy chain sequences (EVQ)
(Shuai et al., 2021). Using this prompting strategy, we generated an additional 470K full-length an-
tibody sequences. In Figure3A-B, we compare the sequence similarity of unprompted and prompted
generations to the training distribution. Notably, the prompted sequences share significantly greater
sequence identity with the training distribution, likely due to the inclusion of the highly conserved
FW1 region that is frequently absent in the N-terminally-truncated unprompted sequences. Intrigu-
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Figure 3: Generating from a pretrained antibody-specific language model. Two strategies were ex-
plored for generation of antibody sequences. For unprompted generation, sequences were generated
directly by the model without intervention, while for prompted generation the sequence is initialized
with three residues (EVQ) commonly observed in human heavy chain antibodies. (A-B) Compari-
son of sequence identity to the training dataset for unprompted and prompted generations. Prompted
generation yields full antibody sequences, resulting in higher sequence identity. (A) Interestingly,
higher sampling temperature tends to produce sequences more similar to the training dataset. (B)
Lower nucleus sampling probability yields sequences more closely matching the training dataset, as
expected. (C-D) Impact of sampling parameters on aggregation propensity of generated sequences.
For both temperature sampling (C) and nucleus sampling (D), less restrictive sampling results in
lower aggregation propensity for generated sequences. (E-F) Impact of sampling parameters on sol-
ubility of sequences. For both temperature sampling (E) and nucleus sampling (F), less restrictive
sampling results in more soluble sequences. (G-H) Likelihood ranking of generated antibody se-
quences with the PROGEN2-base language model. (G) Aggregation propensity is not significantly
reduced among the top-50% ranked antibody generations. (H) Solubility is improved by selecting
the top 50% of ranked antibody generations.

ingly, we also observe an inverse relationship between more restrictive sampling parameters (lower
temperature, higher nucleus probability) and sequence identity to the training dataset.

Potential antibody therapeutics often require extensive optimization to improve their physical prop-
erties. Collectively referred to as developability, these properties include thermal stability, expres-
sion, aggregation propensity, and solubility (Raybould et al., 2019). Here, we focused on quantify-
ing the aggregation propensity and solubility of generated sequences according to their SAP scores
(Chennamsetty et al., 2010) and CamSol-intrinsic profiles (Sormanni et al., 2015). We found that
for both aggregation propensity and solubility, sequences generated with less restrictive parameters
display improved developability (Figure3C-F). Given the effective zero-shot predictive capabilities
of PLMs (Hesslow et al., 2022; Notin et al., 2022), we also investigated whether a univerally pre-
trained model could be used to filter generated antibody libraries and improve their developability
profiles. In Figure3G-H, we compare the aggregation propensity and solubility of the full set of gen-
erated sequences with the top-50% as scored by the PROGEN2-base model. Among the top-ranked
sequences, aggregation propensity improves only marginally, while the solubility of the sequences
shows a favorable shift. These results provide meaningful guidance for generation of antibody se-
quence libraries with PLMs. In practice, generating with less restrictive sampling parameters and
filtering with a universal PLM should provide the most developable set of sequences.
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model PROGEN2-
small

PROGEN2-
base

PROGEN2-
large

PROGEN2-
xlarge

PROGEN2-
ensemble

average ρ 0.456 0.505 0.485 0.476 0.518

model RITA-XL EVE Transception
(no retrieval)

Transception
(retrieval)

MSA
Transformer

ESM-1v
(single)

average ρ 0.443 0.511 0.447 0.503 0.476 0.475

Table 2: Zero-shot fitness prediction on narrow experimentally-measured fitness landscapes. PRO-
GEN2-small outperforms an order of magnitude larger RITA-XL and PROGEN2-base is the best
performing PROGEN2 size– indicating larger model capacity does not always translate to improved
predictive performance. PROGEN2 models outperform or match other baseline methods across a va-
riety of modeling strategies–suggesting the distribution of observed evolutionary sequences provided
to the model, along with its inherent biases, likely plays a significant role. The average spearman is
reported with data and baselines provided by Hesslow et al. (2022)

4.3 ZERO-SHOT FITNESS PREDICTION

Generative models for protein sequence design should ideally learn a representation that aligns with
our desired functional attributes. Experimental techniques in the wet laboratory have allowed for the
collection of protein libraries that associate a given sequence to one or many functional scalar values,
which describes a fitness landscape. We examine how experimentally-measured fitness landscapes
correlate with a generative model’s likelihood in a zero-shot manner, meaning there is no additional
finetuning in a supervised setting with assay-labeled examples or an unsupervised setting with a
focused set of homologous sequences.

For a proper comparison to Hesslow et al. (2022)’s models with a similar architecture to PROGEN2
yet trained on a different data distribution, we first characterize zero-shot performance on narrow fit-
ness landscapes from Riesselman et al. (2018) which is comprised mainly of single substitution deep
mutational scan experiments. We observe in Table 2 that our smallest model (PROGEN2-small),
with an order of magnitude less parameters to RITA-XL, exhibits higher average performance across
zero-shot tasks, indicating the importance of pretraining data distributions. In contrast to RITA,
the PROGEN2 training data is a mixture comprised of an identity-reduced set of sequences from
Uniref along with sequences from metagenomic sources. Our best PROGEN2 model outperforms
or matches all other baselines spanning a variety of differing modeling strategies– amplifying the
importance of understanding what set of sequences are provided to the model for training.

Intriguingly, we find that as model capacity increases, performance at zero-shot fitness prediction
(averaged across all datasets in the narrow landscape) peaks at 764M parameters (PROGEN2-base)
before decreasing with larger and larger models (PROGEN2-large and PROGEN2-xlarge). This
stands in contrast to model perplexity, which improves systematically with model scale (Table 1,
Figure 4A). Our results are in line with Weinstein et al. (2022) where the authors show that when
p0 ̸= p∞, fitness estimates from misspecified models can systematically outperform fitness esti-
mates from well-specified models (even in the limit of infinite data), by projecting the data distribu-
tion p0 onto a model class closer to p∞ than p0 itself. Intuitively, this result says that phylogenetic
biases and other distortions in the dataset can be partially corrected for by using a relatively small
but well-chosen model, which is capable of describing the key features present in real fitness land-
scapes but is not capable of exactly matching the data distribution. Our results provide the first
evidence that this effect can hold not only in the context of single protein family datasets but also in
the context of large-scale datasets containing evolutionarily diverse proteins, and using large-scale
transformer models.

Although bigger models may not translate into better zero-shot fitness performance in general, they
may still have advantages in certain cases. Most of the available fitness assays to which we compare
focus on well-studied proteins with large numbers of evolutionarily similar sequences, and measure
the fitness/functionality of mutants only one or two mutations away from a wild-type sequence. In-
tuitively, regions of sequence space with very low probability under p0 are likely to be especially
poorly described with smaller models, and so in these regions both fitness estimation and generation
may suffer. Empirically, we find some suggestive evidence that larger models outperform smaller
models at fitness estimation in wider landscapes where sequences are farther from any natural se-
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dataset [metric] PROGEN2-small PROGEN2-base PROGEN2-large PROGEN2-xlarge

AAV [AUC] 0.59 0.62 0.65 0.68
GFP [AUC] 0.51 0.64 0.84 0.84
CM [AUC] 0.68 0.72 0.66 0.64
GB1 [top100avg] 0.01 0.01 0.24 0.85

Table 3: Zero-shot fitness prediction on wider experimental landscapes. Larger model capacity
may translate to benefits for landscapes involving higher edit distances or low-homology settings.
Particularly for GB1 (a low-homology, epistatic landscape), the largest model may demonstrate
emergent behavior in finding top ranked sequences.

antibody property PROGEN2-
small

PROGEN2-
base

PROGEN2-
large

PROGEN2-
xlarge

PROGEN2-
OAS

binding [avg ρ] 0.44 0.41 0.42 0.40 0.37
general [avg ρ] 0.61 0.73 0.73 0.74 0.66

Table 4: Zero-shot fitness prediction on antibody-specific landscapes. Using redundancy-reduced
proteins from immune repertoire sequencing studies, OAS Olsen et al. (2022a), does not lead to
better fitness prediction for antibodies. In particular, we examine antibody fitness predictive perfor-
mance for binding KD values and general protein properties including expression quality and TM

melting temperatures. The models trained on universal protein databases are better at predicting
general properties as compared to binding affinity. Surprisingly, the binding prediction performance
is considerably high considering the associated antigen is not provided to the model.

quence, Table 3. In particular for the GB1 library, a challenging low-homology protein mutated at
positions with non-linear epistasis, our largest models may exhibit emergent behavior (Wei et al.,
2022) in zero-shot identification of the highest fitness variants.

On antibody-specific landscapes, our results again indicate more attention needs to be placed on
the distribution of sequences provided to a model during training. We examine the zero-shot fit-
ness prediction of binding (KD) and general properties (expression and melting temperature TM )
of antibodies in Table 4. Samples from immune repertoire sequencing studies seem like an intu-
itive choice for learning powerful representations useful for antibody fitness prediction tasks (Leem
et al., 2022; Ruffolo et al., 2021). However, our PROGEN2-OAS model performs poorly as com-
pared to pretrained models trained on universal protein databases. Curiously, the binding prediction
performance is non-negligible and may be useful in practical antibody engineering campaigns, even
though the corresponding antigen is not provided to the model for likelihood calculation.

5 CONCLUSION

Protein language models may enable advances in protein engineering and design to solve critical
problems for human health and the environment. However, there are many open questions for the
field that remain. In our study, the results suggest we can continue to scale model size (>6B parame-
ters) and see appropriate improvements in fitting the distribution of natural sequences. Large protein
language models can generate libraries of viable sequences that expand the sequence and struc-
tural space of natural proteins. The test-max50 and wide fitness landscape results suggest that scale
may particularly show advantages for out-of-distribution, difficult, or tail-end distribution problems.
However, our other zero-shot fitness prediction results indicate we need better alignment with respect
to data distribution and desired functional predictive ability. Simply using raw sequences as they are
collected or reducing redundancy through sequence alignment clustering may not be enough. Worth
noting, fitness as defined as an average spearman across the multiple experimental wet lab datasets
in this study comes with its own set of biases and may not be the only reliable factor for evaluation
of models for protein engineering. We refer the reader to (Dallago et al., 2021; Yang et al., 2022) for
further discussion. Lastly, we provide our suite of PROGEN2 models available to enable AI-driven
protein engineering research at https://github.com/anonymized-research/progen2.
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Ethics Statement: Predicting the fitness of a protein sequence and capturing the distribution of
natural proteins for generative purposes could be a powerful tool for protein design. If our tech-
nique or a future iteration thereof is adopted broadly, care should be taken in terms of the end
use-cases of these designed samples and downstream effects to ensure safe, non-nefarious, and ethi-
cal applications. For projects in any domain, active oversight during project initiation, experimental
optimization, and deployment phases should be put in place to ensure safe usage and limitation of
unintended harmful effects.
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Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.
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A APPENDIX

A.1 MODEL PARAMETERS

Our models are autoregressive transformers with next-token prediction language modeling as the
learning objective. The family of PROGEN2 models is trained in various sizes with 151M, 764M,
2.7B, and 6.4B parameters.

The architecture follows a standard transformer decoder with left-to-right causal masking. For the
positional encoding, we adopt rotary positional encodings (Su et al., 2021). For the forward pass,
we execute the self-attention and feed-forward circuits in parallel for improved communication over-
head following (Wang & Komatsuzaki, 2021), that is, xt+1 = xt +mlp(ln(xt + attn(ln(xt)))) is
altered to xt+1 = xt + attn(ln(xt)) + mlp(ln(xt)) for which the computation of self-attention,
attn(), and feed-forward, mlp(), with layer-norm, ln(), is simultaneous.

Table 5 summarizes the model specifications and choice of hyper-parameters for the optimization
such models. The choice of the hyper-parameters was informed by Brown et al. (2020), however,
the number of layers is reduced with a small number of self-attention heads of relatively high di-
mensionality to improve overall utilization of the TPU-v3 compute. As explored in Brown et al.
(2020); Wang & Komatsuzaki (2021); Nijkamp et al. (2022), these variations introduce insignificant
degradation of perplexity for sufficiently large models, while significantly improving computational
efficiency.

Model

Hyper-parameter PROGEN2-small PROGEN2-medium PROGEN2-base PROGEN2-large PROGEN2-xlarge

Number of params 151M 764M 764M 2.7B 6.4B
Number of layers 12 27 27 32 32
Number of heads 16 16 16 32 16
Head dimensions 64 96 96 80 256
Context length 1,024 1,024 2,048 1,024 1,024

Batch size 500k 500k 500k 500k 1M
Learning rate 6.0e-4 2.5e-4 2.0e-4 0.8e-4 0.1e-4
Weight decay 0.1 0.1 0.1 0.1 0.1
Grad norm clip 1.0 1.0 0.8 0.8 0.8
Warm-up steps 3,000 3,000 10,000 10,000 10,000
Total steps 350,000 350,000 400,000 400,000 350,000

Table 5: Choice of hyper-parameters for model specification and optimization for the family of
PROGEN2 causal language models for protein engineering.

The scaling of large language models requires data and model parallelism. Google’s TPU-v3 hard-
ware with a high-speed toroidal mesh interconnect naturally allows for efficient parallelism. To
efficiently utilize the hardware, the training of the models is implemented in JAX Bradbury et al.
(2018). For parallel evaluation in JAX the pjit()1 operator is adopted. The operator enables a
paradigm named single-program, multiple-data (SPMD) code, which refers to a parallelism tech-
nique where the same computation is run on different input data in parallel on different devices.2
Specifically, pjit() is the API exposed for the XLA SPMD partitioner in JAX, which allows a given
function to be evaluated in parallel with equivalent semantics over a logical mesh of compute.

Our library JAXFORMER recruits a designated coordinator node to orchestrate the cluster of TPU-
VMs with a custom TCP/IP protocol. For data parallelism, the coordinator partitions a batch and
distributes the partitions to the individual TPU-VMs. For model parallelism, a partitioning scheme
is adopted where parameters are sharded across MXU cores inside a physical TPU-v3 board and
replicated across boards following Shoeybi et al. (2019); Wang & Komatsuzaki (2021).

1https://jax.readthedocs.io/en/latest/_modules/jax/experimental/pjit.
html

2https://jax.readthedocs.io/en/latest/jax-101/06-parallelism.html
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For the pre-training of the PROGEN2 models, Table 5 summarizes the hyper-parameters. We adopt
the Adam (Kingma & Ba, 2015) optimizer with (β1, β2, ϵ) = (0.9, 0.999, 1e−08) and global gradi-
ent norm clipping (Pascanu et al., 2013) of 0.8 and 1.0. The learning rate function over time follows
GPT-3 (Brown et al., 2020) with warm-up steps and cosine annealing.

Notably, the cross-entropy appeared to diverge from the projected power-law relation over time when
following standard configurations detailed in Brown et al. (2020). In particular, an increasing the
global norm of the gradient as an indicator for a divergence from the expected log-log linear behavior
of cross-entropy over time was observed. Decreasing the learning rate, increasing weight-decay (or
equivalently ℓ2-regularization under re-parameteriztation) and decreasing the gradient norm clipping
factor resulted in a near-constant global norm of the gradient which stabilized training.

For the fine-tuning of the PROGEN2 models, the training is continued from a converged model. The
state of the optimizer is re-initialized such Adam’s moving averages for the first and second moment
estimators are set to zero. The learning rate decay function is adjusted such that initial learning-rate
is decreased by a factor of 5. The fine-tuning covers at most two epochs over the fine-tuning dataset
to avoid over-fitting.

A.2 TRAINING DATA

The standard PROGEN2 models are pretrained on a mixture of Uniref90 (Suzek et al., 2015) and
BFD30 (Steinegger & Söding, 2018) databases. Uniref90 are cluster representative sequences from
UniprotKB at 90% sequence identity. The BFD30 dataset is approximately 1/3 the size of Uniref90,
majority from metagenomic sources, commonly not full-length proteins, and clustered at 30% se-
quence identity. For the PROGEN2-BFD90 model, Uniref90 is mixed with representative sequences
with at least 3 cluster members after clustering UniprotKB, Metaclust, SRC, and MERC at 90%
sequence identity. This BFD90 dataset is approximately twice the size as Uniref90.

To train the antibody-specific PROGEN2-OAS, we collected unpaired antibody sequences from the
Observed Antibody Space (OAS) database (Olsen et al., 2022a). OAS is a curated collection of
1.5B antibody sequences from eighty immune repertoire sequencing studies, which contains heavy
and light chain sequences from six species (humans, mice, rats, camel, rabbit, and rhesus). The
sequences in OAS possess a significant degree of redundancy, due both to discrepancies in the sizes
of its constituent studies, as well as the innate biological redundancy of antibody sequences within
organisms. To reduce this redundancy, we clustered the OAS sequences at 85% sequence identity
using Linclust (Steinegger & Söding, 2018), yielding a set of 554M sequences for model training.
Alignment coverage in Linclust was calculated with respect to the target sequence (”cov-mode 1”),
with all other parameters set to their default values.

All samples are provided to the model with a 1 or 2 character token concatenated at the N-terminal
and C-terminal side of the sequence. Each sequence is then provided as-is and flipped. For a given
batch, proteins are concatenated with others to fill the maximum token length during training.

A.3 EVALUATION METHODS

Two test sets at differing levels of difficulty were constructed to examine language modeling perfor-
mance. Test-max90 and Test-max50 correspond to representative sequences from held-out clusters
from the Uniref90+BFD30 set of sequences at 90% and 50% sequence identity respectively.

To investigate the properties of sequences generated by the PROGEN2 family of models, we sampled
complete protein sequences in three settings: universal generation after pretraining, fold-specific
generation after finetuning, and antibody generation after pretraining on only antibody sequences.
For universal protein generation, we sampled 5,000 sequences from the PROGEN2-xlarge model.
To understand the effects of architecture-specific finetuning on sequence generation, we compared
10,000 sequences produced by the PROGEN2-large model after one and two epochs of finetuning.
In both generation settings, we varied the sampling temperature and nucleus sampling probability
to produce a diverse set of sequences. Structures were predicted for a subset of generated sequences
using AlphaFold2 (Jumper et al., 2021), and the similarity to known structures in the PDB was
measured with Foldseek (van Kempen et al., 2022).
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Antibody sequences were generated using the PROGEN2-OAS model after pretraining on a set of
variable-fragment sequences from the OAS (Olsen et al., 2022a). Sequences were generated us-
ing two prompting strategies: unprompted (52K sequences) and initial-residue prompted (470K
sequences). For initial-residue prompting, we began generation with a three-residue sequence mo-
tif commonly observed in human heavy chain sequences (EVQ). For both prompting strategies, we
generate a diverse set of sequences by varying the sampling temperature and nucleus sampling prob-
ability. Structures for all generated antibody sequences were predicted using IgFold (Ruffolo et al.,
2022). To investigate the therapeutic developability of generated antibody sequences, aggregagation
propensity (Chennamsetty et al., 2010) and solubility (Sormanni et al., 2015) were calculated for all
sequences.

To assess zero-shot fitness prediction ability, we evaluate on three sets of experimentally-measured
protein landscapes: narrow, wide, and antibody-specific. The narrow landscape set is comprised
of the Riesselman et al. (2018) datasets as provided by the authors of Hesslow et al. (2022) and
generally includes variants that are one or two substitutions away from a given wild-type/natural
sequence. The wide landscape set involves larger edit distances and are comprised of the Dallago
et al. (2021) proteins, chorismate mutase proteins from Russ et al. (2020), and the GFP test set
proteins from Rao et al. (2019).

Lastly, for the antibody-specific landscape, we compiled a dataset consisting of binding, expression,
and thermal stability measurements for variants derived from eight distinct antibodies. We collected
expression and antigen-binding enrichment measurements for variants of the anti-VEGF g6 anti-
body from a DMS study (Koenig et al., 2017). From a second DMS study, we collected binding
enrichment measurements for variants of the d44 anti-lysozyme antibody (Warszawski et al., 2019).
Binding affinity (KD) and thermal stability measurements (TM ) for the remaining six antibodies
(C143, MEDI8852UCA, MEDI8852, REGN10987, S309, and mAb114) were drawn from a recent
study on antibody affinity maturation using pretrained language models (Hie et al., 2022). We com-
bined measurements for the mAb114 and mAb114UCA antibodies from the original study into a
single fitness dataset because the parent sequences shared significant overlap.

A.4 SEQUENCE GENERATION

To investigate the properties of sequences generated by the PROGEN2 family of models, we sam-
pled complete protein sequences in three settings: universal generation after pretraining, fold-
specific generation after finetuning, and antibody generation after pretraining on only antibody
sequences. For universal protein generation, we sampled 5,000 sequences from the PROGEN2-
xlarge model. A diverse set of sequences was sampled using a Cartesian product of tempera-
ture (T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus sampling (P ∈ {0.5, 0.7, 0.9, 1.0}) parameters.
To understand the effects of architecture-specific finetuning on sequence generation, we com-
pared the sequences produced by the PROGEN2-large model after one and two epochs of fine-
tuning. Using a similar strategy as for universal protein generation, 10,000 sequences were gener-
ated using a Cartesian product of temperature (T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus sampling
(P ∈ {0.7, 0.9, 1.0}) parameters for both model checkpoints. The structures of all generated se-
quences were predicted with AlphaFold2 (Jumper et al., 2021). For universal generations from the
pretrained model, structures were predicted using ColabFold (Mirdita et al., 2022) with twelve recy-
cles (other parameters set to their default values). For generations after finetuning, structures were
predicted using DeepMind’s implementation of AlphaFold2 with single-sequence inputs (no MSAs),
structural templates from the PDB (Berman et al., 2000), and only one recycle. All structures were
predicted with the full five-model ensemble (using the pTM models) and the top-ranked structures
for each sequence were considered for structural analysis. Similarity of predicted structures to ob-
served proteins in the PDB was measured by calculating the TMscore (Zhang & Skolnick, 2004)
using Foldseek (van Kempen et al., 2022). For universal generations, we report the sequence iden-
tity against the most structurally similar protein reported by Foldseek. For finetuned generations,
we calculated the sequence identity against the finetuning dataset using MMseqs2 (Steinegger &
Söding, 2017).

Antibody sequences were generated using the PROGEN2-OAS model after pretraining on a set
of variable-fragment sequences from the OAS. We evalauted sequences generated by the model
with and without initial-residue prompting. A set of 52K unprompted sequences was gener-
ated using sampling parameters from a Cartesian product of temperature (T ∈ {0.2, 0.4, 0.6})
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and nucleus sampling probability (P ∈ {0.5, 0.7, 0.9, 1.0}). An additional 470K full-length se-
quences were generated by initializing the sequence with a three-residue motif commonly observed
in human heavy chain antibody sequences (EVQ). Prompted sequences were similarly generated
using a Cartesian product of temperature (T ∈ {0.2, 0.4, 0.6, 0.8, 1.0}) and nucleus sampling
(P ∈ {0.5, 0.7, 0.9, 1.0}) parameters. The sequence identity of generated sequences against the
training dataset was calculated with MMseqs2 (Steinegger & Söding, 2017). IgFold (Ruffolo et al.,
2022) was used to predict structures for all generated antibody sequences. The full four-model
ensemble of IgFold models was used for predictions, with PyRosetta (Chaudhury et al., 2010) re-
finement applied to model outputs. Aggregation propensities of generated sequences were measured
by calculating the SAP score (Chennamsetty et al., 2010) of the predicted structures. Solubility pro-
files were calculated based on sequence using the public CamSol-intrinsic (Sormanni et al., 2015)
web server.

A.5 ZERO-SHOT PREDICTION RESULTS
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Figure 4: Test perplexity and zero-shot performance. (A) Performance of models on held-out test
sets measured by perplexity at various maximum sequence identities. Larger models better capture
the distribution of evolutionary sequences, as indicated by lower perplexity values. (B) Zero-shot
performance of PROGEN2 models and alternative methods on narrow fitness landscapes. Model
scale provides limited performance benefits, and even degrades zero-shot capabilities for the largest
models. (C) Zero-shot performance of PROGEN2 models on wide fitness landscapes. Performance
typically improves with model scale, and may lead to emergent zero-shot capabilities for low-
homology, highly epistatic landscapes like GB1 (structure with mutation sites shown). (D) Zero-shot
performance of universal PROGEN2 models and the antibody-specific PROGEN2-OAS for binding
datasets and general antibody fitness prediction tasks (e.g., stability and expression). Models trained
on broad evolutionary sequence datasets outperform antibody-specific models on both tasks.
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dataset PROGEN2-
base tranception tranception

(retrieval) wavenet

A0A1J4YT16 9PROT Davidi 2020 0.195 0.178 0.191 0.117
B1LPA6 ECOSM Russ 2020 0.405 0.321 0.415 0.385
BLAT ECOLX indels 0.664 0.296 0.357 0.546
PTEN HUMAN Mighell 2018 deletions 0.641 0.563 0.598 0.699
CAPSD AAV2S Sinai 2021 indels 0.392 0.549 0.586 0.457
HIS7 YEAST Pokusaeva 2019 indels 0.702 0.707 0.692 0.68
P53 HUMAN Kotler 2018 deletions 0.398 0.395 0.401 0.001

AVERAGE 0.485 0.430 0.463 0.412

Table 6: Zero-shot fitness prediction on experimental studies evaluating indels collected by Notin
et al. (2022). PROGEN2 outperforms baselines including models with inference-time retrieval.

antibody property PROGEN2-
small

PROGEN2-
base

PROGEN2-
large

PROGEN2-
xlarge

PROGEN2-
OAS

g6 bind 0.164 0.153 0.152 0.135 0.032
g6 exp 0.411 0.386 0.368 0.352 0.184
d44 bind 0.290 0.426 0.421 0.366 0.260
C143 Kd 0.162 0.197 0.132 0.085 0.006
C143 Tm 1.000 1.000 1.000 1.000 1.000
MEDI8852UCA Kd 0.466 0.913 0.916 0.902 0.798
MEDI8852UCA Tm 0.314 0.829 0.829 0.829 0.771
MEDI8852 Kd 0.504 0.007 0.021 0.043 0.157
MEDI8852 Tm 1.000 1.000 1.000 1.000 1.000
REGN10987 Kd 0.520 0.327 0.377 0.462 0.396
REGN10987 Tm 0.238 0.810 0.762 0.667 0.667
S309 Kd 0.728 0.526 0.586 0.581 0.600
S309 Tm 0.830 0.770 0.758 0.794 0.794
mAb114-mAb114UCA Kd 0.658 0.769 0.727 0.658 0.738
mAb114-mAb114UCA Tm 0.500 0.333 0.383 0.517 0.200

AVERAGE 0.519 0.563 0.562 0.559 0.507

Table 7: Full results of zero-shot fitness prediction for the antibody landscapes evaluated in this
study.

Uniref90+BFD30 Uniref90+BFD90

test set [ppl] 12.7 12.6
antibody binding [rho] 0.42 0.38
antibody general [rho] 0.73 0.76
narrow landscape avg [rho] 0.49 0.50
AAV [auc] 0.65 0.67
GFP [auc] 0.84 0.79
CM [auc] 0.66 0.65
GB1 [top100avg] 0.24 0.33

Table 8: Comparing language modeling and zero-shot fitness prediction performance for two 2.7B
parameter models trained with differing amounts of proteins from metagenomic sources. BFD30
and BFD90 are clustered at 30% and 90% sequence identity respectively. The Uniref90+BFD90
database is majority metagenomic.
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