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ABSTRACT

We propose both a theoretical and a methodological framework to address a crit-
ical challenge in applying deep learning to physical systems: the reconciliation
of non-linear expressiveness with SO(3)-equivariance in predictions of SO(3)-
equivariant quantities, such as the electronic-structure Hamiltonians. Inspired by
covariant theory in physics, we present a solution by exploring the mathematical
relationships between SO(3)-invariant and SO(3)-equivariant quantities and their
representations. We first construct theoretical SO(3)-invariant quantities derived
from the SO(3)-equivariant regression targets, and use these invariant quantities
as supervisory labels to guide the learning of high-quality SO(3)-invariant fea-
tures. Given that SO(3)-invariance is preserved under non-linear operations, the
encoding process for invariant features can extensively utilize non-linear map-
pings, thereby fully capturing the non-linear patterns inherent in physical sys-
tems. Building on this, we propose a gradient-based mechanism to induce SO(3)-
equivariant encodings of various degrees from the learned SO(3)-invariant fea-
tures. This mechanism can incorporate non-linear expressive capabilities into
SO(3)-equivariant representations, while theoretically preserving their equivari-
ant properties as we prove, establishing a strong foundation for regressing com-
plex SO(3)-equivariant targets. We apply our theory and method to the electronic-
structure Hamiltonian prediction tasks, experimental results on eight benchmark
databases covering multiple types of systems and challenging scenarios show sub-
stantial improvements on the state-of-the-art prediction accuracy of deep learning
paradigm. Our method boosts Hamiltonian prediction accuracy by up to 40% and
enhances downstream physical quantities, such as occupied orbital energy, by a
maximum of 76%. Our method also significantly promotes the acceleration per-
formance for the convergence of traditional Density Functional Theory methods.

1 INTRODUCTION

Electronic structure calculations provide crucial insights into the behavior of electrons in condensed
matter, forming the foundation for predicting material properties such as conductivity, magnetism,
optical response, and chemical reactivity, playing a key role in applications ranging from semicon-
ductors to renewable energy and catalysis, ultimately helping to reshape our lives. The core of elec-
tronic structure calculations lies in solving the Hamiltonian matrices, from which critical physical
quantities such as orbital energy, band structure and electronic wavefunction are induced. However,
traditional Density Functional Theory (DFT) methods (Hohenberg & Kohn, 1964; Kohn & Sham,
1965) suffer from the extremely time-consuming self-consistent field (SCF) algorithms used to ob-
tain the Hamiltonians. These algorithms involve the exhaustive iterative diagonalization of large
matrices, with each diagonalization scaling with a high computational complexity of O(N3), where
N is the number of atoms in the system. With advantages in computational complexity and general-
ization capabilities, the deep learning paradigm has significantly advanced physics research (Zhang
et al., 2023). In the task of predicting the Hamiltonians, deep learning approaches (Unke et al.,
2021; Gu et al., 2022; Li et al., 2022; Yu et al., 2023b; Gong et al., 2023) bypass the SCF process,
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dramatically reducing the computational complexity of solving Hamiltonians, opening up new pos-
sibilities for analyzing extremely large atomic systems, enabling efficient materials simulation and
design that was previously unimaginable. See Appendix B for more details.

However, deep learning methods still face substantial challenges when processing physical systems.
To align with fundamental physical laws, these methods must strictly adhere to symmetry principles.
For example, physical quantities such as force fields and electronic-structure Hamiltonians must be
equivariant under 3D rotational transformations, i.e., elements from the SO(3) group. Besides, the
calculation of physical quantities calls for high numerical accuracy, necessitating that the neural net-
works possess strong capabilities to express the complex non-linear mappings from atomic structures
to the regression targets. However, it is challenging for deep learning methods to simultaneously en-
sure strict SO(3)-equivariance and high numerical accuracy on modeling physical systems. The root
cause of this problem lies in the conflict between SO(3)-equivariance and non-linear expressive-
ness: specifically, directly applying non-linear activation functions on SO(3)-equivariant features
(with degree l ≥ 1) may lead to the loss of equivariance, while bypassing non-linear mappings
severely restricts the network’s expressive capabilities and thereby lowering down the achievable
accuracy. This issue is commonly found in physics-oriented machine learning tasks that demand
both strict equivariance and fine-grained generalization performance, as analyzed by Zitnick et al.
(2022). Some recent efforts have been made to alleviate this issue (Zitnick et al., 2022; Passaro &
Zitnick, 2023; Wang et al., 2024c; Yin et al., 2024) while compromising strict SO(3)-equivariance.

To address the equivariance-expressiveness dilemma, we make theoretical and methodological ex-
plorations on unifying strict SO(3)-equivariance with strong non-linear expressiveness within the
realm of deep representation learning. We are inspired by the insight that invariant quantities in
transformation (Resnick, 1991) often reflect the mathematical nature of physical laws and can induce
other quantities with equivariant properties, and aim to extend the relationship between invariance
and equivariance from specific physical quantities to representation learning of neural networks.
From the perspective of deep representation learning, the attribute that invariance is preserved under
non-linear operations is a significant advantage, given its compatibility with non-linear expressive
capabilities. Built upon these insights, we propose a solution to the equivariance-expressiveness
dilemma by intensively exploring and making use of the intrinsic relationships between SO(3)-
invariant and SO(3)-equivariant quantities and representations: we first dedicate efforts to learn-
ing high-quality SO(3)-invariant features with ample non-linear expressiveness, and subsequently,
we derive SO(3)-equivariant non-linear representations and the target quantities from these SO(3)-
invariant ones. Specifically:

First, we propose a theoretical construct of SO(3)-invariant quantities, namely tr(Q · Q†), where
tr(·) signifies the trace operation, † denotes the conjugate transpose operation, and Q denotes the
SO(3)-equivariant regression targets we aim to predict (e.g. the electronic Hamiltonian in this work).
A significant advantage of these SO(3)-invariant quantities lies in the fact that they are directly de-
rived from the SO(3)-equivariant target labels and can serve as unique supervision labels for the
effective learning of informative SO(3)-invariant features that capture the intrinsic symmetry prop-
erties of the mathematical structure of Q without requiring additional labeling resources.

Second, we propose a gradient-based mechanism to induce SO(3)-equivariant representations for
predicting the regression target Q in the inference phase from high-quality non-linear SO(3)-
invariant features learned under the supervision of tr(Q ·Q†) in the training phase. Taking SO(3)-
invariant features as a bridge, this mechanism can incorporate non-linear expressive capabilities into
SO(3)-equivariant representations while preserving their equivariant properties, as we prove, laying
a solid foundation for accurately inferring complex SO(3)-equivariant targets.

We develop our theory into an SO(3)-equivariant non-linear representation learning method and
apply it to the computation of the electronic-structure Hamiltonian. This task poses significant chal-
lenges for machine learning techniques due to the intrinsic SO(3) symmetry and high-dimensional
complexity of the Hamiltonian, as highlighted by Yin et al. (2024). Our method significantly im-
proves the state-of-the-art performance in Hamiltonian prediction on eight databases from the well-
known DeepH and QH9 benchmark series (Li et al., 2022; Gong et al., 2023; Yu et al., 2023a).
It demonstrates excellent generalization performance to both crystalline and molecular systems,
covering challenging scenarios such as thermal motions, bilayer twists, scale variations, and new
trajectories. Furthermore, as observed from the experiments on the QH9 benchmark series, our
approach also substantially enhances the prediction accuracy of downstream physical quantities of
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Hamiltonian including occupied orbital energy and electronic wavefunction. Moreover, our method
also demonstrates superior performance in accelerating the convergence of classical DFT by pro-
viding predicted Hamiltonians as initialization matrices. Our leading performance comprehensively
demonstrates that our method, while satisfying SO(3)-equivariance, possesses excellent expressive
power and generalization performance, providing an effective deep learning tool for efficient and
accurate electronic-structure calculations of atomic systems.

2 RELATED WORK

The SO(3)-equivariant representation learning paradigm (Thomas et al., 2018; Geiger & Smidt,
2022) typically developed group theory-based symmetry operators, such as linear scaling, element-
wise sum, direct products, direct sums, Clebsch-Gordan decomposition, and equivariant normal-
ization, to encode equivariant features. These operators have been used to construct graph neural
network architectures for tasks in 3D point cloud analysis (Fuchs et al., 2020), molecular property
prediction and dynamic simulation (Musaelian et al., 2023; Liao & Smidt, 2023), as well as Hamil-
tonian prediction (Schütt et al., 2019; Unke et al., 2021; Gong et al., 2023; Zhong et al., 2023).
However, as non-linear activation functions may result in the loss of equivariance, they are restricted
when applied to SO(3)-equivariant features with degree l greater than one. This restriction severely
limits the network’s capability to model complex non-linear mappings. To alleviate this issue, meth-
ods like DeepH-E3 (Gong et al., 2023), QHNet (Yu et al., 2023b) and Equiformer (Liao & Smidt,
2023) introduced a gated activation mechanism that feeds SO(3)-invariant features (l = 0) into non-
linear activation functions and uses these features as linear gating coefficients for SO(3)-equivariant
features (l ≥ 1), aiming to enhance their expressive power while maintaining strict equivariance.
However, as demonstrated in our numerical study in Appendix H, multiplying SO(3)-equivariant
features with linear coefficients may not be fully effective in enhancing non-linear expressiveness.

In order to improve non-linear expressiveness, Zitnick et al. (2022) decomposed SO(3)-equivariant
features into SO(3)-invariant coefficients of spherical harmonic basis functions. These SO(3)-
invariant coefficients were processed by non-linear neural networks to enhance expressiveness, with
equivariance regained by recombining the updated coefficients with the basis functions. In subse-
quent developments (Passaro & Zitnick, 2023; Liao et al., 2024; Wang et al., 2024b;c), this approach
has demonstrated a remarkable capacity to fit complex functions. However, as pointed out by exist-
ing literature (Zhang et al., 2023), this approach degenerates from continuous to discrete rotational
equivariance, losing strict equivariance to continuous rotational transformations due to the decom-
position based on inner-product operations with discrete basis functions; Li et al. (2022) proposed a
local coordinate strategy, projecting rotating global coordinates onto SO(3)-invariant local ones for
the non-linear neural network to encode. However, this strategy is effective only for global rigid
rotations and fails to maintain symmetry under non-rigid perturbations like thermal fluctuations or
bilayer twists, as it lacks a neural mechanism to enforce equivariance; Yin et al. (2024) proposed
a hybrid framework consisting of both group theory-guaranteed SO(3)-equivariant mechanisms and
non-linear mechanisms to regress Hamiltonians. In this framework, the non-linear mechanisms
showed remarkable capability at learning SO(3)-equivariance from the data with the help of the
theoretically SO(3)-equivariant mechanisms, and released powerful non-linear expressive capabili-
ties to achieve more numerical accuracy. However, the equivariance achieved through data-driven
methods does not have strict theoretical guarantee, even with rotational data augmentation. In some
applications, the demands for symmetry are extremely high. Even minor deviations from perfect
SO(3)-equivariance can result in incorrect physical results. In this paper, we propose a framework
that theoretically combines strict SO(3)-equivariance with the non-linear expressiveness of neural
networks to resolve the equivariance-expressiveness dilemma.

3 PROBLEM FORMALIZATION

For an introduction to the foundational concepts relevant to the problem addressed in this paper,
please see Appendix A. Here, we directly focus on the equivariance of physical quantities under 3D
rotational operations that form the SO(3) group. Let Qlp⊗lq denote an SO(3)-equivariant quantity
in direct-product state formed by lp ⊗ lq , i.e., the direct product between degrees lp and lq . It obeys
the following SO(3)-equivariant law:

Q(R)lp⊗lq = Dlp(R) ·Qlp⊗lq · (Dlq (R))† (1)
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where † denotes the conjugate transpose operation. R ∈ R3×3 is the rotational matrix, Dlp(R) ∈
R(2lp+1)×(2lp+1) and Dlq (R) ∈ R(2lq+1)×(2lq+1) are the Wigner-D matrices of degrees lp and
lq , respectively; Q(R)lp⊗lq ∈ R(2lp+1)×(2lq+1) denotes the transformed results of Qlp⊗lq ∈
R(2lp+1)×(2lq+1) through the rotational operation by R.

Qlp⊗lq in the direct-product state can be further decomposed into a series of direct-sum state com-
ponents, i.e., ql(|lp − lq| ≤ l ≤ lp + lq), which follows SO(3)-equivariant law mathematically
equivalent to Eq. 1 but with a simpler form:

q(R)l = Dl(R) · ql, |lp − lq| ≤ l ≤ lp + lq (2)

where ql ∈ R2l+1 and q(R)l ∈ R2l+1 respectively denote the components with degree l before and
after the rotational operation by R.

For ease of processing, the internal representations of SO(3)-equivariant neural networks (Gong
et al., 2023; Liao & Smidt, 2023) are typically in the direct-sum form. To obey the equivariant law
of Eq. 2 for the regression target, these hidden representations must also satisfy the same form of
equivariance:

f(R)(k)l = Dl(R) · f (k)l (3)

where f (k)l ∈ R2l+1 and f(R)(k)l ∈ R2l+1 respectively denote one channel of hidden features with
degree l before and after the rotational operation by R, at the k th hidden layer.

Due to the intrinsic complexity and non-linearity of physic quantities, neural networks on regressing
these quantities are supposed to equip with non-linear mappings to fully capture the intrinsic patterns
of the physical quantities, which is crucial for precise and generalizable prediction performance.
Meanwhile, the non-linear mappings, denoted as gnonlin(·), must also preserve SO(3)-equivariance,
which is expressed as:

f(R)(k+1)l = Dl(R) · f (k+1)l, subject to f (k+1)l = gnonlin(f
(k)l) (4)

However, directly implementing gnonlin(·) as neural network module with non-linear activation
functions, such as Sigmoid, Softmax and SiLU , may result in the destruction of strict equiv-
ariance. How to make gnonlin(·) both theoretically SO(3)-equivariant and capable of non-linear
expressiveness, and effectively apply it to the prediction of SO(3)-equivariant complex physical
quantities, i.e., electronic-structure Hamiltonian in this context, is the core problem this paper aims
at solving.

4 THEORY

Theorem 1. The quantity T = tr(Q ·Q†) is SO(3)-invariant, where Q is the simplified represen-
tation (without superscripts) of Qlp⊗lq defined in Section 3, and † denotes the conjugate transpose
operation, tr(·) is the trace operation.

Theorem 2. The non-linear neural mapping gnonlin(·) defined as the following is SO(3)-
equivariant:

v = gnonlin(f) =
∂z

∂f
, subject to z = snonlin(u), u = CGDecomp(f ⊗ f , 0) (5)

where f is an input SO(3)-equivariant feature with degree l in the direct-sum state, ⊗ denotes the
direct-product operation of tensors, CGDecomp(·, 0) refers to performing a Clebsch-Gordan decom-
position of the tensor and returning the scalar component of degree 0, snonlin(·) represents arbitrary
differentiable non-linear neural modules, and v is the outputted feature encoded by gnonlin(·).

The proofs of the two theorems above are presented in Appendix C.

Remark 1. It is straightforward to demonstrate that Q and T in Theorem 1 satisfy the following
relationship: Q = ∂T

∂Conj(Q) , where Conj(·) denotes the complex conjugate. This shows that Q can
be derived via a differentiable mapping from the invariant space to the equivariant space, which
inherently imposes a strong constraint on the relationships between the components of Q. This
mechanism is universal and extends beyond labels to representation learning in neural networks.
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Figure 1: Methodological framework for learning SO(3)-equivariant representations with non-linear
expressiveness to regress complex SO(3)-equivariant targets.

In Theorem 2, we propose a construction of SO(3)-equivariant features: v = ∂z
∂f , where v (used to

regressing Q, as detailed in Section 5) and z (regressing T) reflect the partial derivative relationship
between Q and T. Compared to the existing gated activation mechanism which can be expressed as
v = z · f , this approach imposes stronger non-linearity and physical constraints on the relationships
between the components of the equivariant features and enables effective joint learning of z and v,
supervised by T and Q.

Notably, while Q = ∂T
∂Conj(Q) involves a derivative with respect to the complex conjugate of Q, and

v = ∂z
∂f involves a derivative with respect to f (since v is unknown), both are consistent at a higher

abstraction level. They show that an SO(3)-equivariant quantity (or feature) can be derived from
an associated SO(3)-invariant quantity (or feature) through a derivative relationship, whether for
T = tr(Q ·Q†) or z = snonlin(CGDecomp(f ⊗ f , 0)).

In summary, our gradient-based mechanism leverages stronger non-linearity via invariant functions
and enforces strict equivariance with gradient-based physical constraints that regulate the relation-
ships between components, making it more effective than the gated mechanism.

5 METHOD

As shown in Fig. 1, taking z in Eq. 5 serving as the bridge between Theorem 1 and Theorem
2, we propose a method for learning non-linear representations that satisfy the SO(3)-equivariance
property outlined in Eq. 4. The core of our method can be abstractly referred to as TraceGrad.
At the label level, it incorporates the SO(3)-invariant trace quantity tr(Q ·Q†) introduced in The-
orem 1 as a supervisory signal for learning z, i.e., the SO(3)-invariant internal representations of
gnonlin(·) in Theorem 2. Given the attribute that invariance is preserved under non-linear operations,
z is encoded by snonlin(·) to obtain non-linear expressive capabilities. At the representation level,
by taking the gradient of z with respect to f , the non-linear expressiveness of z is transferred to the
equivariant feature v, while maintaining strict SO(3)-equivariance as we prove. Subsequently, merg-
ing v and f , and applying gnonlin(·) in a stacked manner can yield rich SO(3)-equivariant non-linear
representations for inferring the SO(3)-equivariant regression target.

5.1 ENCODING AND DECODING FRAMEWORK

Our encoding framework corresponds to a total of K encoding modules, which are sequentially
connected to form a deep encoding framework. For the k-th module (1 ≤ k ≤ K), it first introduces
an SO(3)-equivariant backbone encoder, e.g., the encoders from DeepH-E3 (Gong et al., 2023) or
QHNet (Yu et al., 2023b) which is composed of recently developed equivariant operators (Thomas

5
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et al., 2018; Geiger & Smidt, 2022) like linear scaling, direct products, direct sums, Clebsch-Gordan
decomposition, gated activation, equivariant normalization, and etc., to encode the physical system’s
initial representations, such as spherical harmonics (Schrodinger, 1926), or representations passed
from the previous neural layers, as equivariant feature f(k) in the current hidden layer. Next, we
construct the feature v(k) = gnonlin(f(k)), to achieve sufficient non-linear expressiveness while main-
taining SO(3)-equivariance, where gnonlin(·), snonlin(·) are the non-linear functions defined in Eq.
5. The function snonlin(·) can be implemented as any differentiable non-linear neural network mod-
ule, such as feed-forward layers with non-linear activation functions like SiLU and normalization
operations like Layernorm.

For an expressive representation of a complex physical system, f(k) is usually not a feature of single
degree but a direct-sum concatenation of series of components {f(k)l1 , f(k)l2 , f(k)l3 , ...} at multiple
degrees, i.e., L(k) = {l1, l2, l3, ...}, where some components share the same degree while others
differ. In this case, it becomes necessary to extend the decomposition operator, i.e., CGDecomp(·)
in Eq. 5, to accommodate various components of degrees. Moreover, in the context of neural
networks, introducing learnable parametersW and more feature channelsC may improve the model
capacity. Based on these considerations, when constructing the encoding module, the CGDecomp(·)
operation in Eq. 5 can be expanded as CGDecompext(·), and its outputs can be expanded as u(k),
as shown in Eq. 6:

u(k) = [u
(k)
1 , ..., u(k)c , ..., u

(k)
C ],

u(k)c = CGDecompext(f
(k) ⊗ f(k), 0,W ) =

∑
li,lj∈L(k),li=lj

W c
ij · CGDecomp(f(k)li ⊗ f(k)lj , 0) (6)

where W c
ij represents learnable parameters, u(k)c is the c th channel of u(k). CGDecompext(·) adds

learnable parameters to CGDecomp(·) and expands its output from a single channel to multiple
channels. To further enhance the model capacity, we also expand the output of snonlin(·) to multiple

channels as follows: z(k) = [z
(k)
1 , . . . , z

(k)
c , . . . , z

(k)
C ]. We define v

(k)
c =

∂z(k)
c

∂f (k) , and construct

the new features v(k) by v(k) =
∑

c v
(k)
c . It is evident that these extensions maintain the SO(3)-

invariance of u(k) and z(k), as well as the SO(3)-equivariance of v(k). v(k) is combined with f (k)

in a residual manner like o(k) = f(k) + v(k) as the output of the k th encoding module.

We follow previous literature (Gong et al., 2023; Yu et al., 2023b) to send the features from the
last layer of the encoder, i.e., o(K) in our framework, into the SO(3)-equivariant decoder to regress
the predictions of Q. For this, we can directly utilize the mature design of the SO(3)-equivariant
decoders in DeepH-E3 or QHNet. The new part in the decoding phase introduced by our method is
the SO(3)-invariant decoder, consisting of feed-forward layers taking z = [z(1), . . . , z(k), . . . , z(K)]
as the input to predict T. For the Hamiltonian prediction task, Q corresponds to each basic Hamil-
tonian block, namely Hlp⊗lq (1 ≤ p ≤ P, 1 ≤ q ≤ Q), while T = tr(Hlp⊗lq · (Hlp⊗lq )†).

5.2 TRAINING

The training loss function is shown as the following:

min
θ
loss = lossQ + µ(lossQ, lossT ) · lossT ,

lossQ = Error(Q̂,Q∗), lossT = Error(T̂,T∗)
(7)

where θ denotes all of the learnable parameters of our framework, Q̂, T̂ and Q∗, T∗ respectively
denote the predictions and labels of Q and T. In order to prevent the numerical disparity between
the two loss terms and stabilize the training for both of the SO(3)-equivariant and SO(3)-invariant
branches, we apply µ(lossQ, lossT ), i.e., a coefficient to regularize the relative scale of the two loss
terms:

µ(lossQ, lossT ) = λ ·No Grad( lossQ
lossT

) (8)

whereNo Grad(·) denotes gradient discarding when calculating such coefficient, as this coefficient
is only used for adjusting the relative scale between the two loss terms and should not itself be a

6
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Table 1: Experimental results measured by the MAEH
all, MAEH

cha s and MAEH
cha b metrics (meV)

on the Monolayer Graphene (MG), Monolayer MoS2 (MM ), Bilayer Graphene (BG), Bilayer
Bismuthene (BB), Bilayer Bi2Te3 (BT ) and Bilayer Bi2Se3 (BS) databases, where the superscripts
nt and t respectively denote the non-twisted and twisted subsets.

Methods
MG MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.251 0.357 0.362 0.406 0.574 1.103
DeepH-E3+TraceGrad 0.175 0.257 0.228 0.285 0.412 0.808

Methods BGnt BGt

DeepH-E3 (Baseline) 0.389 0.453 0.644 0.264 0.429 0.609
DeepH-E3+TraceGrad 0.291 0.323 0.430 0.198 0.372 0.406

Methods BBnt BBt

DeepH-E3 (Baseline) 0.274 0.304 1.042 0.468 0.602 2.399
DeepH-E3+TraceGrad 0.226 0.256 0.740 0.384 0.503 1.284

Methods BTnt BT t

DeepH-E3 (Baseline) 0.447 0.480 1.387 0.831 0.850 4.572
DeepH-E3+TraceGrad 0.295 0.312 0.718 0.735 0.755 4.418

Methods BSnt BSt

DeepH-E3 (Baseline) 0.397 0.424 0.867 0.370 0.390 0.875
DeepH-E3+TraceGrad 0.300 0.332 0.644 0.291 0.302 0.674

source of training gradients, otherwise it would counteract the gradients from lossT in Eq. 7. All of
the encoding and decoding modules are trained jointly by Eq. 7.

For the implementation details of our method, including the specific design of the network modules,
parameter settings, and training specifics, please refer to Appendix E.

6 EXPERIMENTS

6.1 EXPERIMENTAL CONDITIONS

We apply our theory and method to the electronic-structure Hamiltonian prediction task, and collect
results on eight benchmark databases, i.e., Monolayer Graphene (MG), Monolayer MoS2 (MM ),
Bilayer Graphene (BG), Bilayer Bismuthene (BB), Bilayer Bi2Te3 (BT ), Bilayer Bi2Se3 (BS),
QH9-stable (QS), and QH9-dynamic (QD). The first six databases, consisting of periodic crystalline
systems with elements like C, Mo, S, Bi, Te and Se, are from the DeepH benchmark series (Li
et al., 2022; Gong et al., 2023). The last two databases are from the QH9 benchmark series (Yu
et al., 2023a), composed of molecular systems with elements like C, H, O, N and F. These databases
present diverse and complex challenges to a regression model. Regarding MG, MM , and QD, as
their samples are prepared from an temperature environment at three-hundred Kelvin, the thermal
motions lead to complex non-rigid deformations, increasing the difficulty of Hamiltonian prediction.
For BG, BB, BT , and BS, the twisted structures, with an interplay of SO(3)-equivariant effects
and van der Waals (vdW) force variations bring significant generalization challenges, which are
further exacerbated by the absence of any twisted samples in the training sets. Besides, BB, BT ,
and BS exhibit strong spin-orbit coupling (SOC) effects, which further increase the complexity of
Hamiltonian modeling. For the QS database, the ’ood’ strategy from the official settings is used
to split the training, validation, and testing sets, ensuring that the atom number of samples do not
overlap across the three subsets. For the QD database, the ’mol’ strategy provided by Yu et al.
(2023a) is applied to split the training, validation, and testing sets, ensuring that there are no thermal
motion samples from the same temporal trajectory across the three subsets. The ’mol’ and ’ood’
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Table 2: Experimental results measured by the MAEH
all, MAEH

diag , MAEH
non diag , MAEϵ, and

Sim(ψ) metrics on the QH9-stable (QS) and QH9-dynamic (QD) databases respectively using ’ood’
and ’mol’ split strategies (Yu et al., 2023a). ↓ means lower values correspond to better accuracy,
while ↑ means higher values correspond to better performance. The units of MAE metrics are meV,
while Sim(ψ) is the cosine similarity which is dimensionless.

Methods
QS

MAE (↓)
Sim(ψ) (↑)

MAEH
all MAEH

diag MAEH
non diag MAEϵ

QHNet (Baseline) 1.962 3.040 1.902 17.528 0.937
QHNet+TraceGrad 1.191 2.125 1.139 8.579 0.948

Methods QD

QHNet (Baseline) 4.733 11.347 4.182 264.483 0.792
QHNet+TraceGrad 2.819 6.844 2.497 63.375 0.927

strategies aim to assess the regression model’s extrapolation capability with respect to the number
of atoms as well as the temporal trajectories, respectively. Detailed statistic information of these
databases can be found in the Appendix D.

Implementation details of our method for experiments on these databases are presented in Appendix
E.

We use a comprehensive set of metrics to deeply evaluate the accuracy performance of deep learning
electronic-structure Hamiltonian prediction models. On the databases from the DeepH benchmark
series (Li et al., 2022; Gong et al., 2023), we follow Yin et al. (2024) to adopt a set of Mean Abso-
lute Error (MAE) metrics between predicted and ground truth Hamiltonians, including MAEH

all for
measuring average MAE of all samples and matrix elements, MAEH

cha s for measuring the MAE
of challenging samples where the baseline model performs the worst, MAEH

block for measuring the
MAE of different basic blocks in the Hamiltonian matrix, andMAEH

cha b for measuring the MAE on
the most challenging Hamiltonian block where the baseline model shows the poorest performance
(with the largest MAEH

block). These metrics comprehensively reflect the accuracy performance,
covering not only the average accuracy but also the accuracy on difficult samples and challenging
blocks of the Hamiltonian matrices. On the two databases from the QH9 benchmark series, we
adopt the metrics introduced by their original paper (Yu et al., 2023a), including MAE of Hamilto-
nian matrices, which are further subdivided into MAEH

all for measuring average MAE, MAEH
diag

for measuring MAE of Hamiltonian matrix formed by an atom with itself, and MAEH
non diag for

measuring MAE of Hamiltonian matrices formed by different atoms; as well as the MAE (MAEϵ)
of occupied orbital energies ϵ induced by the predicted Hamiltonians and compared to the ground
truth ones, and the cosine similarity (Sim(ψ)) between the electronic wavefunctions ψ induced by
the predicted and ground truth Hamiltonians. ϵ and ψ are crucial downstream physical quantities for
determining multiple properties of the atomic systems as well as their dynamics, highly reflecting
the application values of the Hamiltonian regression model.

6.2 RESULTS AND ANALYSIS

We compare experimental results from two setups: the first one is the experimental results of the
baseline SO(3)-equivariant regression model (Gong et al., 2023; Yu et al., 2023b) for Hamiltonian
prediction, and the second one is the experimental results of extending the architecture and pipeline
of the baseline model through the proposed TraceGrad method, which incorporates non-linear ex-
pressiveness into the SO(3)-equivariant features of the baseline model with the gradient operations
of SO(3)-invariant non-linear features learned under the supervision of the trace targets. We choose
DeepH-E3 (Gong et al., 2023) as the baseline model for databases from the DeepH benchmark se-
ries (Li et al., 2022; Gong et al., 2023); and we choose QHNet (Yu et al., 2023b) as the baseline
model for databases from the QH9 benchmark series (Yu et al., 2023a). They are the respective
state-of-the-art (SOTA) methods with strict SO(3)-equivariance on the corresponding databases.
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We list the results of DeepH-E3 and DeepH-E3+TraceGrad in Tables 1 for databases from the DeepH
benchmark series, reporting the values of MAEH

all, MAEH
cha s, and MAEH

cha b. The results of
DeepH-E3 to be compared are copied from Yin et al. (2024). The results of DeepH-E3+TraceGrad
are the average from 10 independent repeated experiments. Regarding the metric of MAEH

block for
every Hamiltonian block, due to its large data volume, we just present its values for all databases
from the DeepH series in Appendix F. We use the same fixed random seed as adopted by DeepH-E3
for all random processes in experiments on these six databases. As a result, the standard deviation of
the Hamiltonian prediction MAE across repeated experiments does not exceed 0.007 meV for each
of the six databases and is negligible.

From results presented in Tables 1, we could find that the proposed TraceGrad method dramatically
enhances the accuracy performance of the baseline method DeepH-E3, both on average and for chal-
lenging samples and blocks, both on the non-twisted samples and the twisted samples. Specifically,
on the corresponding datasets, TraceGrad lowers down the MAEH

all and MAEH
cha of DeepH-E3

with relative ratios of up to 34% and 35%, respectively. Furthermore, from the results included in
Appendix F, TraceGrad significantly improves the performance for the vast majority of basic blocks.
Particularly, for the blocks where DeepH-E3 perform the worst, TraceGrad reduces the MAE
(MAEH

cha b) by a maximum of 48%. The leading performance on the MG and MM databases
prepared at three-hundred Kelvin temperature demonstrates the robustness of our method against
thermal motion. The high accuracy on the BB, BT , and BS databases, which have strong SOC
effects, indicates our method’s strong capability to model such effects. The excellent performance
on theBGt, BBt, BT t, andBSt subsets showcases the method’s superior generalization to twisted
structures, which are not present in the training data. The outstanding performance on such samples
highlights the good potential for studying twist-related phenomena, a hot research topic that may
bring new electrical and transport properties (Cao et al., 2018; Wang et al., 2024a; He et al., 2024).
Additionally, the BGt, BBt, BT t, and BSt subsets contain significantly larger unit cells compared
to the training set (see Appendix D for statistics of their sizes), yet our method still excels on these
subsets as measured by the multiple MAE metrics, demonstrating its good scalability on the sizes of
atomic systems it handles.

In Table 2, we present the results of QHNet and QHNet+TraceGrad under the metrics of MAEH
all,

MAEH
diag , MAEH

non diag , MAEϵ, and Sim(ψ) for the QS and QD databases. The results of
QHNet to be compared are taken from their original paper (Yu et al., 2023a), and for the unification
of MAE units, we convert the units of MAE from 10−6 Hartree (Eh) in the original paper to meV1.
The results of QHNet+TraceGrad are the average from 10 independent repeated experiments. To
ensure reproducibility, we use the same fixed random seeds as employed in QHNet for all random
processes in the experiments on the QS and QD databases. As a result, the standard deviation of
the Hamiltonian prediction MAE across repeated experiments is no greater than 0.009 meV for both
QS and QD and is also negligible.

The results presented in Table 2 demonstrate that the proposed TraceGrad method significantly en-
hances the accuracy of the baseline QHNet model across all metrics on the QS and QD databases.
Specifically, TraceGrad reduces MAEH

all, MAEH
non diag , MAEH

diag , MAEϵ, and Sim(ψ) of QH-
Net with relative reductions of up to 40%, 39%, 40%, 76%, and 17%, respectively, on the corre-
sponding databases. The significant accuracy improvements on the QS database, partitioned using
the ’ood’ split strategy (Yu et al., 2023a) without scale overlapping among the training, validation,
and testing sets, once again demonstrate the method’s strong generalization capabilities across dif-
ferent scales of atomic systems. Meanwhile, performance on the QD database under the ’mol’
strategy (Yu et al., 2023a), which partitions the training, validation, and testing sets with samples
from completely different thermal motion trajectories, highlight our method’s robustness in general-
izing to new thermal motion sequences. Furthermore, the substantial improvement in the prediction
accuracy of ϵ, i.e., occupied orbital energies crucial for determining electronic properties such as
optical characteristics and conductivity in atomic systems, and ψ, i.e., the electronic wavefunctions
essential for understanding electron distribution and interactions, underscores the potential values of
our method for applications like material design, molecular pharmacology, and quantum computing.

11Eh = 27211.4 meV
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7 SUMMARY OF APPENDICES

Due to the page limit of the main manuscript, we have to provide some important contents in the
Appendices, summarized as follows:

• Appendix A provides the definitions of foundational concepts relevant to the problem ad-
dressed in this paper.

• Appendix B describes the application tasks in this paper, i.e., the electronic-structure
Hamiltonian prediction task.

• Appendix C provides the proofs for all of the proposed theorems.
• Appendix D presents the detailed information of the experimental databases.
• Appendix E presents the implementation details of the experiments.
• Appendix F compares the block-level MAE statistics (MAEH

block and MAEH
cha b) for

DeepH-E3 and DeepH-E3+TraceGrad.
• Appendix G reports the results of ablation study. Experimental results indicate that each

individual mechanism of our method can contribute individually to the performance. More-
over, their combination provides even better performance.

• Appendix H reports the quantitative comparison between the proposed gradient-based
mechanism (Grad) with the existing gated activation mechanism (Gate), demonstrating
better accuracy performance of the proposed gradient-based mechanism compared to the
gated mechanism, indicating that our method may be a better choice in terms of expressing
complex non-linear mappings.

• Appendix I provides a theoretical analysis of the computational complexity advantage of
our method over traditional DFT calculations.

• Appendix J makes a joint discussion on GPU time costs and performance gains brought by
our TraceGrad method. It underscores the superiority of the TraceGrad method in improv-
ing accuracy performance while maintaining time efficiency.

• Appendix K quantifies the acceleration performance of the deep learning methods for DFT
computations. Experimental results show that while combining TraceGrad introduces only
a slight increase from the inference time of QHNet, it delivers significant improvements in
accelerating the convergence of DFT methods.

• Appendix L corresponds to the synergy of our method with an approximately SO(3)-
equivariant methodology (Yin et al., 2024).

• Appendix M discusses future work.

8 CONCLUSION

We propose a theoretical and methodological framework to tackle the issue of reconciling non-
linear expressiveness with SO(3)-equivariance in deep learning frameworks for physical system
modeling, through deeply investigating the mathematical connections between SO(3)-invariant and
SO(3)-equivariant quantities, as well as their representations. We first constructs SO(3)-invariant
quantities from SO(3)-equivariant regression targets, using them to train informative SO(3)-invariant
non-linear representations. From these, SO(3)-equivariant features are derived with gradient oper-
ations, achieving non-linear expressiveness while maintaining strict SO(3)-equivariance. We apply
our theory and method to the challenging electronic-structure Hamiltonian prediction tasks, achiev-
ing dramatic promotions in prediction accuracy across eight benchmark databases. Experimental
results demonstrate that this approach not only improves the accuracy of Hamiltonian prediction but
also significantly enhances the prediction for downstream physical quantities, and also markedly
improves the acceleration ratios for traditional DFT algorithms.

ETHICS STATEMENT

This work develops a representation learning method that exhibits strong non-linear expressive ca-
pabilities while strictly adhering to SO(3) equivariance. This method has demonstrated superior
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accuracy in predicting electronic-structure Hamiltonians and related physical quantities, showcas-
ing its potential to accelerate research in materials science and molecular pharmacology. While we
recognize that our research area has not yet revealed direct negative social or ethical implications,
several issues warrant our vigilance. Currently, although our method yields accurate predictions, the
decision-making processes of deep learning systems often lack transparency, hindering a compre-
hensive understanding of the learning outcomes and limiting our ability to gain deeper insights. We
believe it is important to investigate the interpretability of such models, particularly in terms of how
they apply physical knowledge in a comprehensible way. Additionally, it is crucial to continually
improve the correctness and fairness of deep learning models on this area. Ensuring high-quality and
diverse training data, implementing sound model designs, and performing ongoing validation and
refinement are necessary to guarantee model accuracy and the broad applicability of their results.

REPRODUCIBILITY STATEMENT

We provide the proofs for all of the proposed Theorems in Appendix C. We provide the implemen-
tation details in Appendix E. The codes and download links of experimental data for this work, is
available in the supplementary materials.
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APPENDICES

A DEFINITION OF CONCEPTS

This section provides definitions of foundational concepts relevant to the problem addressed in this
paper. For additional background, please refer to the book by Dresselhaus et al. (2007).
Definition 1. Group. A set G, denoted as G = {. . . , g, . . . }, equipped with a binary operation ·, is
called a group if it satisfies the following four axioms:

1. Closure: For any f, g ∈ G, the result of their operation f · g is also an element of G:
f · g ∈ G.

2. Associativity: For all f, g, h ∈ G, the operation satisfies (f · g) · h = f · (g · h).

3. Identity Element: There exists a unique element e ∈ G (called the identity) such that for
all f ∈ G, e · f = f · e = f .

4. Inverse Element: For each f ∈ G, there exists a unique element f−1 ∈ G (called the
inverse) such that f · f−1 = f−1 · f = e.

Definition 2. SO(3) Group. The special orthogonal group SO(3) is the group of all 3×3 orthogonal
matrices with determinant 1. Formally, it is defined as:

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1},
where RT denotes the transpose of R, and I is the 3 × 3 identity matrix. The elements of SO(3)
represent rotations in three-dimensional Euclidean space.

Definition 3. Group Representation. A representation of a group G on a tensor space T (V ) is a
homomorphism ρ from G to the general linear group GL(T (V )), the group of all invertible linear
transformations on T (V ). Here, T (V ) represents the tensor space associated with the vector space
V , encompassing all tensors that can be formed from elements of V . Formally, the homomorphism
ρ is defined as:

ρ : G→ GL(T (V ))

such that for all g1, g2 ∈ G,
ρ(g1g2) = ρ(g1)ρ(g2),

and ρ(e) = I , where e is the identity element of G, and I is the identity transformation on T (V ).
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Definition 4. Irreducible Representation. A representation ρ : G → GL(V ) of a group G on a
vector space V is said to be irreducible if there is no proper subspaceW ⊂ V such that ρ(g)W ⊂W
for all g ∈ G. In other words, the only invariant subspaces under the group action are the trivial
subspaces {0} and V itself. If such a nontrivial invariant subspace exists, the representation is said
to be reducible.

Definition 5. SO(3) Group Representation. A representation of the special orthogonal group SO(3)
on a vector space V is a homomorphism

ρ : SO(3) → GL(V ),

where GL(V ) denotes the group of all invertible linear transformations on V . The representations
of SO(3) are typically classified into irreducible representations, each labeled by a degree l, which
often corresponds to the quantum number for total angular momentum in quantum physics.

Definition 6. Wigner-D Matrices. One of the irreducible representations of SO(3) is given by the
Wigner-D matrices Dl(R), where l is the degree of the representation, typically corresponding to
the quantum number for total angular momentum in quantum physics. These matrices represent the
transformation properties of angular momentum states under the action of the rotation group.

The Wigner-D matrices are the matrix elements of the rotation operator R ∈ SO(3) in the space of
angular momentum eigenstates |l,m⟩. Specifically, they are defined as:

ρ(R)m′,m = ⟨l,m′|R|l,m⟩ = Dl
m′m(R),

where |l,m⟩ are the eigenstates of the total angular momentum operator L̂2 and the z-component
L̂z . The matrices Dl(R) describe how angular momentum states transform under rotations in
SO(3), and the index l characterizes the irreducible representation corresponding to a specific an-
gular momentum state.

Definition 7. Equivariance with Respect to a Group. Let G be a group, and let ρT (V ) : G →
GL(T (V )) and ρT (W ) : G → GL(T (W )) be representations of G on tensor spaces T (V ) and
T (W ), respectively. A map f : T (V ) → T (W ) is said to be equivariant with respect to the group
G if the following condition holds:

f(ρT (V )(g) ◦ v) = ρT (W )(g) ◦ f(v) for all v ∈ T (V ) and g ∈ G.

where ◦ generally denotes the operation defined on the tensor space.

Definition 8. Invariance with Respect to a Group. Let G be a group, and let ρT (V ) : G →
GL(T (V )) be a representation of G on a tensor space T (V ). A function f : T (V ) → T (W ) is said
to be invariant under the group G if the following condition holds:

f(ρT (V )(g) ◦ v) = f(v) for all v ∈ T (V ) and g ∈ G.

This definition indicates that the function f remains unchanged under the action of the group G.

Definition 9. Direct-Product State. Let V1 and V2 be two vector spaces, and let |v1⟩ ∈ V1 and
|v2⟩ ∈ V2 be arbitrary elements of these spaces. The direct-product state of |v1⟩ and |v2⟩ is defined
as the element |v1⟩ ⊗ |v2⟩ in the direct-product space V1 ⊗ V2. The direct product state represents
all possible combinations of the elements of V1 and V2, and forms a new vector space that captures
the joint state of two systems. The action of the group on this state is defined by the direct product
of the individual actions on |v1⟩ and |v2⟩.

Definition 10. Direct-Product Physical Quantity Formed by Two Degrees. In quantum mechanics,
direct-product spaces are used to describe the combined states of systems with distinct degrees of
freedom, such as angular momentum. The combined state captures both the independent action of
each degree and their joint transformation under rotations governed by the SO(3) group.
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Let lp and lq represent the angular momentum quantum numbers of two physical quantities. A
direct-product state Qlp⊗lq ∈ R(2lp+1)×(2lq+1) combines these degrees and transforms under the
SO(3) group according to:

Q(R)lp⊗lq = Dlp(R) ·Qlp⊗lq · (Dlq (R))†,

where Dlp(R) ∈ R(2lp+1)×(2lp+1) and Dlq (R) ∈ R(2lq+1)×(2lq+1) are the Wigner-D matrices
for the degrees lp and lq , respectively, and † denotes the conjugate transpose, ensuring unitary
transformations.

Definition 11. Direct-Sum State. Let V1 and V2 be two vector spaces, and let |v1⟩ ∈ V1 and
|v2⟩ ∈ V2 be arbitrary elements of these spaces. The direct-sum state of |v1⟩ and |v2⟩ is defined as
the element |v1⟩ ⊕ |v2⟩ in the direct-sum space V1 ⊕ V2.

The direct-sum space V1 ⊕ V2 consists of ordered pairs of elements, where each element is drawn
from one of the original spaces. The operations of vector addition and scalar multiplication in
V1 ⊕ V2 are defined component-wise:

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), c · (a1, a2) = (c · a1, c · a2),

for (a1, a2), (b1, b2) ∈ V1 ⊕ V2 and c ∈ F, where F is the field over which V1 and V2 are defined.

The direct-sum state |v1⟩ ⊕ |v2⟩ represents a combination where the components remain in their
respective vector spaces and do not interact with each other. The action of a group G on the direct-
sum state is defined by its independent action on each component:

g · (|v1⟩ ⊕ |v2⟩) = (g · |v1⟩)⊕ (g · |v2⟩), ∀g ∈ G.

Definition 12. Clebsch-Gordan Decomposition for SO(3) Group. For the SO(3) group, the
Clebsch-Gordan decomposition explains how the direct product of two irreducible representations
Vl1 and Vl2 can be expressed as a sum of irreducible representations.

If |v1⟩ ∈ Vl1 and |v2⟩ ∈ Vl2 , their direct-product state |v1⟩ ⊗ |v2⟩ can be written as a linear
combination of states |vl⟩ belonging to irreducible representations Vl, where l ranges from |l1 − l2|
to l1 + l2:

|vl⟩ =
∑

m1,m2

Cm
l,m1,m2

|v1⟩ ⊗ |v2⟩,

where Cm
l,m1,m2

are the Clebsch-Gordan coefficients.

For example, the direct-product state Qlp⊗lq can be decomposed into a direct sum of irreducible
representations

⊕
ql, where:

q =

lp+lq⊕
l=|lp−lq|

ql, and qlm =
∑

mp,mq

Cm
l,mp,mq

Qlp⊗lq
mp,mq

.

Here, Qlp⊗lq
mp,mq represents the product states, q represents the direct sum of irreducible states ql, and

qlm represents the components of the irreducible state ql.

B APPLICATION TASK DESCRIPTION: ELECTRONIC-STRUCTURE HAMILTONIAN
CALCULATION

Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) has become a
cornerstone of modern electronic structure theory, playing a pivotal role in condensed matter physics,
quantum chemistry, and materials science. Introduced in the 1960s through the foundational work
of Hohenberg, Kohn, and Sham, DFT provides a framework for studying many-electron systems
by replacing the computationally expensive many-body wavefunction with the electron density ρ(r)
as the fundamental variable. This reformulation significantly reduces computational complexity
while preserving essential quantum mechanical effects, enabling researchers to investigate systems
of practical interest with manageable computational resources. Over the decades, DFT has proven
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Figure 2: Illustration of atomic pairwise Hamiltonian matrices partitioned from the complete Hamil-
tonian matrix of the whole system. Each Hamiltonian matrix contains multiple basic blocks, with
the Q = Qlp⊗lq defined in Section 3 corresponding to a basic block Hlip⊗ljq here.

to be instrumental in calculating electronic band structures, optimizing structural geometries, and
exploring a wide range of material properties, underscoring its versatility and importance across
diverse scientific disciplines.

At the heart of DFT lies the Kohn-Sham equation (Kohn & Sham, 1965), which simplifies the many-
body problem into a set of single-particle equations. These equations are expressed as:

Ĥψi(r) = ϵiψi(r), subject to Ĥ = − ℏ2

2m
∇2 + Vext(r) + VHXC[ρ](r) (9)

where Ĥ is the Hamiltonian operator, the Hartree-exchange-correlation potential VHXC[ρ](r) =
VH[ρ](r) + VXC[ρ](r) is a functional of the electron density ρ(r). The electron density is obtained
from the Kohn-Sham orbitals ψi(r) as:

ρ(r) =

M∑
i=1

|ψi(r)|2,

where M represents the total number of electrons.

Atomic orbitals offer a computationally efficient basis for electronic structure calculations because
they require fewer basis functions compared to other types of basis sets (Lin et al., 2023). Addi-
tionally, their inherently localized nature makes them particularly advantageous for large systems.
When expressed in an atomic orbital basis set, the Kohn-Sham equations can be formulated into as
a generalized eigenvalue problem:

HC = ϵSC, (10)
where H is the Hamiltonian matrix incorporating the contributions from Vext and VHXC, S is the
overlap matrix, C contains the orbital coefficients, and ϵ represents the eigenvalues of the system.

The atomic orbitals used as the basis functions typically take the form:

ϕµ(r) = Rµ(r)Ylµmµ(θ, ϕ),
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where Rµ(r) is the radial part of the wavefunction, and Ylµmµ
(θ, ϕ) are the spherical harmonics de-

scribing the angular dependence. These orbitals are localized around their respective atomic centers,
decay rapidly as r increases, and are truncated to zero beyond a cutoff radius rc.

The matrix elements of the Hamiltonian and overlap matrices, Hµν and Sµν , are defined as:

Hµν =

∫
ϕ∗µ(r)Ĥϕν(r) dr, Sµν =

∫
ϕ∗µ(r)ϕν(r) dr.

The localized nature of atomic orbitals ensures that matrix elements are non-zero only when the
orbitals ϕµ and ϕν overlap according to their cutoff radius. Beyond this range, the corresponding
matrix elements are treated as zero, leading to sparsity in the Hamiltonian and overlap matrices. This
sparsity significantly reduces computational effort and memory usage, especially for large systems.

Solving Hµν involves an iterative self-consistent process: starting with an initial guess for ρ(1)(r),
the potentials VHXC[ρ](r) are updated, and the equations are solved repeatedly until ρ(r) converges.
This process can be illustrated as ρ(1)(r) → V

(1)
HXC[ρ](r) → H

(1)
µν → ψ

(1)
µ (r) → ρ(2)(r) → . . . →

ρ(T )(r), until the charge density ρ(r) converges. At that point, the Hamiltonian matrix is outputted
by ρ(T )(r) → H

(T )
µν , from which downstream physical properties such as orbital energies and band

structures are induced, determining the electronic, magnetic, and transport characteristics of the
electron system.

Despite the remarkable success of Kohn-Sham DFT in advancing fields such as materials science,
energy, and biomedicine over recent decades (Nagy, 1998; Jones, 2015), the challenge of high
computational complexity remains unresolved. The main computational bottleneck lies in itera-
tive solving the Kohn-Sham equation, especially in the matrix diagonalization of Eq. 10, which
has a complexity of O(N3), where N is the number of atoms in the system. To address this chal-
lenge, recent approaches (Li et al., 2022; Yu et al., 2023b; Gong et al., 2023) have applied the
deep graph learning paradigm to predict the self-consistent Hamiltonian. These methods use the
Hamiltonian matrix H(T ), calculated from traditional DFT methods, as labels. This matrix can be
partitioned into a series of atomic pairwise Hamiltonian matrices {Hij | j ∈ Ω(i)}, as shown in
Fig. 2, where i and j represent two atoms in the system. These methods train an efficient graph
neural network to predict each Hij from the 3D structure of the atomic system, thereby circum-
venting the extremely time-consuming self-consistent iterations. During the inference phase, these
methods successfully reduced the computational complexity of calculating the Hamiltonian matri-
ces to O(N), while showing good potential in generalizing to larger atomic systems, even though
the training set, constrained by the expensive DFT labels, only includes smaller systems. Once the
Hamiltonian matrices are obtained, many downstream physical properties can be efficiently calcu-
lated with O(N) complexity. A detailed analysis of the computational complexity is provided in
Appendix I. This paper aims to tackle the challenge of predicting electronic Hamiltonians with high
accuracy and reliability, while rigorously maintaining SO(3)-equivariance.

C PROOFS OF THEOREMS

Proof of Theorem 1. Under an SO(3) rotation represented by the rotational matrix R, Q = Qlp⊗lq

is transformed as Q(R):
Q(R) = Dlp(R) ·Q ·Dlq (R)†,

where Dlp(R) and Dlq (R) are the Wigner-D matrices for the degrees of lp and lq , respectively,
corresponding to the rotation R.

The conjugate transpose of the transformed quantity is:

Q(R)† = Dlq (R) ·Q† ·Dlp(R)†.

Using the cyclic property of the trace, which states that the trace of a product of matrices remains
unchanged under cyclic permutations (i.e., tr(ABC) = tr(BCA) = tr(CAB)), and combining
the properties that Dlp(R) ·Dlp(R)† = I and Dlq (R) ·Dlq (R)† = I, we can rearrange the terms
inside the trace as follows:

T(R) = tr(Q(R) ·Q(R)†) = tr((Dlp(R) ·Q ·Dlq (R)†) · (Dlq (R) ·Q† ·Dlp(R)†))

= tr(Dlp(R) ·Q ·Q† ·Dlp(R)†) = tr(Q ·Q† ·Dlp(R)† ·Dlp(R)) = tr(Q ·Q†) = T.
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Therefore, T = tr(Q ·Q†) is invariant under SO(3) transformations, its SO(3)-invariance is proved.

Proof of Theorem 2. Under the given condition, the input feature f in direct-sum state is SO(3)-
equivariant, meaning that under an SO(3) rotation represented by R, it transforms as follows:

f(R) = Dl(R) · f

where Dl(R) is the Wigner-D matrix corresponding to degree l.

First, according to group theory, u = CGDecomp(f ⊗ f , 0) is an SO(3)-invariant scalar as the
degree-zero component from the Clebsch-Gordan decomposition is invariant under rotations. Since
applying a non-linear operation to an SO(3)-invariant quantity does not change its invariance, z =
snonlin(u) is also SO(3)-invariant, independent to the specific form of snonlin(·). It formally holds
that:

z(R) = z (11)

Next, we apply the chain rule in Jacobian form. Considering f(R) is in the form of a column vector,
to facilitate the application of the chain rule in vector form, we first transpose it into a row vector
f(R)T , then differentiate:

∂z(R)

∂fT (R)
=

∂z

∂fT (R)
=

∂z

∂fT
∂fT

∂f(R)T
=

∂z

∂fT
·Dl(R)−1 =

∂z

∂fT
·Dl(R)T (12)

Here we utilize the property that Dl(R)−1 = Dl(R)T 2. Since the representations of neural net-
works are generally real numbers, the corresponding Wigner-D matrix is also real unitary.

Finally, we transpose the result back to a column vector:

v(R) = gnonlin(f(R)) = (
∂z(R)

∂fT (R)
)T = (

∂z

∂fT
·Dl(R)T )T = Dl(R) · ∂z

∂f
= Dl(R) · v (13)

This proves that gnonlin(·) is an SO(3)-equivariant non-linear operator: when applying its non-
linearity to a SO(3)-equivariant feature f , the output feature v remains SO(3)-equivariant.

D INFORMATION OF EXPERIMENTAL DATABASES

In this part, we provide detailed information about the experimental databases, including the statis-
tical information of the six databases from the DeepH benchmark series (Li et al., 2022; Gong et al.,
2023) and the two databases from the QH9 benchmark series (Yu et al., 2023a), listed in Table 3 and
Table 4, respectively. Additionally, we visualize two types of challenging testing samples: samples
with non-rigid deformation from thermal motions, as well as the bilayer samples with interlayer
twists, which are shown in Fig. 3 and Fig. 4, respectively.

E IMPLEMENTATION DETAILS

The hardware environment for our experiments is a server cluster equipped with Nvidia RTX A6000
GPUs, each with 48 GiB of memory. Other experimental details may differ across the DeepH and
QH9 benchmark series, which we will describe separately.

E.1 IMPLEMENTATION DETAILS ON THE DEEPH BENCHMARK SERIES

The software environment used is Pytorch 2.0.1 for experiments on the six crystalline databases
from the DeepH benchmark series. When combining the proposed TraceGrad method with the
DeepH-E3 architecture, the implementation of DeepH-E3 is based on the project 3 provided by

2In Theorem 1 and Theorem 2, the Wigner-D matrices are in the complex and real fields, respectively, since
the target quantity may be complex, whereas the internal representations of neural networks are typically in the
real field. Nonetheless, neural network representations in the real field can still predict complex-valued targets
with SO(3)-equivariance. Previous literature (Gong et al., 2023) has provided mechanisms for converting the
network outputs in the real field into regression targets with real and imaginary parts.

3https://github.com/Xiaoxun-Gong/DeepH-E3
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Gong et al. (2023), keeping the architecture and model hyperparameters consistent with their setup.
In our framework, we use the same number of encoding modules K as DeepH-E3, which is set to
3. In each encoding module, we apply the gnonlin(·) module proposed in Section 4 and 5 to each
SO(3)-equivariant edge feature, enabling non-linear expressiveness. We set the number of channels
for the SO(3)-invariant feature u(k) (1 ≤ k ≤ 3) to 1024. The neural network module snonlin(·)
within gnonlin(·) is implemented as a three-layers fully-connected module: the input size is set to
1024, consistent with u(k); the hidden layer size is also 1024, with SiLU as the non-linear activation
function and LayerNorm as the normalization mechanism; and the output layer size (i.e., the dimen-
sionality of z(k)) is set to be equal to the number of basic blocks for a Hamiltonian matrix, which
is 25 for MG and BG, 49 for MM , and 196 for BB, BT , and BS. It is worth noting that, while
snonlin(·) can be implemented as any differentiable neural network module, we here implement it as
a simple fully-connected module. This decision is made to avoid adding significant computational
burden to the whole network. Meanwhile, as DeepH-E3 already incorporates complex graph net-
work mechanisms for information aggregation and message-passing, there is no need for snonlin(·)
to be overly complex. Its role is focusing on to filling in the gaps left by the existing equivariant
mechanisms in DeepH-E3: to introduce a non-linear mapping mechanism that maintains equivari-
ance, thereby activating and unleashing the expressive power of the overall network architecture
through non-linearity. The SO(3)-equivariant decoder we adopt is the same as that of DeepH-E3;
The SO(3)-invariant decoder we adopt is a four-layers fully-connected module: the input size is 3
(K) times of the dimensionality of zk, e.g., 75 for MG; the hidden layers have 1024 neurons with
SiLU as the non-linear activation function and LayerNorm as the normalization mechanism; the size
of the output layer is the number of basic blocks for an atomic pairwise Hamiltonian matrix. Since
each basic block of the Hamiltonian matrix can compute a trace, the total number of trace variables
corresponds to the number of basic matrix blocks. Regarding the error metric in the loss function Eq.
7, for the first term, we follow DeepH-E3 to use MSE (Mean Squared Error); for the second term, we
choose between MSE and MAE based on performance on the validation sets, ultimately selecting
MAE. λ in the training loss function is set according to parameter selection on the validation sets,
searching from {0.1, 0.2, ..., 1.0}. Here, we aim to obtain a more general parameter setting for λ on
crystalline structures, and thus we determined λ based on the overall performance on the validation
sets of the six crystalline databases and the searched value is 0.3. To ensure the convergence of
the TraceGrad method, we set the maximum training epochs to 5, 000. Other hyper-parameters and
configurations are the same as DeepH-E3 (Gong et al., 2023): the initial learning rates for experi-
ments on the MG, MM , BG, BB, BT , and BS databases are set to 0.003, 0.005, 0.003, 0.005,
0.004, and 0.005, respectively; the training batch size is set as 1; the optimizer is chosen as Adam;
the scheduler is configured as a slippery slope scheduler.

E.2 IMPLEMENTATION DETAILS ON THE QH9 BENCHMARK SERIES

The software environment used is Pytorch 1.11.0 for experiments on the two molecular databases
from the QH9 benchmark series. When combining the proposed TraceGrad method with the QHNet
architecture, the implementation of QHNet is based on the project 4 provided by Yu et al. (2023b),
keeping the architecture and network configurations consistent with their setup. In our framework,
we use the same number of encoding modules as QHNet: 5 node feature encoding modules and 2
edge feature encoding modules. We opt to apply the gnonlin(·) module proposed in Section 4 and
5 to each SO(3)-equivariant edge feature. We set the number of channels for u(k) (1 ≤ k ≤ 2)
as 1024. The neural network module snonlin(·) within gnonlin(·) is implemented as a three-layers
fully-connected module: the input size is set to 1024, consistent with u(k), the hidden layer size
is also 1024, with SiLU as the non-linear activation function and LayerNorm as the normalization
mechanism, and the output layer size (i.e., the dimensionality of z(k)) is set to be equal to the number
of basic blocks for a Hamiltonian matrix, which is 36 for QS and QD databases. The SO(3)-
equivariant decoder we adopt is the same as that of QHNet; the SO(3)-invariant decoder we adopt
is a four-layers fully-connected module: the input size is 2 (K) times of the dimensionality of z(k),
e.g., 72 forQS andQD; the hidden layers have 1024 neurons with SiLU as the non-linear activation
function and LayerNorm as the normalization mechanism; the size of the output layer is the number
of basic blocks for an atomic pairwise Hamiltonian matrix. Regarding the error metric in the loss
function Eq. 7, for the first term, we follow QHNet to use a combination of MSE and MAE; for
the second term, we choose between MSE and MAE based on performance on the validation sets,

4https://github.com/divelab/AIRS
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Table 3: Statistical information of the six benchmark databases, i.e., Monolayer Graphene (MG),
Monolayer MoS2 (MM ), Bilayer Graphene (BG), Bilayer Bismuthene (BB), Bilayer Bi2Te3
(BT ), Bilayer Bi2Se3 (BS), from the DeepH benchmark series (Li et al., 2022; Gong et al., 2023).
SOC: effects of Spin-Orbit Coupling. m: number of samples in the current dataset; amax: maximum
number of atoms from a unit cell in the current dataset. amin: minimum number of atoms from a
unit cell in the current dataset. nt: non-twisted samples. t: twisted samples.

Statistic Types MG MM BG BB BT BS
Elements C Mo, S C Bi Bi, Te Bi, Se

SOC weak weak weak strong strong strong

Training (nt)
m 270 300 180 231 204 231
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Validation (nt)
m 90 100 60 113 38 113
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Testing (nt)
m 90 100 60 113 12 113
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Testing (t)
m - - 9 4 2 2
amax - - 1084 244 130 190
amin - - 28 28 70 70

Monolayer GrapheneMonolayer MoS2

Figure 3: Visualization of testing samples exhibiting non-rigid deformations due to thermal motions

ultimately selecting MAE. λ in the training loss function is set according to parameter selection
on the validation sets, searching from {0.1, 0.2, ..., 1.0}. Here, we aim to obtain a more general
parameter setting for λ on molecular structures, and thus we determined λ based on the overall
performance on the validation sets of the two molecular databases and the searched value is 0.2.
Other hyper-parameters and configurations are the same as QHNet: the maximum training steps are
set as 300, 000 for QS and 260, 000 for QD, the initial learning rates for all experiments are set as
5 × 10−4, the training batch size is set as 32, the optimizer is set as AdamW, and a learning rate
scheduler is implemented: the scheduler gradually increases the learning rate from 0 to a maximum
value of 5× 10−4 over the first 1, 000 warm-up steps. Subsequently, the scheduler linearly reduces
the learning rate, ensuring it reaches 1× 10−7 by the final step.

F VISUALIZATION OF BLOCK-LEVEL MAE STATISTICS

As shown in Fig. 2, each Hamiltonian matrix consists of numerous basic block, with each basic
block representing the direct product of two degrees. Here, we follow Yin et al. (2024) to measure
the MAE performance of deep models on each basic block, denoted as MAEH

block. The values of
MAEH

block for the two setups, i.e., DeepH-E3 and DeepH-E3+TraceGrad, on different blocks of
the Hamiltonian matrix for six databases from the DeepH benchmark series are illustrated in Fig.
5 and 6. Fig. 5 presents the results for monolayer structures, while Fig. 6 focuses on bilayer
structures. From these figures, it can be observed that our method, TraceGrad, brings significant
accuracy improvements over the baseline method, DeepH-E3, across the vast majority of blocks of
the Hamiltonian matrices, particularly on blocks where DeepH-E3 struggles with lower accuracy.
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Table 4: Statistical information of the two benchmark databases, QH9-stable (QS) and QH9-
dynamic (QD), from the QH9 benchmark series (Yu et al., 2023a). The QS database is split using
the ’ood’ strategy, while the QD database is split using the ’mol’ strategy. m: number of samples
in the current dataset. amax: maximum number of atoms for a sample in the current dataset. amin:
minimum number of atoms for a sample in the current dataset.

Statistic Types QS QD
Elements C, H, O, N, F C, H, O, N, F

Training
m 104,001 79,900
amax 20 19
amin 3 10

Validation
m 17,495 9,900
amax 22 19
amin 21 10

Testing
m 9,335 10,100
amax 29 19
amin 23 10

Twisted Bilayer GrapheneTwisted Bilayer Bi2Se3

Twisted Bilayer Bismuthene

Figure 4: Visualization of testing samples with interlayer twists.

G ABLATION STUDY

We conduct fine-grained ablation study on the six databases from DeepH benchmark series, com-
paring results from the four setups:

• DeepH-E3 (Gong et al., 2023): the baseline model.

• DeepH-E3+Trace: this experimental setup, an ablation term, only implements half part of our
method. Specifically, it extends the architecture of DeepH-E3 by adding our SO(3)-invariant encod-
ing and decoding branches and using the trace quantity T = tr(Q ·Q†) = tr(Hlp⊗lq · (Hlp⊗lq )†) to
train them. As for ablation study, this setup does not include the gradient-based mechanism deliver-
ing non-linear expressiveness from SO(3)-invariant features to encode SO(3)-equivariant features;
instead, it directly uses the SO(3)-equivariant features outputted by DeepH-E3 for Hamiltonian re-
gression. In this configuration, the SO(3)-invariant branches only contribute indirectly during the
training phase by backpropagating the supervision signals from the trace quantity to the earlier lay-
ers.

• DeepH-E3+Grad: this setup is also an ablation term and implements the other half part of our
method in contrast to the previous ablation term. Specifically, it incorporates our SO(3)-invariant
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encoder branch as well as the gradient-induced operator to deliver non-linear expressiveness from
SO(3)-invariant features to encode SO(3)-equivariant features. As for ablation study, this setup
continues to use the single-task training pipeline of DeepH-E3, supervised only with the Hamiltonian
label without joint supervised training through the trace of Hamiltonian.

• DeepH-E3+TraceGrad: this is a complete implementation of our framework extending beyond
of the architecture and training pipeline of DeepH-E3, at the label level, we introduce the trace
quantity to guide the learning of SO(3)-invariant features; Meanwhile, at the representation level,
we leverage the gradient operator to yield SO(3)-equivariant non-linear features for Hamiltonian
prediction.

Table 5: Ablation study MAE results (meV) on the Monolayer Graphene (MG) and Monolayer
MoS2 (MM ) databases. ↓ means lower values of the metrics correspond to better accuracy.

Methods
MG MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.251 0.357 0.362 0.406 0.574 1.103
DeepH-E3+Trace 0.230 0.344 0.348 0.378 0.537 1.091
DeepH-E3+Grad 0.185 0.269 0.258 0.308 0.453 0.924

DeepH-E3+TraceGrad 0.175 0.257 0.228 0.285 0.412 0.808

Experimental results of the four setups are listed in Table 5 and 6. Table 5 presents the results
for monolayer structures, while Table 6 focuses on bilayer structures. From the results of ablation
terms, we can obtain a more fine-grained experimental analysis. By comparing among the results
of DeepH-E3, DeepH-E3+Trace, DeepH-E3+Grad, and DeepH-E3+TraceGrad, we can conclude
that the two core mechanisms of our method, i.e., the SO(3)-invariant trace supervision mechanism
(Trace) at the label level as well as the gradient-based induction mechanism (Grad) at the represen-
tation layer, can contribute to the performance individually. Moreover, their combination provides
even better performance. This is because, on one hand, with the gradient-based induction mecha-
nism as a bridge, the non-linear expressiveness of SO(3)-invariant features learned from the trace
label can be transformed into the SO(3)-equivariant representations during inference; on the other
hand, with trace label, the SO(3)-invariant network branch has a strong supervisory signal, enabling
it to learn the intrinsic symmetry and complexity of the regression targets, enhancing the quality
of SO(3)-invariant features and ultimately benefits the encoding of SO(3)-equivariant features. The
value of such complementarity has been fully demonstrated in the experimental results.

Figure 5: Visualization ofMAEH
block on each basic block of the Hamiltonian matrices for the Mono-

layer Graphene (MG) and Monolayer MoS2 (MM ) databases.
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Figure 6: Visualization of MAEH
block on each basic block of the Hamiltonian matrices for the non-

twisted (marked with superscripts nt) and twisted (marked with superscripts t) testing subsets of
Bilayer Graphene (BG), Bilayer Bismuthene (BB), Bilayer Bi2Te3 (BT ), and Bilayer Bi2Se3
(BS).
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Table 6: Ablation study MAE results (meV) on the Bilayer Graphene (BG), Bilayer Bismuthene
(BB), Bilayer Bi2Te3 (BT ), and Bilayer Bi2Se3 (BS) databases. The superscripts nt and t respec-
tively denote the non-twisted and twisted subsets. ↓ means lower values of the metrics correspond
to better accuracy.

Methods
BGnt BGt

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.389 0.453 0.644 0.264 0.429 0.609
DeepH-E3+Trace 0.362 0.417 0.593 0.251 0.401 0.480
DeepH-E3+Grad 0.320 0.356 0.511 0.222 0.389 0.446

DeepH-E3+TraceGrad 0.291 0.323 0.430 0.198 0.372 0.406

Methods BBnt BBt

MAEH
all MAEH

cha s MAEH
cha b MAEH

all MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.274 0.304 1.042 0.468 0.602 2.399
DeepH-E3+Trace 0.259 0.285 0.928 0.429 0.570 1.782
DeepH-E3+Grad 0.243 0.272 0.824 0.406 0.542 1.431

DeepH-E3+TraceGrad 0.226 0.256 0.740 0.384 0.503 1.284

Methods BTnt BT t

MAEH
all MAEH

cha s MAEH
cha b MAEH

all MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.447 0.480 1.387 0.831 0.850 4.572
DeepH-E3+Trace 0.406 0.462 1.239 0.784 0.812 4.520
DeepH-E3+Grad 0.342 0.365 0.750 0.742 0.786 4.463

DeepH-E3+TraceGrad 0.295 0.312 0.718 0.735 0.755 4.418

Methods BSnt BSt

MAEall MAEH
cha s MAEH

cha b MAEall MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.397 0.424 0.867 0.370 0.390 0.875
DeepH-E3+Trace 0.382 0.397 0.843 0.351 0.367 0.838
DeepH-E3+Grad 0.343 0.365 0.696 0.324 0.339 0.746

DeepH-E3+TraceGrad 0.300 0.332 0.644 0.291 0.302 0.674

H EMPIRICAL STUDY COMPARING THE PROPOSED GRADIENT-BASED MECHANISM WITH
THE GATED ACTIVATION MECHANISM

Taking the Bilayer Graphene (BG) and Bilayer Bismuthene (BB) databases as representative, we
conduct an empirical study comparing our proposed gradient-based mechanism with the gated ac-
tivation mechanism. We compare the accuracy performance of the following four experimental
setups:

• DeepH-E3: the baseline model.

• DeepH-E3+Grad: Same as that introduced in Appendix G.

• DeepH-E3+Gate: This variant modifies the experimental setup from DeepH-E3+Grad by replacing
the gradient mechanism, which constructs equivariant features as v = ∂z

∂f , with a gated activation
mechanism, constructing equivariant features as v = z · f . All other aspects remain the same.

• DeepH-E3+TraceGrad: Same as that introduced in Appendix G, this is a complete implementation
of our framework combined with DeepH-E3.

• DeepH-E3+TraceGate: This variant modifies the experimental setup from DeepH-E3+TraceGrad
by replacing the gradient mechanism, which constructs equivariant features as v = ∂z

∂f , with a gated
activation mechanism, constructing equivariant features as v = z · f . All other aspects remain the
same.
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Experimental results are recorded in the following Table:

Table 7: Comparison between the gradient-based mechanism (Grad) and the gated activation mech-
anism (Gate): MAE results (meV) on the Bilayer Graphene (BG) and Bilayer Bismuthene (BB)
databases. The superscripts nt and t respectively denote the non-twisted and twisted subsets. ↓
indicates that lower values of the metrics correspond to better accuracy.

Methods
BGnt BGt

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.389 0.453 0.644 0.264 0.429 0.609
DeepH-E3+Grad 0.320 0.356 0.511 0.222 0.389 0.446
DeepH-E3+Gate 0.368 0.441 0.626 0.241 0.405 0.602

DeepH-E3+TraceGrad 0.291 0.323 0.430 0.198 0.372 0.406
DeepH-E3+TraceGate 0.354 0.403 0.580 0.239 0.388 0.464

Methods BBnt BBt

MAEH
all MAEH

cha s MAEH
cha b MAEH

all MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.274 0.304 1.042 0.468 0.602 2.399
DeepH-E3+Grad 0.243 0.272 0.824 0.406 0.542 1.431
DeepH-E3+Gate 0.268 0.301 0.991 0.450 0.593 2.276

DeepH-E3+TraceGrad 0.226 0.256 0.740 0.384 0.503 1.284
DeepH-E3+TraceGate 0.252 0.279 0.908 0.417 0.561 1.740

From these results, it is evident that both DeepH-E3+Gate and DeepH-E3+TraceGate show improve-
ment over the baseline DeepH-E3, as these configurations introduce an additional neural network
module snonlin(·) in learning the feature z, which increases model capacity. Moreover, DeepH-
E3+TraceGate also incorporates our proposed trace supervision signal, which guides the learning of
SO(3)-invariant features. However, their performance falls short of DeepH-E3+Grad and DeepH-
E3+TraceGrad, respectively, indicating that the gated activation mechanism may not fully capture
the system’s non-linearity patterns, whereas the proposed gradient-based mechanism demonstrates
stronger generalization performance on Hamiltonian prediction and may be a better choice in terms
of expressive capability.

I THEORETICAL ANALYSIS ON COMPUTATIONAL COMPLEXITY

The total number of non-zero Hamiltonian matrix elements to be calculated is proportional to the
number of local atomic pairs in the system, with a complexity of O(NE), where N is the total
number of atoms and E is the average number of neighboring atoms within the cutoff radius per
atom. Since the atomic orbital basis set has a finite range, the Hamiltonian matrix elements vanish
beyond a certain distance. In small systems, where all atoms lie within each other’s cutoff radius,
E scales with N , resulting in a total number of non-zero elements proportional to N2. However,
in sufficiently large systems, the finite range of the atomic orbitals ensures that E remains constant,
independent of N . As a result, for large atomic systems, the total number of non-zero elements
simplifies to O(N).

The baseline models we select, whether DeepH-E3 or QHNet, are SO(3)-equivariant graph neural
network models with efficient information aggregation and message-passing mechanisms. These
models cleverly balance the locality of Hamiltonian definitions with the long-range interactions
present in the system. As a result, the computational complexity asymptotically scales as O(N)
as N increases, which is consistent with the growth of the scales of non-zero Hamiltonian matrix
elements. The proposed TraceGrad method directly updates each SO(3)-equivariant feature of the
baseline models, and the computational amount is proportinal to the number of features of the base-
line models. Therefore, combining TraceGrad, the computational complexity also scales as O(N).

Traditional DFT methods require T iterations of diagonalizing N × N matrices, each with a time
complexity of O(N3), because all occupied states are needed to compute the charge density. As N
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Table 8: Average inference time per test sample (abbreviated as Time) in seconds and average
MAE performance in meV (MAEH

all) on the Monolayer Graphene (MG), Monolayer MoS2 (MM ),
QH9-stable (QS), and QH9-dynamic (QD) databases. ↓ indicates that lower values of the metrics
correspond to better accuracy. All models are tested individually on a single Nvidia RTX A6000 in
single-task mode.

Methods MG MM

Time (↓) MAEH
all (↓) Time (↓) MAEH

all (↓)
DeepH-E3 (Baseline) 0.247 0.251 0.256 0.406

DeepH-E3×2 0.483 0.244 0.510 0.387
DeepH-E3+TraceGrad 0.264 0.175 0.274 0.285

Methods QS QD

Time (↓) MAEH
all (↓) Time (↓) MAEH

all (↓)
QHNet (Baseline) 0.233 1.962 0.174 4.733

QHNet×2 0.497 1.845 0.385 4.532
QHNet+TraceGrad 0.248 1.191 0.187 2.819

increases, this cubic complexity leads to significant computational overhead, making it challenging
to simulate large atomic systems within a reasonable time frame. In contrast, our deep learning
framework enables the efficient and accurate construction of the Hamiltonian for large atomic sys-
tems with a linear time complexity of O(N), eliminating the need for self-consistent iterations.
Moreover, since most physical properties, such as transport, optical, and topological properties, de-
pend only on the energy bands near the Fermi level, it is unnecessary to solve for the eigenfunctions
of all occupied states once the Hamiltonian is known. Since the Hamiltonian matrix is sparse and
only a limited number of bands near the Fermi level are needed, these eigenstates can be efficiently
computed using methods like the shift-invert approach available in the ARPACK package (Lehoucq
et al., 1998), with a computational complexity of O(N).

J A JOINT DISCUSSION ON GPU TIME COSTS AND PERFORMANCE GAINS

We here provide a joint comparison of the GPU time cost and corresponding accuracy of differ-
ent models across four databases as representative: Monolayer Graphene (MG), Monolayer MoS2
(MM ), QH9-stable (QS), and QH9-dynamic (QD). This comparison includes the average infer-
ence time per sample for each model, with the test batch size set as 1 and hardware environment set
as Nvidia RTX A6000 GPU in single-task mode without computational sharing with other processes.

For MG and MM , we compare among DeepH-E3, DeepH-E3+TraceGrad, and DeepH-E3×2,
where DeepH-E3×2 refers to a model obtained by doubling the number of encoding blocks in
DeepH-E3 and training it from scratch until convergence. For QS and QD, we compare among
QHNet, QHNet+TraceGrad, and QHNet×2, where QHNet×2 refers to a model obtained by dou-
bling the number of encoding blocks in QHNet and training it from scratch until convergence. The
experimental results are documented in the Table 8.

From this Table, we find that adding the TraceGrad module results in only a slight increase in in-
ference time compared to the baseline models. Given the substantial accuracy improvements intro-
duced by the TraceGrad method, we consider this minor increase in computational time acceptable
for practical applications. In contrast, simply increasing the depth of DeepH-E3 or QHNet results
in a significant rise in inference time but yields only limited accuracy improvements. In contrast,
DeepH-E3+TraceGrad demonstrates significantly better accuracy performance than DeepH-E3×2,
and similarly, QHNet+TraceGrad achieves notably higher accuracy than QHNet×2. Furthermore,
the inference time of DeepH-E3+TraceGrad and QHNet+TraceGrad are both lower than their re-
spective DeepH-E3×2 and QHNet×2 counterparts. These results underscore the superiority of the
TraceGrad method in enhancing expressive capability and improving accuracy performance, while
maintaining time efficiency.
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K ACCELERATION PERFORMANCE FOR THE CONVERGENCE OF TRADITIONAL DFT
ALGORITHMS

Despite the increasing ability of deep learning models to independently handle more electronic-
structure computation tasks, there are still applications with extremely high numerical precision
requirements and very low tolerance for error, where traditional DFT algorithms must perform the
final calculations. In such cases, the predictions from deep models can be used as initial matrices to
accelerate the convergence of traditional DFT algorithms. We evaluate the acceleration performance
brought by the proposed method for the convergence of classical DFT algorithms implemented
by PySCF (Sun et al., 2018). Specifically, we adopt the two groups of metrics on acceleration
performance:

The first group of metrics are defined in Yu et al. (2023a), as follows:

• Achieved ratio. This metric calculates the number of DFT optimization steps taken when
initializing with the Hamiltonian matrices predicted by the deep model compared to using
initial guess methods like minao and 1e.

• Error-level ratio. This metric measures the number of DFT optimization steps required,
starting from random initialization, to reach the same error level as the deep model’s pre-
dictions, relative to the total number of steps in the DFT process.

Experimental results on these metrics are recorded in Table 9, where the results for the compared
method QHNet are taken from Yu et al. (2023a), while the results of QHNet+TraceGrad, come from
our experiments. In our experiments, the DFT calculation settings follow those in Section 4 of Yu
et al. (2023a) (the DFT parameters and the 50 testing samples) , except for the CPU environment,
where we use a single thread of an Intel(R) Xeon(R) Gold 6330 @ 2.00GHz CPU in single-task
mode. It is worth noting that this does not affect the fairness of the comparison, as the achieved
ratio and error-level ratio measure the ratio of iteration counts rather than runtime, and differences
in CPU computation times are negligible in these metrics. From Table 9, we could observe that
the proposed TraceGrad method brings significant improvements to the baseline model QHNet on
the acceleration ratio of DFT calculation, notably reducing the achieved ratio and enhancing the
error-level ratio.

The second group of metrics measures the wall time savings that deep learning methods contribute
to DFT calculations, specifically quantifying the incremental time savings brought by our proposed
TraceGrad method in accelerating DFT calculations. For a fair comparison, we report the average
wall time costs per sample (/s) across three metrics:

• t1: The wall time required for a DFT calculation initialized with a random guess initializa-
tion, such as 1e or minao.

• t2: The wall time for inference using deep learning methods (i.e., QHNet or QH-
Net+TraceGrad).

• t3: The total wall time for the combined process, including both deep learning inference
and the subsequent DFT calculation initialized with the deep model’s outputs. t3 here
provides a more comprehensive evaluation of the actual time savings achieved when incor-
porating deep learning methods.

Experimental results on these metrics are recorded in Table 10. Here all time-related measurements
are conducted on a single thread of an Intel(R) Xeon(R) Gold 6330 @ 2.00GHz CPU, including the
experiments for QHNet, which are reproduced under the same conditions to ensure fairness. Unlike
the time measurements in Appendix J, which are performed on GPUs, all deep learning models
here are evaluated on the CPU thread to maintain consistency in the comparison with DFT software.
From the experimental results, we observe three key findings:

• Comparing t2 and t1, deep models are significantly faster than DFT calculations, achiev-
ing speeds tens of times greater for the testing samples. It is worth noting that, given
that the testing samples here are all small molecular systems, deep models have already
demonstrated a significant time efficiency advantage compared to DFT. Based on the com-
putational complexity analysis of deep learning methods compared to DFT methods in
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Table 9: The acceleration ratios of QHNet and QHNet+TraceGrad for DFT calculation. Both models
are evaluated on a set of 50 molecules chosen by Yu et al. (2023a), with the mean and standard
deviation of the metrics across these samples reported. ↓ means lower values correspond to better
accuracy, while ↑ means higher values correspond to better performance.

Methods Training DFT Metric Ratiodatabases initialization

QHNet (Baseline)

QS
1e Achieved ratio ↓ 0.400± 0.030

Error-level ratio ↑ 0.620± 0.037

minao Achieved ratio ↓ 0.715± 0.033
Error-level ratio ↑ 0.406± 0.021

QD
1e Achieved ratio ↓ 0.512± 0.138

Error-level ratio ↑ 0.622± 0.048

minao Achieved ratio ↓ 0.882± 0.217
Error-level ratio ↑ 0.406± 0.066

QHNet+TraceGrad

QS
1e Achieved ratio ↓ 0.345 ± 0.038

Error-level ratio ↑ 0.685 ± 0.037

minao Achieved ratio ↓ 0.647 ± 0.061
Error-level ratio ↑ 0.466 ± 0.035

QD
1e Achieved ratio ↓ 0.440 ± 0.101

Error-level ratio ↑ 0.645 ± 0.046

minao Achieved ratio ↓ 0.761 ± 0.167
Error-level ratio ↑ 0.435 ± 0.052

Appendix I, it is reasonable to infer that for larger atomic systems, the disparity between t2
and t1 will expand rapidly.

• Comparing t2 values between QHNet and QHNet+TraceGrad, the additional runtime intro-
duced by TraceGrad is relatively minor on the CPU, consistent with the GPU-based results
reported in Appendix J.

• Comparing t3 and t1, the total runtime of using a deep model to predict initial values
and then running DFT calculations is significantly lower than performing DFT calculations
from a random guess initialization. Particularly, comparing row 4 and row 16, row 7 and
row 19, row 10 and row 22, as well as row 13 and row 25 in Table 10, it can be observed that
combing TraceGrad further reduces t3, demonstrating that the time saved by TraceGrad in
DFT calculations far exceeds the minimal additional time required for its inference.

L EMPIRICAL STUDY ON COMBINING OUR METHOD WITH APPROXIMATELY
SO(3)-EQUIVARIANCE FRAMEWORK

While non-strict SO(3)-equivariance, which may limit the depth of theoretical exploration, is not
the main focus of this study aiming at bridging rigorous SO(3)-equivariance with the non-linear ex-
pressive capabilities of neural networks, considering that they remain of interest in a few numerical
computation applications where precision is highlighted over strict equivariance, we also conduct
empirical study combining our method with approximately SO(3)-equivariant techniques. Taking
the Monolayer MoS2 (MM ) database as a case study, we evaluate the performance of combining our
trace supervision and gradient induction method (TraceGrad) with the an approximately equivariant
approach HarmoSE (Yin et al., 2024). We here take HarmoSE as the backbone encoder, and yields
features by TraceGrad to enrich its representations. The experimental results in Table 11 and Fig. 7
demonstrate that TraceGrad significantly enhances the accuracy of HarmoSE, surpassing DeepH-2
and achieving SOTA results. Both DeepH-2 and HarmoSE sacrificed strict SO(3)-equivariance to
fully release the expressive capabilities of graph Transformers, aiming for the ultimate in predic-
tion accuracy. Despite this, our method still manages to significantly exceed their accuracy, further
confirming the superiority of our method in learning expressive representations of physical systems.
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Table 10: Average wall time costs per sample (/s) for three experimental settings: t1 represents the
wall time required for DFT calculation with a random initial guess like 1e of minao; t2 denotes
the wall time for inference of deep learning methods (i.e., QHNet or QHNet+TraceGrad); t3 is
the total time of the process including deep learning inference and the DFT calculation that uses
the outputs of deep learning methods as initialization. Both models are evaluated on a set of 50
molecules chosen by Yu et al. (2023a), with the mean and standard deviation of the metrics across
these samples reported. ↓ indicates that lower values correspond to better performance. In order to
ensure fairness in comparison, all experimental settings including DFT calculation and deep learning
inference are measured on a single thread of an Intel(R) Xeon(R) Gold 6330 @ 2.00GHz CPU in
single-task mode.

Methods Training DFT Metric Timedatabases initialization

QHNet (Baseline)

QS

1e
t1 120.896± 9.134

t2 ↓ 1.724± 0.025
t3 ↓ 48.604± 7.741

minao
t1 63.193± 5.335

t2 ↓ 1.724± 0.025
t3 ↓ 48.604± 7.741

QD

1e
t1 87.161± 12.075

t2 ↓ 1.280± 0.019
t3 ↓ 44.146± 9.342

minao
t1 51.396± 5.870

t2 ↓ 1.280± 0.019
t3 ↓ 44.146± 9.342

QHNet+TraceGrad

QS

1e
t1 ↓ 120.896± 9.134
t2 ↓ 1.852± 0.020
t3 ↓ 41.941± 6.783

minao
t1 63.193± 5.335

t2 ↓ 1.852± 0.020
t3 ↓ 41.941± 6.783

QD

1e
t1 87.161± 12.075

t2 ↓ 1.361± 0.010
t3 ↓ 39.712± 9.076

minao
t1 51.396± 5.870

t2 ↓ 1.361± 0.010
t3 ↓ 39.712± 9.076

Table 11: MAE results (meV) for DeepH-2, HarmoSE, and HarmoSE+TraceGrad on the MM
database. ↓ means lower values of the metrics correspond to better accuracy. The results of the
compared methods are taken from the corresponding literature (Wang et al., 2024b; Yin et al., 2024),
where the empty items are due to the data not being provided in the original paper.

Methods
MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b

DeepH-2 (Wang et al., 2024b) 0.21 - -
HarmoSE (Yin et al., 2024) 0.233 0.293 0.406

HarmoSE+TraceGrad 0.178 0.228 0.296

M FUTURE WORK

In future research, various extensions are conceivable across theoretical, methodological, and appli-
cation fields:
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Figure 7: Comparison on the MAEH
block metric for HarmoSE and HarmoSE+TraceGrad on the

MM database.

First, from a theoretical and methodological perspective, we may extend our framework on achieving
SO(3) symmetry with expressiveness to a broader range and more complex groups, e.g., SU(2),
SO(n), and Spin(n), in deep learning research. This would enable deep learning frameworks to
incorporate richer mathematical structures and physical quantities.

Second, while our theoretical framework, detailed in Theorem 1 and Theorem 2, incorporating con-
cepts such as SO(3)-equivariant variables Q, SO(3)-invariant features T, SO(3)-equivariant features
f and v, and SO(3)-invariant features z, along with their mathematical relationships (proven in Ap-
pendix C), is general in nature and not limited to specific physical quantities, from an application
perspective, the empirical effectiveness of our method beyond predicting Hamiltonian and its down-
stream quantities remains to be validated. In future work, we plan to extend the current methodology
beyond predicting electronic-structure Hamiltonians for predicting a wide range of physical quanti-
ties and properties that exhibit equivariance, such as force constant matrices, Born effective charges,
and more.

Furthermore, in principle, our approach also has potential to find applications in fields such as
robotics, autonomous vehicles, and motion tracking systems to harmonize SO(3)-equivariance with
non-linear expressiveness. In these areas, data are typically represented as 3D point clouds, which
is conceptually similar to describing the 3D structure of atomic systems using atomic point clouds.
This similarity facilitates the transferability of our method to these domains. For example, in vision
tasks such as autonomous vehicles (Wang et al., 2023), the relative positions of cameras and ob-
jects are not fixed, causing the sampled 3D point clouds to undergo coordinate transformations, with
rotation being a common example. Given the safety-critical nature of these tasks, ensuring the reli-
ability and robustness of pattern recognition systems are of utmost importance. Consequently, there
is a significant demand for systems that are robust to coordinate transformations of 3D point clouds.
The mainstream approach has been to approximate SO(3)-equivariance through data augmentation.
However, this method does not ensure absolute reliability or safety. Our work suggests considerable
potential for constructing deep models with strong generalization performance, grounded in strict
SO(3)-equivariance, and could contribute to advancements in these fields. Therefore, our next step
may involve applying our method to the autonomous vehicles domain for 3D point cloud object
segmentation and recognition, with the goal of achieving more robust recognition results. Specifi-
cally, in the task of 3D point cloud object recognition, the position vectors of the corner points of
3D bounding boxes relative to their center point are SO(3)-equivariant quantities, corresponding to
Q in this work, while their magnitudes are SO(3)-invariant quantities, corresponding to T in this
work. These can serve as regression targets and supervision signals for the SO(3)-equivariant and
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SO(3)-invariant branches of our method, respectively, and may enable the learning of informative
SO(3)-equivariant non-linear features for regressing 3D bounding boxes.

To summarize, while our method is theoretically applicable to other tasks, its effectiveness in those
areas has yet to be demonstrated. Much work remains to be done.

31


	Introduction
	Related Work
	Problem Formalization
	Theory
	Method
	Encoding and Decoding Framework
	Training

	Experiments
	Experimental Conditions
	Results and Analysis

	Summary of Appendices
	Conclusion
	Appendices
	Definition of Concepts
	Application Task Description: Electronic-structure Hamiltonian Calculation
	Proofs of Theorems
	Information of Experimental Databases
	Implementation Details
	Implementation Details on the DeepH Benchmark Series
	Implementation Details on the QH9 Benchmark Series

	Visualization of Block-level MAE Statistics
	Ablation Study
	Empirical Study Comparing the Proposed Gradient-based Mechanism with the Gated Activation Mechanism
	Theoretical Analysis on Computational Complexity
	A Joint Discussion on GPU Time Costs and Performance Gains
	Acceleration Performance for the Convergence of Traditional DFT Algorithms
	Empirical Study on Combining our Method with Approximately SO(3)-equivariance Framework
	Future Work


