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ABSTRACT

Given functions f1, . . . , fn where fi : D 7→ R, continual finite-sum minimiza-
tion (CFSM) (Mavrothalassitis et al., 2024) asks for an ϵ-optimal sequence
x̂1, . . . , x̂n ∈ D such that

i∑
j=1

fj(x̂i)/i−min
x∈D

i∑
j=1

fj(x)/i ≤ ϵ for all i ∈ [n].

In this work, we develop a new CFSM framework under the Polyak-Łojasiewicz
condition (PL), where each prefix-sum function

∑i
j=1 fj(x)/i satisfies the

PL condition, extending the recent result of Mavrothalassitis et al. (2024) for
CFSM with strongly convex functions. We present a new first-order method
that under the PL condition producing an ϵ-optimal sequence with overall
O(n/

√
ϵ) first-order oracles (FOs), where an FO corresponds to the compu-

tation of a single gradient ∇fj(x) at a given x ∈ D for some j ∈ [n]. Our
method also improves upon the O(n2 log(1/ϵ)) FO complexity of state-of-the
art variance reduction methods as well as upon the O(n/ϵ) FO complexity
of StochasticGradientDescent. We experimentally evaluate our method in
continual learning and the unlearning settings, demonstrating the potential of the
CFSM framework in non-convex, deep learning problems.

1 INTRODUCTION

Finite-sum minimization (FSM) has received a lot of attention from the optimization community due
to its vast applications in supervised learning Nguyen et al. (2017); Johnson & Zhang (2013); Xiao
& Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu (2017). Given a sequence of
functions f1, . . . , fn where fi : D 7→ R, FSM asks for an ϵ-optimal solution x̂ ∈ D such that

1

n

n∑
i=1

fi(x̂)−min
x∈D

1

n

n∑
i=1

fi(x) ≤ ϵ. (1)

A key application of FSM is the prevalent Empirical Risk Minimization (ERM). For example
given n training data points (y1, z1), . . . , (yn, zn) and a parametric model Mx(·), ERM asks for
the optimal parameters, x⋆ = argminx

∑n
i=1 ℓ(Mx(yi), zi)/n where ℓ(·, ·) is an adequate loss

function. The latter setting can be naturally captured by the FSM framework by considering
fi(x) := ℓ(Mx(yi), zi).

First-order methods have long been the preferred choice for solving Problem 1. Computing a single
gradient∇fj(x) for some j ∈ [n] comes with a computational cost. We refer to such a computation
as a first-order oracle (FO). The overall number of FOs that a first-order method needs to solve Prob-
lem 1 defines the FO complexity of the method. Since n can be of the order of millions in modern
Machine Learning applications, a crucial desiratum in FSM is the design of first-order methods that
scale efficiently with n and 1/ϵ. Variance-reduction methods (VR) were able to fulfill the latter goal
by achieving optimal FO complexity for FSM under various assumptions on the functions (strongly
convex, convex, non-convex, Polyak-Łojasiewicz) Nguyen et al. (2017); Johnson & Zhang (2013);
Xiao & Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu (2017); Karimi et al.
(2016); Lei et al. (2017); Zhou et al. (2018); Li et al. (2021); Zhang et al. (2016).

Continual Learning and Finite-Sum Minimization: Continual Learning refers to the process of con-
tinuously updating a model as new data become available Castro et al. (2018); Rosenfeld & Tsotsos
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(2018); Hersche et al. (2022). This approach enables machine learning systems to adapt to changing
environments. Incorporating new data without completely retraining the model is highly challenging
because it can greatly reduce the model’s effectiveness on past data (catastrophic forgetting Castro
et al. (2018); Goodfellow et al. (2014); Kirkpatrick et al. (2017); McCloskey & Cohen (1989)). Sim-
ilar challenges of time-evolving data sets arise in the more recent context of unlearning where goal
is to remove data previously present in the training set Sekhari et al. (2021); Guo et al. (2020).

We can simply resolve the FSM (Problem 1) once a new data point is added as datasets evolve.
Unfortunately this approach is wasteful due to the computational costs that it incurs. In their re-
cent work, Mavrothalassitis et al. Mavrothalassitis et al. (2024) introduced a twist of FSM, called
Continual Finite-Sum Minimization (CFSM) in order to formally examine the new challenge.
Definition 1. Given a sequence of functions f1, . . . , fn where fi : D 7→ R, Continual Finite-Sum
Minimization asks for a sequence of ϵ-approximate solutions x̂1, . . . , x̂n ∈ D such that

1

i

i∑
j=1

fj(x̂i) ≤ min
x∈D

1

i

i∑
j=1

fj(x) + ϵ for each stage i ∈ [n].

To understand why CFSM captures the continual learning setting, let the training set be ini-
tially composed by the first i data points, (y1, z1), . . . , (yi, zi). In this case, ERM asks for
x⋆
i := argminx

∑i
j=1 ℓ (Mx(yj), zj) /i. Assume that after computing an ϵ-optimal point x̂i, a

new data point (yi+1, zi+1) is revealed to the model. Now the model’s parameters need to be up-
dated to x⋆

i+1 := argminx
∑i+1

j=1 ℓ (Mx(yj), zj) /(i+ 1).

Example 1. (Unlearning) An interesting application of CFSM is unlearning where the goal is to
remove data points used in the training of the model Sekhari et al. (2021); Guo et al. (2020). For
example, assume that we have trained a modelMx(·) with respect to some initial data S, meaning
that

xinit := argmin
x∈Rd

[∑
i∈S

ℓ (Mx(yi), zi)

]
.

Now, let us say that we want to remove a small subset of data points F ⊆ S, meaning that we would
like to update the model’s parameters to

xupdated := argmin
x∈Rd

 ∑
i∈S/F

ℓ(Mx (yi), zi) :=
∑
i∈S

ℓ(Mx (yi), zi)−
∑
i∈F

ℓ(Mx (yi), zi)

 .

Retraining the model from scratch to compute xupdated is not computationally viable. CFSM nicely
captures this setting by considering the arrival of the function −

∑
j∈F ℓ (Mx(yj), zj).

Mavrothalassitis et al. Mavrothalassitis et al. (2024) introduces an approximately optimal method
with respect to the overall FO complexity (across all n stages) for CFSM under the assumption
that each prefix-sum function gi(x) :=

∑i
j=1 fj(x)/i is µ-strongly convex. They provide a first-

order method for CFSM with overall Õ(n/ϵ1/3) FOs. The latter complexity improves upon the
O(n2 log(1/ϵ)) of state-of-the-art VR methods for the strongly convex case Nguyen et al. (2017);
Johnson & Zhang (2013); Xiao & Zhang (2014); Defazio et al. (2014); Roux et al. (2012); Allen-Zhu
(2017) and the O(n/ϵ) FO complexity of StochasticGradientDescent.

Our Contribution and results: In this work, we build upon the work of Mavrothalisitis et
al. Mavrothalassitis et al. (2024) by providing an efficient first-order method for CFSM in the
non-convex regime. More precisely, we consider CFSM under the assumption that each prefix-sum
function gi(x) :=

∑i
j=1 fj(x)/i satisfies the Polyak-Łojasiewicz (PL) condition. The PL condition

is a weaker assumption than strong convexity that has received huge attention in recent years due to
the fact that it provides structured non-convexity for optimization settings related to the training of
Deep Neural Networks Liu et al. (2022); Song et al. (2021) (see also Remark 2).

Finite-sum minimization (Problem 1) under the PL condition has been previously considered in
the variance-reduction literature Karimi et al. (2016); Lei et al. (2017); Li et al. (2021); Zhang
et al. (2016). However as in the strongly convex case using such a method in a black-box man-
ner (at each stage i ∈ [n]) leads to an overall O(n2 log(1/ϵ)) FO complexity. Despite that
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the dependence O (log(1/ϵ)) seems appealing, the O(n2) is extremely computationally heavy
even in relatively small cases where n is of the order of thousands. At the same time, using
StochasticGradientDescent at each stage i ∈ [n] would require O(n/ϵ) FO complexity that is
still impractical due to the coupled dependence of O(n) and O(1/ϵ).
The main contribution of this work is providing a first-order method, called CSVRG-PL, achieving
Õ(n/

√
ϵ) FO complexity for CSFM under the Polyak-Łojasiewicz condition.

Main Result. There exists a first-order method, called CSVRG-PL (Algorithm 1), for Continual
Finite-Sum Minimization under Polyak-Łojasiewicz condition that achieves Õ(n/

√
ϵ) FO complex-

ity.

Different methods for CFSM might be more efficient than others depending on the required accuracy
ϵ > 0. For accuracy ϵ = Θ(1/n), CSVRG-PL (our method) requires only O(n3/2)-FOs while both
the variance reduction methods Karimi et al. (2016); Lei et al. (2017); Li et al. (2021); Zhang et al.
(2016) and StochasticGradientDescent require O(n2) FOs. As also commented in Mavrothalas-
sitis et al. (2024), the accuracy regime ϵ = Θ(1/n) is of particular interest since the statistical error
of empirical risk minimization is Θ(1/n) Shalev-Shwartz et al. (2010) and thus requiring accuracy
ϵ > 0 smaller than Θ(1/n) is redundant in the context of empirical risk minimization (see also
Bottou & Bousquet (2007)).
Remark 1. Our method CSVRG-PL (Algorithm 1) achieves almost optimal FO complexity.
Mavrothalassitis et al. Mavrothalassitis et al. (2024) showed that even in the strongly convex case
there is no first-order method achievingO(n/ϵ1/4)-FOs meaning that our method is onlyO(1/ϵ1/4)
far from being optimal. At the same time, Mavrothalassitis et al. Mavrothalassitis et al. (2024)
also established that in the strongly convex case there is no first-order method with o(n2 log(1/ϵ))
FO complexity. The latter implies that the log(1/ϵ) FO complexity cannot be achieved without a
quadratic dependence on n on the total FO oracles.
Remark 2. Neural Networks and Polyak-Łojasiewicz Condition: Analyzing the convergence
of methods and optimization algorithms for neural networks, has been a challenging endeavor,
despite their empirical success LeCun et al. (1998a; 2015); Zhang et al. (2021), due to the highly
non-convex landscape. A widely used approach, for studying optimization of neural networks, has
been the Neural Tangent Kernel (NTK) Jacot et al. (2018). There are several works, that are based
on this approach Awasthi et al. (2021); Su & Yang (2019); Zou & Gu (2019), however, such analysis
requires heavy overparametrization, which is extremely costly for deep neural networks. Another
approach is based on structural hypothesis of the loss landscape, of neural networks, using the local
Polyak-Łojasiewicz Condition Song et al. (2021); Nguyen (2021); Ling et al. (2023). This approach
has the benefit of decoupling the neural network dynamics from the optimization analysis.

Table 1: Convergence Results for continual finite sum minimization(CFSM)

Method Number of FOs Assumption
StochasticGradientDescent O(n/ϵ) strongly convex
Katyusha(Allen-Zhu, 2017) O

(
n2 log(1/ϵ)

)
strongly convex

CSVRG(Mavrothalassitis et al., 2024) Õ
(
n/ϵ1/3

)
strongly convex

StochasticGradientDescentLei et al. (2019) O(n/ϵ) Polyak-Łojasiewicz
SpiderBoost(Wanget al., 2019) O

(
n2 log(1/ϵ)

)
Polyak-Łojasiewicz

CSVRG-PL (our method) Õ (n/
√
ϵ) Polyak-Łojasiewicz

Up next, we summarize the contributions our work:

1. We provide the CSVRG− PL algorithm, a method with provable guarantees (both in terms of
convergence and FO complexity) for CFSM under the Polyak-Łojasiewicz condition. The latter
provides a solid theoretical foundation of the performance of our method in settings involving Deep
Neural Networks Mavrothalassitis et al. (2024); Nguyen (2021); Ling et al. (2023).

2. We provide extensive experimental evaluations in continual learning Castro et al. (2018); Rosen-
feld & Tsotsos (2018); Hersche et al. (2022) and unlearning settingsSekhari et al. (2021); Guo et al.
(2020) involving baseline datasets (MNIST, FashionMNIST, CIFAR-10, CIFAR-100) in ResNet18.
Our experimental evaluations reveal a significant improvement in the performance of our method
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compared to StochasticGradientDescent. Furthermore, our evaluations highlight the potential of
both our method and the CFSM framework in handling settings with evolving datasets. We note that
our experimental evaluations substantially extend beyond those of Mavrothalassitis et al. (2024),
which only considers linear regression on the LIBSVM dataset.

3. Our CFSM-PL method shares the same algorithmic architecture with the CFSM method in
Mavrothalassitis et al. (2024), with one key difference. The estimator that we use in Step 5 of
Algorithm2 differs from the respective estimator in Mavrothalassitis et al. (2024) (see the respective
FUM method). This difference may seem subtle but is of great importance for providing formal
convergence guarantees under the Polyak-Łojasiewicz condition. Specifically, the current estima-
tor allows us to provide last-iterate guarantees during each call of Algorithm 2. In contrast, the
estimator used by Mavrothalassitis et al. Mavrothalassitis et al. (2024) only provide time-average
guarantees. While this limitation is not critical in the strongly convex regime, it poses a significant
problem in the non-convex regime considered here. Additionally, the estimator in Mavrothalassitis
et al. (2024) is significantly more complex than ours and, most importantly, requires three FOs. In
contrast, the current estimator requires only two FOs, making our method 1.5 times faster for the
same number of inner iterations during each stage.

2 PRELIMINARIES AND RESULTS

In this section we introduce some basic definitions and notation. We denote with Unif(1, . . . , n) the
uniform distribution over {1, . . . , n} and [n] := {1, . . . , n}.
Definition 2. A differentiable function f : Rd 7→ R is said to be L-smooth if and only if

∥∇f(x)−∇f(y)∥ ≤ L · ∥x− y∥ for all x, y ∈ Rd

Definition 3 (Polyak-Łojasiewicz condition). A differentiable function f : Rd 7→ R is said to satisfy
the Polyak-Łojasiewicz (PL) condition, if for all x ∈ Rd, it holds that:

f(x)− f⋆ ≤ 1

2µ
∥∇f(x)∥2

where f⋆ is the minimum of f(x), i.e. f⋆ = f(x⋆) where x⋆ = argminx∈Rd f(x).

The PL condition does not enforce convexity (e.g. f(x) = x2 + 3 sin2(x) is PL but non-convex),
recent works have shown that local Polyak-Łojasiewicz can be used to characterize the loss land-
scape of neural networks Song et al. (2021); Nguyen (2021); Ling et al. (2023), rendering it a
reasonable assumption for modern optimization analysis in settings involving deep neural nets. The
PL-condition also implies the Quadratic Growth property Karimi et al. (2016) stated up next.
Definition 4 (Quadratic Growth). A function f : Rd 7→ R satisfies the Quadratic Growth property,
if for all x ∈ Rd, we have that:

f(x)− f⋆ ≥ µ

2
∥x− xp∥2

where xp is the projection of x on the set of optimal solutions X ⋆ := {x ∈ Rd : f(x) := f⋆}.

To simplify notation, we denote with gi(x) the prefix-function at stage i ∈ [n],

gi(x) :=

i∑
j=1

fj(x)/i.

We also denote with g⋆i = minx∈Rd gi(x) the minimum of gi(x) and with X ⋆
i the set of optimal

solutions X ⋆
i = {x ∈ Rd | gi(x) = g⋆i }. Finally we will make the following two assumptions for

the prefix-sum functions gi(x).
Assumption 1. For any stages i > j,

∥∥∇fi (x⋆
j

)∥∥ ≤ L ·D, for some constant D > 0.

This assumption is common in stochastic optimization Stich et al. (2018); Nemirovski et al. (2009).

Assumption 2. (Diminishing returns) There exists a constant K > 0 such that for any stages i > j,

max
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j

∥∥2 ≤ i− j

i
K.

4
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Assumption 2 requires that any two optimal solutions x⋆
i ∈ X ⋆

i and x⋆
j ∈ X ⋆

j scale with O
(
i−j
i

)
.

Remark 3. Assumption 2 mathematically encodes diminishing returns, one of several ways we can
use to capture this phenomenon. Though submodularity is a more general framework, we have
chosen the simpler form presented here as it makes the convergence analysis transparent. Our
assumption ensures that each function’s contribution to the overall loss remains consistent, varying
only by constant factors, and diminishes as the model progresses through successive stages. In the
generalization literature, a related concept is that of uniform stability, as discussed in Feldman &
Vondrak (2018); Bassily et al. (2020). This assumption posits that altering a single data point does
not substantially affect the loss, a crucial tool when establishing generalization bounds.

In Appendix A, we explicitly show a stronger inequality to verify the assumption under a couple
general settings, such as, when the functions have a unique minimizer, or the set of minimizers is
shrinking. We now present the formal statement of our result.
Theorem 1. There exists a first-order method, called CSVRG-PL (Algorithm 1) such that for any
f1, . . . , fn satisfying the PL-condition and Assumptions 1&2, outputs x̂1, . . . , x̂n ∈ Rd such that

E [gi(x̂i)]− g⋆i ≤ ϵ for each stage i ∈ [n]

with overall Õ(n/
√
ϵ) first-order oracles.

3 OUR METHOD AND CONVERGENCE RESULTS

In this section we present our first-order method called Continual Stochastic Variance Reduc-
tion - Polyak-Łojasiewicz (CSVRG− PL) that is able to achieve the guarantees of Theorem 1.
CSVRG− PL is formally described in Algorithm 1 and is composed by two main components
(Algorithm 1 and Algorithm 2) that we subsequently explain.

First notice that that the output x̂i ∈ Rd at each stage i ∈ [n] is provided by Algorithm 2, which
can be viewed as a version of stochastic gradient descent that at each iteration t ∈ [Ti] follows the
direction

∇t
i ← ∇fut

(xt
i)−∇fut

(x̂prev) + ∇̃i (Step 5 of Algorithm 2).

The only purpose of Algorithm 1 is to update the estimator ∇̃i at each stage i ∈ [n]. The latter is
then given as input to Algorithm 2 (Step 13 of Algorithm 1). Notice that the way ∇̃i is calculated
differs from stage to stage. More precisely,

∇̃i =

{
1
i

∑i
j=1∇fj(x̂i−1) i− prev ≥ α · i(

1− 1
i

)
∇̃i−1 +

1
i∇fi(x̂prev) i− prev < α · i

In case i−prev ≥ α·i, Algorithm 1 requires i FOs to calculate ∇̃i while in case i−prev < α·i only 1
additional FO is required, specifically∇fi(x̂prev). For this reason by the construction of Algorithm 1
in almost all stages 1 FO is used for the calculation of ∇̃i. The latter is ensured by Steps (14)-(16)
of Algorithm 1 guaranteeing that (i − prev ≥ α · i) is satisfied more and more sparsely over the
sequence. Finally we note that ∇̃i = ∇gi(x̂prev) always at Step 13 of Algorithm 1, as shown in
Lemma 6.

Up next we explain the main ideas used in the analysis and design of Algorithm 1. The cornerstone
of our analysis comes from the fact that the estimator ∇t

i in Step 5 of Algorithm 2 is always an
unbiased estimator of the true gradient ∇gi(xt

i). The latter is formally stated and established in
Lemma 1.
Lemma 1 (Unbiased). Let ∇t

i be the gradient estimator as defined in Step 5 of Algorithm 2. Then
for all t ∈ [Ti] and for all i ∈ [n], it holds that: E [∇t

i] = ∇gi(xt
i).

The proof of Lemma 1 lies in Appendix B. The proof heavily relies on the fact that ∇̃i = ∇gi(x̂prev)
is guaranteed by Algorithm 1.The fact that E [∇t

i] = ∇gi(xt
i) is obviously a very crucial property

since it guarantees that on expectation Algorithm 2 decreases the function gi(x) :=
∑i

j=1 fj(x)/i.

To this end one might wonder why Algorithm 2 needs such an intricate gradient estimator, for
example the straightforward estimator ∇t

i := ∇fut
(xt

i) where ut ∼ Unif(1, . . . , n) still satisfies
the unbiasness property. The problem with the latter estimator is that it admits very high variance,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 CSVRG− PL

1: x̂0 ∈ D, prev← 0, update← false
2: x̂1 ← GradientDescent(x̂0)

3: ∇̃1 ← ∇f1(x̂1)

4: for each stage i = 2, . . . , n do
5: if i− prev ≥ α · i then
6: ∇̃i ← 1

i

∑i
j=1∇fj(x̂i−1) ▷ Full gradient i FOs

7: prev← i− 1

8: update← true

9: else
10: ∇̃i ←

(
1− 1

i

)
∇̃i−1 +

1
i∇fi(x̂prev) ▷ Update full gradient with 1 FO

11: end if
12: Ti ← O

(
L2G

µ5/2i
√
ϵ
+ L2G2α2

µϵ + L2

µ2

)
▷ Number of iterations at stage i ∈ [n]

13: x̂i ← FUM− PL(prev, ∇̃i, Ti) ▷ Output for stage i by Algorithm 2
14: if update then
15: ∇̃i ← 1

i

∑i
j=1∇fj(x̂i) ▷ Full gradient i FOs

16: prev← i

17: update← false
18: end if
19: end for

Algorithm 2 Frequent Update Method-PL (FUM− PL)

1: c← 8L2

µ2

2: x0
i ← x̂i−1 ▷ Initialization at previous solution

3: for each round t := 1, . . . , Ti do
4: Select ut ∼ Unif(1, . . . , i)

5: ∇t
i ← ∇fut

(xt
i)−∇fut

(x̂prev) + ∇̃i ▷ 2 FOs
6: γt ← 2/(µ(t+ c))

7: xt+1
i ← xt

i − γt∇t
i ▷ Update xt

i ∈ D
8: end for
9: Output: x̂i ← xTi

▷ Output at stage i ∈ [n]

on the other hand the estimator∇t
i ← ∇fut(x

t
i)−∇fut(x̂prev)+ ∇̃i, which was initially introduced

in Johnson & Zhang (2013), admits way smaller variance which in turn translates to significantly
faster rates. The latter is established in Lemma 2 that we present up next. The proof of Lemma 2
lies in Appendix C.
Lemma 2 (Variance). For the gradient estimator used in line 5 of Algorithm 2 we have:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2] ≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i )
]

+ 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

)
where K is the constant of Assumption 2.

From Lemma 2, one can notice that the variance of the estimator is upperbound by three terms.
The first one E [gi(x

t
i)− gi(x

⋆
i )] depends on the current iterations suboptimality, therefore as we

approach an optimal point this term vanishes and this allows us to incorporate it seamlessly into the
analysis. The other two terms O(E [gi(x

t
i)− gi(x

⋆
i )]) and O( i−j

i ) are independent of the iteration

6
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t ∈ [Ti]. Therefore we cannot treat them between individual iterations and instead they appear in
the upper bound of the suboptimality of Algorithm 2.

Specifically, using Lemma 2 we can then upper bound the suboptimality of the output x̂i of Algo-
rithm 2. The latter is formally stated and proven in Lemma 3 the proof of which lies in Appendix F.
Lemma 3 (Convergence). Under the update rule of line 5 of Algorithm 2, when using the step size
γt = 2/(µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we have that:

E
[
gi(x

T+1
i )− gi(x

⋆
i )
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i )

T 2
+ 2L3K

i− prev
iT

+
16L3

(
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
µ3T

The suboptimality achieved by Algorithm 2 depends on three different terms, respectively
O
(
E [gi(x̂i−1)]− gi(x

⋆
i )/T

2
)
, O ((i− prev)/(iT )) and O

((
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
/T

)
.

In order to analyze their convergence, we will have to rely on the expected suboptimality of the
solutions produced by Algorithm 2 in the previous stages. We can inductively assume that we have
calculated a solution x̂j , for all j < i, such that: E [gj(x̂j)]−gj(x

⋆
j ) ≤ ϵ. This inductive hypothesis,

allows us to directly bound the third term of the aforementioned bound directly.

The first term (E [gi(x̂i−1)]− gi(x
⋆
i )) /T

2 depends on the suboptimality of the point x̂i−1. Bound-
ing this term can be done using our inductive hypothesis and Lemma 4 the proof of which can be
found in Appendix E.
Lemma 4. Let a sequence of functions f1, f2, . . . , fi such that Assumption 2 is satisfied and the
functions gi, gj satisfy the quadratic growth property. Then,

gi(x̂j)− g⋆i ≤
i− j

i

L ·K
2

+ C

where C = i−j
i L ·D ·

√
2
µ

(
gj(x̂j)− g⋆j

)
+ L

µ

(
gj(x̂j)− g⋆j

)
and K is the constant in Assumption 2.

Applying Lemma 4 for j = i− 1 we get that E [gi(x̂i−1)]− gi(x
⋆
i ) ≤ L ·K/(2 · i) +E [C] and our

inductive hypothesis guarantees that E [C] ≤ O (
√
ϵ).

Finally, the second term O((i − prev)/i) quantifies the distance between stage i and prev, i.e. the
most recent stage at which Algorithm 1 computation got into Step (5) − (6). Notice that by the
construction of Algorithm 1, i − prev < α · i meaning that the term O((i − prev)/i) ≤ α. To this
end we remark that the parameter α controls the frequency according to which Algorithm 1 gets into
Steps (5) − (8). Lemma 3 reveals that the higher the frequency (smaller α) the better the rate of
Algorithm 2 during stage i. However we remark that once Algorithm 1 gets into Step (5)−(8) more
FOs are needed, thus a proper selection of α is required in order to provide the desirable results.

Up next we present Theorem 2 that describes the overall FO complexity of our method. The proof
of Theorem 2 lies on Appendix G and is based on the arguments that we illustrated above.

Theorem 2. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ


where c = 4L(µ2 + L2)/µ3. Then for each stage i ∈ [n] we have that

E [gi(x̂i)]− g⋆i ≤ ϵ

where x̂i is the output of Algorithm 2, for stage i.

We complete the section via providing the overall number of FOs that Algorithm 1 requires under
the selection of parameters described in Theorem 2. Counting the overall number of FOs that Al-
gorithm 1 requires is tedious but relative straightfoward and is based on Corollary 1, the proof of
which can be found in Appendix H
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Corollary 1. Over a sequence of n stages, Algorithm 1 requires 2
∑n

i=1 Ti + 2n⌈log n/α⌉ FOs.

Up next we present a proof sketch. The term 2
∑n

i=1 Ti comes form the the fact that at each iteration
t ∈ [Ti] of Algorithm 2, 2 FOs are calculated,∇fut(x

t
i) and∇fut(xprev). At the same time the term

2n⌈log n/α⌉ accounts for the additional FOs that Algorithm 1 uses in order to maintain ∇̃i. The
fact that Algorithm 1 sporadically computes needs i FOs (i − prev ≤ α · i) and in most cases only
needs 1 additional FO is depicted in 2n⌈log n/α⌉.
Using the parameters α and Ti described in Theorem 2 we obtain the overall FO complexity of
Algorithm 1. The latter is formally stated and proven in Theorem 3, the proof of which lies in
Appendix H.

Theorem 3. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ


where c = 4L(µ2 + L2)/µ3. Then the overall FO complexity of Algorithm 1 (across all n stages)

equals O
(
n log n

√
1/ϵ

)
.

4 EXPERIMENTS

We validate our algorithm and setup by training the popular PreActResNet18 architecture (He et al.,
2016) in the MNIST (LeCun et al., 1998b), FashionMNIST (Xiao et al., 2017) and CIFAR10/100
(Krizhevsky & Hinton, 2009) datasets. As a baseline, we compare against SGD. Please note that as
we mention in the introduction, traditional variance reduction methods such as SVRG require Ω(n2)
FOs, making them impractical to run, this is clearly demonstrated in Table 2 of Mavrothalassitis et al.
(2024).

Below, we use a batch size b = 100 samples and α = 0.01 (see Algorithm 1) and report the average
performance over three random seeds. We also included more extensive experiments in Appendix I.

4.1 LEARNING RATE AND SCHEDULER SELECTION

We consider two learning rate schedulers:

1. constant: the learning rate remains constant at each stage and FUM update.
2. linear: we use a base learning rate γ and inside every FUM loop (Algorithm 2), we decrease

linearly from γ to γ/10.

We perform a grid search to select the learning rate for CSVRG− PL and SGD in the constant and
linear schedules, we leave out a subset of 5% of the training data as a validation set. We run every
method and learning rate value for 3 random seeds and report the average and the final accuracy on
the validation set. We select the optimal learning rate, according to Table 4, presented in detail in
Appendix I.1. We also find that the linear scheduler improves the performance for both methods.

4.2 CONTINUAL LEARNING

In this section we evaluate our method in a continual learning setting Castro et al. (2018); Rosenfeld
& Tsotsos (2018); Hersche et al. (2022). We split the dataset according to the labels. As a reference,
in CIFAR10 we create ten subsets of the data, each one corresponding to a label, from ”0” to ”9”.
After splitting the data, we start training the model. Initially the training set of the model is empty
and we add to it one batch of samples at each stage, introducing first all the data of one label, before
moving on to the next one. Going back to our example on CIFAR10, this procedure corresponds
to starting from label ”0” and adding the samples with label ”0” for stages 0 to 49, then, we start
introducing data with label ”1”, for stages 50 to 99 and so on.

We measure the performance of the model at each stage with respect to the test accuracy of the
labels that have been currently added in the training set of the model. We avoid doing extensive

8
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computation at each stage, since we don’t want to retrain the model from scratch on the new dataset,
but instead make small adaptations to it. Up next, we compare our method with SGD in this setting.

Table 2: Test accuracy at the last stage, with only 10 iterations per stage.

Dataset MNIST FashionMNIST CIFAR10 CIFAR100

SGD 98.34±(0.09) 91.29±(0.11) 80.24±(0.16) 54.33±(0.57)

CSVRG− PL 98.69±(0.17) 91.52±(0.51) 85.54±(0.44) 61.12±(1.00)
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(a) MNIST
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(b) FashionMNIST

0 100 200 300 400 500
Stage

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(c) CIFAR10
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(d) CIFAR100

Figure 1: We report the test accuracy in the visited classes. We observe CSVRG− PL recovers
accuracy much faster than SGD when a new class is introduced and attains a much higher final
accuracy.

In Fig. 1 we can see that our method consistently outperforms SGD, on test accuracy. At stages
where a new class is introduced the performance of the model drops regardless of the training al-
gorithm used. The latter is totally expected since when the first few batches of a new class are
introduced the model has seen very few data of the new class. For example, for CIFAR10 these
stages are 50, 100, . . . , 450. After these drops, we can see that CSVRG− PL recovers faster than
SGD and adapts its predictions to account for the new class, leading to higher accuracy throughout
the experiments (see Appendix I.2). It is worth noting that on FashionMNIST and especially MNIST
the performance of the algorithms is very close, due to the simplicity of the dataset, while on harder
datasets, such as CIFAR10 and CIFAR100 our method provides a more significant improvement in
comparison to SGD.

For a more thorough comparison on the empirical performance of our proposed method we also
run a continual learning task for text classification. We finetune BERT-base (Devlin et al., 2019) in
the AG-News dataset (Gulli, 2005; Zhang et al., 2015) noticing still a minor improvement with our
method in comparison to SGD.

0 100 200 300 400
Stage

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

SGD
CSVRG-PL

(a) Continual learning evolution

Dataset AG-News

SGD 92.66±(0.65)

CSVRG− PL 93.24±(0.11)

(b) Final Acc.

Figure 2: Continual Learning in BERT+AG-News: CSVRG− PL and SGD evolve similarly,
with CSVRG− PL obtaining the best final performance at 93.24% Acc.

4.3 UNLEARNING

In this section we evaluate our method on an unlearning task Sekhari et al. (2021); Guo et al. (2020).
We initially start by training our model over the whole dataset for 30 epochs. Then starting from

9
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one class we sequentially remove data of this class from the data set. For example in CIFAR10, we
start by removing data of class 0 before continue with data from the other classes. Specifically we
remove one batch of samples per stage and adjust the model with the remaining ones.

During the process of unlearning, we form two dynamic sets, the remember and the forget set. The
forget set consists of all data that have been removed from the dataset, while the remember set
consists of the ones remaining in it. The motivation behind unlearning is that the data might need
to be removed from the trained model due to privacy reason or due to corruptions. The goal is that
upon the arrival of a remove request to adjust the parameters of the model, so that the accuracy of
the model on the forget set is as similar as possible to that of a model which has never seen these
data, while maintaining high test accuracy on the remember set.

We measure the performance of the model at each stage, where a new batch of data is removed
from the dataset. As we report on Table 3 the test accuracy for the remember set of both methods is
comparable across all datasets, however, the accuracy on the forget set of SGD is significantly higher
than that of our method, implying that StochasticGradientDescent (SGD) is unable to forget data,
in contrast to CSVRG− PL.

Table 3: We measure the final accuracy after 100 stages in the remember set (R Acc.) and the forget
set (F Acc.). We compare the best performance for 200 steps, per stage, for MNIST, FashionMNIST,
CIFAR10 and CIFAR100. CSVRG− PL consistently outperforms SGD by being less accurate in
the forget set while minimally affecting the remember set performance.

Dataset MNIST FashionMNIST CIFAR10 CIFAR100
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 99.18±(0.04) 95.17±(0.61) 94.57±(0.11) 92.44±(0.72) 93.77±(0.17) 87.61±(1.04) 76.43±(0.23) 76.14±(0.51)

CSVRG− PL 99.19±(0.02) 49.81±(0.34) 94.48±(0.21) 71.67±(3.01) 93.15±(0.18) 48.46±(0.50) 73.50±(0.14) 44.81±(0.34)
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Figure 3: Accuracy of the model on the forget set.

5 CONCLUSION

In this work, we provide a first-order method (CSVRG− PL) for Continual Finite Sum Min-
imization under the Polyak-Łojasiewicz condition. For accuracy ϵ > 0, CSVRG− PL com-
putes an ϵ-approximate solution for all stages with O(n/

√
ϵ) FOs under the PL condition, for

non-convex functions and recovers the rate of O(n/ϵ1/3) of CSVRG for the strongly convex
case with improved computation, simultaneously improving over the O(n/ϵ) FO complexity of
StochasticGradientDescent and over the O (n log (1/ϵ)) FO complexity of variance reduction
methods. We also provide experimental evaluations indicating the effectiveness of our method in
settings with time-evolving datasets like continual learning and unlearning.

Limitations: There is still an efficiency gap between the O(n/
√
ϵ) FO complexity of our method

that applies to the non-convex setting and the Ω(n/ϵ1/4) FO lower bound (Mavrothalassitis et al.,
2024) developed in the convex setting. Closing this gap is a very interesting future research direction.

Broader Impact: This paper provides an efficient first-order method for continual finite-sum mini-
mization. Our work contributes on the theoretical foundations of optimization and machine learning.
We do not expect any negative societal impact from this work.
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A DISCUSSION ON ASSUMPTION 2

In this section we will provide some more formal intuition supporting Assumption 2, for the sake of
exposition we restate it up next.

Assumption 2. (Diminishing returns) There exists a constant K > 0 such that for any stages i > j,

max
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j

∥∥2 ≤ i− j

i
K.

Formally we can show that the following for a compact set D.

Lemma 5. For all i ∈ [n] and j ∈ [n− i], if the prefix functions gi, gj satisfy the quadratic growth
property, then for every minimizer x⋆

i there exists an x⋆
j,i that minimizes gj over the compact set D

and satisfies the inequality: ∥∥x⋆
i − x⋆

j,i

∥∥ ≤ i− j

i
K

Proof. We start from the quadratic growth property for the function gi∥∥x⋆
i − x⋆

j,i

∥∥2 ≤ 2

µ

(
gi(x

⋆
j,i)− g⋆i

)
=

2

µ

j

i
(gj(x

⋆
j,i)− gj(x

⋆
i )) +

1

i

i∑
k=j+1

(
fk(x

⋆
j,i)− fk(x

⋆
i )
)

≤ 1

i

i∑
k=j+1

(
fk(x

⋆
j,i)− fk(x

⋆
i )
)

≤ i− j

i
G
∥∥x⋆

i − x⋆
j,i

∥∥
In the third line we use the optimality of x⋆

j,i, which implies that: gj(x
⋆
j,i) − gj(x

⋆
i ) < 0. On the

last line we use the compactness of the set which implies that the functions gi, gj are Lipschitz, for
a constant G.

Corollary 2. For all i ∈ [n] and j ∈ [n−i], if the prefix functions gi, gj satisfy the quadratic growth
property, then over the compact set D, it holds that:

min
x⋆
i ∈X⋆

i ,x⋆
j∈X⋆

j

∥∥x⋆
i − x⋆

j,i

∥∥ ≤ i− j

i
K

As an immediate corollary, we also get that if the functions have unique minimizers then it holds
that:

Corollary 3. For all i ∈ [n] and j ∈ [n−i], if the prefix functions gi, gj satisfy the quadratic growth
property, then their minimizers x⋆

i , x
⋆
j over a compact set D satisfy the inequality:∥∥x⋆

i − x⋆
j

∥∥ ≤ i− j

i
K
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B PROOF OF LEMMA 1

Lemma 1 (Unbiased). Let ∇t
i be the gradient estimator as defined in Step 5 of Algorithm 2. Then

for all t ∈ [Ti] and for all i ∈ [n], it holds that: E [∇t
i] = ∇gi(xt

i).

Proof. Let F t
i denote the filtration until step t ∈ [Ti] of stage i ∈ [n] By the definition of ∇t

i we
have that:

E
[
∇t

i|F t
i

]
= E

[
∇fut

(xt
i)−∇fut

(x̂prev)|F t
i

]
+ ∇̃i

=

i∑
k=1

Pr [ut = k] (∇fk(xt
i)−∇fk(x̂prev)) + ∇̃i

=
1

i

i∑
k=1

(∇fk(xt
i)−∇fk(x̂prev)) + ∇̃i

=
1

i

i∑
k=1

(∇fk(xt
i))− ∇̃i + ∇̃i

This concludes the proof, in the last line we used the property that ∇̃i = 1
i

∑i
k=1∇fk(x̂prev),

which is formally established in lemma 6.

Lemma 6. At Step 12 of Algorithm 1, it holds that ∇̃i =
∑i

k=1∇fk(x̂prev)/i

Proof of Lemma 6. We will inductively establish Lemma 6. Notice that after stage i = 1, Algo-
rithm 1 sets ∇̃1 = ∇f1(x̂1). Up next we show that in case the induction hypothesis holds for stage
i− 1 then it must essentially hold for stage i. Up next we consider the following 2 cases:

1. i− prev ≥ αi meaning that prev is updated in this stage.

2. i− prev < αi.

Let us point out that the two cases are mutually exclusive.
For the first case Algorithm 1 reaches Step 5 and thus ∇̃i =

∑i
j=1∇fj(x̂i−1)/i. At the same time

prev is set to i− 1 meaning that prev = i− 1 and ∇̃i =
1
i

∑i
k=1∇fk(x̂prev). At the end of stage i

the algorithm sets prev = i and ∇̃i =
1
i

∑i
k=1∇fk(x̂i), so our inductive hypothesis still holds for

the next stage.

For the second case, from the inductive hypothesis we have that:

∇̃i−1 =
1

i− 1

i−1∑
k=1

∇fk(x̂prev)

At stage i, at Step 9 of Algorithm 1, which is always reached, since in this case i − prev ≤ α · i.
We have that ∇̃i−1 satisfies the inductive hypothesis. As a result,

∇̃i =

(
1− 1

i

)
∇̃i−1 +

1

i
∇fi(x̂prev)

=
i− 1

i

1

i− 1

i−1∑
k=1

∇fk(x̂prev) +
1

i
∇fi(x̂prev)

=
1

i

i∑
k=1

∇fk(x̂prev)

We note that the proofs for this section are similar to those of Mavrothalassitis et al. (2024).
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C PROOF OF LEMMA 2

Lemma 2 (Variance). For the gradient estimator used in line 5 of Algorithm 2 we have:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2] ≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i )
]

+ 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

)
where K is the constant of Assumption 2.

Proof. Let F t
i denote the natural filtration with respect to iteration t ∈ [Ti] of stage i ∈ [n]. By

substitution from the definition of∇t
i, we get:

E
[∥∥∇t

i −∇gi(xt
i)
∥∥2 |F t

i

]
= E

[∥∥∥∇fut
(xt

i)−∇fut
(x̂prev) + ∇̃ − ∇gi(xt

i)
∥∥∥2 |F t

i

]
= E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i )−∇fut
(x̂prev) +∇fut

(x⋆
i )

+ ∇̃ − ∇gi(x⋆
i )−∇gi(xt

i) +∇gi(x⋆
i )
∥∥∥2 |F t

i

]
≤ 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i )−∇gi(xt
i) +∇gi(x⋆

i )
∥∥2 |F t

i

]
+ 2E

[∥∥∥∇fut
(x̂prev)−∇fut

(x⋆
i )− ∇̃+∇gi(x⋆

i )
∥∥∥2 |F t

i

]
= 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i )−∇gi(xt
i) +∇gi(x⋆

i )
∥∥2 |F t

i

]
+ 2E

[
∥∇fut

(x̂prev)−∇fut
(x⋆

i )−∇gi(x̂prev) +∇gi(x⋆
i )∥

2 |F t
i

]
≤ 2E

[∥∥∇fut
(xt

i)−∇fut
(x⋆

i )
∥∥2 |F t

i

]
+ 2E

[
∥∇fut

(x̂prev)−∇fut
(x⋆

i )∥
2 |F t

i

]
≤ 2L2E

[∥∥xt
i − x⋆

i

∥∥2 |F t
i

]
+ 2L2E

[
∥x̂prev − x⋆

i ∥
2 |F t

i

]
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i )|F t

i

]
+ 4L2

(
E
[∥∥x̂prev − x⋆

prev

∥∥2 |F t
i

]
+

∥∥x⋆
prev − x⋆

i

∥∥2)
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i )|F t

i

]
+ 4L2

(∥∥x̂prev − x⋆
prev

∥∥2 + i− prev
i

K

)
≤ 4

L2

µ
E
[
gi(x

t
i)− gi(x

⋆
i )|F t

i

]
+ 4L2

(
2

µ
(gprev(x̂prev)− gprev(x

⋆
prev)) +

i− prev
i

K

)
The third to last inequality follows from the smoothness of the functions fi. The next inequality,
follows from the quadratic growth property. The last inequality, follows from the quadratic growth
property again. Taking expectation on both sides completes the proof.
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D PROOF OF LEMMA 7

Lemma 7. Under the update rule of line 5 of Algorithm 2, when using a step size γt, that satisfies
the inequality γt ≤ µ2

2L(L2+µ2) , we have that:

E
[
gi(x

t+1
i )− gi(x

⋆
i )
]
≤ (1− µγt)E

[
gi(x

t
i)− gi(x

⋆
i )
]

+ 4
L3γ2

t

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3Kγ2

t

i− prev
i

Proof. We start our analysis from the smoothness of the function:

gi(x
t+1
i ) ≤ gi(x

t
i) +

〈
xt+1
i − xt

i,∇gi(xt
i)
〉
+

L

2

∥∥xt+1
i − xt

i

∥∥2
= gi(x

t
i)− γt

〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇t
i

∥∥2
Let us upper bound the terms −γt ⟨∇t

i,∇gi(xt
i)⟩+

Lγ2
t

2 ∥∇
t
i∥

2:

− γt
〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇t
i

∥∥2
= (−γt + Lγ2

t )
〈
∇t

i,∇gi(xt
i)
〉
− Lγ2

t ⟨∇t
i,∇gi(xt

i)⟩+
Lγ2

t

2

∥∥∇t
i

∥∥2
= (−γt + Lγ2

t )
〈
∇t

i,∇gi(xt
i)
〉
− Lγ2

t

〈
∇t

i,∇gi(xt
i)−∇t

i

〉
− L

2
γ2
t

∥∥∇t
i

∥∥2
≤ (−γt + Lγ2

t )
〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇gi(xt
i)−∇t

i

∥∥2
In the last line we use the identity:

−⟨a, b⟩ − 1

2
∥a∥2 ≤ 1

2
∥b∥2

We set Dt
i = gi(x

t
i)− gi(x

⋆
i ) and by substituting to the previous inequality, we get that:

Dt+1
i ≤ Dt

i − (γt − Lγ2
t )

〈
∇t

i,∇gi(xt
i)
〉
+

Lγ2
t

2

∥∥∇gi(xt
i)−∇t

i

∥∥2
By taking expectation conditional to the filtration up to step t, F t

i , we have that:

E
[
Dt+1

i |F t
i

]
≤ Dt

i − (γt − Lγ2
t )

∥∥∇gi(xt
i)
∥∥2 + Lγ2

t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2 |F t
i

]
≤ Dt

i − 2µ(γt − Lγ2
t )D

t
i +

Lγ2
t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2 |F t
i

]
In the first line we used the unbiased property of our gradient estimator E[∇t

i|F t
i ] = ∇gi(xt

i) as
shown in Lemma 1. In the second inequality we used the PL-condition

2µDt
i ≤

∥∥∇gi(xt
i)
∥∥2

Note that the inequality is valid since γt ≤ µ2

2L(L2+µ2) and we require γt ≤ 1
L , for γt − Lγ2

t ≥ 0.
For compactness for the rest of the proof, we denote as Bt

i = E [Dt
i ] = E [gi(x

t
i)− gi(x

⋆
i )]. By

taking total expectation, over both sides of the previous inequality, we have:

Bt+1
i ≤ (1− 2µγt + 2µLγ2

t )B
t
i +

Lγ2
t

2
E
[∥∥∇gi(xt

i)−∇t
i

∥∥2]
Using Lemma 2 and substituting the upperbound for E

[
∥∇gi(xt

i)−∇t
i∥

2
]
, we get:

Bt+1
i ≤ (1− 2µγt + 2µLγ2

t )B
t
i

+
Lγ2

t

2

(
4
L2

µ
Bt

i + 4L2

(
2

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+

i− prev
i

K

))
= (1− 2µγt + 2µLγ2

t + 2
L3γ2

t

µ
)Bt

i

+ 4
L3γ2

t

µ
E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3Kγ2

t

i− prev
i
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By our assumption, that γt ≤ µ2

2L(L2+µ2) , we get that

(1− 2µγt + 2µLγ2
t + 2

L3γ2
t

µ
) ≤ 1− µγt

Substituting, gives the lemma statement and completes the proof.

E PROOF OF LEMMA 4

Lemma 4. Let a sequence of functions f1, f2, . . . , fi such that Assumption 2 is satisfied and the
functions gi, gj satisfy the quadratic growth property. Then,

gi(x̂j)− g⋆i ≤
i− j

i

L ·K
2

+ C

where C = i−j
i L ·D ·

√
2
µ

(
gj(x̂j)− g⋆j

)
+ L

µ

(
gj(x̂j)− g⋆j

)
and K is the constant in Assumption 2.

Proof.

gi(x̂j)− g⋆i = gi(x̂j)− gi(x
⋆
j ) + gi(x

⋆
j )− g⋆i

≤ gi(x̂j)− gi(x
⋆
j ) +

L

2

∥∥x⋆
j − x⋆

i

∥∥2
≤ gi(x̂j)− gi(x

⋆
j ) +

L

2

i− j

i
K

In line 2 we used the smoothness of the function gi. In line 3 we used assumption 2. Note that we
select x⋆

j above is the projection of x̂j on the set X ⋆
j . So in order to get Lemma 4 it suffices to bound

the first term of the right hand side gi(x̂j)− gi(x
⋆
j ).

gi(x̂j)− gi(x
⋆
j ) =

1

i

i∑
k=1

(
fk(x̂j)− fk(x

⋆
j )
)

=
1

i

i∑
k=j+1

(
fk(x̂j)− fk(x

⋆
j )
)
+

j

i

j∑
k=1

(
fk(x̂j)− fk(x

⋆
j )
)

=
1

i

i∑
k=j+1

(
fk(x̂j)− fk(x

⋆
j )
)
+

j

i

(
gj(x̂j)− g⋆j

)
We will now focus on the terms fk(x̂j)−fk(x

⋆
j ) for any k, we will start from the descent inequality,

where we used the smoothness of the function fk

fk(x̂j)− fk(x
⋆
j ) ≤ ⟨x̂j − x⋆

j ,∇fk(x⋆
j )⟩+

L

2

∥∥x̂j − x⋆
j

∥∥2
≤

∥∥x̂j − x⋆
j

∥∥∥∥∇fk(x⋆
j )
∥∥+

L

2

∥∥x̂j − x⋆
j

∥∥2
≤

∥∥x̂j − x⋆
j

∥∥ · L ·D +
L

2

∥∥x̂j − x⋆
j

∥∥2
≤ L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

))
Where in the second inequality we used the Cauchy Schwartz inequality, in the third inequality, we
used Assumption 1 and in the last one we used the fact that the function gj satisfies the quadratic
growth property for all j. Substituting this upper bound in our equation we get:

gi(x̂j)− gi(x
⋆
j ) ≤ i− j

i

(
L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

)))
+

j

i

(
gj(x̂j)− g⋆j

)
≤ i− j

i
L ·D ·

√
2

µ

(
gj (x̂j)− gj

(
x⋆
j

))
+

L

µ

(
gj (x̂j)− gj

(
x⋆
j

))
18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where in the second inequality we used the fact that L ≥ µ. Substituting this upperbound to the
original inequality for gi(x̂j)− g⋆i , yields the lemma statement.

F PROOF OF LEMMA 3

Lemma 3 (Convergence). Under the update rule of line 5 of Algorithm 2, when using the step size
γt = 2/(µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we have that:

E
[
gi(x

T+1
i )− gi(x

⋆
i )
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i )

T 2
+ 2L3K

i− prev
iT

+
16L3

(
E [(gprev(x̂prev)]− gprev(x

⋆
prev)

)
µ3T

Proof. By our selection of γt = 2/ (µ(t+ c)), with c = 4L(µ2 + L2)/µ3, we get that γt ≤
µ2

2L(µ2+L2) , for all t ≥ 0, this allows us to use Lemma 7, for any t. To simplify notation and allow
for compactness in our proof, we will denote as Bt

i = E [gi(x
t
i)− gi(x

⋆
i )]. We will also denote as

Si = 4L3

µ E
[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
+ 2L3K i−prev

i , to facilitate compactness in our proofs.

E
[
gi(x

t+1
i )− gi(x

⋆
i )
]
≤ (1− µγt)E

[
gi(x

t
i)− gi(x

⋆
i )
]
+ γ2

t Si

By multiplying both sides of the inequality of the Lemma by (t+ c)(t+ c− 1), we get:

(t+ c)(t+ c− 1)Bt+1
i

≤ (t+ c− 1)(t+ c− 2)Bt
i + (t+ c)(t+ c− 1)γ2

t Si

By substituting γ2
t = 4

µ2(t+c)2 , we get:

(t+ c)(t+ c− 1)Bt+1
i

≤ (t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

t+ c− 1

t+ c
Si

By summing the inequality from t = 0 to T , we get that:

T∑
t=0

(t+ c)(t+ c− 1)Bt+1
i

≤
T∑

t=0

(t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

T∑
t=0

t+ c− 1

t+ c
Si

Now before proceeding let us point out two things. By setting k = t + 1, the left hand side of the
inequality can be rewritten as:

T+1∑
k=1

(k + c− 1)(k + c− 2)Bk
i

Secondly it holds that
t+ c− 1

t+ c
≤ 1

By substituting these in the previous inequality we get:

T+1∑
t=1

(t+ c− 1)(t+ c− 2)Bt
i

≤
T∑

t=0

(t+ c− 1)(t+ c− 2)Bt
i +

4

µ2

T∑
t=0

Si
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A telescopic sum yields the following inequality:

(T + c)(T + c− 1)BT+1
i ≤ (c− 1)(c− 2)B0

i +
4

µ2
TSi

BT+1
i ≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i )

(T + c)(T + c− 1)
+

4TSi

µ2(T + c)(T + c− 1)

Finally since c ≥ 1, we have that: (T + c)(T + c− 1) ≥ T 2, so:

BT+1
i ≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i )

T 2
+

4Si

µ2T

From here we directly get the lemma statement.

G PROOF OF THEOREM 2

Theorem 2. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ


where c = 4L(µ2 + L2)/µ3. Then for each stage i ∈ [n] we have that

E [gi(x̂i)]− g⋆i ≤ ϵ

where x̂i is the output of Algorithm 2, for stage i.

Proof. Since in the first stage we have only one sample it is easy to see that the algorithm reduces
to gradient descent. Therefore after T = 1√

ϵ
, we have a solution x̂1, such that:

E [gi(x̂1)]− g⋆1 ≤ ϵ

Now for subsequent stages let us assume that for all previous stages we have found an epsilon
optimal solution in expectation. More formally at stage i, we have the inductive hypothesis, that for
j < i

E [gi(x̂j)]− g⋆j ≤ ϵ

Given our assumption that at each stage the step size is given by the equation γt = 2/(µ(t+ c)), we
can use Lemma 3, from which, we have, for Ti iterations, that:

E
[
gi(x

Ti+1
i )− gi(x

⋆
i )
]
≤ (c− 1)(c− 2)

E [gi(x̂i−1)]− gi(x
⋆
i )

T 2
i

+ 2L3K
i− prev

iTi

+
16L3E

[
(gprev(x̂prev)− gprev(x

⋆
prev))

]
µ3Ti

Given our inductive hypothesis we have that:

E [gprev(x̂prev)]− gprev(x
⋆
prev) ≤ ϵ

From Lemma 4, we have that:

E [gi(x̂i−1)]− gi(x
⋆
i ) ≤ L ·K

2i
+

L ·D
i

√
2

µ
E
[√

gj(x̂j)− g⋆j

]
+

L

µ
E
[
gj(x̂j)− g⋆j

]
≤ L ·K

2i
+

L ·D
i

√
2

µ

√
E
[
gj(x̂j)− g⋆j

]
+

L

µ
E
[
gj(x̂j)− g⋆j

]
≤ L ·K

2i
+

L ·D
i

√
2

µ

√
ϵ+

L

µ
ϵ
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From line 5 of Algorithm 1 we ensure that i− prev ≤ αi, so we have that:

E
[
gi(x

Ti+1
i )− gi(x

⋆
i )
]
≤ (c− 1)(c− 2)

(
L ·K
2iT 2

i

+
L ·D
iT 2

i

√
2

µ

√
ϵ+

L

µT 2
i

ϵ

)
+ 2L3K

αi

iTi

+
16L3ϵ

µ3Ti

We can decompose the right hand side of the previous inequality into 5 terms and demand that
each of them is less than ϵ/5, allowing for their sum to be less than ϵ. So we have the following
inequalities. For the first term:

c2
LK

2iT 2
i

≤ ϵ/5⇒ c ·
√

5LK

2iϵ
≤ Ti

For the second term:

c2
L ·D
iT 2

i

√
2

µ

√
ϵ ≤ ϵ/5⇒ c ·

√
5L ·D
i
√
ϵ

√
2

µ
≤ Ti

For the third term:

L

µT 2
i

ϵ ≤ ϵ/5⇒

√
5L

µ
≤ Ti

For the forth term:

2L3K
αi

iTi
≤ ϵ/5⇒ 10L3K

α

ϵ
≤ Ti

Using our selection of α =
√
ϵ/(10L3K) we get:

Ti ≥
√

10L3K

ϵ

For the fifth term, we get:

16L3ϵ

µ3Ti
≤ ϵ/5⇒ Ti ≥

80L3

µ3

By Taking a max over the required values for Ti, we get that for

Ti = max{c ·
√

5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ
}

It holds that
E [gi(x̂i)]− g⋆i ≤ ϵ

, so our induction holds and we get the theorem statement.

H OVERALL COMPLEXITY

In this section we calculate the total FO complexity of our algorithm. Before doing so, let us first
prove Corollary 1, which for the sake of exposition we restate up next.

Corollary 1. Over a sequence of n stages, Algorithm 1 requires 2
∑n

i=1 Ti + 2n⌈log n/α⌉ FOs.

Proof. Algorithm 2 requires 2 FOs (Step 5) and thus Algorithm 2 requires overall 2Ti FOs during
stage i ∈ [n]. At Step 6 and 15 Algorithm 1 requires at most n FOs and thus by Lemma 8 it overall
requires 2n⌈log n/α⌉ FOs.
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Theorem 3. Let Algorithm 1 with parameters α =
√
ϵ/(10L3K), γt = 2/(µ(t+ c)) and,

Ti = max

√
5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ


where c = 4L(µ2 + L2)/µ3. Then the overall FO complexity of Algorithm 1 (across all n stages)

equals O
(
n log n

√
1/ϵ

)
.

Proof. From corollary 1 we have that the FO complexity of the algorithm is given by 3
∑n

i=1 Ti +

2n⌈log n/α⌉. By taking the parameters α =
√
ϵ/(10L3K) and

Ti = max{c ·
√

5LK

2iϵ
, c ·

√
5L ·D
i
√
ϵ

√
2

µ
,
80L3

µ3
,

√
10L3K

ϵ
}

we have that 2n log n/α = 2n
√
ϵ/(10L3K) log n and

n∑
i=1

Ti = max{c ·
√

5LKn

2ϵ
, c ·

√
n5L ·D√

ϵ

√
2

µ
, n

80L3

µ3
, n

√
10L3K

ϵ
}

H.1 PROOF OF LEMMA 8

In this section we prove Lemma 8, for the sake of exposition we restate it up next. The proof and
the theorem are originally stated in Mavrothalassitis et al. (2024).

Lemma 8. Over a sequence of n stages, Algorithm 1 reaches Step 5 and 12, ⌈log n/α⌉ times.

Proof of Lemma 8. Step 5 and 12 are only executed when the following inequality is satisfied:

i− prev ≥ α · i⇒ i ≥ 1

1− α
· prev (2)

Once Algorithm 1 reaches Step 5 and 12 it necessarily, reaches Step 13 where prev is updated to i.
Let z0 = 1, z1, . . . , zk, . . . the sequence of stages where zk denotes the stage at which Algorithm 1
reached Step 5 and 12 for the k-th time. By Equation 2 we get that zk+1 ≥ 1

1−α · zk implying that

zk ≥
(

1

1− α

)k

Since zk ≤ n we get that k ≤ logn

log( 1
1−α )

. Notice that log
(

1
1−α

)
= − log(1−α) ≥ 1− (1−α) = α

and thus k ≤ logn
α .

I EXPERIMENTS

All of the experiments presented in the main part and the appendix were done on a single machine,
with NVIDIA A100 SXM4 40 GB GPU.

In this section we include ablation studies and additional experiments.

I.1 LEARNING RATE AND SCHEDULER SELECTION

As mentioned in the main part of the paper, we consider two schedulers, for our experiments. The
motivation behind the linear scheduler lies in the construction of our method, since in order to
achieve the theoretical guarantees, we have to opt for a linearly decreasing step size. The constant
scheduler is just standard.
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Here we give an extensive table according to which the optimal hyper parameters for our experiments
were selected for the algorithms. We explained the procedure in Section 4.1, but for the sake of
exposition, we restate it, before giving the numerical valuations.

We perform a grid search to select the learning rate for CSVRG− PL and SGD in the constant and
linear schedules, we leave out a subset of 5% of the training data as a validation set. We run every
method and learning rate value for 3 random seeds and report the average and the final accuracy on
the validation set.

Table 4: Learning rate and scheduler selection: We highlight the best learning rate value for each
method and scheduler in bold.

MNIST
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 95.90± 0.44 98.24± 0.17 98.50± 0.08 98.66± 0.19 98.16± 0.27 95.78± 0.78
Linear 93.73± 0.11 97.87± 0.13 98.37± 0.17 98.59± 0.20 98.66± 0.09 96.68± 0.57

CSVRG− PL Constant 96.41± 0.08 98.52± 0.07 98.62± 0.22 98.64± 0.39 98.78± 0.42 97.88± 0.20
Linear 93.89± 0.25 98.31± 0.01 98.40± 0.37 98.91± 0.32 98.74± 0.34 98.33± 0.52

FashionMNIST
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 81.68± 0.07 88.19± 0.40 88.82± 0.74 89.93± 0.22 89.51± 0.26 85.91± 0.61
Linear 78.54± 0.28 86.91± 0.28 88.74± 0.19 90.26± 0.16 90.35± 0.62 87.44± 0.42

CSVRG− PL Constant 82.13± 1.04 89.22± 0.20 89.02± 0.85 89.34± 1.55 88.48± 1.65 80.29± 9.36
Linear 78.42± 0.14 87.72± 0.43 89.29± 0.90 91.05± 0.11 90.64± 0.73 88.81± 0.56

CIFAR10
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 50.07± 0.53 70.93± 0.71 70.44± 9.68 79.33± 1.03 77.11± 1.84 65.76± 10.09
Linear 45.08± 0.78 67.21± 0.78 75.09± 0.66 80.89± 0.50 80.95± 0.39 70.55± 5.80

CSVRG− PL Constant 51.61± 2.15 75.81± 0.48 78.99± 1.26 80.44± 4.47 78.45± 4.15 77.01± 3.67
Linear 46.11± 0.94 69.48± 0.96 78.67± 0.60 85.80± 0.32 85.89± 0.74 81.51± 4.45

AG-News
Method Scheduler Learning rate

0.001 0.005 0.01 0.05 0.1 0.5

SGD Constant 86.09± 1.19 90.47± 0.26 91.12± 0.33 25.00± 0.00 25.00± 0.00 25.00± 0.00
Linear 82.61± 3.41 89.51± 0.17 90.74± 0.10 25.00± 0.00 25.00± 0.00 25.00± 0.00

CSVRG− PL Constant 85.72± 1.25 90.29± 0.04 90.89± 0.19 25.00± 0.00 25.00± 0.00 25.00± 0.00
Linear 79.84± 2.80 89.54± 0.16 90.54± 0.21 25.00± 0.00 25.00± 0.00 25.00± 0.00

I.2 CONTINUAL LEARNING

In this experiment, we consider as many stages as batches in each dataset, i.e., n = 600 for
MNIST/FashionMNIST and n = 500 for CIFAR10/100. Batches are sorted according to their
label so that a new class label is introduced every n/c stages, where c is the number of classes. In
order to be faithful to the continual learning setup, we select Ti = 10 in Algorithm 1. Setting Ti to
be larger, would result in re-training the model from scratch every time a new batch arrives, which
we want to avoid. We select the best learning rate value and scheduler for each method according to
Section 4.1.

We report the test accuracy in the classes we have visited during training. For example, in CIFAR10,
in stages 0 to 49 we report the test accuracy for the samples with label ”0” and in stages 450 to 499
the accuracy in the complete test set.

I.3 UNLEARNING

In this section, we provide an extensive comparison for our Continual Unlearning Benchmark. In
this setting, we seek to continuously remove samples from the dataset and measure the performance
of the algorithm, in both the distribution of the data that has been removed, as well as the distribution
of the data that have been retained in the training set. In order to do this we simply remove the deleted
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samples from the training dataset of the algorithms, for both methods CSVRG− PL and SGD. We
repeat the procedure of removing batches of data for 100 stages and measure the generalization
performance on the remember set and the forget set, with higher accuracy being more desirable for
the former and less accuracy being preferable for the latter.

Table 5: Forgetting tasks: We measure the final accuracy after 100 stages in the remember set (R
Acc.) and the forget set (F Acc.). We compare the performance when considering 10, 50 and 100
steps. CSVRG− PL consistently outperforms SGD by being less accurate in the forget set while
minimally affecting the remember set performance.

MNIST
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 99.19±(0.04) 99.15±(0.11) 99.25±(0.02) 96.51±(0.27) 99.26±(0.05) 95.83±(0.20) 99.18±(0.04) 95.17±(0.61)

CSVRG− PL 99.26±(0.03) 99.30±(0.04) 99.23±(0.04) 88.27±(1.29) 99.26±(0.02) 54.86±(3.68) 99.19±(0.02) 49.81±(0.34)

FashionMNIST
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 94.52±(0.06) 95.17±(0.38) 94.75±(0.05) 93.18±(0.36) 94.61±(0.09) 92.82±(0.73) 94.57±(0.11) 92.44±(0.72)

CSVRG− PL 94.94±(0.08) 95.27±(0.15) 94.87±(0.06) 90.03±(0.52) 94.70±(0.11) 84.50±(1.18) 94.48±(0.21) 71.67±(3.01)

CIFAR10
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 93.41±(0.18) 95.30±(0.22) 93.73±(0.24) 90.49±(0.94) 93.85±(0.18) 90.05±(1.10) 93.77±(0.17) 87.61±(1.04)

CSVRG− PL 94.05±(0.15) 93.18±(0.36) 93.71±(0.17) 57.40±(2.15) 93.43±(0.04) 49.08±(0.31) 93.15±(0.18) 48.46±(0.50)

CIFAR100
Ti 10 50 100 200
Metric R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓ R Acc. ↑ F Acc. ↓
SGD 76.05±(0.19) 81.47±(0.71) 76.12±(0.20) 75.35±(0.30) 76.19±(0.21) 75.12±(0.52) 76.43±(0.23) 76.14±(0.51)

CSVRG− PL 76.47±(0.07) 86.30±(0.18) 75.68±(0.15) 77.24±(0.49) 74.23±(0.18) 67.70±(0.61) 73.50±(0.14) 44.81±(0.34)

I.4 CONTINUAL LEARNING IN THE TEXT CLASSIFICATION TASK

In this section, we replicate the continual learning experiments in Section 4 for the text classification
task. We finetune BERT-base (Devlin et al., 2019) in the AG-News dataset (Gulli, 2005; Zhang
et al., 2015).

We select the learning rate and schedule by training in a sample of 25% of the training set and
evaluating in the remaining 75%. The results in Table 4 suggest the best learning rate value is
0.01 for both SGD and CSVRG− PL. Regarding the scheduler, unlike for the image datasets, the
constant learning rate scheduler provides the best performance.

In Fig. 5 we can observe that CSVRG− PL and SGD evolve similarly with CSVRG− PL obtain-
ing the best final accuracy at 93.24% v.s. 92.66 for SGD.
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Figure 4: Forgetting experiments:In these plots we present the accuracy of the model on the re-
member set, when it is trained with SGD or SIOPT, for all stages.
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(a) Continual learning evolution
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SGD 92.66±(0.65)

CSVRG− PL 93.24±(0.11)

(b) Final Acc.

Figure 5: Continual Learning in BERT+AG-News: CSVRG− PL and SGD evolve similarly,
with CSVRG− PL obtaining the best final performance at 93.24% Acc.
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