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ABSTRACT

The Tsetlin Machine (TM) architecture has recently demonstrated effectiveness in
Machine Learning (ML), particularly within Natural Language Processing (NLP).
It has been utilized to construct word embedding using conjunctive propositional
clauses, thereby significantly enhancing our understanding and interpretation of
machine-derived decisions. The previous approach performed the word embed-
ding over a sequence of input words to consolidate the information into a co-
hesive and unified representation. However, that approach encounters scalability
challenges as the input size increases. In this study, we introduce a novel approach
incorporating two-phase training to discover contextual embeddings of input se-
quences. Specifically, this method encapsulates the knowledge for each input
word within the dataset’s vocabulary, subsequently constructing embeddings for
a sequence of input words utilizing the extracted knowledge. This technique not
only facilitates the design of a scalable model but also preserves interpretability.
Our experimental findings revealed that the proposed method yields competitive
performance compared to the previous approaches, demonstrating promising re-
sults in contrast to human-generated benchmarks. Furthermore, we applied the
proposed approach to sentiment analysis on the IMDB dataset, where the TM em-
bedding and the TM classifier, along with other interpretable classifiers, offered a
transparent end-to-end solution with competitive performance.

1 INTRODUCTION

Recent advancements in the development of language processing applications have significantly
propelled the field of Artificial Intelligence (AI). A pivotal innovation in this domain is the applica-
tion of Large Language Models (LLMs), which primarily utilize embeddings during the early stages
of the model development. During training, dense vectors are extracted for each word in a space
that conveys the word’s context and location from the training dataset. These embeddings are then
leveraged across various architectures to construct diverse applications.

A novel methodology in this context involves enhancing ML through the use of logical propositions
Granmo (2018). This approach enables the representation of a target word by a set of words crucial
in shaping its meaning. One key distinction of embeddings generated using logical propositions, as
opposed to traditional Deep Learning (DL) methods, is their interpretability. The output, represented
by clauses, can be understood and analyzed in line with the original logical framework. In previous
work Bhattarai et al. (2024), embeddings were derived for a vector of target words. That method
produces a fused output that obscures the individual contributions of each input word, thus forfeiting
the interpretability advantage inherent in the original TM algorithm.

An experiment utilizing the One Billion Word dataset Chelba et al. (2013) and the Tsetlin Machine
Auto-Encoder (TM-AE) model Bhattarai et al. (2024) revealed that training the model on 100 input
target words required approximately 9 hours and 35 minutes. Notably, the embedding generated
during each training session is specific to the particular set of input target words and cannot be
reused in scenarios involving the addition, removal, or substitution of any element within the input
array. Consequently, the time-intensive training process is bound to the initial input string, limiting
its reusability in other applications. This scenario highlights the scalability challenges associated
with the TM-AE model Bhattarai et al. (2024) when applied to downstream tasks, underscoring the
need for further optimization and improvements to enhance its efficiency.
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This research aims to introduce a novel approach for scalable knowledge extraction from any word
within the training vocabulary. The objectives and contributions are threefold:

1. To collect and encapsulate the knowledge for each target word in the dataset’s vocabulary
in a manner that facilitates the construction of a scalable model for downstream tasks.

2. To build embeddings for a vector of target words using the extracted knowledge while
preserving the interpretability properties of the original TM algorithm.

3. To apply these embeddings in data augmentation, enabling the evaluation of embedding
quality by testing on unseen data and analyzing the effect of variations in the trained dataset,
thereby enhancing model classification robustness.

2 BACKGROUND AND RELATED WORK

In the realm of AI applications, NLP has witnessed remarkable advancements over the past decade.
Prominent algorithms such as Word2Vec and GloVe have played pivotal roles in this progress Gold-
berg & Levy (2014); Pennington et al. (2014). Despite the promising results achieved by these
embedding algorithms, there remains a pressing need for further improvements. For instance, Fast-
Text focuses on subword information, thereby enhancing its capability to handle rare words and
misspellings Bojanowski et al. (2017), while ELMo generates contextualized word embeddings by
considering the entire sentence Peters et al. (2018).

A novel approach to representing ML through a logical structure is the TM, which emphasizes trans-
parency and the ability to provide justifications for outcomes. TM have seen significant advance-
ments through various contributions. Maheshwari et al. (2023) introduced REDRESS, a method for
generating compressed models tailored for edge inference using TM. Sharma et al. (2023) enhanced
the robustness and pattern recognition capabilities of TM through the Drop Clause technique. Seraj
et al. (2022) explored the application of TM to solve contextual bandit problems. Yadav et al. (2021)
demonstrated the human-level interpretability of TM in aspect-based sentiment analysis. Abeyrathna
et al. (2021) developed a massively parallel and asynchronous TM architecture for efficient scaling.
Additionally, Abeyrathna et al. (2023) proposed a method to build concise logical patterns by con-
straining the clause size in TM.

In the field of NLP, several models have leveraged TM for various applications. For instance, in
the work Yadav et al. (2022), robust and interpretable text classification models were developed
by learning logical AND rules with negation. Another study Saha et al. (2023) used TM to dis-
cover interpretable rules for tasks such as sentiment analysis, semantic relation categorization, and
dialogue-based entity identification. The work Zhang et al. (2023) applied TM in sentiment analysis
and spam review detection for Chinese text, aiming to strike a balance between interpretability and
accuracy when compared to DL models. Additionally, a TM-AE was designed to identify word em-
beddings Bhattarai et al. (2024) using the Coalesced Tsetlin Machine (CoTM) structure Glimsdal &
Granmo (2021), which incorporates voting on a set of outputs with weighted clauses representing
their contributions to the algorithm. That embedding method has demonstrated superior performance
compared to DL alternatives.

3 METHODOLOGY

In this section, we will present the proposed algorithm. First, we explain the preprocessing of the
input data and how CoTM can be employed to form the two phases utilized in this work. Thereafter,
we introduce the two-phase architecture based on the TM-AE architecture.

3.1 COALESCED TSETLIN MACHINE

The process starts with preparing the input X , which is a binary vector encapsulating the context
information to be trained on. It is twice the length of the vocabulary (V ) of the training dataset
to accommodate all original features and their negation. These original and negated features are
called literals, and the original features are basically the vocabulary in the dataset. The model can
be trained using unlabeled document inputs. If the target output is 1, the input X is created from
features found in documents containing the target word. If the output is 0, the input X is created
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from features found in documents that do not contain the target word. The features mentioned in
the documents are activated in X by setting their value to 1, while the rest of the features are set to
0. Negated features are represented by reversed values. It is important to note that the construction
of X is independent of the frequency with which a word appears in a given document; its mere
presence, even if mentioned only once, is sufficient.

To explain the formulation of the input X , let us look at an example. We assume that the vo-
cabulary contains eight words: word1, word2, ..., word8. Suppose we have two documents:
document1, which contains the words [word3, word2, word4] and document2, which contains the
words [word6, word3] and we want to form X for the target word word3. For the first part of X , we
select the features corresponding to the words in document1 and document2 and set their values
to 1. The rest of the features are set to 0. Thus, we have: Xoriginal = [0, 1, 1, 1, 0, 1, 0, 0], where
Xoriginal is a binary vector of length 8. For the second part of X , we take the negation of Xoriginal.
This means setting the value of each feature to the opposite of its value in Xoriginal. Thus, we have:
Xnegation = [1, 0, 0, 0, 1, 0, 1, 1]. Finally, we concatenate Xoriginal and Xnegation to form X , as
X = Concat[Xoriginal, Xnegation], namely, X = [0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1]. This X
represents the active literals required to train the TM for the target word3, and it has a length of 16
literals. The two phases used in this work are distinguished by the approach employed in forming
X , to be explained in the next section.

The process of evaluating the clauses begins with the input X , where the literals of the input are
matched with the propositional logic represented by the conjunctive clauses. These clauses are
different forms of description of the target word, composed of literals. The literals memorized in
a specific clause are determined during the training process. More specifically, an election process
occurs throughout the training period of the model to update the depth of memorizing or forgetting
the literals in memory and thus include or exclude them from the clause. Each literal corresponds to a
Tsetlin automaton (TA), which decides to memorize or forget the literal based on the reward/penalty
dynamics that it receives. In more details, each TA is assigned to a specific literal in X and evaluates
its state across a range of 2N levels, where level 1 corresponds to the most extensive forgetting and
level 2N represents the highest degree of memorization. Fig. 1 illustrates the operation of the TM,
highlighting how the TA collaborate to evaluate the input X , thereby forming the clause. The input
X consists of V features, resulting in a total of 2V literals. In the figure, both x1 and ¬xV have
successfully progressed beyond the N state, thereby contributing to the formation of the clause,
represented by the blue area. For more details on the clause formation, see Granmo (2018).

MemorizedForgotten

x1

¬xV

¬xV-1

xV

x2

clause = x1 AND ¬xV

Tsetlin
automata

N states

x1

x2

¬xV-1

¬xV

Input X

xV

Tsetlin Machine

Figure 1: Illustration of Tsetlin automata in a Tsetlin Machine: Demonstrating the processing of
input X through multiple states to form a clause.

In the original TM, the output of the evaluation process is subject to a voting sum calculation, which
is influenced by the voting margin hyperparameter T , ensuring the presence of the required number
of supporting clauses for the output. In CoTM, the inference process includes an additional type
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of processing that employs weights for the outputs. A dedicated memory space is provided for the
weights and for each clause with the number of outputs it infers. Thus, three variables are used to
calculate the output (Fig. 2). The proposed output Y from input X is predicted using propositional
and linear algebra, as Y = U (W ·And (C,X))

T
. Here Y is the multi-output prediction, U is

Build X Match with C
Weighting W

and 
Thresholding

Predict 
Output Y

Update C Feedback

Figure 2: CoTM architecture: Depicting the process flow from input X through matching, updating,
weighting, thresholding, and predicting output Y with feedback.

an element-wise unit step thresholding operator, W , C and X are the memory arrays of weights,
clauses and input X respectively, And is a row-wise AND operator.

Each clause is updated based on the input X through three types of updates Granmo (2018):

1. Memorization process: Increase the memorization of true literals in X if the clause
matches it and the output result is 1. The literals in X whose value is false are subject
to increased forgetting through random selection using the hyperparameter s.

2. Forgetting process: Increase the forgetting of all true literals in X if it does not match the
clause and with a probability that depends on s used to select the literals.

3. Invalidation: Increase the memorisation of false literals in X to change the clause to reject
true literals in X .

3.2 TSETLIN MACHINE AUTOENCODER

In the architecture proposed in Bhattarai et al. (2024), the input X is constructed by randomly
shuffling a set of target words. The process for preparing the input X is outlined in Algorithm 2 in
the appendix. This algorithm involves combining input documents, where the model receives the
documents in their vectorized form, with the vocabulary serving as a reference to track the position
of each word within the encoding throughout the training process.

The TM-AE processes a sequence of input target words, aggregating them without repetition to
form the basis for training and determining their embeddings. This type of embedding integrates the
contextual information of each word in the input with the other words. Given the random mixing
and the number of examples r applied in each epoch, each word has an equal probability of being
at position j in the input vector W , which has a length of k, P (wi is at position j) = 1

k , where P
represents the probability, wi denotes the i-th word, j indicates the position within the input vector,
and k is the total length of the input vector W .

This homogeneous formation of the input contributes to the merging and mixing of information,
making it challenging to track and interpret the output. Despite the transparent nature of the TM
structure and its ability to clearly explain the reasoning behind any output, the process of shuffling
input target words confuses the model, compromising transparency and interpretability. Another
issue with that training method is that the larger the input vector, the longer the training time.

In practical NLP applications, the embedding method in Bhattarai et al. (2024) is not scalable or
reusable because the output cannot be effectively leveraged. For example, in LLMs such as GPT-
3, one of the initial steps after receiving the input vector is to generate embeddings for each word.
These embeddings include context information extracted from documents that the model was trained
on, and are stored as dense vector representations in a high-dimensional space. Unlike GPT-3,
which retains these embeddings for efficient reuse across tasks, the TM-AE model Bhattarai et al.
(2024) generates embeddings specific to the input target words and can not be used for different
input combinations. In this work, the aforementioned problems were identified, and a TM-AE was
employed in two phases, each with a distinct structure to construct the input X and then trained
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using the CoTM structure to represent embeddings for a vector of target words. Fig. 3 illustrates the
two phases used for this application.
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Figure 3: Proposed two-phase architecture based on TM-AE for embedding: Phase 1 involves train-
ing documents per word and for all the vocabulary, and Phase 2 focuses on clause-based embedding
with word knowledge.

3.3 PHASE 1

The first phase involved the original TM-AE architecture, with the key difference being that the
model was trained with the target words individually, meaning each training instance involved a
single word. This approach offered several advantages:

1. Extracting the knowledge in a pure form for the target word, thereby maintaining trans-
parency in interpreting any training outputs.

2. Enabling the storage of training results for use in other applications, similar to models like
Word2Vec. In this research, the stored results were used as a dataset for the second phase.

3. Facilitating the application of real-world scenarios that can be updated in the future. If it
becomes necessary to update the context information for a word in the vocabulary, it is
straightforward to retrain only that specific word.

The training results from this phase consist of conjunctive clauses that describe the target word
using specific literals in propositional logic. For example, training on the word “car” resulted in
1600 clauses, such as “driver AND road.” The process of forming the input X in this manner is
characterized by the randomness inherent in selecting documents that either support the target word
(resulting in a training outcome of 1) or do not support it (resulting in a training outcome of 0). This
randomness facilitates the extraction of different forms of contextual information for the target word
from both supporting and non-supporting documents without the interference of other words, as was
the case in the previous work.

To formalize this, for each word wordk, the number of documents selected is the minimum between
a window size a and |Dwordk

|, i.e., the actual number of available documents. Therefore, the number
of documents picked for wordk is given by min(a, |Dwordk

|). The total number of words extracted
from the picked documents depends on the number of documents selected and the words contained
in each document. Let di represent a document, Words(di) be the number of words in document
di, and Dpicked be the set of documents selected for wordk. The total number of words extracted
for wordk is calculated as

∑
di∈Dpicked

Words(di), which sums up the number of words from each
document in the selected set to build X .
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Algorithm 1 Building X in Phase 2 using the knowledge from Phase 1
Require: Phase 1 knowledge as clauses C, vocabulary V , target words W (with k elements), num-

ber of examples r, target values q ∈ {0, 1}, window size a, subset clauses S ∈ C, documents
of literals Dl

1: for each epoch do
2: for i = 1 to r do
3: Shuffle target words W , and randomly select q ∈ {0, 1}
4: for each word wordk in W do
5: Initialize empty set X . Load knowledge data for target word wordk = Cwordk

6: if q = 1 then
7: Filter clauses: C+

wordk
= {clauses with positive weights}

8: else
9: Filter clauses: C−

wordk
= {clauses with negative weights}

10: end if
11: Sample subset Sc from filtered clauses Cwordk

of size a
12: for each clause Cj ∈ Sc do
13: for each literal lij ∈ Cj do
14: Append lij to Dl, and load knowledge data for literal lij = Clij
15: if q = 1 then
16: Filter clauses: C+

lij
= {clauses with positive weights}

17: else
18: Filter clauses: C−

lij
= {clauses with negative weights}

19: end if
20: Sample subset Sl from filtered clauses Clij of size a
21: for each clause Ck ∈ Sl do
22: for each literal lik ∈ Ck do
23: Append lik to Dl

24: end for
25: end for
26: end for
27: end for
28: Activate literals in X by taking Dl literals, and update CoTM
29: end for
30: end for
31: end for

3.4 PHASE 2

The purpose of training in Phase 2 is to find embedding for a set of input target words. In the second
phase, we utilize the knowledge and vocabulary index obtained from the first phase to generate the
input X and then do the training. Algorithm 1 describes the construction method. The knowledge
for each target word consists of a set of clauses C. These clauses are divided into positive weight
clauses that vote for the target word and negative weight clauses that vote against it.

Suppose we have an input vector Words = [word1, word2, word3]. In each epoch, and with each
example of r, the target words in Words are randomly arranged to obtain a high level of homo-
geneity in mixing the context information. For example, if the first example has the order Words =
[word1, word2, word3], the second example can have the order Words = [word2, word3, word1].
This ensures that each target word has an equal probability of appearing in any position in the vector.

For each word in the input vector, the knowledge associated with that word is retrieved Cwordk
.

Using another random process, training is performed on a target with an output of 1 or 0, retrieving
positive or negative clauses, respectively. Based on the user-set window size a, a subset of these
clauses is selected Sc, and all the literals within those clauses are extracted. These literals act as
documents in the first phase, where all the clauses associated with them are fetched. Finally, the
literals collected from these clauses, after taking a subset Sl of size a, are collected to construct X .

The second phase can be viewed as a clause-to-clause encoding process, where the input and output
are clauses. This hierarchical tree of knowledge fetching is interpretable and transparent, which
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maintains the reasoning behind the output. It is important to note that in this phase, there is no need
to compute the negation of features, as the results from Phase 1 already encompass these literals.
This eliminates redundant calculations and ensures that both positive and negative representations
of the features are inherently captured within the clause construction process.

The main difference between the first phase and the second phase lies in the construction of the
input X and the source of information. The output of the second phase is an embedding of the input
target words based on the knowledge collected in the first phase. This embedding is then utilized to
measure similarity with a dataset prepared by humans, as will be further demonstrated in the subse-
quent section. In future applications, the first phase can be utilized for other operations depending
on the specific application, as demonstrated in our experimental results section, particularly in data
augmentation tasks for sentiment analysis.

To demonstrate the output of Phase Two in terms of transparency and interpretability, we can use the
words “drive” and “road” as an example. The output of the first phase for the word “drive” includes
clauses such as “vehicle AND license” or “road AND safe,” while the knowledge associated with the
word “road” includes clauses like “vehicle AND smooth” and “driver AND traffic.” After embedding
and training in the second phase, the resulting output for the word “drive” might include clauses
such as “vehicle AND (license OR smooth)” or “(road AND safe) OR (driver AND traffic).” The
interpretability of this output is evident in the ability to trace the reasoning behind the inclusion of
specific words in the second phase. These words emerge from the integration of clauses derived from
the knowledge of common words, which themselves are interpretable and transparent, providing
clarity regarding their presence in the final output.

4 EMPIRICAL RESULTS

To evaluate our proposed approach, we conducted two types of assessments. First, we used human-
annotated similarity evaluation datasets to compare the similarity scores generated by the Phase 2
embeddings. Second, we applied the Phase 1 knowledge results to a sentiment analysis task for data
augmentation, measuring the quality of our approach in comparison to DL models.

4.1 SIMILARITY EVALUATION

We assessed the performance of Phase 2 embeddings through a series of benchmark experi-
ments using widely recognized human-annotated datasets, including RG65, MTURK287 (MT287),
MTURK717 (MT717), and WS-353 (WS353). These datasets contain word pairs with assigned
similarity scores, covering a broad range of semantic relationships. Our experiments aimed to com-
pare the similarity of Phase 2 embedding with these datasets. We used various similarity measures,
such as Cosine similarity, Spearman, and Kendall, which are statistical measures used to compare
the similarity or correlation between different datasets or vectors.

Table 1: Comparison of Spearman (S), Kendall (K), and Cosine (C) similarity measures.

Dataset Word2Vec Fast-Text TM-AE Two-Phase TM-AE
S K C S K C S K C S K C

WS353 0.58 0.41 0.91 0.46 0.31 0.77 0.38 0.24 0.86 0.41 0.29 0.90
MT287 0.55 0.38 0.86 0.58 0.41 0.68 0.53 0.36 0.88 0.40 0.28 0.97
MT717 0.47 0.32 0.87 0.41 0.28 0.63 0.46 0.32 0.88 0.34 0.23 0.95
RG65 0.51 0.34 0.84 0.43 0.30 0.68 0.63 0.45 0.87 0.50 0.42 0.91
Avg. 0.52 0.36 0.87 0.47 0.32 0.69 0.50 0.34 0.87 0.41 0.30 0.93

Table 1 shows the evaluation results compared to related algorithms. Despite the potential for scaling
and transparency in extracting knowledge for each word in the first phase, our results indicate that
the old method is generally more accurate when evaluated using pre-prepared datasets. There are
two main reasons for this discrepancy. Firstly, the old method extracts common context information
between words by training the TM to fuse and blend all the information in the input samples and
find the commonality with respect to the input vector. The training focuses on extracting context

7
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The movie was amazing and ...
Positive

A wonderful performance by ...

The film was amazing and ...

A brilliant performance by ...

The film was boring and ...
Negative

The plot was confusing and ...

The film was tiring and ...

The plot was chaotic and ...

Replacing by
High-Probability

Similar Word

Replacing by
Low-Probability

Similar Word

Figure 4: Examples of sentence augmentation using word embeddings for sentiment analysis.

information for the input vector as a whole rather than general knowledge for each word in the input
vector. In contrast, the first phase of our proposed approach trains the TM in an unsupervised way
with the goal of extracting context information for the target word. This may bias the output based
on the type of data available in the database and the size of the database. Secondly, the size of
the database is crucial. In our proposed approach, the first phase involves training with a specific
hyperparameter to extract knowledge that determines finding the embedding for the input vector in
the second phase. Even if we were to expand and increase the values of the training for the second
phase, it would still be limited by the knowledge extracted from the first phase.

It is noteworthy that the model was trained over a period of six months on a DGX H100 server
to achieve the reported results. The training was conducted using the One Billion Word dataset,
which consists of a vocabulary size of 40k words. Each word in the vocabulary was trained with the
following configuration: 2,000 examples per epoch, a window size of 25, 1600 clauses, a threshold
T of 3,200, a specificity parameter s set to 5.0, and across 25 epochs. While extracting context data
in the first phase is crucial, it can be a time-consuming process as training must be conducted on all
words in the database vocabulary. However, this process only needs to be done once. Furthermore,
in future updates, updating a single word may not require new training for the entire first phase, but
only for the targeted words. For example, let’s suppose we have a database related to healthcare
where the word “cancer” is a target word. If a new study comes out that shows a strong correlation
between a certain food and cancer, the knowledge associated with the word “food” may need to be
updated to reflect this new information. This would only require updating the “food” knowledge
rather than retraining the entire first phase.

Notably, in terms of Cosine similarity, the two-phase TM-AE achieved 0.91 on the RG65 dataset,
surpassing all Word2Vec (0.84), FastText (0.69) and the TM-AE (0.87). This indicates that the
two-phase approach effectively captures semantic relationships when similarity is assessed through
vector alignment. However, its performance in Spearman and Kendall correlations is comparatively
weaker. For instance, in the WS-353 dataset, it scores 0.41 and 0.29, respectively, which is lower
than Word2Vec’s scores of 0.58 and 0.41. This suggests that while the two-phase model produces
closely aligned embeddings, it may not accurately reflect the rank order of word pairs as judged
by humans. Furthermore, the two-phase model exhibits variable performance across datasets. For
example, it achieves a high Cosine similarity of 0.97 in the MTURK287 dataset but experiences
a decline in Spearman correlation to 0.40. Overall, while the two-phase TM-AE shows promise
in generating aligned embeddings, further improvements should focus on optimizing the knowl-
edge extraction phase to ensure better alignment with human semantic evaluations across diverse
datasets.

4.2 SENTIMENT ANALYSIS

In NLP, embeddings can be leveraged for sentiment analysis using data augmentation by assessing
their quality on unseen data and evaluating the impact of changes in the trained dataset. This method
has been applied with various counterparts of popular DL models to benchmark the effectiveness of
the proposed embeddings. Given that such applications typically rely on classification models, this
work will mark the first instance of incorporating multiple TM structures within a single applica-
tion. Fig. 4 illustrates the methodology for document augmentation using word embeddings in
sentiment analysis. In positive reviews, words were substituted with highly similar, high-probability
words from the embedding (e.g., “movie” replaced with “film”). Conversely, in negative reviews,
words were replaced with less similar, low-probability alternatives (e.g., “confusing” replaced with
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“chaotic”). These nuanced modifications demonstrate how embedding-based word replacements
influence both positive and negative sentiment.

Table 2 presents our experiments’ accuracy results using the IMDB dataset, which consists of 25K
training samples and an additional 25K samples for evaluation. The data augmentation experiments
were performed using various embedding models, including GloVe, Word2Vec, FastText, ELMo,
BERT, and Two-phase TM-AE. The performance was evaluated using several classifiers: Logistic
Regression, Naive Bayes, Random Forest, Support Vector Machine, Multi-Layer Perceptron, and
Tsetlin Machine.

For the TM model, the embedding was generated during the first phase by training on a vocabulary
of 20K words of the IMDB dataset. In this phase, the hyperparameters were set as follows: 2,000
examples, a window size of 25, 800 clauses, a threshold T of 1,600, a specificity parameter s of 5.0,
and 25 epochs. In the classification phase using the TM classifier, the settings were configured to
1,000 clauses, a threshold T of 8,000, a specificity parameter s of 2.0, and 10 epochs. These config-
urations enabled a robust comparison of embedding models across different classifiers, showcasing
the effectiveness of the TM-AE embedding and classifier architecture.

Table 2: Comparison of accuracy using different embedding sources and classifier: LR (Logis-
tic Regression), NB (Naive Bayes), RF (Random Forest), SVM (Support Vector Machine), MLP
(Multi-layer Perceptron), and TM (Tsetlin Machine)

Embedding Source Classifiers (accuracy)
LR NB RF SVM MLP TM

GloVe 0.72 0.82 0.68 0.70 0.72 0.60
Word2Vec 0.80 0.82 0.76 0.80 0.83 0.73
FastText 0.75 0.83 0.75 0.74 0.75 0.74
Two-phase TM-AE 0.80 0.80 0.79 0.79 0.81 0.78
BERT 0.83 0.82 0.82 0.80 0.80 0.82
ELMo 0.83 0.83 0.84 0.81 0.84 0.83

The results in Table 2 provide a comprehensive comparison of the performance of various embed-
ding models across different classifiers. Notably, the two-phase TM-AE model shows competitive
accuracy, especially with the TM classifier, achieving an accuracy of 0.78, surpassing GloVe (0.60)
and FastText (0.74). However, The two-phase TM-AE falls behind models such as ELMo and BERT.
ELMo’s dynamic contextualized embeddings adapt to each word’s context in a sentence, unlike the
static embeddings used in the two-phase TM-AE approach. ELMo’s approach consistently selects
similar or dissimilar words from a limited range of options within individual documents, as its em-
beddings are generated per document rather than across the entire dataset. This localized embedding
strategy impacts the augmentation of the training set, subsequently influencing the classification re-
sults. As for BERT, its superior performance is attributed to its bidirectional nature, which allows it
to capture context from both directions in a sentence, leading to richer contextualized embeddings.
Additionally, BERT’s transformer-based architecture enables it to model long-range dependencies
more effectively, further enhancing classification accuracy.

The two-phase TM-AE shows promising results, especially with TM classifier, offering a
propositional-logic-based transparent end-to-end architecture. However, there is room for improve-
ment when compared to more established models like BERT and ELMo, suggesting further refine-
ment of the embedding and classification processes.

5 CONCLUSION

We proposed a novel two-phase approach to word embedding based on the TM, designed to im-
prove scalability for NLP tasks. By leveraging CoTM, the model captured contextual knowledge
of words in a structured logical form. Our evaluation demonstrated competitive performance in
similarity benchmarks and sentiment analysis where embedding quality was validated through data
augmentation. Together with TM classifier, we introduced, for the first time, an end-to-end scalable,
transparent, and propositional-logic-based approach, paving the way for its use in a variety of NLP
applications.
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6 APPENDIX

6.1 TM-AE ALGORITHM

The following algorithm 2 outlines the process used in TM-AE for constructing the input X from
the supporting documents in Bhattarai et al. (2024) framework.

Algorithm 2 Building X from supporting documents in TM-AE by Bhattarai et al. (2024)
Require: Documents D, vocabulary V , target words W (with k elements), number of examples r,

target values q ∈ {0, 1}, window size a
1: for each epoch do
2: for i = 1 to r do
3: Shuffle target words W , and randomly select q ∈ {0, 1}
4: for each word wordk in W do
5: Initialize empty set X
6: if q = 1 then
7: Select a random documents from D that contain wordk
8: else
9: Select a random documents from D that do not contain wordk

10: end if
11: Combine the selected documents. Extract all words from the combined documents
12: Activate literals in X by including the extracted words and their negations.
13: Update CoTM
14: end for
15: end for
16: end for

6.2 FUTURE WORK

In this work, we have presented an optimal approach for initiating the development of a practical em-
bedding that can be leveraged in various applications. The application of sentiment analysis through
data augmentation (4.2) represents the first instance in which the embedding method proposed in
the first phase was utilized. Looking ahead, our future efforts will focus on enhancing the efficiency
of the embedding, improving model performance, and addressing the current limitations associated
with the slow implementation.

We also recognize that the embedding requires further expansion to better capture contextual infor-
mation. Achieving this will involve revising the manner in which the TM constructs clauses, as the
current embedding heavily relies on this process. Such enhancement will allow for improvements in
the second phase, specifically in calculating word similarity, as discussed in this study. Additionally,
ensuring a deeper and more structured first phase will significantly contribute to applications tailored
to domain-specific tasks. For example, in medical NLP, the ability to incorporate embeddings for
newly introduced terms without the need to retrain the entire model would enhance scalability and
adaptability.

Furthermore, we anticipate that our approach will have applications in Knowledge Graph Construc-
tion, where the interpretability of propositional clauses would be particularly valuable. Such inter-
pretability makes the resulting embeddings well-suited for tasks such as semantic search, question-
answering, and reasoning.
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