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ABSTRACT

Ensuring adherence to traffic sign regulations is essential for both human and
autonomous vehicle navigation. While current benchmark datasets concentrate on
lane perception or basic traffic sign recognition, they often overlook the intricate
task of integrating these regulations into lane operations. Addressing this gap, we
introduce MapDR, a novel dataset designed for the extraction of Driving Rules
from traffic signs and their association with vectorized, locally perceived HD
Maps. MapDR features over 10,000 annotated video clips that capture the intricate
correlation between traffic sign regulations and lanes. We define two pivotal
sub-tasks: 1) Rule Extraction from Traffic Sign, which accurately deciphers
regulatory instructions, and 2) Rule-Lane Correspondence Reasoning, which
aligns these rules with their respective lanes. Built upon this benchmark, we provide
a multimodal solution that offers a strong baseline for advancing autonomous
driving technologies. It fills a critical gap in the integration of traffic sign rules,
contributing to the development of reliable autonomous navigation systems.

Figure 1: MapDR Overview and Motivation. For safe autonomous driving, accurate interpretation
of lanes and traffic signs is crucial, ensuring vehicles maintain proper positioning and follow driving
rules. This figure illustrates an intersection scene where extracted traffic sign rules are integrated into
the corresponding lanes on the HD map.

1 INTRODUCTION

The emergence of autonomous vehicles and intelligent transportation systems has highlighted the
critical need for accurate and reliable navigational data. High-Definition (HD) maps|'| with their

"The HD map discussed in this paper refers to a local vectorized map constructed through online perception
by autonomous vehicles.
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detailed representation of the road environment, have become indispensable for these advanced
systems. Traffic signs, as the visual language of the road, are essential for conveying driving rules
such as speed limits, lane usage restrictions, and right-of-way rules. For autonomous vehicles,
accurate recognition and interpretation of these signs are not just advantageous but essential for
safe and compliant operation on public roads. However, current online HD map construction for
autonomous driving mainly focuses on accurately depicting the types and positions of map elements
in BEV space using point sequences, neglecting the driving rules conveyed by traffic signs and their
relation to lanes.

Beyond mere recognition, effective autonomous navigation demands a deeper integration of traffic
signs into the vehicle’s HD map, as depicted in Figure [[l The conventional researches of sign
detection and classification [Behrendt et al.|(2017)); Stallkamp et al.| (2012); Fregin et al.| (2018); |[Zhu
et al.| (2016); 'Yu et al.| (2020), which often rely on single labels, are inadequate for capturing the
detailed requirements of lane-level driving rules. A single traffic sign often represents multiple rules
applicable to various lanes, each with distinct attributes such as lane direction and speed limitations.
The challenge lies in binding these lane-level rules to the corresponding lanes within the HD map.
Achieving this level of integration is essential for developing HD map that can robustly support
autonomous driving.

Despite the critical role that traffic sign integration plays in autonomous driving, there has been a
noticeable lack of focused research in this area. The CTSU dataset|Guo et al.|(2021)), for instance,
takes an initial step by encoding traffic signs in {key : value} pairs, yet it does not effectively link
the semantic content of signs to specific lanes. Other efforts, such as OpenLaneV2 Wang et al.| (2023)
and VTKGG|Guo et al.|(2023) have attempted to establish connections between traffic signs and lanes.
However, they have not fully addressed the structural interpretation of the multifaceted attributes of
lane-level rules.

To address this gap, we introduce MapDR, the first dataset specifically designed for driving rules
extraction from traffic signs and association with vectorized HD maps. MapDR provides an extensive
collection of over 10, 000 video clips that explore the correlation between lanes and driving rules
extracted from traffic signs. For more details on the proposed dataset, please refer to Section

MapDR introduces two innovative sub-tasks aimed at bolstering research in this domain: 1) Rule
Extraction from Traffic Sign: This sub-task is dedicated to developing algorithms that can extract
specific lane-level rules from traffic signs, including their attributes and the lanes to which they apply.
It is an essential step for understanding the intricate details of traffic signs and their navigational
implications. 2) Rule-Lane Correspondence Reasoning: This sub-task focuses on establishing a
precise relationship between the extracted rules and the corresponding lanes in the HD maps. This
process is vital for autonomous systems to accurately contextualize and apply lane-level rules to their
driving path. For detailed descriptions of the proposed tasks and metrics, please refer to Section 3]

Based on the proposed tasks and dataset, we leverage multimodal models to design a solution that
integrating traffic sign regulations into vectorized HD maps. This provides a strong baseline
for future research work. We hope to inspire more researchers to focus on this task and drive the
development of related industries.

To sum up, our contributions are as follows:

* For the first time, we introduce the task of extracting lane-level rules from traffic signs and
integrating them into vectorized HD maps. Additionally, we present the MapDR dataset and
specific metrics for benchmarking this task.

* MapDR comprises an extensive collection of images from three representative Chinese cities,
captured over a quarter year at various times of the day. This dataset includes over 10, 000
video clips, at least 400, 000 front-view images, and more than 18, 000 lane-level rules. All
annotations are carefully validated, with all data newly collected.

* We present Vision-Language Encoder (VLE) and Map Element Encoder (MEE) to extract and
interact features from image, text, and vector data, integrating lane-level rules into vectorized
HD maps and providing an effective baseline for future researches.
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Table 1: Comparison of the existing datasets. "Sign" and "Lane" denote whether the dataset focus
on traffic signs and lanes. Only those annotated with formatted ("Fmt.") rules and the correspondence
("Corr.") between rules and lanes can form driving rules. "Clip" represents whether the data is
organized in the form of video clips. "x" denotes that these samples are not newly collected and are
built upon the previous dataset.

Dataset Sign Lane Driving Rules Number of Samples Year
Fmt. Corr. Image Clip Region
nuScenes |Caesar et al.|(2020) v 1400K 1K Worldwide 2019
Argoverse2|Wilson et al.[(2021) v 2100K 1K USA 2021
CTSU Guo et al.|(2021) v 5K / China 2021
OpenLane Chen et al.|(2022) v 200K* 1K* Worldwide 2022
RS10K |Guo et al.|(2023) v v 10K / China 2023
OpenLaneV2|Wang et al.|(2023) v/ v v 466 K* 2K* Worldwide 2023
MapDR (ours) e v v Ve 400K 10K China 2024

2 RELATED WORK

2.1 HD MAP CONSTRUCTION

HD maps construction have seen significant advancements, with a focus on traffic element perception,
including lane detection and traffic sign recognition Wilson et al.| (2021); [Huang et al.| (2020); Caesar
et al.[ (2020); |Gu et al.| (2019); Behrendt et al.[ (2017); [Stallkamp et al.| (2012); [Yu et al.| (2020);
Fregin et al.| (2018)); [Zhu et al.| (2016). The shift towards BEV perception and vectorization for
end-to-end HD maps construction has gained traction Wilson et al.| (2021); |Caesar et al.| (2020);
Chen et al.|(2022). Notable works include HDMapNet, which aggregates semantic segmentation
results |Li et al.|(2022b)), LSS |Philion & Fidler (2020) estimates depth to transfer image features to
BEV features, while VectorMapNet |Liu et al.|(2023c]) is the first end-to-end framework for sequential
vector point prediction to generate HD maps without post-processing. MapTR [Liao et al.|(2023a)
and its enhanced version, MapTRv2 [Liao et al.| (2023b), introduced a unified permutation-equivalent
modeling approach and extended it to a general framework supporting centerline learning and 3D
map construction. However, these efforts have largely overlooked the integration of traffic sign rules
into HD maps.

2.2 TRAFFIC ELEMENT ASSOCIATION

Traffic element association aims to link elements like traffic signs with lanes. As demonstrated in
Table CTSU has initiated internal elements association to describe traffic sign in {key : value}
form, however lacking both generalization of driving rules from description and lane association |Guo
et al.| (2021). VTKGG |Guo et al.|(2023)) propose to utilize a graph model for connectivity but also
lacks structured expression of driving rules for motion planning and requires complex integration into
HD maps, which is typically expressed in the BEV space. OpenLaneV2 Wang et al.| (2023) advances
BEV space association but is constrained by single-label classification, making it insufficient for signs
with multiple rules, which are common in real scenarios. Recent MLLM-based benchmarks Marcu
et al.| (2023)); \Qian et al.|(2024); [Sachdeva et al.| (2024)); Sima et al.| (2023)); |Cao et al.| (2024) for
autonomous driving, such as MAPLM |Cao et al.|(2024), prioritize end-to-end motion planning over
precise rule extraction from traffic sign, lacking evaluation for rule reasoning. MapDR addresses this
gap by focusing on traffic sign rule extraction and lane association.

2.3  VISION-LANGUAGE MODELS

Vision-Language Models (VLMs) facilitates multimodal applications by learning joint representations
of vision and language data. Visual Question Answer (VQA) tasks provide answers to image-related
questions |Antol et al| (2015}, while Visual Information Extraction (VIE) tasks extract structured
information from visual and textual data|Antol et al.| (2015)); |Xu et al.| (2020; 2021)); |Huang et al.
(2022). In Autonomous Driving (AD), VLMs are increasingly used for comprehensive traffic
scene understanding and decision-making. The field has seen various approaches, including using
transformers |Vaswani et al.| (2017) for joint encoding |Kim et al.[(2021)); [Huang et al.| (2022}, excelling
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Attention! There is a traffic The lane indicated by this traffic sign is only for buses Which lane does this traffic sign refer to? At 17:30, my car is not allowed to
sign ahead on the road. during workdays from 7:00-9:00 and 17:00-19:00. drive on this lane.

Figure 2: Overview of the task. Step 1 ~ Step 4 shows a case of driving by the rules. Step 2 and
Step 3 demonstrates the specific role of two sub-tasks, respectively.

at multimodal information interaction, and independent encoders for different modalities Radford
et al. ;[Jia et al.| (2021) that are proficient in multimodal retrieval. Cross-modal representation
methods [Li et al.| (2021); [Yu et al| combine these advantages, and the latest LLM-based
research|Li et al.| (2023)); [Liu et al.| (2023bffa; [2024) has achieved state-of-the-art results in various
multimodal tasks. Nowadays, an increasing number of methods are leveraging LLMs to achieve
impressive results, with works like DriveLLM showing significant potential in AD.
However, addressing hallucination remains the most crucial aspect for LLM-based
approaches.

3 TASK DEFINITION : INTEGRATING TRAFFIC SIGN REGULATIONS INTO HD
MAPS

The ability to discern rules from traffic signs and to associate them with specific lanes is pivotal for
autonomous navigation. As depicted in Figure2] traffic signs are primary indicators of lane-level rules.
Our proposed task involves two core sub-tasks: 1) Extracting lane-level rules from traffic signs,
and 2) Establishing correspondence between these rules and centerlines. Generally, vehicles
follow the center of lanes , i.e., centerlines, to drive on the road[Wang et al| (2023). Therefore, we use
centerlines to represent lanes. This approach mirrors human drivers’ instinct to observe traffic signs
and then relate the indicated rules to the lanes they govern.

3.1 RULE EXTRACTION FROM TRAFFIC SIGN

As shown in Step 2 of Figure this task involves extracting multiple rules R = {r;}; from a
series of image sequences X = {x;}!" ,, where m is the number of rules and n is the number of
frames. Each rule r; is a set of pre-defined properties in {key : value} pairs. The rule extraction
model, denoted as M, can be expressed as R = M (X). To facilitate this challenging task, existing
algorithm results for sign detection and OCR, represented as B and 7T respectively, can be utilized,
making the rule extraction process R = M (X, [B], [T]), [-] indicates optional input.

3.2 RULE-LANE CORRESPONDENCE REASONING

As shown in Step 3 of Figure [2] the reasoning process establishes the correspondence between
centerlines L = {l;}¥_, and all rules R, where k is the number of centerlines. We denote the
correspondence reasoning model as 7, and this process can be described as E = T (R, L), where
E € {0,1}™** and the element E;; in the i-th row and j-th column of matrix E represents
the corresponding status between r; and [;. The final reasoning result forms a bipartite graph
G = (R U L, E), which means corresponding relationships only exist between rules and centerlines .

4 THE MAPDR DATASET & BENCHMARK

We introduce the MapDR dataset, meticulously annotated with traffic sign regulations and their
correspondences to lanes, as shown in Figure[3] The dataset encompasses a diverse range of scenarios,
weather conditions, and traffic situations, with over 10, 000 traffic scene segments, 18, 000 driving



Under review as a conference paper at ICLR 2025

.

Traffic Sign Location

]

Rulelndex: 0
LaneType: Direction Lane
LaneDirection: [Forbbiden, TurnLeft]
AllowedTransport: -
EffectiveDate: -

=
EffectiveTime: 7:00 - 20:00 [ \

LowSpeedLimit: -

HighSpeedLimit: - |

Front-View Image Formatted Rules Vectorized Map

Figure 3: Visualization of dataset demo. Multiple lane-level rules of a single traffic sign are
annotated in {key : value} format. Directed lines indicate the correspondence between rules and
particular centerlines.

rules, and 400, 000 images. Traffic signs typically have varying textual descriptions, text layouts, and
positions on the road, which add complexity to the task.

The majority of the data originates from Beijing and Shanghai, with additional scenes from
Guangzhou. Figure [ illustrates the geographic spread and variety of traffic signs. The dataset
reflects a natural long-tail distribution, with a prevalence of bus and direction lanes and a scarcity of
tidalflow lanes. We primarily focus on traffic signs that indicate lane-level rules, collected from cities
with the most complex and diverse traffic scenarios in China, ensuring realistic and representative
data. All images have undergone privacy and safety processing to obscure license plates and faces.
More comprehensive statistic of dataset and case demonstrations can be found in appendix [H]

4.1 RAW DATA & ANNOTATION

Raw Data. MapDR is collected from real-world traffic scenes, each scene segment (video clip)
captures front-view images within a 100m x 100m area centered on the traffic sign, with a consistent
resolution of 1920 x 1240. Each clip contains 30 to 60 frames, captured at 1 frame every 2 meters,
ensuring consistent spatial intervals. Each video clip focuses on a single traffic sign and provides its
position in 3D space. Camera intrinsics and poses are provided for each frame, and coordinates for
each clip are transformed to distinct ENU systems. For safety and privacy, the reference point is not
provided. All vectors of local map in the target area are provided as 3D point lists, generated using
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Figure 5: Pipeline of dataset production. The location of traffic signs are sampled from existing
database then front-view images of each sign are newly collected. Vectorized map is processed in
cloud sever. Finally formatted rules and correspondence between rules and centerlines are annotated
and organized as MapDR.

our algorithm similar to MapTRv2 |Liao et al.| (2023b)). Each lane vector has a type, such as divider,
centerline, crosswalk, or boundary. For example, the centerline is defined as L = {li}le, where
each vector /; is composed of multiple 3D points I; = [p1, ..., py], and p; = (z;, y;, z;) represents
the coordinates of the current point. The pipeline of dataset production is illustrated in Figure [} and
detailed data acquisition and annotation procedures can be found in the appendix [F|

Formatted Rules. Each video clip may contain multiple lane-level rules, denoted as R. Each rule
is expressed by symbols and text on the sign, requiring interpretation. As shown in Figure[3] each
rule ; comprises 8 predefined properties in the form of {key : value} pairs. We enclose the symbols
and texts denoting each distinct rule on traffic signs with polygons and project them into 3D space as
P, =[p1,...,pn], where n varies. Researchers can optionally use this information to facilitate rule
extraction.

Correspondence between Rules & Lanes. Based on formatted rules R and centerlines L, cor-
responding centerlines of each rule are annotated as shown in Figure 3] Therefore correspon-
dence between rules and centerlines can be formed as a bipartite graph G = (R U L, E), where
E € {0, 1}EIXIL] and the positive edges only exist between R and L as demonstrated in Section
Specifically, F;; = 1 represents that vehicle driving on the lane with centerline /; should follow the
driving rule r;.

4.2 EVALUATION METRICS

We evaluated the two sub-tasks separately and then assessed the overall task performance. Methods
are supposed to be ranked according to the overall AP.

Rule Extraction (R.E.). Given the ground truth R and predicted rules R, we propose to calculate
the Precision (Pr.g.) and Recall (R, g.) to evaluate the capability of rules extraction as defined
in Equation equation |1} where 7; = r; represents all the properties are predicted correctly.

P |RNR| RN R|
R.E. — ~ R.E. —
|R| R

ey

Correspondence Reasoning (C.R.). Given the ground truth of correspondence bipartite graph
G = (RU L, E) and predicted graph G= (RUL, E‘), we propose to calculate Precision (Pc.gr.)
and Recall (Rc. r.) of edge set E to evaluate the capability of correspondence reasoning individually.
Metrics are defined as Equation equation 2]

. |[ENE| ENE
C.R. — ~ C.R. —
|E)| |E|

@

Overall. To evaluate the entire task, capability of both sub-tasks should be considered jointly. There-
fore the predicted results are supposed to be the combination of two sub-tasks. Given the predicted
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Figure 6: Overview of the proposed method. Entire approach can be divided into two main parts:
Rule Extraction from Traffic Sign (t0p) and Rule-Lane Correspondence Reasoning ( ).
Rule Extraction model consists of two sequential stages with the same structure VLE but unshared
parameters, and the training procedure is independent.

rules, correspondence should be reasoned between R and L which means the prediction of entire
task is G = (R U L, ) and the ground truth is consistent G = (R U L, E). We evaluate Precision
(P,u) and Recall (Rqy) using the sub-graph G*, where G° = {gfj}m’szl,gfj = ({ri,};},€i;). In

1=
set of sub-graph G*, m is the number of rules, and k is the number of centerlines. Furthermore,
we propose the average precision (AP) for the final benchmark ranking. Metrics are defined in
Equation equation 3] AP score is the area under the precision-recall curve, where p and r denote

Pay and Rgy respectively. We provide an example of calculating the Overall metrics in appendix [I]

|G N G*| _|GsnaG

1
Py = - Ry = ——— AP :/ p(r)dr 3)
|G*| G*| 0

5 A BASELINE METHOD FOR MAPDR

To tackle the multimodal information interaction involving images, texts, and vectors, we develop a
Vision-Language Encoder (VLE) and a Map Element Encoder (MEE). The following sections
detail their structures and applications, as well as the experimental results on MapDR.

5.1 ARCHITECTURE

Vision-Language Encoder. Inspired by vision-language frameworks [Li et al.| (2021} 2022a);
Radford et al.[(2021); Kim et al.|(2021); Bao et al.| (2022}, we designed a vision-language fusion
model named VLE, following|Li et al.|(2021). As shown in Figure@ VLE uses ViT-b16 |Dosovitskiy
et al.| (2021) as the vision encoder, with the text encoder and multimodal fusion encoder each
consisting of L transformer layers |Vaswani et al.| (2017). Each layer of the fusion encoder includes
a cross-attention module for fusion [Li et al.| (2021)). In practice, distinct rules are represented by
varying numbers of symbols and texts, as shown in the OCR results in Figure [f] To address the
challenge of representing variable-length input as fixed-length features, we introduce a [CLS] token
for an entire rule and several [STC] tokens for sentence-level representation. The specific usage
of these tokens is detailed in @ Furthermore, we incorporate inter-instance and intra-instance
attention mechanisms |Liao et al.[(2023b) to enhance model performance by capturing interactions
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Figure 7: Structure of MEE. MEE serves as correspondence reasoning model. Learnable embeddings
are introduced within input to enhance the representing capacity of vector types. inter & intra-instance
attention mechanisms facilitate to capture the relationships and independence of individual vectors.

and independence between and within sentences. In addition to content, layout captures the relative
positions of symbols and texts, offering important semantic meaning. To leverage this, we encode the
layout using the method from Tancik et al.| (2020) and the relative positions of characters as position
embedding following [Devlin et al. (2019). As shown in VLE in Figure[6] text embedding, layout
embedding, and position embedding together form the input of the text encoder.

Map Element Encoder. Vectors can be represented as sequences of points, similar to words in
sentences. Inspired by this, we designed MEE akin to language models Devlin et al.|(2019). The
MEE employs M transformer layers for vector encoding and IV cross-attention layers for multimodal
fusion. Utilizing the method from Tancik et al.| (2020), points of each vector are embedded as point
embedding. To achieve a fixed-length representation, we add [VEC] tokens as the first token of
each vector, similar to [STC] tokens in the VLE. We also introduce learnable type embedding for
vector types, learnable instance embedding to distinguish vector instances, and position embedding
from |Devlin et al.| (2019)) to encode the relative positions of multiple points within a vector. These
embedding are aggregated as the input of vector encoder, as shown in Figure[7] In addition, we employ
inter-instance and intra-instance attention mechanisms |Liao et al.| (2023b) to prioritize interactions
within vectors over interactions between vectors, as depicted in the dashed box on the right side of
Figure The [VEC] token in output serves as fused feature of rules and vectors, enabling the final
prediction of their relationships through association head.

5.2 IMPLEMENTATION

We utilize VLE and MEE as backbones to integrate multiple modalities and address these two
sub-tasks. The specific procedures are detailed as follows:

Rule Extraction from Traffic sign. To clarify the objectives of model, we first cluster symbols
and texts into groups. As shown in the upper part of Figure 6] the VLE is used to encode OCR results
and images. By calculating the cosine similarity between [STC] tokens, different symbols and
texts are clustered into groups. This process is supervised by contrastive loss during training. Next,
using grouped OCR results as text input and maintaining the VLE structure, we extract lane-level
rules. We employ a multi-classification head (understanding head) for the [CLS] token to predict
the corresponding value for each attribute of the rules. This process allows us to express all rules
inside a traffic sign as {key : value} pairs.

Rule-Lane Correspondence Reasoning. MEE is designed for vector encoding and interaction
with rules. Each formatted rule is mapped to an embedding through MLP and fused with vector
features in the fusion encoder, as shown in the lower part of Figure [6] We add a binary classification
head after each [VEC] token to determine the relationship between the current centerline and rule.

5.3 EXPERIMENT

Setups. The dataset is split into train and test sets in the ratio of 9 : 1. L = 6 in VLE and
M = 2, N = 2 in MEE. Input images are resized to 256 x 256 and the feature dimension is 768
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Table 2: Evaluation of the full pipeline. VLE and MEE without any introduced technique serve as
the baseline. Note that "+" denotes models can not converge in the setting.

Model R.E. C.R. Overall

Prg.(%) RrEe(%) Pcr(%) Rcr(%) Pa(%) Rau(%) AP(%)
Baseline 75.78 57.56 * * * * *
VLE+MEE 76.67 74.54 78.05 82.16 63.35 67.37 44.60

Table 3: Evaluation of sub-tasks. Left: Rule Extraction, Right: Correspondence Reasoning. "Attn."
indicates intra & inter-instance attention mechanisms. "Layout" refers to the text layout applied in
VLE. "In.E." and "Ty.E." denotes instance and type embedding in MEE, respectively.

MEE
VLE Por(%) Rer (%)
" @ Prg(%) Rprg(%)
Attn. Layout Attn. In.E. Ty.E.
X X X * *

.); ; ;2;2 3?32 4 X X 68.91 71.39

/ / 76.67 74.54 R 69.68 7276

- i v v v 78.05 82.16

with consistent 12 attention heads. We initialize VLE with pre-trained weights of DeiT [Touvron et al.
(2021)) and BERT Devlin et al.|(2019) while MEE is trained from scratch. The training procedure runs
50 and 120 epochs for VLE and MEE, respectively. All training employ Ir = le — 4, wd = 0.02 with
AdamW |Loshchilov & Hutter| (2019) optimizer and cosine scheduler |Loshchilov & Hutter (2017).
More details can be found in the appendix [J}

Results. We make minimal modifications to ALBEF L1 et al.| (2021)) and BERT [Devlin et al.[(2019)
to adapt them to our task, and we use this as our baseline. As shown in Table [2] the baseline
method failed to converge during the correspondence reasoning procedure, resulting in no statistics
evaluation. Table [3|indicates the attention mechanisms significantly improve Rp ., while layout
of text brings marginal improvement. For the correspondence reasoning sub-task, the attention
mechanisms enables MEE to converge. Instance embedding slightly improves Pc g and Rco g,
while type embedding significantly enhances both, indicating that vector types help the model
establish rule-lane correspondence. The separate evaluation results of all lane types can also be found

in appendix [G]

Qualitative results of MLLMs. We qualitatively evaluated the performance of existing MLLMs
on the tasks of rule extraction and correspondence reasoning using a subset of MapDR. Specific
details and results of the evaluation method are provided in Appendix [Kl The main conclusion of the
evaluation shows that MLLMs understand traffic signs to a certain extent but lack spatial association
capability. This indicates that MLLMs have tremendous potential, but still require careful design
and optimization to adapt to this task. The findings further underscore the necessity of the modeling
approach we have proposed, as it facilitates a more profound understanding of the task.

6 CONCLUSION

We introduce MapDR, a dataset with more than 10, 000 video clips, over 400, 000 images, and at least
18, 000 driving rules. This work defines the task of integrating traffic sign regulations into vectorized
HD map, proposes a viable solution and establishes an effective baseline. With the emergence of
MLLMs, we will explore their potential to tackle this complex comprehending task in future work.

Limitation. In our dataset, we do not consider the impact of dynamic elements, such as traffic
lights, on driving rules, as these scenarios have already been discussed in previous works like
OpenLaneV2 Wang et al|(2023). Instead, we focus on the impact of lane-level rules on driving,
a topic often overlooked in previous datasets. In the future, we plan to incorporate these dynamic
elements to create a more comprehensive dataset.
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A APPENDIX OVERVIEW

Our appendix encompass author statements, licensing, dataset access, dataset analysis, and the
implementation details of benchmark results to ensure reproducibility. Additionally, we offer dataset
documentation in adherence to the Datasheet format|Gebru et al.|(2021), which covers details such as
data distribution, maintenance plan, composition, collection, and other pertinent information.

B AUTHOR STATEMENT

We bear all responsibilities for licensing, distributing, and maintaining our dataset.

C LICENSING

The proposed dataset MapDR is under the CC BY-NC-SA 4.0 license, while the evaluation code is
under the Apache License 2.0.

D DATASHEET

D.1 MOTIVATION

For what purpose was the dataset created? Autonomous driving not only requires attention to
the vehicle’s trajectory but also to traffic regulations. However, in the online-constructed vectorized
HD maps, traffic regulations are often overlooked. Therefore, we propose this dataset to integrate
lane-level regulations into the vectorized HD maps. These regulations can serve as navigation data
for both human drivers and autonomous vehicles, and are crucial for driving behavior.

D.2 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset is open to public.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset will
be made public on Tianchi or ModelScope, while the evaluation code will be publicly released on
GitHub.

D.3 MAINTENANCE

Is there an erratum? No. We will make a statement if there is any error are found in the future,
we will release errata on the main web page for the dataset.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes, the dataset will be updated as necessary to ensure accuracy, and announcements will be made
accordingly. These updates will be posted on the dataset’s webpage on Tianchi or ModelScope.

Will older versions of the dataset continue to be supported/hosted/maintained? Yes, older
versions of the dataset will continue to be maintained and hosted.

D.4 COMPOSITION

What do the instances that comprise the dataset represent? An instance of the dataset consists
of three main parts: a video clip, basic information, and annotation. The video clip comprises at least
30 continuous front-view image frames, with one frame captured every 2 meters to ensure uniform
spatial distribution. Basic information of each clip is presented in the form of a JSON file, including
the locations of traffic sign, all lane vectors, camera intrinsic parameters, and the camera poses for
each frame. Annotation is also organized in JSON format, containing multiple driving rules. Each
rule consists of a set of properties in {key : value} format, along with the index of each centerline
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associated. All coordinates are transferred to the ENU coordinate systems, consistent within each
segment but distinct between segments. For safety and privacy reasons, reference points are not
provided.

How many instances are there in total (of each type, if appropriate)? MapDR is composed of
10, 000 newly collected traffic scenes with over 400, 000 front-view images, containing more than
18, 000 lane-level driving rules.

Are relationships between individual instances made explicit? The frames in a single video
clip are continuous in time with a uniform spatial distribution. All video clips are collected among
different time periods with consistent capture equipment and vehicles

Are there recommended data splits (e.g., training, development/validation, testing)? We have
partitioned the dataset into two distinct splits: training and testing.

Is the dataset self-contained, or does it link to or otherwise rely on external resources? MapDR
is totally newly collected and self-contained. Front-view images are captured and all the vectors are
generated by our vectorized algorithm. All driving rules and correspondence are manually annotated.

D.5 COLLECTION PROCESS

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? Based on our HD map
annotation scheme and annotation team, we have provided high-quality annotations with the help of
experienced annotators and multiple validation stages.

D.6 USE
What (other) tasks could the dataset be used for? MapDR focus on the primary task of integrating
driving rules from traffic signs to vectorized HD maps, which can be divided into two distinct sub-

tasks: rule extraction and rule-lane correspondence reasoning. Researchers can also adapt to other
traffic scene tasks.

E ACCESS TO MAPDR

Due to the sensitive nature of the dataset, which involves geographical location information, the full
dataset is under review FOR NOW, and will be released in the camera-ready version. During
the review phase, we provide reviewers with a subset demonstration of MapDR, consisting of 180
video clips containing all types of lanes, to showcase the characteristics of this dataset.

E.1 URL

FOR NOW Reviewers can download a subset of MapDR from URL below. Full dataset is under
review and will be published in camera-ready.

e https://drive.google.com/file/d/18wCZOWrysJJp8NQ-P103Xcz8_
0O6nxZls/view?usp=sharing

E.2 EVALUATION CODE

We provide source code for sub-tasks and overall metric evaluation on MapDR. The evaluation code
is available at the following URL link.

e https://drive.google.com/file/d/13KVcwHd_6gj—qg_
92T13jA1XnGhD971v_Kx/view?usp=sharing
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F DATASET PRODUCTION

F.1 DATA PRODUCTION PIPELINE

Data Collection. Search and Retrieval: We use out database to locate the GPS coordinates of
traffic signs, utilizing both text-based and image-based retrieval methods. Route Planning: Our
path planning algorithm is employed to design data collection routes. Vehicles equipped with data
collection devices gather raw data, including images, camera parameters, and pose information,
which are then uploaded to the cloud. Data Processing:

Vectorization. In the cloud, BEV (Bird’s Eye View) perception algorithms are applied to generate
vectorized local HD maps. Key point detection and matching algorithms are used to recover the 3D
positions of traffic signs.

Rule Extraction. For each set of multiple image frames containing traffic signs, the most repre-
sentative frame is selected for rule extraction by annotators. Vectorized map results are provided for
annotating rule-lane associations. All captured images and the projection of vectorized maps in these
images are included as reference material to enhance annotation accuracy.

F.2 ANNOTATION PROCESS

Rule Identification. Annotators identify the number of rules on each traffic sign and group related
text information corresponding to each rule.

Annotation Creation. A json file is created with eight properties that annotators fill based on their
interpretation of the rules.

Vector Association. Each rule is associated with the vector ID corresponding to its location on the
vectorized map. Unique IDs are assigned to all vectors.

Quality Assurance. Quality inspection procedures are implemented to ensure the accuracy of
annotations. This includes a thorough review and rework process to correct any discrepancies.

G ANALYSIS OF MAPDR

Data&Label Composition. MapDR is organized into video clips, with each clip focusing on a
single traffic sign. The raw data and annotation are provided as JSON files. Table [6] demonstrates
the composition of raw data. The demo is as shown in Listing [I] The 3D spatial location of the
traffic sign is provided by 4 points represented as traffic_board_pose. Vectors and their types are also
provided. Additionally, camera intrinsics and pose for each frame are provided to facilitate vector
visualization. Note that all coordinates have been transferred to relative ENU coordinate systems
which is consistent within a clip. Considering safety and privacy, the reference point is not provided.
Table[7|shows the details of annotation. The demo is as shown in Listing[2] All pre-defined properties
of driving rules are illustrated. The corresponding centerlines of each rule are annotated by the vector
index. As mentioned in main submission, spatial location of the symbols and texts which represent
the particular rules, referred to as semantic groups, is also provided. Researchers can optionally
utilize this information.

Distribution of MapDR. Figure [§| illustrates the diverse metadata distribution in the MapDR
dataset. Subfigure (a) depicts the distribution of the time period for data collection, primarily from
07 : 00 AM to 06 : 00 PM, indicating that the dataset was mainly collected during daytime. Subfigure
(b) displays the majority of clips containing between 30 and 45 frames.

Auxiliary Evaluation Results. We conducted separate evaluations on all traffic signs of different
lane types in MapDR. As shown in Table ] the results indicate that the prediction difficulty varies
among different categories of traffic signs.
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Table 4: Evaluation results of all traffic signs with different lane types in MapDR. The results are
all based on our method, and the split of dataset remains unchanged.

Metric BusLane DirectionLane EmergencylLane VariableDirectionLane
Pr g (%) 73.44% 78.44% 92.20% 71.42%
RR.E‘(%) 71.98% 77.36% 91.03% 57.14%
Po r. (%) 73.34% 82.12% 92.85% 71.42%
Rc.gr.(%) 76.76% 87.03% 91.00% 85.71%
Metric NonMotorizedLane VehicleLane TidalFlowLane MultiLane SpeedLimitedLane
Pr g (%) 80.00% 88.88% 0% 82.09% 60.34%
Rr.e.(%) 72.00% 74.41% 0% 82.56% 53.85%
Po.r. (%) 85.41% 61.90% 0% 81.33% 88.15%
Ro.r (%) 83.67% 72.22% 0% 83.94% 97.10%
61 18 89 9-10 \_Il;l;‘w\;’;::o\;(\): ;:,1;;:0:: 15-16 16-17 17-18 1g-19 303132333435363738 wz}:}:;z:fz:;;;::;g: le)i_;v 515253 54 55 56 57 58 59 60
(a) (b)

Figure 8: Distribution of MapDR.

Potential negative societal impacts. To minimize negative societal impact, we have applied
obfuscation techniques to license plate numbers, facial features, and other personally identifiable
information in our dataset. Additionally, sensitive geographical locations have been excluded, and
coordinates in the ENU coordinate system have been provided without reference points to safeguard
privacy. However, considering the potential inaccuracies and deviation of data distribution, the model
may have misinterpretations and biases during the learning process. If such models are used on
public roads, it could pose safety issues. Therefore, we recommend thorough testing of models before
deploying to any autonomous driving system.

H VISUALIZATION OF MAPDR

Figure[IT]visualizes driving rules for different lane types in the dataset, including BEV and front-view
images, as well as formatted driving rules. The red pentagram in the BEV image marks the position
of the traffic sign. The front-view image displays the lane vectors and manually annotated semantic
groups, with driving rules organized as sets of {key : value} pairs.

Figure [12] shows diverse types of traffic signs collected at different times, locations, and weather
conditions, demonstrating rich inter-class differences and intra-class diversity, highlighting the
complexity of the MapDR dataset.
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I EXAMPLE FOR EVALUATION METRIC

We provide an example of metric calculation as Figure 0] shown, illustrating the evaluation process.
Given the ground truth G with 5 rule nodes and 8 centerline nodes while 6 edges between them, we
assume that the algorithm has predicted G with 6 rules and 5 edges, the metric calculation process is
detailed as below.

Ground Truth Predict Result

. True Positive
Rule

:/O

%:; . gz;llsee Positive
.\O

.\8

@

True Positive
Matching

JALN

Rules Rules
O False Positive

Matching

Centerlines | | Centerlines |

Figure 9: Illustration for Evaluation Metrics.

First, for the Rule Extraction from Traffic Sign sub-task, the ground truth has 5 rules, while the
algorithm predicted 6 rules, of which 3 are correct ( ) and 3 are incorrect (red circles).
Then the precision (Pg. g.) and recall (R g.) are calculated as Equation equation Et

_|RNR| 3 _|RNR| 3

G BETTR 5 @)

R.E.

Next, for the Rule-Lane Correspondence Reasoning task, there are 6 association results in the
ground truth, but the algorithm predicted 5, with 3 being correct ( ) and 2 being incorrect
(red lines). Then, the precision (P¢.g.) and recall (R r.) are calculated as Equation equation Et

_|EnE| 3 _|EnE| 3

B 5 “rT B T 6 )

C.R.

Finally, considering the entire task, in the ground truth, a total of 6 lanes are assigned driving rules.
The model predicted driving rules for 5 lanes, with correct predictions for both the association
relationship and driving rules for only 1 lane. Therefore, the precision (FP,;;) and recall (R,;;) for the
entire task are calculated as Equation equation [6}

P _1GNG| 1 _lGenGe 1
all — |G5| - 5 all — |G§| _6 (6)

J IMPLEMENTATION DETAILS

All experiments are conducted using PyTorch 1.8.0 on 8 NVIDIA V100 16G GPUs. We utilize pre-
trained weights of DeiT [Touvron et al. (2021)) and BERT |Devlin et al.|(2019) to initialize the model
in our experiments. Both of these assets are licensed under the Apache-2.0 license. Additionally, we
have adopted ALBEF Li et al.|(2021) as our code base, which is available under the BSD 3-Clause
license.
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J.1 VISION-LANGUAGE ENCODER (VLE)

Hyperparameters and Configurations. We conduct Ir = le — 4, warmup_lr = le — 5,
decay_rate = 1, weight_decay = 0.02, embedding_dim = 768, momentum = 0.995,
alpha = 0.4, attention_heads = 12, and batch_size = 32 for all experiments. We initialize
vision encoder with pre-trained weight of DeiT [Touvron et al.[(2021)), text encoder and fusion encoder
with the first 6 layers and last 6 layers of BERT [Devlin et al.|(2019), respectively. The fine-tuning
epoch is set to 50. Input image is resized to 256 x 256. The maximum number of tokens for input
in the text encoder is 1000. RandomAugment is used, with hyperparameters N = 2, M = 7, and
it includes the following data augmentations: "Identity”, "AutoContrast", "Equalize", "Brightness",
"Sharpness".

Clustering head. We calculate the cosine similarity between the [STC] tokens to determine if
they represent the same rule. The training procedure is supervised by Contrastive Loss. The positive
margin is set to 0.7, and the negative margin is set to 0.3.

Understanding head. For properties in each rule, we prefer to classify their value into pre-defined
classes. Specifically, for "Rulelndex", "LaneType", "AllowedTransport”, "EffectiveDate" we employ
linear layer to perform classification with Cross-Entropy Loss. For "LaneDirection”, this property is
predicted by a multi-label classification that direction is defined as a combination of multi-choice
from ["None","Forbidden","GoStraight", "TurnLeft","TurnRight","TurnAround"]. The training loss
is Binary Cross-Entropy Loss. Additionally, properties of "EffectiveTime", "LowSpeedLimit" and
"HighSpeedLimit" are formed as string. In practice, we classify the [STC] token to determine
whether the OCR text is time or speed and use the original OCR text as the predicted value of these
three properties.

J.2 MAP ELEMENT ENCODER (MEE)

Hyperparameters and Configurations. We conduct Ir = le — 4, warmup_lr = le — 5,
decay_rate = 1, weight_decay = 0.02, embedding_dim = 768, momentum = 0.995,
alpha = 0.4, attention_heads = 12, and batch_size = 48 for all experiments. We train MEE
from scratch, the training epoch is set to 120. The maximum number of tokens for input in the
vector encoder is 1000. The formatted rule is mapped to a 768-dimensional vector by an MLP.
Specifically, each property in the rule is mapped to a 768-dimensional vector (except for "Effec-
tiveTime", "LowSpeedLimit" and "HighSpeedLimit"), and the position of the traffic sign is also
mapped to a 768-dimensional vector through a position encoding method (as described in the main
submission), and finally, all these vectors are added together to obtain the final feature of the rule.
In MEE, there are a total of four types of embeddings: vector embedding, position embedding,
type Embedding, and instance embedding. The encoding method for vector embedding and posi-
tion Embedding is detailed in the main submission. For type embedding, as there are 5 types in
total, we initialize it using nn.Embedding, with the hyperparameters num_embeddings = 5 and
embedding_dim = 768. Similarly, we also use nn. Embedding to initialize the instance embedding,
with the num_embeddings = 120 and embedding_dim = 768, meaning it can support a maximum
of 120 vectors. It is important to note that since the instance embedding is only used to distinguish
different vectors, we shuffle the order of these embeddings at each iteration. After the multimodal
fusion encoder of MEE, we further incorporate an nn.Linear to map the 768-dimensional features
to 256, which is then connected to the association head.

Association head. We perform binary classification on [VEC] tokens to determine whether the
vector is corresponding to the input rule. The training procedure is supervised with Binary Cross-
Entropy Loss.

J.3  ANALYSIS OF EVALUATION ERROR

We conduct multiple experiments on our method with various random seed, and the experimental
results are shown in Figure[T0] We repeated all experiments 5 times with various seeds which are
depicted in different colors. We uniformly sampled 100 points within the range of 0 to 1 as the
binary classification threshold for association head in correspondence reasoning procedure, and then
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Figure 10: Overall P-R curves with various random seeds.

calculate the P,;; and R,;; for each threshold. The mean fitted line is shown in black, demonstrating
the stability of our method. Specifically, we calculated the standard deviation of all evaluation
metrics at a fixed threshold among different random seeds. For rule extraction sub-task, the standard
deviation of Pr . and Ry g. are 0.32 and 0.38. In the rule-lane correspondence reasoning sub-task
the standard deviations are 0.07 and 0.38 for P . and Rc g.. Overall, the standard deviations of
P, Ray and AP are 0.18 0.10 and 1.07, respectively.

K QUALITATIVE RESULTS OF MLLM

We qualitatively evaluated the performance of existing MLLMs on the two subtasks of Rule Extrac-
tion and Correspondence Reasoning using a subset of MapDR, which consists of 20 randomly
sampled examples for traffic signs among all lane types, totaling 180 cases. Annotators subjectively
assessed the correctness of MLLM outputs. Since MLLMs cannot provide confidence scores for their
predictions, we could not use a threshold to calculate precision and recall metrics. Therefore, we

evaluated accuracy, specifically Accg.gp. = |R|gf% | and Acco.r = ”ﬁ gf ‘ , as shown in Table

Table 5: Accuracy on the subset of MapDR. MLILM:s are subjectively evaluated by annotators, so
the results only approximately reflect their capacity.

Model Accp.p (%) Acce.r (%)
Qwen-VL Max [Bai et al.| (2023 44.4 20.6
Gemini Pro Team et al.| (2024) 31.1 6.1
Claude3 Opus|Anthropic|(2024) 4.4 1.1
GPT-4V [OpenAl 3.3 1.7
Ours 65.15 78.84

All existing MLLMs are evaluated without SFT, clearing former memories before each prompt to
avoid contextual influence. This experiment primarily aims to qualitatively analyze the zero-shot
capacity of MLLMs in traffic scene understanding, rather than a rigorous quantitative comparison.
Overall, the results highlight the necessity of this task and dataset.

As all the traffic signs and rules are from China, described in Chinese, we utilized a Chinese prompt.
In Figure[I3] we present our input, including the image and prompt, along with the results generated
by MLLMs. Our prompt can be translated as: "What is the meaning of the traffic sign in the red
box? In this picture, the red lines represent the lane centerlines, which centerline or centerlines
are related to the traffic sign in the red box?". The use of a Chinese prompt may also contribute to
Qwen-VL’s better performance, as it originates from Alibaba, a Chinese company, and its training
process involved more Chinese text compared to other models [Bai et al.| (2023).
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Additionally, we referenced Shtedritski et al.|(2023)) to mark the red boxes and red lines in the images
as visual prompts for the signs of interest and the centerlines of the lanes, which is convenient but
may not be the most effective method and may also limit the performance of MLLMs. Furthermore,
according to|Rang et al.|(2023)), we can learn that apart from the Qwen-VL model, other models such
as GPT-4V have weak capabilities in Chinese OCR, so this possibly limit their cognitive performance.
Overall, despite MLLMSs’ zero-shot performance not achieving remarkable results, they possess
significant potential. We believe that with further prompt optimization, the implementation of SFT,
and other methods, larger models will undoubtedly achieve improved results in the future.

Table 6: Data Composition.

Key Subkey Sub-subkey Type Value
"traffic_board_pose" / / List[List[float]]] [[z1, y1, 21]s...]

"0" (Divider)
"1" (Special Divider)
"2" (Road Boundary)

rvector” Q" type Single Select "3" (Centerline)
"4" (Crosswalk)
"vec_geo"  List[List[float]]] [[z1,y1,21]s...]
[[filh Os Cm]’
"camera_intrinsic_matrix" / / List[List[float]]] [0, fy, cyl,
[0, 0, 1]]
"camera_pose" "(timestamp) " tvec_enu List[float] [t1,to,t3]
"rvec_enu"  List[float] [r1,72,73,74]
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Table 7: Label Composition. "None" denotes the rule does not restrict the specific property. The
property "LaneDirection" is represented by the combination of multiple selected basic directions.

Key Subkey

Sub-subkey

Type

Value

"attr_info"

Q"

LaneType

Single Select

"DirectionLane"
"BusLane"
"EmergencyLane"
"VariableDirectionLane"
"Non-MotorizedLane"
"VehicleLane"
"TidalFlowLane"
"MultiLane"
"SpeedLimitedLane"

Rulelndex

Str

eg: uou

LaneDirection

Multiple Select

"None", GoStraight"
"TurnLeft", "TurnRight",
"TurnAround", "Forbidden"

AllowedTransport

Single Select

"None"
I|BusH
"Vehicle"
"Non-Motor"
"Truck"

EffectiveDate

Single Select

"None"
"WorkDays

EffectiveTime

Str

eg: "7:00-9:00 "

LowSpeedLimit

Str

eg: "40"

HighSpeedLimit

Str

eg: "120"

"centerline"

/

List[int]

eg: [16,...]

"semantic_polygon"

/

List[List[float]]]

[[1.15 Y1, Zl]» .. ]
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Listing 1: Example of data file.

"traffic_board _pose": [
[6250.741478919514, -23002.897461687568, -51.60124124214053 1,
[6250.767766343895, -23002.852551855587, -53.601367057301104],
[6247.90629957122, -23005.522309921853, -53.698920409195125]
[ ]

’

6247.880012146425, -23005.5672197543, —-51.69879459403455
1,
"vector": {
L
"type": "2",
"vec_geo": [
[6222.740794670596, -22977.551953653423, -59.28851334284991 ],
[6224.65054626556, -22979.753116989126, -59.31985123641789 1,
[6229.777790947785, -22985.886256590424, -59.40054347272962 1],
[6237.236963539255, -22995.08138003234, -59.51233040448278 1],
[6242.709547414123, -23002.134314719562, -59.58363144751638 1],
[6247.894389983971, -23008.135111707456, -59.648408086039126],
[6253.242476279292, -23014.058069147195, -59.700414426624775],
[6258.56982873722, -23020.026259167204, -59.72872495371848
]
I
WIT8Y ccocoo0 }r
"camera_intrinsic_matrix": [
[904.9299114165748, 0.0, 949.21633977031931,
(0.0, 904.9866120329268, 623.7475554790544],
[0.0, 0.0, 1,0 ]
1,
"camera_pose": {

"1710907374739989000": {
"tvec_enu": [6217.6643413086995, -22963.182929283157, -57.714795432053506],
"rvec_enu": [-0.2097012215148481, 0.6478309996572192,
-0.6804515437189796, 0.2707879063036554]

I
}
}
Listing 2: Example of label file.
{
now. g
"attr_info": {
"LaneType": "DirectionLane",
"RuleIndex": DIw
"LaneDirection": ["GoStraight", "TurnLeft"]
"EffectiveTime": "None",
"AllowedTransport": "None",
"EffectiveDate": "None",
"LowSpeedLimit": "None",
"HighSpeedLimit": "None"
by
"centerline": [17],
"semantic_polygon": [
[6250.473053530053, -23003.147903473426, -51.91421646422327],
[6250.387053162556, -23003.22814210385, -53.56106227565867],
[6249.308139461227, -23004.234772194584, -53.48654436563898],
[6249.381109470012, -23004.166690932405, —-51.82106907669865]
]
b
win. g
"attr_info": {
"LaneType": "DirectionLane",
"RuleIndex": w2w,
"LaneDirection": ["GoStraight"],
"EffectiveTime": "None",
"AllowedTransport": "None",
"EffectiveDate": "None",
"LowSpeedLimit": "None",
"HighSpeedLimit": "None"
by
"centerline": [16],
"semantic_polygon": [
[6249.081411219644, -23004.446310402054, -53.45673720163109 ],
[6249.21171480676, -23004.324736719598, -51.76890653968486 1],

]
]
[6248.1406193206585, -23005.324072389387, -51.694388629665156],
[6248.0546189531615, -23005.404311019807, -53.37476750060943 ]
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Figure 11: Visualization of MapDR.
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(b)

Figure 11: Visualization of MapDR.
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Figure 12: Visualization of traffic signs.

25



Under review as a conference paper at ICLR 2025

P o 27 6 HE B (A SRR T £ & 32 KR Y, R Bt ok R ik
AR, XA EHE OB PR R B LRI — R o W LK

ZI&%EWB’KZ;EH*E ’\‘L‘I«‘blﬁ%"uﬁm hﬁﬁﬁ% iB‘lﬂ*ﬂHJEﬁlJ\l
(7:00-9:00 A1 o BIRIERRIY AR,
FEX KA F e, 520K BT (I 8. ARAE ACIBF ﬁ&ﬂl’iey 52
ﬁﬂ)(ﬁ’]$l!i!‘l?%?:iﬁiﬂﬂ94§ LR, FONERERT, AR
BB B A . IR, T%%Tén@l&liéﬂi%?ﬁ&?’ﬁ
T S 25 N I8 1 4 1 S o 23

SR

B4 (E B SRR R . AR LR I AR EERO, 16
EM98.
& & ESiVi N

S EARREA

P20 €5 AE FRL 1) S 64 A TR AR A . I 28l
X AT (.23 £ G % SR AR EL AT RO 2RI 2R, DA S A (I R O R
TR XL 1 B RIE ) 552 A S AR & .

ZIE#‘[*B‘JKZJEMWEEKF&EI?M#‘%#TW S T AR 2R 7 ek
B BTEFMSHESR, RIEEEREMmE AN

§?$132£v L1628 B RN A R0y . AL EHE R ARRRAN 0
&V&Eﬁiz&ﬁh#m%“$ﬁ& ﬁiw%aﬁhfhm'ﬁ‘iﬁﬂﬂﬁzﬁi

HObR R 2408 F IR AT BT, EONELAT | 724t 43
% JZENHEJHWET Sk A3, A DR SR 2SR AT R L
SRR, % T % D URIE L5 R

Gemini

B o AT R E B S A MR T A4 8 7 S

At ? i E g,
ZEILR, FIEALL ENE A A2 bR SR Y %t 2 R

At p ek
SRREW KT

XK P T SR R — AN RTTI  B R GHE P9 9 STImBR S 5 A S
B, VR, R MR ARk, IR R R IX A R R —
W, JO7 e AR SO 7 RUAT T 4

KT LG E, T R R R S SRR,
FAVTCR5E FLA— k SR Lo Al (RSB, EM 40l

BB AH Ty, SR B4 77 R TR 05K 5] 5 250 53 0 fT £ i s ]
77 A . R R R, A 2 A LA A AR ek
HIH LI

57

B e 2T A L A bR R T "ﬁ%&ﬁ!iﬁ$ﬁ, TEMIERT B, %%
MATRER S A5 AT, HEROEH AR

SRR, AL MR TN, AL EHE 22 BT %
it 2 AL SRR AR L R TR ) R

AT
Gemini

g%g;};E‘]iﬁﬁkﬁiﬁtﬁ$i§%%ﬁ¥iﬁ,ﬂlﬂ'ﬂ"&§$\ HiH AR E
%ﬁﬁ#;ﬁa@m%ﬁ*ﬁﬁﬁﬁl AW S BN % Rl A2l

. 2. $Eﬁwmﬁéﬁﬁﬁrﬁ4&$ﬁju%ﬂ%ﬁﬁﬁt)\fﬁ
$ﬁ BB CLE % AEH P AT B AR R

Hﬂﬁ$%$mﬁ‘7§miﬁﬁ,ﬁm&%&ﬁ%;i&tﬂRSEEM%WIEWE{A
G

q@aﬁwmmwme\r:ﬁﬁ%, ARSI R T (A B
¥1!

YIE?;;WI#NFW$JE% AR, T 54 5 Sk 2SR A
RSN, i%%%i&%ﬁﬁﬁ&‘]ﬂ AL . X%
$1§Efjﬂﬁ7§ﬁﬁ%9’l$%&éﬂ’l

JT AL iR JX AN T ARRE L $1Eﬁz(ﬁ&ﬁ Fﬁﬁﬂi7&$ﬁﬁ/\i$\

the lane centerlines, which centerline or centerlines are related to the traffic sign in the red

‘What is the meaning of the traffic sign in the red box? In this picture, the red lines mpl:s:nl}
X?

The traffic sign in the red box is a bus lane indication. It indicates that during specified
times (7:00:9:00/and 16:00=19:00). the lane is designated as a bus lane.

In this picture, there are three road markings in red. Based on the content of the traffic sign,
the associated lane should be the Fightmost red Tane, as bus lanes are typically positioned on
the right side of the road. However, please note that actual road conditions may vary by
location and specific circumstances, so drivers should adhere to local wraffic signs and
regulations while driving.

times are from 7:00 am 0 9:00 am and from 4:00 pm to 7:00 pm. The lane markings related

‘The traffic sign in the red box in the picture indicates that the bus boarding and alighting
o this traffic sign are composed of dashed and solid lines that delineate the lanes.

The traffic sign in the red box in the picture indicates that the road ahead will bifurcate,
and there s a fork i the oad. The red lane markings corresponding to this traffic sign
include the two middle straight lanes and the diagonal lane on the right for diverging. The
positioning and direction of these lane markings align with the indication of the bifurcation
provided by the affic sign.

The waffic sign in the red box has a blue background with white lettering and is typically
used o indicate direction or provide information about road names and locations. Due
the limited resolution of the image, T am unable to read the specific text onit.

As for the lane markings, the red lines are used to delineate the lanes. The lane markings
related to the sign in the red box should be those closest to the sign, particularly the lane
directly below the sign. Typically, such signs indicate the direction of travel for the lane
below, such as straight, left tum, right wm, etc. Here, the red lines mark three lanes, and
the lane on the far right is likely directly associated with the traffic sign, providing drivers
with information about upcoming intersections or direction choices.

o
Gemini

‘What is the meaning of the traffic sign in the red box? In this picture, the red lines represent
the lane centerlines, which centerline or centerlines are related to the traffic sign in the red

The image depicts an urban road scene. The traffic sign within the red box reads "HOV!
Lane, Watch for Changes” with an arrow pointing (© the left. This significs that the lane is a
high-occupancy vehicle (HOV) lane, and its direction may be adjusted based on traffic flow
requirements.

Regarding the issue of the red lines, since the ifmage does ot clearly indicate which lares
e associated with this Sign. we cannot determine the specific lane or lies. However.,
typically in locations with HOV lanes, there are corresponding signs and pavement
markings to guide drivers on how 1o use these variable-direction lanes. For more precise
information, it may be necessary to examine photos from different angles or conduct an
onsite observation.

VS

(The traffic sign within the red box in the picture indicates: “This section is an HOV lane.
During peak hours, ths lane may only allow travel in one direction. Please pay attention to
the signs.”

In this image, red lines are used to represent lane markings, and e lane markings related o
{he traffic sign within the red box consist of solid and dashed lines. forming lane dividers.

Gemini

The traffic sign in the red box indicates that the lane is a dedicated lane, allowing only
ific vehicles such as buses and taxis (o travel.

The lane markings related to this sign are as follows: | /The leftmost red solid line serves as.
the boundary for the dedicated lane. 2. The red dashed line 10 the right of the dedicated lane.
allows other vehicles to cross into the dedicated lane, but they must yield to vehicles
already traveling in the dedicated lane.

Overall the traffic sign, in conjunction with the lane markings, clearly specifies the lane as
a dedicated route for buses, taxis, and other authorized vehicles, with other vehicles
required o yield and only temporarily enter the lane when necessary.

“The traffic sign within the red box i a gt W rrow, indicating that the Tane is dedicated
for making right tums. The red lines denote multiple lanes, and the lane marking associated:
with the right wm arrow traffic sign is the one on the right side of the image, or the lanc
furthest to the right on the road. This lane is intended for vehicles traveling in

|

Figure 13: Prompts and answers for MLLMs.
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the lane centerlines, which centerline or centerlines are related t

the traffic sign in th
box?

{Wlm i he meaning of th raffie sign i he red box? n hispire the rd ines mpnszn‘;}

d with this traffic sign. It
non-motorized vehicles.

“The rafic sign within the red bos s a bicycle symbol, indicating (hat i s a non-molorzed
. In the image. Iiie, which is the lanc associate
-ated lane for bicycles and other

[The traffic sign within the red box in the picture is a bicyele lane, and the lane markings
related to the bicycle lane are the two leftmost red lines in the image.

Gemini

(The traffic sign within the red box indicates & probibition on proceeding straight and oy

There are two red lane markings related 1o this sign:
1The rightmost lane marking instructs vehicles to make a right tum into the right lane.

2.

right-um lane.

Therefore, this sign. in conjunction with the lane markings, clearly informs drivers that the
lane is only for right twns and prohibits proceeding straight through the intersection. If a
vehicle needs to make a right tun, it can change lanes in advance and enter this dedicated
\right-um lane. )

“The traffic sign in the red box is a blue circular sign with a white arow pointing upwards,
indicating that only straight-ahead movement is allowed. This sign informs drivers that at
the upcoming intersection or on the lane, turning is not permitted, and vehicles must contin
ue straight.

The red lines in the image indicate the lane markings on the road, guiding the movement
of vehicles. The lane markings directly related (0 the straight-ahead waffic sign in the red
box:shouldinclude the red lines in the straight-ahead Tane, ic., those in the central
position of the image pointing in the direction of the traffic sign. This indicates that
vehicles proceeding straight should follow these lane markings.

® [

‘Whatis the meaning of the traffic sign in the red box? In this picture, the red lines represent
the lane centerlines, which centerline or centerlines are related (o the traffic sign in the red

The image depicts a highway scene. The traffic signs within the red box indicate the speed
Tlimits for different lanes: the green sign on the far left indicates “passenger cars only, the
‘middle sign shows 90" and 70", and the right sign shows “80” and "60°. These numbers
represent the maximum speeds allowed for cach lanc. In the image, fed lifies mark thiee
Janes. Based on the position and direction of the traffic signs, it can be inferred that the
lanes related 1o the traffic signs within the red box should be the middle and right lanes.
‘This is because the left sign applies only to p: rcars, while the middle and right signs
correspond 1o different speed limits. Therefore, vehicles traveling in these two lanes
should adhere to the respective speed limits.

(The traffic sign within the red box indicates that the right two lanes are travel lanes with’
spee it of 70k and 60K, rspectivly. The related e markings are e red | - 7iri
dashed fines,

The traffic sign within the red box is a lane selection Sign. This type of sign is typically
used to indicate the available choices of travel lane direction at upcoming intersections.

Jines. This lane corresponds to the right-tum and straight-ahead arrow in the sign, indicating
that this lane can be used for cither right wms or for proceeding straight through the
upcoming intersection.

The traffic signs within the red boses are directional signs tha indicate the destination the')
driver can reach from the lane and the minimum and maximum speed for that lane. The

hour. Above the signs, there are directional arrows indicating the direction of the road
ead.

. The red lines indicate these lanes. In the picture, it's not clear which
specific lanes correspond to the signs, but generally, the lane corresponding to the sign on
the right will be to the right of the red lines marked in the picture, and the left lane will

respond to the information in the sign on the left

Figure 13: Prompts and answers of MLLM:s.
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