
Optimizing Fine-Tuning Efficiency: Gradient
Subspace Tracking on Grassmann Manifolds for Large

Language Models

Sahar Rajabi Sirisha Rambhatla
Critical ML Lab, University of Waterloo

Waterloo, ON, Canada
{srajabi, srambhatla}@uwaterloo.ca

Abstract

Training and fine-tuning Large Language Models (LLMs) demand significant
computational resources and time due to their large model sizes and optimizer
states. To mitigate these challenges and improve accessibility, several memory-
efficient methods have been developed. Methods such as Low-Rank Adaptation
(LoRA) optimize model weights within a low-rank subspace, while Gradient Low-
Rank Projection (GaLore) projects gradients into a lower-dimensional space to
decrease memory footprint. In this paper, we propose Gradient Subspace Tracking
(SubTrack), a method that confines optimization to a compact core subspace of
the gradient matrices and dynamically tracks its changes using the geometry of
Grassmannian manifolds. SubTrack efficiently updates its subspace estimation
by leveraging estimation errors and previously identified subspaces. Our results
demonstrate that even with rank-1 updates to the underlying subspace, SubTrack
achieves comparable or superior performance to GaLore, while reducing runtime
by approx. 15% on an average and up to 20.56% on some datasets.

1 Introduction

Large Language Models (LLMs) have achieved state-of-the-art performance across various tasks
and are rapidly growing in popularity. However, their training and fine-tuning demand substantial
resources, such as hardware and time, making them impractical for many applications and contributing
to a larger carbon footprint [32, 12, 22, 20, 21, 10, 16]. As a result, there is an acute need to develop
memory- and time-efficient methods to democratize their use and mitigate environmental impact.
Various techniques have been proposed to reduce memory usage, such as gradient checkpointing
[5] and memory offloading [23]. In this context, several Parameter-Efficient Fine-Tuning (PEFT)
approaches aim to reduce memory usage by optimizing a subset of model parameters or operating
within a lower-dimensional space [7, 29, 17, 24, 27, 20, 11]. Notably, the well-known method
LoRA [11] decomposes weight matrices into two low-rank trainable matrices, optimizing network
parameters within a small subspace, which significantly reduces the memory footprint.

Memory requirements extend beyond trainable parameters, with a significant portion consumed by
optimizers for storing element-wise states and parameters [32]. To address this, recent efforts have
focused on reducing the memory footprint of optimizer parameters [15, 1, 19, 6, 31, 21, 32, 22].
GaLore [32] reduces the memory usage of optimizers by projecting gradient matrices into a low-rank
subspace and tracking changes via periodic Singular Value Decomposition (SVD) to obtain a rank-r
approximation. However, this approach faces several challenges. First, SVD is computationally
expensive, and if the gradient does not evolve within a nearly constant subspace, GaLore must
increase the frequency of SVD operations, significantly increasing the amount of computation. This
is problematic because not all layers’ gradients converge to a stable subspace early in training [12].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Moreover, applying SVD to a single gradient matrix is susceptible to data noise [26], and GaLore
does not leverage 1) information from the orthogonal space as feedback to adjust the subspace [21]
or 2) previously computed subspaces to incorporate past knowledge, which could help mitigate these
effects and improve convergence speed.

To address these challenges, we propose Gradient Subspace Tracking (SubTrack), a Grassmannian-
based subspace tracking method that efficiently updates the subspace using rank-1 updates. SubTrack
accumulates gradients between two update steps to reduce noise effects and leverages information
from the orthogonal complement to improve subspace estimation through simple linear algebra
operations, which are computationally more efficient than GaLore as they avoid periodic SVD on
the main gradient matrices. Furthermore, SubTrack dynamically adapts to changes in the gradient
subspace, reducing abrupt shifts in subspace updates for faster convergence. Our main contributions
are as follows:

• We introduce SubTrack, a computationally and memory-efficient method that projects
gradients onto a core subspace and dynamically adjusts this subspace using Grassmannian
manifold geometry, leveraging estimation errors as a signal for adjustment.

• We demonstrate that SubTrack achieves performance comparable to or better than GaLore,
with a significant reduction in runtime.

• We prove that our method aligns with GaLore’s convergence guarantees while enabling
more frequent subspace updates by exercising greater control over subspace adjustments
through the use of prior knowledge and errors from the orthogonal space.

2 Related Works

Several works aim to improve the efficiency of training and fine-tuning LLMs, addressing a growing
demand as their popularity rapidly increases. LoRA [11], a widely recognized method for reducing
the number of trainable parameters, projects model weights into a lower-dimensional space, resulting
in two trainable low-rank matrices. This approach optimizes the matrices and significantly reduces
memory requirements for fine-tuning large models. Dettmers et al. [7] builds on LoRA by employing
quantization techniques and paged optimizers to further reduce memory usage. Additionally, Yaras
et al. [29] introduces Deep LoRA, which uses deep matrix factorization for low-rank optimization,
addressing overfitting issues and reducing the need for precise tuning of the rank parameter. Several
other works have also extended LoRA to enhance the efficiency of training and fine-tuning large
models [17, 24, 27]. Miles et al. [20] proposes compressing intermediate activation vectors and
reconstructing them during backpropagation to enhance memory efficiency. Additionally, Hao et al.
[10] demonstrates that full-parameter fine-tuning is feasible by using random projections on the
gradient matrix, showing that LoRA essentially performs a down-projection of the gradient.

Several approaches aim to reduce memory consumption in optimizers, as optimizers like Adam [14]
account for a significant portion of memory usage due to their storage of element-wise states to
improve the optimization process [15, 1, 19, 6, 31]. MicroAdam [21] tackles this issue by compressing
the gradient space for optimization and utilizing the resulting compression error through feedback
loops to improve the optimization process. Gur-Ari et al. [9] suggests that a substantial portion of
gradients lies within a small, largely consistent subspace, a finding also reported by other studies,
including Schneider et al. [25], Yaras et al. [28]. GaLore [32] leverages this property to reduce
the memory requirements of optimizers by projecting gradients into a lower-dimensional subspace
and then projecting them back for complete parameter tuning. This approach has been effectively
integrated with other methods to further reduce memory usage during training and fine-tuning of
LLMs [16]. However, not all layers’ gradients evolve within a stable low-rank subspace. Jaiswal
et al. [12] identifies layers with constantly changing gradients where low-rank projection may be
inefficient for tuning. By analyzing the distribution of singular values across different layers, they
select those that evolve within a small subspace for fine-tuning while freezing the remaining layers.
Gradient Structured Sparsification (Grass) [22] further reduces memory usage by applying sparse
projection matrices to the gradient, transforming the gradient matrix into a sparse vector space. This
approach leverages sparse representations to significantly decrease the memory footprint.

When working with high-dimensional data, a common approach is to project the data into a lower-
dimensional space, and many studies focus on tracking these subspaces as they evolve over time.
Balzano et al. [2] introduces an incremental method for updating subspaces on the Grassmannian

2

manifold when data is partially observed. Zhang and Balzano [30] and Kasai [13] address the
challenges posed by noise in data streams and evolving environments, proposing methods to handle
such noise. Additionally, Blocker et al. [4] presents a method for time-varying data based on geodesics
in Grassmannian space to track changes and update the subspace effectively.

3 SubTrack: Tracking the Gradient Subspace

Since gradients typically evolve within a small subspace, compressing this space can significantly
reduce the memory footprint of the optimizer. As demonstrated in Zhao et al. [32] whenever the
gradient takes the general form

G =
∑
i

Ai +
∑
i

BiWCi (1)

where i denotes the batch index, and Bi and Ci are positive semi-definite (PSD) matrices, this gradient
can be projected onto a small subspace that remains nearly stable while ensuring that the optimization
process continues to converge, as discussed in Section 4 and Appendix B. However, the gradient’s
subspace is not always stable, making it crucial to track its changes for effective optimization. GaLore
[32] addresses this by periodically performing SVD on gradient matrices, while keeping the update
frequency low to align with the assumption of a stable subspace. However, this approach poses
several challenges: 1) not all gradients converge to a stable subspace within a few iterations, 2) SVD
is computationally expensive, and increasing the frequency of updates to capture changes significantly
raises both runtime and environmental costs, and 3) increasing the update frequency contradicts the
assumption of a stable subspace, as SVD is sensitive to noise and does not account for the previously
computed subspace or estimation error to regulate the extent of change applied.

We propose Gradient Subspace Tracking, or SubTrack, a computationally efficient method for
tracking gradient subspaces. SubTrack utilizes both the orthogonal space and the previously computed
subspace to update the core subspace. As we restrict subspace updates to rank-1 changes, we can
effectively controls the amount of change in the subspace, enabling more frequent updates without
compromising the stability assumption. The subspace is initialized using SVD as follows:

G0 = USV ⊤ ≈
r∑

i=1

siuiv
⊤
i , P0 = [u1, u2, ..., ur], Q0 = [v1, v2, ..., vr]. (2)

Here, G0 is an m× n gradient matrix at step 0, and U , S, and V are its SVD components, with r
denoting the rank. At each optimization step, the gradients are projected onto the subspace of the left
singular vectors if m ≤ n, or onto the right singular vectors otherwise, thereby optimizing memory
usage [32]. The optimization is performed within this subspace, after which the gradient is projected
back to allow full parameter tuning. For simplicity, we assume m ≤ n without loss of generality,
implying that S0 = P0, an m× r orthonormal matrix whose columns span the underlying subspace.

At each iteration of pre-training or fine-tuning, the matrix St, representing the subspace at step t,
projects the gradient matrix Gt onto itself by G̃t = S⊤

t Gt, where G̃t will be a reduced r × n matrix
representing the projection of the original gradient onto a rank-r subspace. The optimizer then
performs optimization within this low-rank space, which substantially reduces the number of state
parameters and thus the memory usage. The optimizer outputs G̃O

t , which is then projected back to
the original space by Ĝt = StG̃

O
t to be passed to the network.

As previously discussed, the gradient does not always evolve within a stable low-rank subspace;
hence, St, the orthonormal matrix spanning the core subspace, must be appropriately updated. In
SubTrack, we propose updating the subspace by moving along Grassmannian geodesics. This
approach leverages the previously computed subspace and the estimation error from earlier steps to
minimize abrupt changes and noise effects.

The underlying subspace is updated after a fixed subspace update interval of k steps. Let Ti denote
the i-th subspace update step for i ∈ {1, 2, 3, . . .}. To leverage the estimation error in the orthogonal
space and reduce the impact of noise, SubTrack computes an accumulated gradient by averaging the
gradients between two consecutive subspace update steps, as shown below:

Gacc =
1

Tn − Tn−1

Tn∑
t=

Tn−1

Gt (3)

3

Algorithm 1 SubTrack

Require: Sequence of m × n gradients Gt with m ≤ n (w.l.o.g.), step-size η, rank r, subspace
update steps k
Initialize Subspace via SVD Decomposition:
P0 ← U [:, : r] , where U, S, V ← SVD(G0)
S0 ← P0 {The initial subspace}
Gacc = 0m×n {To keep the accumulated gradient}
for t = 1, . . . , T do

if t mod k = 0 then
Prepare accumulated gradients: Gacc =

Gacc+Gt

k
Update subspace:
Glr = argminA ∥(St−1A−Gacc)∥2 {Solving the least square problem}
R = Gacc − St−1Glr {Computing the residual}
∇F = −2RG⊤

lr ≈ ÛF Σ̂F V̂
⊤
F {Computing the rank-1 estimation of tangent vector}

St = (St−1V̂F ÛF)

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St−1(I − V̂F V̂

⊤
F) {Updating the subspace}

Reset accumulated gradients: Gacc = 0m×n

else
Keep using previous subspace: Gacc = Gacc +Gt , St = St−1

Return final projected gradient to the optimizer: S⊤
t Gt

We frame the problem of identifying the subspace as selecting the appropriate element from the
Grassmannian, the set of all d-dimensional subspaces within an n-dimensional vector space [3]. Our
objective is to minimize the Euclidean distance between the current subspace and the accumulated
gradient Gacc observed at each update step. The cost function is defined as:

F (St) = min
A
∥StA−Gacc∥2F , (4)

where A is the solution to the least squares problem. The derivative of this function with respect
to St is given in (5), and R = Gacc − StA lies in the orthogonal complement of St. To update the
subspace in the appropriate direction, we compute the tangent vector ∇F , as shown in (6) based on
Edelman et al. [8], where the second equality holds because R is orthogonal to StS

⊤
t .

∂F

∂St
= 2(StA−Gacc)A

⊤ = −2RA⊤ (5)

∇F = (I − StS
⊤
t)

∂F

∂St
=

∂F

∂St
= −2RA⊤ ≈ ÛF Σ̂F V̂

⊤
F (6)

The tangent vector∇F provides the direction for adjusting the subspace by accounting for the error
lying in the orthogonal complement. However, to minimize changes to the subspace, SubTrack
first computes a rank-1 approximation of ∇F , determined by its largest singular value and the
corresponding singular vectors obtained from its SVD, represented as ÛF Σ̂F V̂

⊤
F in the final equality

of (6). This approximation is then used to update the subspace.

As shown by Edelman et al. [8], Bendokat et al. [3], we can move along the Grassmannian geodesic
in the direction determined by the computed tangent vector, taking a step of size η, as presented in
(7).

St+1(η) = (StV̂F ÛF)

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F) (7)

This update step preserves the orthonormality of St+1, ensuring it remains on the Grassmannian
manifold. The last term in (6), which is required when using thin-SVD instead of compact-SVD,
projects the previous subspace onto the orthogonal complement of V̂F . This ensures that the portion
of the subspace of St not updated in this step is still included. By leveraging the geometry of the
Grassmannian manifold, SubTrack effectively tracks the underlying subspace of the gradient space.
The pseudo-code for this method is provided in Algorithm 1.

4

4 Theoretical Analysis

In this section, we analyze the convergence of SubTrack using theoretical analysis. To begin, using
SubTrack, the update rule for the weights of the networks is as follows:

Wt = W0 +

t′=t−1∑
t′=0

Ĝt′ (8)

Using the full projection, Ĝt′ will be computed as shown below, where Sl
t′ and Sr

t′ are the rank-r left
and right projection matrices.

Ĝt′ = Sl
t′ρt′(S

l
t′
⊤
Gt′S

r
t′)S

r
t′
⊤ (9)

L-continuity A function f(X) has Lipschitz-continuity (L-continuity) if for any X1 and X2,
∥f(X2)− f(X1)∥F ≤ L∥X2 −X1∥F .

Convergence of SubTrack Suppose gradient has the following form (also (1)) with functions Ai,
Bi, and Ci being L-continuous with constants LA, LB , and LC w.r.t. weight matrix Wt; and
∥Wt∥F ≤M ; where Wt denotes the weight matrix at step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and assuming that the projection
matrices remain constant during the training. Then for learning-rate µ and min(κt) > (LA +
2LBLCM

2), the SubTrack, with ρt ≡ 1 (the element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack converges.

The proof of this theorem is provided in Appendix B, based on Zhao et al. [32]. Note that while
both GaLore and SubTrack assume that the projection matrices remain unchanged for the proof
of convergence, GaLore must limit the number of updates to ensure convergence, as each update
can potentially change the subspace entirely. In contrast, SubTrack leverages only rank-1 updates
to the subspace, preventing drastic changes with each update. While a deeper analysis of slowly
changing subspaces and their impact on convergence remains an open problem, in practice, this
allows SubTrack to perform more updates than GaLore.

The Grassmannian update rule presented in (7) is a direct application of Grassmann geometry [8, 3].

Exponential Map expp : TpM → M on a Riemannian manifold M is a mapping that assigns to
each tangent vector ∆ ∈ TpM the point γ(1) ∈M , where TpM is the tangent space of M at p, and
γ is the unique geodesic originating at p with initial velocity ∆. This map establishes a relationship
between geodesics and the Riemannian exponential, such that γ(t) = expp(t∆) for t ∈ R.

Stiefel Manifold St(n, p) parametrizes the set of all n× p matrices U , with orthonormal columns,
each representing a rank-p subspace of Rn.

Grassmann Manifold Gr(n, p) parametrizes the set of all p-dimensional subspaces of Rn. Each
point can be represented by a projection matrix P = UUT , where U ∈ St(n, p).

Grassmann Exponential Let P = UUT ∈ Gr(n, p) be a point on the Grassmannian manifold,
where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace. Consider a tangent vector
∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the horizontal space at U in the Stiefel
manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by ∆hor
U = Q̂ΣV T , where Q̂ ∈ St(n, r),

Σ = diag(σ1, . . . , σr) contains the nonzero singular values of ∆hor
U with r = min(p, n − p), and

V ∈ St(p, r). The Grassmann exponential map, representing the geodesic emanating from P in the
direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

5

Table 1: Evaluating SubTrack and GaLore on their performance and runtime when fine-tuning RoBERTa-Base
on GLUE tasks for ranks 8. All hyperparameters including scale-factor and subspace update interval are the
same. SubTrack achieved better average performance compared to GaLore while spending a considerably less
time for fine-tuning. The performance is measured after fine-tuning for 30 epochs. Wall-times are reported in
seconds, and are measured after fine-tuning for 2500 iterations, removing the evaluation steps while performing
exactly 5 updates for having a fair comparison between these two methods.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg

GaLore [32] Perf. 58.54 90.61 91.30 74.37 94.50 87.34 92.71 87.99 84.67
Rank = 8 Time 188.0 195.6 196.5 328.3 187.1 208.0 217.1 189.4 213.7

SubTrack (Ours) Perf. 58.54 90.87 91.43 76.53 94.27 87.09 92.49 87.57 84.85
Rank = 8 Time 149.4 159.1 171.2 304.9 148.9 177.1 192.1 156.8 182.4
Reduction in Wall-Time 20.56% 18.68% 12.87% 7.11% 20.37% 14.89% 11.48% 17.21% 15.40%

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

The proof of this theorem can be found in Appendix C. Leveraging this theorem, and incorporating
our notation, one can easily verify that the subspace update rule is as stated in (7). This update
rule generally converges to a stable subspace if the step size η decreases over time [2]. However,
a decreasing step size can impair the ability to accurately track and adapt to subspace changes.
Consequently, SubTrack uses a constant step size during training and fine-tuning to effectively adjust
subspaces. This approach does not hinder convergence, as proved in the theorem, which guarantees
convergence as long as changes are controlled to maintain the stable subspace assumption.

5 Experiments

To ensure a fair comparison of computational efficiency between SubTrack and GaLore, we fine-
tuned RoBERTa-Base [18] measuring the corresponding wall-time and performance while keeping
all shared hyperparameters consistent. Wall-time is the real-world elapsed time it takes for a process
or operation to complete, measured from start to finish, including both the actual runtime and any
waiting time for resources or data retrieval. To compare wall-time performance, RoBERTa-Base
was fine-tuned on GLUE tasks for 2500 iterations, with the subspace update interval set to 500
iterations and rank 8. Consequently, both methods update the underlying subspace exactly five times,
and evaluation steps were excluded to ensure an accurate runtime comparison. For performance
evaluation, the model was fine-tuned on these tasks for 30 epochs, with results presented in Table 1.
As shown, SubTrack reduces runtime by up to 20.56%. Despite restricting updates to rank-1 changes
to the previous subspace, Table 1 demonstrates that SubTrack achieves performance comparable to or
even surpassing that of GaLore. Further experimental details are provided in Appendix A.

6 Discussion and Conclusion

We proposed a computationally efficient method that projects gradients into a lower-dimensional
subspace, updating this subspace by tracking its changes over time. SubTrack preserves the previously
computed subspace and incorporates gradient components from the orthogonal complement to
perform rank-1 updates. This approach reduces the frequency of abrupt transitions between iterations
and leverages the available information effectively.

In some cases, the extent of changes in the subspace may require updates of rank greater than 1.
During our experiments, we observed that applying updates as per (7), using the SVD of the tangent
vector from (6), can hinder convergence if the singular values of the tangent vector become very
small. Furthermore, simultaneously updating subspace dimensions associated with sufficiently large
singular values caused convergence issues in some cases. Therefore, we restricted updates to rank-1
in this paper, as this approach still enabled SubTrack to achieve performance comparable to or better
than GaLore, with reduced runtime. In future work, we plan to explore increasing the rank of updates
without compromising convergence. Additionally, dynamically selecting the step size could eliminate
the need for manual tuning as a hyperparameter and further enhance convergence.

6

References
[1] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive

optimization, 2019. URL https://arxiv.org/abs/1901.11150.

[2] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of
subspaces from highly incomplete information, 2011. URL https://arxiv.org/abs/1006.
4046.

[3] Thomas Bendokat, Ralf Zimmermann, and P.-A. Absil. A grassmann manifold handbook: basic
geometry and computational aspects. Advances in Computational Mathematics, 50(1), January
2024. ISSN 1572-9044. doi: 10.1007/s10444-023-10090-8. URL http://dx.doi.org/10.
1007/s10444-023-10090-8.

[4] Cameron J. Blocker, Haroon Raja, Jeffrey A. Fessler, and Laura Balzano. Dynamic subspace es-
timation with grassmannian geodesics, 2023. URL https://arxiv.org/abs/2303.14851.

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

[6] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization, 2022. URL https://arxiv.org/abs/2110.02861.

[7] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[8] Alan Edelman, T. A. Arias, and Steven T. Smith. The geometry of algorithms with orthogonality
constraints, 1998. URL https://arxiv.org/abs/physics/9806030.

[9] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace,
2018. URL https://arxiv.org/abs/1812.04754.

[10] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[12] Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients, 2024. URL https://arxiv.org/abs/2407.11239.

[13] Hiroyuki Kasai. Fast online low-rank tensor subspace tracking by cp decomposition using
recursive least squares from incomplete observations, 2017. URL https://arxiv.org/abs/
1709.10276.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

[15] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states, 2023.
URL https://arxiv.org/abs/2309.01507.

[16] Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu. Owlore: Outlier-weighed layerwise
sampled low-rank projection for memory-efficient llm fine-tuning, 2024. URL https://
arxiv.org/abs/2405.18380.

[17] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692.

7

https://arxiv.org/abs/1901.11150
https://arxiv.org/abs/1006.4046
https://arxiv.org/abs/1006.4046
http://dx.doi.org/10.1007/s10444-023-10090-8
http://dx.doi.org/10.1007/s10444-023-10090-8
https://arxiv.org/abs/2303.14851
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/physics/9806030
https://arxiv.org/abs/1812.04754
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2309.01507
https://arxiv.org/abs/2405.18380
https://arxiv.org/abs/2405.18380
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/1907.11692

[19] Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-
tuning for large language models with limited resources. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8187–8198, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.acl-long.445.

[20] Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient
training using rank-1 sub-token projections, 2024. URL https://arxiv.org/abs/2405.
17991.

[21] Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert,
Peter Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space
overhead and provable convergence, 2024. URL https://arxiv.org/abs/2405.15593.

[22] Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute
efficient low-memory llm training with structured sparse gradients, 2024. URL https://
arxiv.org/abs/2406.17660.

[23] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

[24] Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-LoRA: Enhancing parameter
efficiency of LoRA with weight tying. In Kevin Duh, Helena Gomez, and Steven Bethard,
editors, Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages
8694–8705, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.481. URL https://aclanthology.org/2024.naacl-long.
481.

[25] Jan Schneider, Pierre Schumacher, Simon Guist, Le Chen, Daniel Häufle, Bernhard Schölkopf,
and Dieter Büchler. Identifying policy gradient subspaces, 2024. URL https://arxiv.org/
abs/2401.06604.

[26] Namrata Vaswani, Thierry Bouwmans, Sajid Javed, and Praneeth Narayanamurthy. Robust
subspace learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE
Signal Processing Magazine, 35(4):32–55, July 2018. ISSN 1558-0792. doi: 10.1109/msp.
2018.2826566. URL http://dx.doi.org/10.1109/MSP.2018.2826566.

[27] Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning, 2024. URL https://arxiv.org/abs/2401.04151.

[28] Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. Invariant low-
dimensional subspaces in gradient descent for learning deep matrix factorizations. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023.

[29] Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overpa-
rameterized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

[30] Dejiao Zhang and Laura Balzano. Global convergence of a grassmannian gradient descent
algorithm for subspace estimation, 2016. URL https://arxiv.org/abs/1506.07405.

[31] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan
Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2024. URL
https://arxiv.org/abs/2406.16793.

[32] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL
https://arxiv.org/abs/2403.03507.

8

https://aclanthology.org/2024.acl-long.445
https://aclanthology.org/2024.acl-long.445
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2405.15593
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://aclanthology.org/2024.naacl-long.481
https://aclanthology.org/2024.naacl-long.481
https://arxiv.org/abs/2401.06604
https://arxiv.org/abs/2401.06604
http://dx.doi.org/10.1109/MSP.2018.2826566
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/1506.07405
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2403.03507

A Fine-Tuning RoBERTa-Base

To compare the computational efficiency and performance of SubTrack with GaLore, we fine-tuned
RoBERTa-Base using the hyperparameters reported in Table 2, which are identical to those reported
in the GaLore paper for rank-8 subspaces, with a subspace update interval of 500 iterations.

Table 2: Hyperparameters of fine-tuning RoBERTa-Base.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
SubTrack Step Size 0.001 0.01 15.0 3.0 0.001 0.001 1.0 1.0

Rank Config. r = 8
α 2

Max Seq. Len. 512

B Convergence of SubTrack

Convergence of SubTrack Suppose gradient has the following form (also (1)) with functions Ai,
Bi, and Ci being L-continuous with constants LA, LB , and LC w.r.t. weight matrix Wt; and
∥Wt∥F ≤M ; where Wt denotes the weight matrix at step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and assuming that the projection
matrices remain constant during the training. Then for learning-rate µ and min(κt) > (LA +
2LBLCM

2), the SubTrack, with ρt ≡ 1 (the element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack converges.

proof. To demonstrate that SubTrack converges to the global minimum during training, we begin by
deriving the recursive form of the gradients.

Let ⊗ denote the Kronecker product. Then, vec(AXB) = (B⊤ ⊗A)vec(X).

By applying vec to the gradient form given in the theorem, we obtain:

gt = vec(Gt) = vec(
∑
i

Ai +
∑
i

BiWCi) = at −Dtwt (10)

where gt := vec(Gt), wt := vec(Wt), at := 1
N

∑
i vec(Ai,t), and Dt =

1
N

∑
i Ci,t ⊗Bi,t.

As defined in the theorem, let Pt = Sl
t
⊤
GtS

r
t . Its vectorized form can be expressed using the

Kronecker product as follows:

pt = vec(Pt) = vec(Sl
t

⊤
GtS

r
t) = (Sr

t
⊤ ⊗ Sl

t

⊤
)vec(Gt)

= (Sr
t ⊗ Sl

t)
⊤
vec(Gt) = (Sr

t ⊗ Sl
t)

⊤
gt

(11)

Now recalling Ĝt from (9), it can be written as:

Ĝt = Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤

9

Thus, its vectorized form will be:

vec(Ĝt) = ĝt = vec(Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤) = vec(Sl

tPtS
r
t
⊤)

= (Sr
t ⊗ Sl

t)vec(Pt) = (Sr
t ⊗ Sl

t)pt
(12)

This is where the constant subspace assumption becomes necessary. To derive the recursive form
of gt, we assume that the projection matrices remain fixed throughout training, i.e., Sr

t = Sr and
Sl
t = Sl. Consequently, we can restate equations (11) and (12) as follows:

pt = (Sr ⊗ Sl)
⊤
gt (13)

ĝt = (Sr ⊗ Sl)pt (14)

Then we can write the recursive form of gt:

gt = at −Dtwt = (at − at−1) + (Dt−1 −Dt)wt + at−1 −Dt−1wt

= et + at−1 −Dt−1(wt−1 + µĝt−1) = et + gt−1 − µDt−1ĝt−1
(15)

where et := (at − at−1) + (Dt−1 −Dt)wt. To obtain pt from this recursive formulation, we can
left-multiply by (Sr ⊗ Sl)

⊤, as shown in (14):

pt = (Sr ⊗ Sl)
⊤
et + (Sr ⊗ Sl)

⊤
gt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1ĝt−1 (16)

Now, based on (13) and (14), pt can be written as:

pt = (Sr ⊗ Sl)
⊤
et + pt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1(S

r ⊗ Sl)pt−1 (17)

Let define:

D̂t := (Sr ⊗ Sl)
⊤
Dt(S

r ⊗ Sl) =
1

N

∑
i

(Sr ⊗ Sl)
⊤
(Ci,t ⊗Bi,t)(S

r ⊗ Sl)

=
1

N

∑
i

(Sr⊤Ci,tS
r)⊗ (Sl⊤Bi,tS

l)

(18)

Then we can expand (17) and show that:

pt = (I − µD̂t−1)pt−1 + (Sr ⊗ Sl)⊤et (19)

Note that Sl and Sr are orthonormal matrices. This is ensured because the subspace is initialized
using the SVD of G0, and the Grassmannian update rule provided in (7) preserves the orthonormality
of the subspace matrices throughout training. Since Sl and Sr are orthonormal, we have Sl⊤Sl = I
and Sr⊤Sr = I . Consequently, we can bound the norm of the second term in (19) as follows:

∥(Sr ⊗ Sl)⊤et∥2 = ∥vec(Sl⊤EtS
r)∥2 = ∥Sl⊤EtS

r∥F ≤ ∥Et∥F (20)

Here Et is the matrix form of et, and as declared before, et := (at − at−1) + (Dt−1 −Dt)wt, thus:

Et :=
1

N

∑
i

(Ai,t −Ai,t−1) +
1

N

∑
i

(Bi,t−1WtCi,t−1 −Bi,tWtCi,t) (21)

Next, we need to find an upper bound for the norm of each term in (21) to establish an upper bound
for ∥Et∥F . Based on the assumptions of the theorem, Ai, Bi, and Ci exhibit L-Lipschitz continuity
with constants LA, LB , and LC , respectively. Additionally, ∥Wt∥F is bounded by a scalar M . We
have:

∥At −At−1∥F ≤ LA∥Wt −Wt−1∥F = µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F (22)

In the first equality, we apply (8), while the last equality holds due to (14) and the orthonormality
of the projection matrices. The subsequent two inequalities can be derived similarly using these
equations.

∥(Bt −Bt−1)WtCt−1∥F ≤ LB∥Wt −Wt−1∥F ∥Wt∥F ∥Ct−1∥F
= µLBLCM

2∥Pt−1∥F
(23)

10

∥BtWt(Ct−1 − Ct)∥F ≤ LC∥Bt∥F ∥Wt∥F ∥Wt−1 −Wt∥F
= µLBLCM

2∥Pt−1∥F
(24)

We can now derive the bound for ∥Et∥F as follows:

∥Et∥F ≤ µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F + µLBLCM
2∥Pt−1∥F + µLBLCM

2∥Pt−1∥F
= µ(LA + 2LBLCM

2)∥Pt−1∥F
(25)

To calculate the norm bound for the first term in (19), we first need to establish the bounds for D̂t.
This involves estimating the minimum eigenvalue of D̂t.

If we define γmin,i,t = λmin(S
l⊤Bi,tS

l)λmin(S
r⊤Ci,tS

r), then it follows that
λmin((S

l⊤Bi,tS
l) ⊗ (Sr⊤Ci,tS

r)) = γmin,i,t. Consequently, D̂t will satisfy the following
inequality for every unit vector :

⊤D̂t =
1

N

⊤∑
i

[
(Sl⊤Bi,tS

l)⊗ (Sr⊤Ci,tS
r)
]
≥ 1

N

∑
i

γmin,i,t (26)

this actually provides a lower bound for eigenvalues of D̂t, thus:

λmax(I − µD̂t−1) ≤ 1− µ

N

∑
i

γmin,i,t−1 (27)

considering the definition of κt in the theorem, we can now easily show that:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

and completing the proof.

C Grassmann Exponential

Grassmann Exponential Let P = UUT ∈ Gr(n, p) be a point on the Grassmannian manifold,
where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace. Consider a tangent vector
∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the horizontal space at U in the Stiefel
manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by ∆hor
U = Q̂ΣV T , where Q̂ ∈ St(n, r),

Σ = diag(σ1, . . . , σr) contains the nonzero singular values of ∆hor
U with r = min(p, n − p), and

V ∈ St(p, r). The Grassmann exponential map, representing the geodesic emanating from P in the
direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

proof. Using Grassmannina mathematics, we know that every ∆ ∈ TPGr(n, p) is of the form

∆ = Q

(
0 BT

B 0

)
QT =

[
Q

(
0 −BT

B 0

)
QT , P

]
(28)

Then the lift of ∆ ∈ TPGr(n, p) to Q = (U U⊥) can also be calculated explicitly as follows:

∆hor
Q = [∆, P]Q = Q

(
0 −BT

B 0

)
(29)

To resume our proof, we need to define the orthogonal group and specifying its tangent space.

Orthogonal Group The orthogonal group O(n) is defined as the set of all n× n matrices Q over R
such that QTQ = QQT = In, where QT is the transpose of Q and In is the n× n identity matrix:

O(n) = {Q ∈ Rn×n | QTQ = In = QQT }

11

Then the tangent space of the orthogonal group O(n) at a point Q, denoted TQO(n), is defined as
the set of matrices of the form QΩ, where Ω ∈ Rn×n is a skew-symmetric matrix, i.e., ΩT = −Ω:

TQO(n) = {QΩ | Ω ∈ Rn×n,ΩT = −Ω}.

The geodesic from Q ∈ O(n) in direction QΩ ∈ TQO(n) is calculated via

ExpOQ(tQΩ) = Q expm(tΩ), (30)

If P ∈ Gr(n, p) and ∆ ∈ TPGr(n, p) with ∆hor
Q = Q

(
0 −BT

B 0

)
, the geodesic in the Grassman-

nian is therefore

ExpGr
P (t∆) = πOG

(
Q expm

(
t

(
0 −BT

B 0

)))
. (31)

where πOG is the projection from O(n) to Gr(n, p). If the thin SVD of B is given by

B = UT
⊥∆hor

U = UT
⊥Q̂ΣV T

with W := UT
⊥Q̂ ∈ St(n − p, r),Σ ∈ Rr×r, V ∈ St(p, r). Let W⊥, V⊥ be suitable orthogonal

completions. Then,

expm

(
0 −BT

B 0

)
=

(
V V⊥ 0 0
0 0 W W⊥

)cos(Σ) 0 − sin(Σ) 0
0 Ip−r 0 0

sin(Σ) 0 cos(Σ) 0
0 0 0 In−p−r

V T 0
V T
⊥ 0
0 WT

0 WT
⊥

 ,

which leads to the desired result when inserted into (31). For more mathematical details, you can
refer to Edelman et al. [8], Bendokat et al. [3], or other useful resources on Grassmann geometry.

12

	Introduction
	Related Works
	SubTrack: Tracking the Gradient Subspace
	Theoretical Analysis
	Experiments
	Discussion and Conclusion
	Fine-Tuning RoBERTa-Base
	Convergence of SubTrack
	Grassmann Exponential

