
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUAL FINITE-SUM MINIMIZATION
UNDER THE POLYAK-ŁOJASIEWICZ CONDITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Given functions f1, . . . , fn where fi : D 7→ R, continual finite-sum minimiza-
tion (CFSM) (Mavrothalassitis et al., 2024) asks for an ϵ-optimal sequence
x̂1, . . . , x̂n ∈ D such that

i∑
j=1

fj(x̂i)/i−min
x∈D

i∑
j=1

fj(x)/i ≤ ϵ for all i ∈ [n].

In this work, we develop a new CFSM framework under the Polyak-Łojasiewicz
condition (PL), where each prefix-sum function

∑i
j=1 fj(x)/i satisfies the

PL condition, extending the recent result of Mavrothalassitis et al. (2024) for
CFSM with strongly convex functions. We present a new first-order method
that under the PL condition producing an ϵ-optimal sequence with overall
O(n/

√
ϵ) first-order oracles (FOs), where an FO corresponds to the compu-

tation of a single gradient ∇fj(x) at a given x ∈ D for some j ∈ [n]. Our
method also improves upon the O(n2 log(1/ϵ)) FO complexity of state-of-the
art variance reduction methods as well as upon the O(n/ϵ) FO complexity
of StochasticGradientDescent. We experimentally evaluate our method in
continual learning and the unlearning settings, demonstrating the potential of the
CFSM framework in non-convex, deep learning problems.

1 INTRODUCTION

Finite-sum minimization (FSM) has received a lot of attention from the optimization community due
to its vast applications in supervised learning Nguyen et al. (2017); Johnson & Zhang (2013); Xiao
& Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu (2017). Given a sequence of
functions f1, . . . , fn where fi : D 7→ R, FSM asks for an ϵ-optimal solution x̂ ∈ D such that

1

n

n∑
i=1

fi(x̂)−min
x∈D

1

n

n∑
i=1

fi(x) ≤ ϵ. (1)

A key application of FSM is the prevalent Empirical Risk Minimization (ERM). For example
given n training data points (y1, z1), . . . , (yn, zn) and a parametric model Mx(·), ERM asks for
the optimal parameters, x⋆ = argminx

∑n
i=1 ℓ(Mx(yi), zi)/n where ℓ(·, ·) is an adequate loss

function. The latter setting can be naturally captured by the FSM framework by considering
fi(x) := ℓ(Mx(yi), zi).

First-order methods have long been the preferred choice for solving Problem 1. Computing a single
gradient∇fj(x) for some j ∈ [n] comes with a computational cost. We refer to such a computation
as a first-order oracle (FO). The overall number of FOs that a first-order method needs to solve Prob-
lem 1 defines the FO complexity of the method. Since n can be of the order of millions in modern
Machine Learning applications, a crucial desiratum in FSM is the design of first-order methods that
scale efficiently with n and 1/ϵ. Variance-reduction methods (VR) were able to fulfill the latter goal
by achieving optimal FO complexity for FSM under various assumptions on the functions (strongly
convex, convex, non-convex, Polyak-Łojasiewicz) Nguyen et al. (2017); Johnson & Zhang (2013);
Xiao & Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu (2017); Karimi et al.
(2016); Lei et al. (2017); Zhou et al. (2018); Li et al. (2021); Zhang et al. (2016).

Continual Learning and Finite-Sum Minimization: Continual Learning refers to the process of con-
tinuously updating a model as new data become available Castro et al. (2018); Rosenfeld & Tsotsos

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2018); Hersche et al. (2022). This approach enables machine learning systems to adapt to changing
environments. Incorporating new data without completely retraining the model is highly challenging
because it can greatly reduce the model’s effectiveness on past data (catastrophic forgetting Castro
et al. (2018); Goodfellow et al. (2014); Kirkpatrick et al. (2017); McCloskey & Cohen (1989)). Sim-
ilar challenges of time-evolving data sets arise in the more recent context of unlearning where goal
is to remove data previously present in the training set Sekhari et al. (2021); Guo et al. (2020).

We can simply resolve the FSM (Problem 1) once a new data point is added as datasets evolve.
Unfortunately this approach is wasteful due to the computational costs that it incurs. In their re-
cent work, Mavrothalassitis et al. Mavrothalassitis et al. (2024) introduced a twist of FSM, called
Continual Finite-Sum Minimization (CFSM) in order to formally examine the new challenge.
Definition 1. Given a sequence of functions f1, . . . , fn where fi : D 7→ R, Continual Finite-Sum
Minimization asks for a sequence of ϵ-approximate solutions x̂1, . . . , x̂n ∈ D such that

1

i

i∑
j=1

fj(x̂i) ≤ min
x∈D

1

i

i∑
j=1

fj(x) + ϵ for each stage i ∈ [n].

To understand why CFSM captures the continual learning setting, let the training set be ini-
tially composed by the first i data points, (y1, z1), . . . , (yi, zi). In this case, ERM asks for
x⋆
i := argminx

∑i
j=1 ℓ (Mx(yj), zj) /i. Assume that after computing an ϵ-optimal point x̂i, a

new data point (yi+1, zi+1) is revealed to the model. Now the model’s parameters need to be up-
dated to x⋆

i+1 := argminx
∑i+1

j=1 ℓ (Mx(yj), zj) /(i+ 1).

Example 1. (Unlearning) An interesting application of CFSM is unlearning where the goal is to
remove data points used in the training of the model Sekhari et al. (2021); Guo et al. (2020). For
example, assume that we have trained a modelMx(·) with respect to some initial data S, meaning
that

xinit := argmin
x∈Rd

[∑
i∈S

ℓ (Mx(yi), zi)

]
.

Now, let us say that we want to remove a small subset of data points F ⊆ S, meaning that we would
like to update the model’s parameters to

xupdated := argmin
x∈Rd

 ∑
i∈S/F

ℓ(Mx (yi), zi) :=
∑
i∈S

ℓ(Mx (yi), zi)−
∑
i∈F

ℓ(Mx (yi), zi)

 .

Retraining the model from scratch to compute xupdated is not computationally viable. CFSM nicely
captures this setting by considering the arrival of the function −

∑
j∈F ℓ (Mx(yj), zj).

Mavrothalassitis et al. Mavrothalassitis et al. (2024) introduces an approximately optimal method
with respect to the overall FO complexity (across all n stages) for CFSM under the assumption
that each prefix-sum function gi(x) :=

∑i
j=1 fj(x)/i is µ-strongly convex. They provide a first-

order method for CFSM with overall Õ(n/ϵ1/3) FOs. The latter complexity improves upon the
O(n2 log(1/ϵ)) of state-of-the-art VR methods for the strongly convex case Nguyen et al. (2017);
Johnson & Zhang (2013); Xiao & Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu
(2017) and the O(n/ϵ) FO complexity of StochasticGradientDescent.

Our Contribution and results: In this work, we build upon the work of Mavrothalisitis et
al. Mavrothalassitis et al. (2024) by providing an efficient first-order method for CFSM in the
non-convex regime. More precisely, we consider CFSM under the assumption that each prefix-sum
function gi(x) :=

∑i
j=1 fj(x)/i satisfies the Polyak-Łojasiewicz (PL) condition. The PL condition

is a weaker assumption than strong convexity that has received huge attention in recent years due to
the fact that it provides structured non-convexity for optimization settings related to the training of
Deep Neural Networks Liu et al. (2022); Song et al. (2021) (see also Remark 2).

Finite-sum minimization (Problem 1) under the PL condition has been previously considered in
the variance-reduction literature Karimi et al. (2016); Lei et al. (2017); Li et al. (2021); Zhang
et al. (2016). However as in the strongly convex case using such a method in a black-box man-
ner (at each stage i ∈ [n]) leads to an overall O(n2 log(1/ϵ)) FO complexity. Despite that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the dependence O (log(1/ϵ)) seems appealing, the O(n2) is extremely computationally heavy
even in relatively small cases where n is of the order of thousands. At the same time, using
StochasticGradientDescent at each stage i ∈ [n] would require O(n/ϵ) FO complexity that is
still impractical due to the coupled dependence of O(n) and O(1/ϵ).
The main contribution of this work is providing a first-order method, called CSVRG-PL, achieving
Õ(n/

√
ϵ) FO complexity for CSFM under the Polyak-Łojasiewicz condition.

Main Result. There exists a first-order method, called CSVRG-PL (Algorithm 1), for Continual
Finite-Sum Minimization under Polyak-Łojasiewicz condition that achieves Õ(n/

√
ϵ) FO complex-

ity.

Different methods for CFSM might be more efficient than others depending on the required accuracy
ϵ > 0. For accuracy ϵ = Θ(1/n), CSVRG-PL (our method) requires only O(n3/2)-FOs while both
the variance reduction methods Karimi et al. (2016); Lei et al. (2017); Li et al. (2021); Zhang et al.
(2016) and StochasticGradientDescent require O(n2) FOs. As also commented in Mavrothalas-
sitis et al. (2024), the accuracy regime ϵ = Θ(1/n) is of particular interest since the statistical error
of empirical risk minimization is Θ(1/n) Shalev-Shwartz et al. (2010) and thus requiring accuracy
ϵ > 0 smaller than Θ(1/n) is redundant in the context of empirical risk minimization (see also
Bottou & Bousquet (2007)).
Remark 1. Our method CSVRG-PL (Algorithm 1) achieves almost optimal FO complexity.
Mavrothalassitis et al. Mavrothalassitis et al. (2024) showed that even in the strongly convex case
there is no first-order method achievingO(n/ϵ1/4)-FOs meaning that our method is onlyO(1/ϵ1/4)
far from being optimal. At the same time, Mavrothalassitis et al. Mavrothalassitis et al. (2024)
also established that in the strongly convex case there is no first-order method with o(n2 log(1/ϵ))
FO complexity. The latter implies that the log(1/ϵ) FO complexity cannot be achieved without a
quadratic dependence on n on the total FO oracles.
Remark 2. Neural Networks and Polyak-Łojasiewicz Condition: Analyzing the convergence
of methods and optimization algorithms for neural networks, has been a challenging endeavor,
despite their empirical success LeCun et al. (1998a; 2015); Zhang et al. (2021), due to the highly
non-convex landscape. A widely used approach, for studying optimization of neural networks, has
been the Neural Tangent Kernel (NTK) Jacot et al. (2018). There are several works, that are based
on this approach Awasthi et al. (2021); Su & Yang (2019); Zou & Gu (2019), however, such analysis
requires heavy overparametrization, which is extremely costly for deep neural networks. Another
approach is based on structural hypothesis of the loss landscape, of neural networks, using the local
Polyak-Łojasiewicz Condition Song et al. (2021); Nguyen (2021); Ling et al. (2023). This approach
has the benefit of decoupling the neural network dynamics from the optimization analysis.

Table 1: Convergence Results for continual finite sum minimization(CFSM)

Method Number of FOs Assumption
StochasticGradientDescent O(n/ϵ) strongly convex
Katyusha(Allen-Zhu, 2017) O

(
n2 log(1/ϵ)

)
strongly convex

CSVRG(Mavrothalassitis et al., 2024) Õ
(
n/ϵ1/3

)
strongly convex

StochasticGradientDescentLei et al. (2019) O(n/ϵ) Polyak-Łojasiewicz
SpiderBoost(Wanget al., 2019) O

(
n2 log(1/ϵ)

)
Polyak-Łojasiewicz

CSVRG-PL (our method) Õ (n/
√
ϵ) Polyak-Łojasiewicz

Up next, we summarize the contributions our work:

1. We provide the CSVRG− PL algorithm, a method with provable guarantees (both in terms of
convergence and FO complexity) for CFSM under the Polyak-Łojasiewicz condition. The latter
provides a solid theoretical foundation of the performance of our method in settings involving Deep
Neural Networks Mavrothalassitis et al. (2024); Nguyen (2021); Ling et al. (2023).

2. We provide extensive experimental evaluations in continual learning Castro et al. (2018); Rosen-
feld & Tsotsos (2018); Hersche et al. (2022) and unlearning settingsSekhari et al. (2021); Guo et al.
(2020) involving baseline datasets (MNIST, FashionMNIST, CIFAR-10, CIFAR-100) in ResNet18.
Our experimental evaluations reveal a significant improvement in the performance of our method

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

compared to StochasticGradientDescent. Furthermore, our evaluations highlight the potential of
both our method and the CFSM framework in handling settings with evolving datasets. We note that
our experimental evaluations substantially extend beyond those of Mavrothalassitis et al. (2024),
which only considers linear regression on the LIBSVM dataset.

3. Our CFSM-PL method shares the same algorithmic architecture with the CFSM method in
Mavrothalassitis et al. (2024), with one key difference. The estimator that we use in Step 5 of
Algorithm2 differs from the respective estimator in Mavrothalassitis et al. (2024) (see the respective
FUM method). This difference may seem subtle but is of great importance for providing formal
convergence guarantees under the Polyak-Łojasiewicz condition. Specifically, the current estima-
tor allows us to provide last-iterate guarantees during each call of Algorithm 2. In contrast, the
estimator used by Mavrothalassitis et al. Mavrothalassitis et al. (2024) only provide time-average
guarantees. While this limitation is not critical in the strongly convex regime, it poses a significant
problem in the non-convex regime considered here. Additionally, the estimator in Mavrothalassitis
et al. (2024) is significantly more complex than ours and, most importantly, requires three FOs. In
contrast, the current estimator requires only two FOs, making our method 1.5 times faster for the
same number of inner iterations during each stage.

2 PRELIMINARIES AND RESULTS

In this section we introduce some basic definitions and notation. We denote with Unif(1, . . . , n) the
uniform distribution over {1, . . . , n} and [n] := {1, . . . , n}.
Definition 2. A differentiable function f : Rd 7→ R is said to be L-smooth if and only if

∥∇f(x)−∇f(y)∥ ≤ L · ∥x− y∥ for all x, y ∈ Rd

Definition 3 (Polyak-Łojasiewicz condition). A differentiable function f : Rd 7→ R is said to satisfy
the Polyak-Łojasiewicz (PL) condition, if for all x ∈ Rd, it holds that:

f(x)− f⋆ ≤ 1

2µ
∥∇f(x)∥2

where f⋆ is the minimum of f(x), i.e. f⋆ = f(x⋆) where x⋆ = argminx∈Rd f(x).

The PL condition does not enforce convexity (e.g. f(x) = x2 + 3 sin2(x) is PL but non-convex),
recent works have shown that local Polyak-Łojasiewicz can be used to characterize the loss land-
scape of neural networks Song et al. (2021); Nguyen (2021); Ling et al. (2023), rendering it a
reasonable assumption for modern optimization analysis in settings involving deep neural nets. The
PL-condition also implies the Quadratic Growth property Karimi et al. (2016) stated up next.
Definition 4 (Quadratic Growth). A function f : Rd 7→ R satisfies the Quadratic Growth property,
if for all x ∈ Rd, we have that:

f(x)− f⋆ ≥ µ

2
∥x− xp∥2

where xp is the projection of x on the set of optimal solutions X ⋆ := {x ∈ Rd : f(x) := f⋆}.

To simplify notation, we denote with gi(x) the prefix-function at stage i ∈ [n],

gi(x) :=

i∑
j=1

fj(x)/i.

We also denote with g⋆i = minx∈Rd gi(x) the minimum of gi(x) and with X ⋆
i the set of optimal

solutions X ⋆
i = {x ∈ Rd | gi(x) = g⋆i }. Finally we will make the following two assumptions for

the prefix-sum functions gi(x).
Assumption 1. For any stages i > j,

∥∥∇fi (x⋆
j

)∥∥ ≤ L ·D, for some constant D > 0.

This assumption is common in stochastic optimization Stich et al. (2018); Nemirovski et al. (2009).

Assumption 2. (Diminishing returns) There exists a constant K > 0 such that for any stages i > j,

max
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j

∥∥2 ≤ i− j

i
K.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 2 requires that any two optimal solutions x⋆
i ∈ X ⋆

i and x⋆
j ∈ X ⋆

j scale with O
(
i−j
i

)
.

Remark 3. Assumption 2 mathematically encodes diminishing returns, one of several ways we can
use to capture this phenomenon. Though submodularity is a more general framework, we have
chosen the simpler form presented here as it makes the convergence analysis transparent. Our
assumption ensures that each function’s contribution to the overall loss remains consistent, varying
only by constant factors, and diminishes as the model progresses through successive stages. In the
generalization literature, a related concept is that of uniform stability, as discussed in Feldman &
Vondrak (2018); Bassily et al. (2020). This assumption posits that altering a single data point does
not substantially affect the loss, a crucial tool when establishing generalization bounds.

In Appendix A, we explicitly show a stronger inequality to verify the assumption under a couple
general settings, such as, when the functions have a unique minimizer, or the set of minimizers is
shrinking. We now present the formal statement of our result.
Theorem 1. There exists a first-order method, called CSVRG-PL (Algorithm 1) such that for any
f1, . . . , fn satisfying the PL-condition and Assumptions 1&2, outputs x̂1, . . . , x̂n ∈ Rd such that

E [gi(x̂i)]− g⋆i ≤ ϵ for each stage i ∈ [n]

with overall Õ(n/
√
ϵ) first-order oracles.

3 OUR METHOD AND CONVERGENCE RESULTS

In this section we present our first-order method called Continual Stochastic Variance Reduc-
tion - Polyak-Łojasiewicz (CSVRG− PL) that is able to achieve the guarantees of Theorem 1.
CSVRG− PL is formally described in Algorithm 1 and is composed by two main components
(Algorithm 1 and Algorithm 2) that we subsequently explain.

First notice that that the output x̂i ∈ Rd at each stage i ∈ [n] is provided by Algorithm 2, which
can be viewed as a version of stochastic gradient descent that at each iteration t ∈ [Ti] follows the
direction

∇t
i ← ∇fut

(xt
i)−∇fut

(x̂prev) + ∇̃i (Step 5 of Algorithm 2).

The only purpose of Algorithm 1 is to update the estimator ∇̃i at each stage i ∈ [n]. The latter is
then given as input to Algorithm 2 (Step 13 of Algorithm 1). Notice that the way ∇̃i is calculated
differs from stage to stage. More precisely,

∇̃i =

{
1
i

∑i
j=1∇fj(x̂i−1) i− prev ≥ α · i(

1− 1
i

)
∇̃i−1 +

1
i∇fi(x̂prev) i− prev < α · i

In case i−prev ≥ α·i, Algorithm 1 requires i FOs to calculate ∇̃i while in case i−prev < α·i only 1
additional FO is required, specifically∇fi(x̂prev). For this reason by the construction of Algorithm 1
in almost all stages 1 FO is used for the calculation of ∇̃i. The latter is ensured by Steps (14)-(16)
of Algorithm 1 guaranteeing that (i − prev ≥ α · i) is satisfied more and more sparsely over the
sequence. Finally we note that ∇̃i = ∇gi(x̂prev) always at Step 13 of Algorithm 1, as shown in
Lemma 6.

Up next we explain the main ideas used in the analysis and design of Algorithm 1. The cornerstone
of our analysis comes from the fact that the estimator ∇t

i in Step 5 of Algorithm 2 is always an
unbiased estimator of the true gradient ∇gi(xt

i). The latter is formally stated and established in
Lemma 1.
Lemma 1 (Unbiased). Let ∇t

i be the gradient estimator as defined in Step 5 of Algorithm 2. Then
for all t ∈ [Ti] and for all i ∈ [n], it holds that: E [∇t

i] = ∇gi(xt
i).

The proof of Lemma 1 lies in Appendix B. The proof heavily relies on the fact that ∇̃i = ∇gi(x̂prev)
is guaranteed by Algorithm 1.The fact that E [∇t

i] = ∇gi(xt
i) is obviously a very crucial property

since it guarantees that on expectation Algorithm 2 decreases the function gi(x) :=
∑i

j=1 fj(x)/i.

To this end one might wonder why Algorithm 2 needs such an intricate gradient estimator, for
example the straightforward estimator ∇t

i := ∇fut
(xt

i) where ut ∼ Unif(1, . . . , n) still satisfies
the unbiasness property. The problem with the latter estimator is that it admits very high variance,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 CSVRG− PL

1: x̂0 ∈ D, prev← 0, update← false
2: x̂1 ← GradientDescent(x̂0)

3: ∇̃1 ← ∇f1(x̂1)

4: for each stage i = 2, . . . , n do
5: if i− prev ≥ α · i then
6: ∇̃i ← 1

i

∑i
j=1∇fj(x̂i−1) ▷ Full gradient i FOs

7: prev← i− 1

8: update← true

9: else
10: ∇̃i ←

(
1− 1

i

)
∇̃i−1 +

1
i∇fi(x̂prev) ▷ Update full gradient with 1 FO

11: end if
12: Ti ← O

(
L2G

µ5/2i
√
ϵ
+ L2G2α2

µϵ + L2

µ2

)
▷ Number of iterations at stage i ∈ [n]

13: x̂i ← FUM− PL(prev, ∇̃i, Ti) ▷ Output for stage i by Algorithm 2
14: if update then
15: ∇̃i ← 1

i

∑i
j=1∇fj(x̂i) ▷ Full gradient i FOs

16: prev← i

17: update← false
18: end if
19: end for

Algorithm 2 Frequent Update Method-PL (FUM− PL)

1: c← 8L2

µ2

2: x0
i ← x̂i−1 ▷ Initialization at previous solution

3: for each round t := 1, . . . , Ti do
4: Select ut ∼ Unif(1, . . . , i)

5: ∇t
i ← ∇fut

(xt
i)−∇fut

(x̂prev) + ∇̃i ▷ 2 FOs
6: γt ← 2/(µ(t+ c))

7: xt+1
i ← xt

i − γt∇t
i ▷ Update xt

i ∈ D
8: end for
9: Output: x̂i ← xTi

▷ Output at stage i ∈ [n]

on the other hand the estimator∇t
i ← ∇fut(x

t
i)−∇fut(x̂prev)+ ∇̃i, which was initially introduced

in Johnson & Zhang (2013), admits way smaller variance which in turn translates to significantly
faster rates. The latter is established in Lemma 2 that we present up next. The proof of Lemma 2
lies in Appendix C.
Lemma 2 (Variance). For the gradient estimator used in line 5 of Algorithm 2 we have:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2] ≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i)
]

+ 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

)
where K is the constant of Assumption 2.

From Lemma 2, one can notice that the variance of the estimator is upperbound by three terms.
The first one E [gi(x

t
i)− gi(x

⋆
i)] depends on the current iterations suboptimality, therefore as we

approach an optimal point this term vanishes and this allows us to incorporate it seamlessly into the
analysis. The other two terms O(E [gi(x

t
i)− gi(x

⋆
i)]) and O(i−j

i) are independent of the iteration

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

t ∈ [Ti]. Therefore we cannot treat them between individual iterations and instead they appear in
the upper bound of the suboptimality of Algorithm 2.

Specifically, using Lemma 2 we can then upper bound the suboptimality of the output x̂i of Algo-
rithm 2. The latter is formally stated and proven in Lemma 3 the proof of which lies in Appendix F.
Lemma 3 (Convergence). Under the update rule of line 5 of Algorithm 2, when using the step size
γt = 2/(µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we have that:

E
[
gi(x

T+1
i)− gi(x

⋆
i)
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i)

T 2
+ 2L3K

i− prev
iT

+
16L3

(
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
µ3T

The suboptimality achieved by Algorithm 2 depends on three different terms, respectively
O
(
E [gi(x̂i−1)]− gi(x

⋆
i)/T

2
)
, O ((i− prev)/(iT)) and O

((
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
/T

)
.

In order to analyze their convergence, we will have to rely on the expected suboptimality of the
solutions produced by Algorithm 2 in the previous stages. We can inductively assume that we have
calculated a solution x̂j , for all j < i, such that: E [gj(x̂j)]−gj(x

⋆
j) ≤ ϵ. This inductive hypothesis,

allows us to directly bound the third term of the aforementioned bound directly.

The first term (E [gi(x̂i−1)]− gi(x
⋆
i)) /T

2 depends on the suboptimality of the point x̂i−1. Bound-
ing this term can be done using our inductive hypothesis and Lemma 4 the proof of which can be
found in Appendix E.
Lemma 4. Let a sequence of functions f1, f2, . . . , fi such that Assumption 2 is satisfied and the
functions gi, gj satisfy the quadratic growth property. Then,

gi(x̂j)− g⋆i ≤
i− j

i

L ·K
2

+ C

where C = i−j
i L ·D ·

√
2
µ

(
gj(x̂j)− g⋆j

)
+ L

µ

(
gj(x̂j)− g⋆j

)
and K is the constant in Assumption 2.

Applying Lemma 4 for j = i− 1 we get that E [gi(x̂i−1)]− gi(x
⋆
i) ≤ L ·K/(2 · i) +E [C] and our

inductive hypothesis guarantees that E [C] ≤ O (
√
ϵ).

Finally, the second term O((i − prev)/i) quantifies the distance between stage i and prev, i.e. the
most recent stage at which Algorithm 1 computation got into Step (5) − (6). Notice that by the
construction of Algorithm 1, i − prev < α · i meaning that the term O((i − prev)/i) ≤ α. To this
end we remark that the parameter α controls the frequency according to which Algorithm 1 gets into
Steps (5) − (8). Lemma 3 reveals that the higher the frequency (smaller α) the better the rate of
Algorithm 2 during stage i. However we remark that once Algorithm 1 gets into Step (5)−(8) more
FOs are needed, thus a proper selection of α is required in order to provide the desirable results.

Up next we present Theorem 2 that describes the overall FO complexity of our method. The proof
of Theorem 2 lies on Appendix G and is based on the arguments that we illustrated above.

Theorem 2. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ

where c = 4L(µ2 + L2)/µ3. Then for each stage i ∈ [n] we have that

E [gi(x̂i)]− g⋆i ≤ ϵ

where x̂i is the output of Algorithm 2, for stage i.

We complete the section via providing the overall number of FOs that Algorithm 1 requires under
the selection of parameters described in Theorem 2. Counting the overall number of FOs that Al-
gorithm 1 requires is tedious but relative straightfoward and is based on Corollary 1, the proof of
which can be found in Appendix H

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Corollary 1. Over a sequence of n stages, Algorithm 1 requires 2
∑n

i=1 Ti + 2n⌈log n/α⌉ FOs.

Up next we present a proof sketch. The term 2
∑n

i=1 Ti comes form the the fact that at each iteration
t ∈ [Ti] of Algorithm 2, 2 FOs are calculated,∇fut(x

t
i) and∇fut(xprev). At the same time the term

2n⌈log n/α⌉ accounts for the additional FOs that Algorithm 1 uses in order to maintain ∇̃i. The
fact that Algorithm 1 sporadically computes needs i FOs (i − prev ≤ α · i) and in most cases only
needs 1 additional FO is depicted in 2n⌈log n/α⌉.
Using the parameters α and Ti described in Theorem 2 we obtain the overall FO complexity of
Algorithm 1. The latter is formally stated and proven in Theorem 3, the proof of which lies in
Appendix H.

Theorem 3. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ

where c = 4L(µ2 + L2)/µ3. Then the overall FO complexity of Algorithm 1 (across all n stages)

equals O
(
n log n

√
1/ϵ

)
.

4 EXPERIMENTS

We validate our algorithm and setup by training the popular PreActResNet18 architecture (He et al.,
2016) in the MNIST (LeCun et al., 1998b), FashionMNIST (Xiao et al., 2017) and CIFAR10/100
(Krizhevsky & Hinton, 2009) datasets. As a baseline, we compare against SGD. Please note that as
we mention in the introduction, traditional variance reduction methods such as SVRG require Ω(n2)
FOs, making them impractical to run, this is clearly demonstrated in Table 2 of Mavrothalassitis et al.
(2024).

Below, we use a batch size b = 100 samples and α = 0.01 (see Algorithm 1) and report the average
performance over three random seeds. We also included more extensive experiments in Appendix I.

4.1 LEARNING RATE AND SCHEDULER SELECTION

We consider two learning rate schedulers:

1. constant: the learning rate remains constant at each stage and FUM update.
2. linear: we use a base learning rate γ and inside every FUM loop (Algorithm 2), we decrease

linearly from γ to γ/10.

We perform a grid search to select the learning rate for CSVRG− PL and SGD in the constant and
linear schedules, we leave out a subset of 5% of the training data as a validation set. We run every
method and learning rate value for 3 random seeds and report the average and the final accuracy on
the validation set. We select the optimal learning rate, according to Table 4, presented in detail in
Appendix I.1. We also find that the linear scheduler improves the performance for both methods.

4.2 CONTINUAL LEARNING

In this section we evaluate our method in a continual learning setting Castro et al. (2018); Rosenfeld
& Tsotsos (2018); Hersche et al. (2022). We split the dataset according to the labels. As a reference,
in CIFAR10 we create ten subsets of the data, each one corresponding to a label, from ”0” to ”9”.
After splitting the data, we start training the model. Initially the training set of the model is empty
and we add to it one batch of samples at each stage, introducing first all the data of one label, before
moving on to the next one. Going back to our example on CIFAR10, this procedure corresponds
to starting from label ”0” and adding the samples with label ”0” for stages 0 to 49, then, we start
introducing data with label ”1”, for stages 50 to 99 and so on.

We measure the performance of the model at each stage with respect to the test accuracy of the
labels that have been currently added in the training set of the model. We avoid doing extensive

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

computation at each stage, since we don’t want to retrain the model from scratch on the new dataset,
but instead make small adaptations to it. Up next, we compare our method with SGD in this setting.

Table 2: Test accuracy at the last stage, with only 10 iterations per stage.

Dataset MNIST FashionMNIST CIFAR10 CIFAR100

SGD 98.34±(0.09) 91.29±(0.11) 80.24±(0.16) 54.33±(0.57)

CSVRG− PL 98.69±(0.17) 91.52±(0.51) 85.54±(0.44) 61.12±(1.00)

0 100 200 300 400 500 600
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(a) MNIST

0 100 200 300 400 500 600
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(b) FashionMNIST

0 100 200 300 400 500
Stage

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(c) CIFAR10

0 100 200 300 400 500
Stage

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(d) CIFAR100

Figure 1: We report the test accuracy in the visited classes. We observe CSVRG− PL recovers
accuracy much faster than SGD when a new class is introduced and attains a much higher final
accuracy.

In Fig. 1 we can see that our method consistently outperforms SGD, on test accuracy. At stages
where a new class is introduced the performance of the model drops regardless of the training al-
gorithm used. The latter is totally expected since when the first few batches of a new class are
introduced the model has seen very few data of the new class. For example, for CIFAR10 these
stages are 50, 100, . . . , 450. After these drops, we can see that CSVRG− PL recovers faster than
SGD and adapts its predictions to account for the new class, leading to higher accuracy throughout
the experiments (see Appendix I.2). It is worth noting that on FashionMNIST and especially MNIST
the performance of the algorithms is very close, due to the simplicity of the dataset, while on harder
datasets, such as CIFAR10 and CIFAR100 our method provides a more significant improvement in
comparison to SGD.

For a more thorough comparison on the empirical performance of our proposed method we also
run a continual learning task for text classification. We finetune BERT-base (Devlin et al., 2019) in
the AG-News dataset (Gulli, 2005; Zhang et al., 2015) noticing still a minor improvement with our
method in comparison to SGD.

0 100 200 300 400
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(a) Continual learning evolution

Dataset AG-News

SGD 92.66±(0.65)

CSVRG− PL 93.24±(0.11)

(b) Final Acc.

Figure 2: Continual Learning in BERT+AG-News: CSVRG− PL and SGD evolve similarly,
with CSVRG− PL obtaining the best final performance at 93.24% Acc.

4.3 UNLEARNING

In this section we evaluate our method on an unlearning task Sekhari et al. (2021); Guo et al. (2020).
We initially start by training our model over the whole dataset for 30 epochs. Then starting from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

one class we sequentially remove data of this class from the data set. For example in CIFAR10, we
start by removing data of class 0 before continue with data from the other classes. Specifically we
remove one batch of samples per stage and adjust the model with the remaining ones.

During the process of unlearning, we form two dynamic sets, the remember and the forget set. The
forget set consists of all data that have been removed from the dataset, while the remember set
consists of the ones remaining in it. The motivation behind unlearning is that the data might need
to be removed from the trained model due to privacy reason or due to corruptions. The goal is that
upon the arrival of a remove request to adjust the parameters of the model, so that the accuracy of
the model on the forget set is as similar as possible to that of a model which has never seen these
data, while maintaining high test accuracy on the remember set.

We measure the performance of the model at each stage, where a new batch of data is removed
from the dataset. As we report on Table 3 the test accuracy for the remember set of both methods is
comparable across all datasets, however, the accuracy on the forget set of SGD is significantly higher
than that of our method, implying that StochasticGradientDescent (SGD) is unable to forget data,
in contrast to CSVRG− PL.

Table 3: We measure the final accuracy after 100 stages in the remember set (R Acc.) and the forget
set (F Acc.). We compare the best performance for 200 steps, per stage, for MNIST, FashionMNIST,
CIFAR10 and CIFAR100. CSVRG− PL consistently outperforms SGD by being less accurate in
the forget set while minimally affecting the remember set performance.

Dataset MNIST FashionMNIST CIFAR10 CIFAR100
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 99.18±(0.04) 95.17±(0.61) 94.57±(0.11) 92.44±(0.72) 93.77±(0.17) 87.61±(1.04) 76.43±(0.23) 76.14±(0.51)

CSVRG− PL 99.19±(0.02) 49.81±(0.34) 94.48±(0.21) 71.67±(3.01) 93.15±(0.18) 48.46±(0.50) 73.50±(0.14) 44.81±(0.34)

0 20 40 60 80 100
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

Forget Set

SGD
CSVRG-PL

(a) MNIST

0 20 40 60 80 100
Stage

0.7

0.8

0.9

1.0

Ac
c.

Forget Set

SGD
CSVRG-PL

(b) FashionMNIST

0 20 40 60 80 100
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

Forget Set

SGD
CSVRG-PL

(c) CIFAR10

0 20 40 60 80 100
Stage

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

c.

Forget Set
SGD
CSVRG-PL

(d) CIFAR100

Figure 3: Accuracy of the model on the forget set.

5 CONCLUSION

In this work, we provide a first-order method (CSVRG− PL) for Continual Finite Sum Min-
imization under the Polyak-Łojasiewicz condition. For accuracy ϵ > 0, CSVRG− PL com-
putes an ϵ-approximate solution for all stages with O(n/

√
ϵ) FOs under the PL condition, for

non-convex functions and recovers the rate of O(n/ϵ1/3) of CSVRG for the strongly convex
case with improved computation, simultaneously improving over the O(n/ϵ) FO complexity of
StochasticGradientDescent and over the O (n log (1/ϵ)) FO complexity of variance reduction
methods. We also provide experimental evaluations indicating the effectiveness of our method in
settings with time-evolving datasets like continual learning and unlearning.

Limitations: There is still an efficiency gap between the O(n/
√
ϵ) FO complexity of our method

that applies to the non-convex setting and the Ω(n/ϵ1/4) FO lower bound (Mavrothalassitis et al.,
2024) developed in the convex setting. Closing this gap is a very interesting future research direction.

Broader Impact: This paper provides an efficient first-order method for continual finite-sum mini-
mization. Our work contributes on the theoretical foundations of optimization and machine learning.
We do not expect any negative societal impact from this work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1200–1205,
2017.

Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. A convergence analysis of gradient
descent on graph neural networks. Advances in Neural Information Processing Systems, 34:
20385–20397, 2021.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in Neural In-
formation Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, pp. 161–168. Curran Associates, Inc., 2007.

Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Advances in Neu-
ral Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 1646–1654, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019.

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. Advances
in Neural Information Processing Systems, 31, 2018.

Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C. Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgeting in gradient-based neural networks. In Yoshua Bengio
and Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Antonio Gulli. Ag’s corpus of news articles, 2005. URL http://groups.di.unipi.it/
˜gulli/AG_corpus_of_news_articles.html.

Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten. Certified data removal
from machine learning models. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 3832–3842. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, and Ab-
bas Rahimi. Constrained few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9057–9067, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

11

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken (eds.), Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-
23, 2016, Proceedings, Part I, volume 9851 of Lecture Notes in Computer Science, pp. 795–811.
Springer, 2016. doi: 10.1007/978-3-319-46128-1\ 50. URL https://doi.org/10.1007/
978-3-319-46128-1_50.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998b.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I. Jordan. Non-convex finite-sum optimization
via SCSG methods. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 2348–2358, 2017.

Yunwen Lei, Ting Hu, Guiying Li, and Ke Tang. Stochastic gradient descent for nonconvex learn-
ing without bounded gradient assumptions. IEEE transactions on neural networks and learning
systems, 31(10):4394–4400, 2019.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp.
6286–6295. PMLR, 2021.

Zenan Ling, Xingyu Xie, Qiuhao Wang, Zongpeng Zhang, and Zhouchen Lin. Global convergence
of over-parameterized deep equilibrium models. In International Conference on Artificial Intelli-
gence and Statistics, pp. 767–787. PMLR, 2023.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Ioannis Mavrothalassitis, Stratis Skoulakis, Leello Tadesse Dadi, and Volkan Cevher. Efficient con-
tinual finite-sum minimization. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=RR70yWYenC.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

12

https://doi.org/10.1007/978-3-319-46128-1_50
https://doi.org/10.1007/978-3-319-46128-1_50
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=RR70yWYenC

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takác. SARAH: A novel method for ma-
chine learning problems using stochastic recursive gradient. In Doina Precup and Yee Whye Teh
(eds.), Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pp. 2613–2621. PMLR, 2017.

Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu networks with
linear widths. In International Conference on Machine Learning, pp. 8056–8062. PMLR, 2021.

Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE transac-
tions on pattern analysis and machine intelligence, 42(3):651–663, 2018.

Nicolas Le Roux, Mark Schmidt, and Francis R. Bach. A stochastic gradient method with an ex-
ponential convergence rate for finite training sets. In Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States, pp. 2672–2680, 2012.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 18075–18086, 2021.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
and uniform convergence. J. Mach. Learn. Res., 11:2635–2670, 2010.

Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan Cevher.
Subquadratic overparameterization for shallow neural networks. Advances in Neural Information
Processing Systems, 34:11247–11259, 2021.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Ad-
vances in neural information processing systems, 31, 2018.

Lili Su and Pengkun Yang. On learning over-parameterized neural networks: A functional approxi-
mation perspective. Advances in Neural Information Processing Systems, 32, 2019.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster
variance reduction algorithms. Advances in Neural Information Processing Systems, 32, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/
abs/1708.07747.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM J. Optim., 24(4):2057–2075, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Fast stochastic optimization on riemannian mani-
folds. CoRR, abs/1605.07147, 2016. URL http://arxiv.org/abs/1605.07147.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

13

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1605.07147
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduced gradient descent for
nonconvex optimization. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pp. 3925–3936, 2018.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

A DISCUSSION ON ASSUMPTION 2

In this section we will provide some more formal intuition supporting Assumption 2, for the sake of
exposition we restate it up next.

Assumption 2. (Diminishing returns) There exists a constant K > 0 such that for any stages i > j,

max
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j

∥∥2 ≤ i− j

i
K.

Formally we can show that the following for a compact set D.

Lemma 5. For all i ∈ [n] and j ∈ [n− i], if the prefix functions gi, gj satisfy the quadratic growth
property, then for every minimizer x⋆

i there exists an x⋆
j,i that minimizes gj over the compact set D

and satisfies the inequality: ∥∥x⋆
i − x⋆

j,i

∥∥ ≤ i− j

i
K

Proof. We start from the quadratic growth property for the function gi∥∥x⋆
i − x⋆

j,i

∥∥2 ≤ 2

µ

(
gi(x

⋆
j,i)− g⋆i

)
=

2

µ

j

i
(gj(x

⋆
j,i)− gj(x

⋆
i)) +

1

i

i∑
k=j+1

(
fk(x

⋆
j,i)− fk(x

⋆
i)
)

≤ 1

i

i∑
k=j+1

(
fk(x

⋆
j,i)− fk(x

⋆
i)
)

≤ i− j

i
G
∥∥x⋆

i − x⋆
j,i

∥∥
In the third line we use the optimality of x⋆

j,i, which implies that: gj(x
⋆
j,i) − gj(x

⋆
i) < 0. On the

last line we use the compactness of the set which implies that the functions gi, gj are Lipschitz, for
a constant G.

Corollary 2. For all i ∈ [n] and j ∈ [n−i], if the prefix functions gi, gj satisfy the quadratic growth
property, then over the compact set D, it holds that:

min
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j,i

∥∥ ≤ i− j

i
K

As an immediate corollary, we also get that if the functions have unique minimizers then it holds
that:

Corollary 3. For all i ∈ [n] and j ∈ [n−i], if the prefix functions gi, gj satisfy the quadratic growth
property, then their minimizers x⋆

i , x
⋆
j over a compact set D satisfy the inequality:∥∥x⋆

i − x⋆
j

∥∥ ≤ i− j

i
K

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOF OF LEMMA 1

Lemma 1 (Unbiased). Let ∇t
i be the gradient estimator as defined in Step 5 of Algorithm 2. Then

for all t ∈ [Ti] and for all i ∈ [n], it holds that: E [∇t
i] = ∇gi(xt

i).

Proof. Let F t
i denote the filtration until step t ∈ [Ti] of stage i ∈ [n] By the definition of ∇t

i we
have that:

E
[
∇t

i|F t
i

]
= E

[
∇fut

(xt
i)−∇fut

(x̂prev)|F t
i

]
+ ∇̃i

=

i∑
k=1

Pr [ut = k] (∇fk(xt
i)−∇fk(x̂prev)) + ∇̃i

=
1

i

i∑
k=1

(∇fk(xt
i)−∇fk(x̂prev)) + ∇̃i

=
1

i

i∑
k=1

(∇fk(xt
i))− ∇̃i + ∇̃i

This concludes the proof, in the last line we used the property that ∇̃i = 1
i

∑i
k=1∇fk(x̂prev),

which is formally established in lemma 6.

Lemma 6. At Step 12 of Algorithm 1, it holds that ∇̃i =
∑i

k=1∇fk(x̂prev)/i

Proof of Lemma 6. We will inductively establish Lemma 6. Notice that after stage i = 1, Algo-
rithm 1 sets ∇̃1 = ∇f1(x̂1). Up next we show that in case the induction hypothesis holds for stage
i− 1 then it must essentially hold for stage i. Up next we consider the following 2 cases:

1. i− prev ≥ αi meaning that prev is updated in this stage.

2. i− prev < αi.

Let us point out that the two cases are mutually exclusive.
For the first case Algorithm 1 reaches Step 5 and thus ∇̃i =

∑i
j=1∇fj(x̂i−1)/i. At the same time

prev is set to i− 1 meaning that prev = i− 1 and ∇̃i =
1
i

∑i
k=1∇fk(x̂prev). At the end of stage i

the algorithm sets prev = i and ∇̃i =
1
i

∑i
k=1∇fk(x̂i), so our inductive hypothesis still holds for

the next stage.

For the second case, from the inductive hypothesis we have that:

∇̃i−1 =
1

i− 1

i−1∑
k=1

∇fk(x̂prev)

At stage i, at Step 9 of Algorithm 1, which is always reached, since in this case i − prev ≤ α · i.
We have that ∇̃i−1 satisfies the inductive hypothesis. As a result,

∇̃i =

(
1− 1

i

)
∇̃i−1 +

1

i
∇fi(x̂prev)

=
i− 1

i

1

i− 1

i−1∑
k=1

∇fk(x̂prev) +
1

i
∇fi(x̂prev)

=
1

i

i∑
k=1

∇fk(x̂prev)

We note that the proofs for this section are similar to those of Mavrothalassitis et al. (2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF LEMMA 2

Lemma 2 (Variance). For the gradient estimator used in line 5 of Algorithm 2 we have:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2] ≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i)
]

+ 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

)
where K is the constant of Assumption 2.

Proof. Let F t
i denote the natural filtration with respect to iteration t ∈ [Ti] of stage i ∈ [n]. By

substitution from the definition of∇t
i, we get:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2 |F t

i

]
= E

[∥∥∥∇fut
(xt

i)−∇fut
(x̂prev) + ∇̃ − ∇gi(xt

i)
∥∥∥2 |F t

i

]
= E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i)−∇fut
(x̂prev) +∇fut

(x⋆
i)

+ ∇̃ − ∇gi(x⋆
i)−∇gi(xt

i) +∇gi(x⋆
i)
∥∥∥2 |F t

i

]
≤ 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i)−∇gi(xt
i) +∇gi(x⋆

i)
∥∥2 |F t

i

]
+ 2E

[∥∥∥∇fut
(x̂prev)−∇fut

(x⋆
i)− ∇̃+∇gi(x⋆

i)
∥∥∥2 |F t

i

]
= 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i)−∇gi(xt
i) +∇gi(x⋆

i)
∥∥2 |F t

i

]
+ 2E

[
∥∇fut

(x̂prev)−∇fut
(x⋆

i)−∇gi(x̂prev) +∇gi(x⋆
i)∥

2 |F t
i

]
≤ 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i)
∥∥2 |F t

i

]
+ 2E

[
∥∇fut

(x̂prev)−∇fut
(x⋆

i)∥
2 |F t

i

]
≤ 2L2E

[∥∥xt
i − x⋆

i

∥∥2 |F t
i

]
+ 2L2E

[
∥x̂prev − x⋆

i ∥
2 |F t

i

]
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i)|F t

i

]
+ 4L2

(
E
[∥∥x̂prev − x⋆

prev

∥∥2 |F t
i

]
+

∥∥x⋆
prev − x⋆

i

∥∥2)
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i)|F t

i

]
+ 4L2

(∥∥x̂prev − x⋆
prev

∥∥2 + i− prev
i

K

)
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i)|F t

i

]
+ 4L2

(
2

µ
(gprev(x̂prev)− gprev(x

⋆
prev)) +

i− prev
i

K

)
The third to last inequality follows from the smoothness of the functions fi. The next inequality,
follows from the quadratic growth property. The last inequality, follows from the quadratic growth
property again. Taking expectation on both sides completes the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PROOF OF LEMMA 7

Lemma 7. Under the update rule of line 5 of Algorithm 2, when using a step size γt, that satisfies
the inequality γt ≤ µ2

2L(L2+µ2) , we have that:

E
[
gi(x

t+1
i)− gi(x

⋆
i)
]
≤ (1− µγt)E

[
gi(x

t
i)− gi(x

⋆
i)
]

+ 4
L3γ2

t

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3Kγ2

t

i− prev
i

Proof. We start our analysis from the smoothness of the function:

gi(x
t+1
i) ≤ gi(x

t
i) +

〈
xt+1
i − xt

i,∇gi(xt
i)
〉
+

L

2

∥∥xt+1
i − xt

i

∥∥2
= gi(x

t
i)− γt

〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇t
i

∥∥2
Let us upper bound the terms −γt ⟨∇t

i,∇gi(xt
i)⟩+

Lγ2
t

2 ∥∇
t
i∥

2:

− γt
〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇t
i

∥∥2
= (−γt + Lγ2

t)
〈
∇t

i,∇gi(xt
i)
〉
− Lγ2

t ⟨∇t
i,∇gi(xt

i)⟩+
Lγ2

t

2

∥∥∇t
i

∥∥2
= (−γt + Lγ2

t)
〈
∇t

i,∇gi(xt
i)
〉
− Lγ2

t

〈
∇t

i,∇gi(xt
i)−∇t

i

〉
− L

2
γ2
t

∥∥∇t
i

∥∥2
≤ (−γt + Lγ2

t)
〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇gi(xt
i)−∇t

i

∥∥2
In the last line we use the identity:

−⟨a, b⟩ − 1

2
∥a∥2 ≤ 1

2
∥b∥2

We set Dt
i = gi(x

t
i)− gi(x

⋆
i) and by substituting to the previous inequality, we get that:

Dt+1
i ≤ Dt

i − (γt − Lγ2
t)

〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇gi(xt
i)−∇t

i

∥∥2
By taking expectation conditional to the filtration up to step t, F t

i , we have that:

E
[
Dt+1

i |F t
i

]
≤ Dt

i − (γt − Lγ2
t)

∥∥∇gi(xt
i)
∥∥2 + Lγ2

t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2 |F t
i

]
≤ Dt

i − 2µ(γt − Lγ2
t)D

t
i +

Lγ2
t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2 |F t
i

]
In the first line we used the unbiased property of our gradient estimator E[∇t

i|F t
i] = ∇gi(xt

i) as
shown in Lemma 1. In the second inequality we used the PL-condition

2µDt
i ≤

∥∥∇gi(xt
i)
∥∥2

Note that the inequality is valid since γt ≤ µ2

2L(L2+µ2) and we require γt ≤ 1
L , for γt − Lγ2

t ≥ 0.
For compactness for the rest of the proof, we denote as Bt

i = E [Dt
i] = E [gi(x

t
i)− gi(x

⋆
i)]. By

taking total expectation, over both sides of the previous inequality, we have:

Bt+1
i ≤ (1− 2µγt + 2µLγ2

t)B
t
i +

Lγ2
t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2]
Using Lemma 2 and substituting the upperbound for E

[
∥∇gi(xt

i)−∇t
i∥

2
]
, we get:

Bt+1
i ≤ (1− 2µγt + 2µLγ2

t)B
t
i

+
Lγ2

t

2

(
4
L2

µ
Bt

i + 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

))
= (1− 2µγt + 2µLγ2

t + 2
L3γ2

t

µ
)Bt

i

+ 4
L3γ2

t

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3Kγ2

t

i− prev
i

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

By our assumption, that γt ≤ µ2

2L(L2+µ2) , we get that

(1− 2µγt + 2µLγ2
t + 2

L3γ2
t

µ
) ≤ 1− µγt

Substituting, gives the lemma statement and completes the proof.

E PROOF OF LEMMA 4

Lemma 4. Let a sequence of functions f1, f2, . . . , fi such that Assumption 2 is satisfied and the
functions gi, gj satisfy the quadratic growth property. Then,

gi(x̂j)− g⋆i ≤
i− j

i

L ·K
2

+ C

where C = i−j
i L ·D ·

√
2
µ

(
gj(x̂j)− g⋆j

)
+ L

µ

(
gj(x̂j)− g⋆j

)
and K is the constant in Assumption 2.

Proof.

gi(x̂j)− g⋆i = gi(x̂j)− gi(x
⋆
j) + gi(x

⋆
j)− g⋆i

≤ gi(x̂j)− gi(x
⋆
j) +

L

2

∥∥x⋆
j − x⋆

i

∥∥2
≤ gi(x̂j)− gi(x

⋆
j) +

L

2

i− j

i
K

In line 2 we used the smoothness of the function gi. In line 3 we used assumption 2. Note that we
select x⋆

j above is the projection of x̂j on the set X ⋆
j . So in order to get Lemma 4 it suffices to bound

the first term of the right hand side gi(x̂j)− gi(x
⋆
j).

gi(x̂j)− gi(x
⋆
j) =

1

i

i∑
k=1

(
fk(x̂j)− fk(x

⋆
j)
)

=
1

i

i∑
k=j+1

(
fk(x̂j)− fk(x

⋆
j)
)
+

j

i

j∑
k=1

(
fk(x̂j)− fk(x

⋆
j)
)

=
1

i

i∑
k=j+1

(
fk(x̂j)− fk(x

⋆
j)
)
+

j

i

(
gj(x̂j)− g⋆j

)
We will now focus on the terms fk(x̂j)−fk(x

⋆
j) for any k, we will start from the descent inequality,

where we used the smoothness of the function fk

fk(x̂j)− fk(x
⋆
j) ≤ ⟨x̂j − x⋆

j ,∇fk(x⋆
j)⟩+

L

2

∥∥x̂j − x⋆
j

∥∥2
≤

∥∥x̂j − x⋆
j

∥∥∥∥∇fk(x⋆
j)
∥∥+

L

2

∥∥x̂j − x⋆
j

∥∥2
≤

∥∥x̂j − x⋆
j

∥∥ · L ·D +
L

2

∥∥x̂j − x⋆
j

∥∥2
≤ L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

))
Where in the second inequality we used the Cauchy Schwartz inequality, in the third inequality, we
used Assumption 1 and in the last one we used the fact that the function gj satisfies the quadratic
growth property for all j. Substituting this upper bound in our equation we get:

gi(x̂j)− gi(x
⋆
j) ≤ i− j

i

(
L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

)))
+

j

i

(
gj(x̂j)− g⋆j

)
≤ i− j

i
L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

))
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where in the second inequality we used the fact that L ≥ µ. Substituting this upperbound to the
original inequality for gi(x̂j)− g⋆i , yields the lemma statement.

F PROOF OF LEMMA 3

Lemma 3 (Convergence). Under the update rule of line 5 of Algorithm 2, when using the step size
γt = 2/(µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we have that:

E
[
gi(x

T+1
i)− gi(x

⋆
i)
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i)

T 2
+ 2L3K

i− prev
iT

+
16L3

(
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
µ3T

Proof. By our selection of γt = 2/ (µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we get that γt ≤
µ2

2L(µ2+L2) , for all t ≥ 0, this allows us to use Lemma 7, for any t. To simplify notation and allow
for compactness in our proof, we will denote as Bt

i = E [gi(x
t
i)− gi(x

⋆
i)]. We will also denote as

Si = 4L3

µ E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3K i−prev

i , to facilitate compactness in our proofs.

E
[
gi(x

t+1
i)− gi(x

⋆
i)
]
≤ (1− µγt)E

[
gi(x

t
i)− gi(x

⋆
i)
]
+ γ2

t Si

By multiplying both sides of the inequality of the Lemma by (t+ c)(t+ c− 1), we get:

(t+ c)(t+ c− 1)Bt+1
i

≤ (t+ c− 1)(t+ c− 2)Bt
i + (t+ c)(t+ c− 1)γ2

t Si

By substituting γ2
t = 4

µ2(t+c)2 , we get:

(t+ c)(t+ c− 1)Bt+1
i

≤ (t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

t+ c− 1

t+ c
Si

By summing the inequality from t = 0 to T , we get that:

T∑
t=0

(t+ c)(t+ c− 1)Bt+1
i

≤
T∑

t=0

(t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

T∑
t=0

t+ c− 1

t+ c
Si

Now before proceeding let us point out two things. By setting k = t + 1, the left hand side of the
inequality can be rewritten as:

T+1∑
k=1

(k + c− 1)(k + c− 2)Bk
i

Secondly it holds that
t+ c− 1

t+ c
≤ 1

By substituting these in the previous inequality we get:

T+1∑
t=1

(t+ c− 1)(t+ c− 2)Bt
i

≤
T∑

t=0

(t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

T∑
t=0

Si

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A telescopic sum yields the following inequality:

(T + c)(T + c− 1)BT+1
i ≤ (c− 1)(c− 2)B0

i +
4

µ2
TSi

BT+1
i ≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i)

(T + c)(T + c− 1)
+

4TSi

µ2(T + c)(T + c− 1)

Finally since c ≥ 1, we have that: (T + c)(T + c− 1) ≥ T 2, so:

BT+1
i ≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i)

T 2
+

4Si

µ2T

From here we directly get the lemma statement.

G PROOF OF THEOREM 2

Theorem 2. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ

where c = 4L(µ2 + L2)/µ3. Then for each stage i ∈ [n] we have that

E [gi(x̂i)]− g⋆i ≤ ϵ

where x̂i is the output of Algorithm 2, for stage i.

Proof. Since in the first stage we have only one sample it is easy to see that the algorithm reduces
to gradient descent. Therefore after T = 1√

ϵ
, we have a solution x̂1, such that:

E [gi(x̂1)]− g⋆1 ≤ ϵ

Now for subsequent stages let us assume that for all previous stages we have found an epsilon
optimal solution in expectation. More formally at stage i, we have the inductive hypothesis, that for
j < i

E [gi(x̂j)]− g⋆j ≤ ϵ

Given our assumption that at each stage the step size is given by the equation γt = 2/(µ(t+ c)), we
can use Lemma 3, from which, we have, for Ti iterations, that:

E
[
gi(x

Ti+1
i)− gi(x

⋆
i)
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i)

T 2
i

+ 2L3K
i− prev

iTi

+
16L3E

[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
µ3Ti

Given our inductive hypothesis we have that:

E [gprev(x̂prev)]− gprev(x
⋆
prev) ≤ ϵ

From Lemma 4, we have that:

E [gi(x̂i−1)]− gi(x
⋆
i) ≤ L ·K

2i
+

L ·D
i

√
2

µ
E
[√

gj(x̂j)− g⋆j

]
+

L

µ
E
[
gj(x̂j)− g⋆j

]
≤ L ·K

2i
+

L ·D
i

√
2

µ

√
E
[
gj(x̂j)− g⋆j

]
+

L

µ
E
[
gj(x̂j)− g⋆j

]
≤ L ·K

2i
+

L ·D
i

√
2

µ

√
ϵ+

L

µ
ϵ

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

From line 5 of Algorithm 1 we ensure that i− prev ≤ αi, so we have that:

E
[
gi(x

Ti+1
i)− gi(x

⋆
i)
]
≤ (c− 1)(c− 2)

(
L ·K
2iT 2

i

+
L ·D
iT 2

i

√
2

µ

√
ϵ+

L

µT 2
i

ϵ

)
+ 2L3K

αi

iTi

+
16L3ϵ

µ3Ti

We can decompose the right hand side of the previous inequality into 5 terms and demand that
each of them is less than ϵ/5, allowing for their sum to be less than ϵ. So we have the following
inequalities. For the first term:

c2
LK

2iT 2
i

≤ ϵ/5⇒ c ·
√

5LK

2iϵ
≤ Ti

For the second term:

c2
L ·D
iT 2

i

√
2

µ

√
ϵ ≤ ϵ/5⇒ c ·

√
5L ·D
i
√
ϵ

√
2

µ
≤ Ti

For the third term:

L

µT 2
i

ϵ ≤ ϵ/5⇒

√
5L

µ
≤ Ti

For the forth term:

2L3K
αi

iTi
≤ ϵ/5⇒ 10L3K

α

ϵ
≤ Ti

Using our selection of α =
√
ϵ/(10L3K) we get:

Ti ≥
√

10L3K

ϵ

For the fifth term, we get:

16L3ϵ

µ3Ti
≤ ϵ/5⇒ Ti ≥

80L3

µ3

By Taking a max over the required values for Ti, we get that for

Ti = max{c ·
√

5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ
}

It holds that
E [gi(x̂i)]− g⋆i ≤ ϵ

, so our induction holds and we get the theorem statement.

H OVERALL COMPLEXITY

In this section we calculate the total FO complexity of our algorithm. Before doing so, let us first
prove Corollary 1, which for the sake of exposition we restate up next.

Corollary 1. Over a sequence of n stages, Algorithm 1 requires 2
∑n

i=1 Ti + 2n⌈log n/α⌉ FOs.

Proof. Algorithm 2 requires 2 FOs (Step 5) and thus Algorithm 2 requires overall 2Ti FOs during
stage i ∈ [n]. At Step 6 and 15 Algorithm 1 requires at most n FOs and thus by Lemma 8 it overall
requires 2n⌈log n/α⌉ FOs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Theorem 3. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ

where c = 4L(µ2 + L2)/µ3. Then the overall FO complexity of Algorithm 1 (across all n stages)

equals O
(
n log n

√
1/ϵ

)
.

Proof. From corollary 1 we have that the FO complexity of the algorithm is given by 3
∑n

i=1 Ti +

2n⌈log n/α⌉. By taking the parameters α =
√
ϵ/(10L3K) and

Ti = max{c ·
√

5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ
}

we have that 2n log n/α = 2n
√
ϵ/(10L3K) log n and

n∑
i=1

Ti = max{c ·
√

5LKn

2ϵ
, c ·

√
n5L ·D√

ϵ

√
2

µ
, n

80L3

µ3
, n

√
10L3K

ϵ
}

H.1 PROOF OF LEMMA 8

In this section we prove Lemma 8, for the sake of exposition we restate it up next. The proof and
the theorem are originally stated in Mavrothalassitis et al. (2024).

Lemma 8. Over a sequence of n stages, Algorithm 1 reaches Step 5 and 12, ⌈log n/α⌉ times.

Proof of Lemma 8. Step 5 and 12 are only executed when the following inequality is satisfied:

i− prev ≥ α · i⇒ i ≥ 1

1− α
· prev (2)

Once Algorithm 1 reaches Step 5 and 12 it necessarily, reaches Step 13 where prev is updated to i.
Let z0 = 1, z1, . . . , zk, . . . the sequence of stages where zk denotes the stage at which Algorithm 1
reached Step 5 and 12 for the k-th time. By Equation 2 we get that zk+1 ≥ 1

1−α · zk implying that

zk ≥
(

1

1− α

)k

Since zk ≤ n we get that k ≤ logn

log(1
1−α)

. Notice that log
(

1
1−α

)
= − log(1−α) ≥ 1− (1−α) = α

and thus k ≤ logn
α .

I EXPERIMENTS

All of the experiments presented in the main part and the appendix were done on a single machine,
with NVIDIA A100 SXM4 40 GB GPU.

In this section we include ablation studies and additional experiments.

I.1 LEARNING RATE AND SCHEDULER SELECTION

As mentioned in the main part of the paper, we consider two schedulers, for our experiments. The
motivation behind the linear scheduler lies in the construction of our method, since in order to
achieve the theoretical guarantees, we have to opt for a linearly decreasing step size. The constant
scheduler is just standard.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Here we give an extensive table according to which the optimal hyper parameters for our experiments
were selected for the algorithms. We explained the procedure in Section 4.1, but for the sake of
exposition, we restate it, before giving the numerical valuations.

We perform a grid search to select the learning rate for CSVRG− PL and SGD in the constant and
linear schedules, we leave out a subset of 5% of the training data as a validation set. We run every
method and learning rate value for 3 random seeds and report the average and the final accuracy on
the validation set.

Table 4: Learning rate and scheduler selection: We highlight the best learning rate value for each
method and scheduler in bold.

MNIST
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 95.90± 0.44 98.24± 0.17 98.50± 0.08 98.66± 0.19 98.16± 0.27 95.78± 0.78
Linear 93.73± 0.11 97.87± 0.13 98.37± 0.17 98.59± 0.20 98.66± 0.09 96.68± 0.57

CSVRG− PL Constant 96.41± 0.08 98.52± 0.07 98.62± 0.22 98.64± 0.39 98.78± 0.42 97.88± 0.20
Linear 93.89± 0.25 98.31± 0.01 98.40± 0.37 98.91± 0.32 98.74± 0.34 98.33± 0.52

FashionMNIST
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 81.68± 0.07 88.19± 0.40 88.82± 0.74 89.93± 0.22 89.51± 0.26 85.91± 0.61
Linear 78.54± 0.28 86.91± 0.28 88.74± 0.19 90.26± 0.16 90.35± 0.62 87.44± 0.42

CSVRG− PL Constant 82.13± 1.04 89.22± 0.20 89.02± 0.85 89.34± 1.55 88.48± 1.65 80.29± 9.36
Linear 78.42± 0.14 87.72± 0.43 89.29± 0.90 91.05± 0.11 90.64± 0.73 88.81± 0.56

CIFAR10
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 50.07± 0.53 70.93± 0.71 70.44± 9.68 79.33± 1.03 77.11± 1.84 65.76± 10.09
Linear 45.08± 0.78 67.21± 0.78 75.09± 0.66 80.89± 0.50 80.95± 0.39 70.55± 5.80

CSVRG− PL Constant 51.61± 2.15 75.81± 0.48 78.99± 1.26 80.44± 4.47 78.45± 4.15 77.01± 3.67
Linear 46.11± 0.94 69.48± 0.96 78.67± 0.60 85.80± 0.32 85.89± 0.74 81.51± 4.45

AG-News
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 86.09± 1.19 90.47± 0.26 91.12± 0.33 25.00± 0.00 25.00± 0.00 25.00± 0.00
Linear 82.61± 3.41 89.51± 0.17 90.74± 0.10 25.00± 0.00 25.00± 0.00 25.00± 0.00

CSVRG− PL Constant 85.72± 1.25 90.29± 0.04 90.89± 0.19 25.00± 0.00 25.00± 0.00 25.00± 0.00
Linear 79.84± 2.80 89.54± 0.16 90.54± 0.21 25.00± 0.00 25.00± 0.00 25.00± 0.00

I.2 CONTINUAL LEARNING

In this experiment, we consider as many stages as batches in each dataset, i.e., n = 600 for
MNIST/FashionMNIST and n = 500 for CIFAR10/100. Batches are sorted according to their
label so that a new class label is introduced every n/c stages, where c is the number of classes. In
order to be faithful to the continual learning setup, we select Ti = 10 in Algorithm 1. Setting Ti to
be larger, would result in re-training the model from scratch every time a new batch arrives, which
we want to avoid. We select the best learning rate value and scheduler for each method according to
Section 4.1.

We report the test accuracy in the classes we have visited during training. For example, in CIFAR10,
in stages 0 to 49 we report the test accuracy for the samples with label ”0” and in stages 450 to 499
the accuracy in the complete test set.

I.3 UNLEARNING

In this section, we provide an extensive comparison for our Continual Unlearning Benchmark. In
this setting, we seek to continuously remove samples from the dataset and measure the performance
of the algorithm, in both the distribution of the data that has been removed, as well as the distribution
of the data that have been retained in the training set. In order to do this we simply remove the deleted

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

samples from the training dataset of the algorithms, for both methods CSVRG− PL and SGD. We
repeat the procedure of removing batches of data for 100 stages and measure the generalization
performance on the remember set and the forget set, with higher accuracy being more desirable for
the former and less accuracy being preferable for the latter.

Table 5: Forgetting tasks: We measure the final accuracy after 100 stages in the remember set (R
Acc.) and the forget set (F Acc.). We compare the performance when considering 10, 50 and 100
steps. CSVRG− PL consistently outperforms SGD by being less accurate in the forget set while
minimally affecting the remember set performance.

MNIST
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 99.19±(0.04) 99.15±(0.11) 99.25±(0.02) 96.51±(0.27) 99.26±(0.05) 95.83±(0.20) 99.18±(0.04) 95.17±(0.61)

CSVRG− PL 99.26±(0.03) 99.30±(0.04) 99.23±(0.04) 88.27±(1.29) 99.26±(0.02) 54.86±(3.68) 99.19±(0.02) 49.81±(0.34)

FashionMNIST
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 94.52±(0.06) 95.17±(0.38) 94.75±(0.05) 93.18±(0.36) 94.61±(0.09) 92.82±(0.73) 94.57±(0.11) 92.44±(0.72)

CSVRG− PL 94.94±(0.08) 95.27±(0.15) 94.87±(0.06) 90.03±(0.52) 94.70±(0.11) 84.50±(1.18) 94.48±(0.21) 71.67±(3.01)

CIFAR10
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 93.41±(0.18) 95.30±(0.22) 93.73±(0.24) 90.49±(0.94) 93.85±(0.18) 90.05±(1.10) 93.77±(0.17) 87.61±(1.04)

CSVRG− PL 94.05±(0.15) 93.18±(0.36) 93.71±(0.17) 57.40±(2.15) 93.43±(0.04) 49.08±(0.31) 93.15±(0.18) 48.46±(0.50)

CIFAR100
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 76.05±(0.19) 81.47±(0.71) 76.12±(0.20) 75.35±(0.30) 76.19±(0.21) 75.12±(0.52) 76.43±(0.23) 76.14±(0.51)

CSVRG− PL 76.47±(0.07) 86.30±(0.18) 75.68±(0.15) 77.24±(0.49) 74.23±(0.18) 67.70±(0.61) 73.50±(0.14) 44.81±(0.34)

I.4 CONTINUAL LEARNING IN THE TEXT CLASSIFICATION TASK

In this section, we replicate the continual learning experiments in Section 4 for the text classification
task. We finetune BERT-base (Devlin et al., 2019) in the AG-News dataset (Gulli, 2005; Zhang
et al., 2015).

We select the learning rate and schedule by training in a sample of 25% of the training set and
evaluating in the remaining 75%. The results in Table 4 suggest the best learning rate value is
0.01 for both SGD and CSVRG− PL. Regarding the scheduler, unlike for the image datasets, the
constant learning rate scheduler provides the best performance.

In Fig. 5 we can observe that CSVRG− PL and SGD evolve similarly with CSVRG− PL obtain-
ing the best final accuracy at 93.24% v.s. 92.66 for SGD.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Stage

0.991

0.992

0.993

0.994

Ac
c.

Remember Set
SGD
CSVRG-PL

(a) MNIST

0 20 40 60 80 100
Stage

0.9425

0.9450

0.9475

0.9500

0.9525

0.9550

Ac
c.

Remember Set
SGD
CSVRG-PL

(b) FashionMNIST

0 20 40 60 80 100
Stage

0.925

0.930

0.935

0.940

Ac
c.

Remember Set

SGD
CSVRG-PL

(c) CIFAR10

0 20 40 60 80 100
Stage

0.73

0.74

0.75

0.76
Ac

c.

Remember Set

SGD
CSVRG-PL

(d) CIFAR100

Figure 4: Forgetting experiments:In these plots we present the accuracy of the model on the re-
member set, when it is trained with SGD or SIOPT, for all stages.

0 100 200 300 400
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(a) Continual learning evolution

Dataset AG-News

SGD 92.66±(0.65)

CSVRG− PL 93.24±(0.11)

(b) Final Acc.

Figure 5: Continual Learning in BERT+AG-News: CSVRG− PL and SGD evolve similarly,
with CSVRG− PL obtaining the best final performance at 93.24% Acc.

25

	Introduction
	Preliminaries and Results
	Our Method and Convergence Results
	Experiments
	Learning rate and scheduler selection
	Continual learning
	Unlearning

	Conclusion
	Discussion on Assumption 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 7
	Proof of Lemma 4
	Proof of Lemma 3
	Proof of Theorem 2
	Overall Complexity
	Proof of Lemma 8

	Experiments
	Learning rate and scheduler selection
	Continual Learning
	Unlearning
	Continual Learning in the Text Classification Task

