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Abstract

Raman spectroscopy is a non-destructive and
label-free chemical analysis technique, which
plays a key role in the analysis and discovery
cycle of various branches of life and physical
sciences. Recently, there has been a marked
increase in the adoption of machine learning
techniques in Raman spectroscopic analysis.
Nonetheless, progress in the area is still impeded
by the lack of software, methodological and
data standardisation, and the ensuing fragmen-
tation and lack of reproducibility of analysis
workflows thereof. To address these issues, we
introduce RamanSPy, an open-source Python
package for Raman spectroscopic data analysis,
which supports day-to-day tasks, integrative
analyses, the development of methods and
protocols, and the integration of advanced
data analytics. RamanSPy is highly modular,
not tied to a particular technology or data
format, and can be readily interfaced with the
burgeoning ecosystem for data science, statistical
analysis and machine learning in Python. Ra-
manSPy is hosted at https://github.com/
barahona-research-group/RamanSPy,
supplemented with extended online
documentation, available at https:
//ramanspy.readthedocs.io, that
includes tutorials, example applications, and
details about the real-world research applications
presented in this paper.
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1. Introduction
Raman spectroscopy (RS) is a powerful sensing modality
based on inelastic light scattering, which provides qualita-
tive and quantitative chemical analysis with high sensitivity
and specificity (Colthup, 2012). RS yields a characteri-
sation of the vibrational profile of molecules, which can
help elucidate the composition of chemical compounds, bi-
ological specimens and materials (McCreery, 2005; Shipp
et al., 2017; Fernandez-Galiana et al., 2023). In contrast
to most conventional technologies for (bio)chemical char-
acterisation (e.g., staining, different omics, fluorescence
microscopy and mass spectrometry), RS is both label-free
and non-destructive, thereby allowing the acquisition of rich
biological and chemical information without compromising
the structural and functional integrity of probed samples.
This advantage has enabled a broad range of applications of
RS across biomedical and pharmaceutical research (Smith
et al., 2016; Shipp et al., 2017; Cialla-May et al., 2017;
Wang et al., 2018; Vankeirsbilck et al., 2002; Auner et al.,
2018; Kong et al., 2015), materials science (Weber & Mer-
lin, 2013; Kumar, 2012), environmental science (Halvorson
& Vikesland, 2010; Ong et al., 2020), and others (Pang et al.,
2016; Chalmers et al., 2012; Terry et al., 2022).

An area of topical interest is the frontier of Raman spec-
troscopy, chemometrics and artificial intelligence (AI), with
its promise of more autonomous, flexible and data-driven RS
analytics (Pan et al., 2022; Luo et al., 2022; Lussier et al.,
2020). There has been a recent surge in the adoption of
AI methods in Raman-based research (Fernandez-Galiana
et al., 2023), with applications to RS now spanning domains
as broad as the identification of pathogens and other mi-
crobes (Ho et al., 2019; Lu et al., 2020; Yan et al., 2021;
Wang et al., 2021); the characterisation of chemicals, in-
cluding minerals (Carey et al., 2015), pesticides (Zhu et al.,
2021) and other analytes (Han & Ram, 2020; Akpolat et al.,
2020); the development of novel diagnostic platforms (Ral-
bovsky & Lednev, 2020; Talari et al., 2019; Heng et al.,
2021; Zhang et al., 2022); as well as the application of
techniques from computer vision for denoising and super-
resolution in Raman imaging (Horgan et al., 2021).

Yet, progress in the area is still hindered by practical fac-
tors stemming from the restrictive, functionally disparate,
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Figure 1. Core infrastructure of RamanSPy. a, RamanSPy provides a comprehensive library of standardised, simple-to-use procedures for
data loading, preprocessing, analysis and visualisation organised within a modular and extensible architecture. b, An example workflow
use case in RamanSPy: Raman data is loaded, preprocessed and analysed in a few lines of code.

and highly encapsulated nature of current commercial soft-
ware for RS data analysis. RS data analysis often operates
within proprietary software environments and data formats,
which have induced methodological inconsistencies and re-
duced cross-platform and integrative efforts, with growing
concerns around reproducibility (Byrne et al., 2016; Tan-
war et al., 2021; Barton et al., 2022; Möller et al., 2017;
Ntziouni et al., 2022). These restrictions have hampered
the development, validation and deployment of emerging
AI-based technologies for RS.

In response to these challenges, we have developed Ra-
manSPy - a modular, open-source framework for Raman
Spectroscopy analytics in Python. RamanSPy is designed
to systematise day-to-day workflows, enhance algorithmic
development, integration and reproducibility, and accelerate
the adoption of AI technologies into the RS field.

2. Core infrastructure of RamanSPy
RamanSPy is based on a modular, object-oriented program-
ming infrastructure comprising a comprehensive collection
of pre-defined tools for RS data analysis, which streamlines
the analysis life cycle and reduces computational barriers to
RS analytics (Figure 1).

Data loading and management. The framework adopts
a scalable array-based data representation based on
NumPy (Harris et al., 2020), which accommodates different
spectroscopic modalities, including single-point spectra, Ra-
man imaging data, and volumetric scans. Experimental data
can be loaded through custom loaders built into RamanSPy

or through standard tools available in Python. The data
representation functions as a common data container that
facilitates the integrative analysis of data across setups and
vendors, independent of instrumental origin and acquisition
modality, and defines the interface between RS data and
analysis tools within and beyond RamanSPy.

Preprocessing, analysis and visualisation. On top of its
data management infrastructure, RamanSPy provides an ex-
tensive toolbox for preprocessing, analysis and visualisation.
The preprocessing suite includes techniques for denoising,
baseline correction, cosmic spike removal, normalisation
and background subtraction, among others. Likewise, the
analysis toolbox includes modules for decomposition (use-
ful for dimensionality reduction), clustering and spectral
unmixing. RamanSPy also includes a set of data visualisa-
tion tools, intended to facilitate routine visualisation and
exploratory analysis. All these modules are organised into
a common class structure, which standardises their appli-
cation across projects and datasets to facilitate transferable
analysis workflows. Note that this suite is highly flexible
and designed to cater to a wide range of requirements, ap-
plications and user profiles.

Automated pipelining of spectral preprocessing proto-
cols. Due to a lack of standardisation and frameworks that
streamline the preprocessing of RS data (Byrne et al., 2016),
researchers tend to utilise variable preprocessing protocols,
often dispersed across different software systems (Rozen-
stein et al., 2014; Alshdaifat et al., 2021). This significantly
affects reproducibility and validation, especially in the con-
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Figure 2. RamanSPy interfaces with AI/ML Python frameworks to create new methods for RS analysis. a, RamanSPy allows users
to incorporate AI/ML models seamlessly into pipelines created within the platform. b, A pre-trained 1D ResUNet deep-learning
denoiser (Horgan et al., 2021) is integrated as a preprocessing module within RamanSPy to investigate its performance against the
Savitzky-Golay (SG) filter (Savitzky & Golay, 1964). top, Denoising of a spectrum from Horgan et al. (2021), where the low-SNR
(purple) is the input and the high-SNR (green) is the target. The data is denoised with an SG filter of polynomial order 3 and kernel size 9,
SG(3, 9) (blue), and with the implemented deep-learning denoiser (yellow). bottom, The results on the test set from Horgan et al. (2021)
(n = 12694) show that the deep-learning denoiser outperforms six SG filters across three performance metrics (MSE, SAD, SID). Error
bars represent one standard deviation around the sample mean. Statistical significance measured with a two-sided Wilcoxon signed-rank
test with adjustment for multiple comparisons based on Benjamini-Hochberg correction (Benjamini & Hochberg, 1995) (* P < 0.05, **
P < 0.01, *** P < 0.001, **** P < 0.0001). c, Same analysis on unseen data from Kallepitis et al. (2017) (n = 1600). The input
(purple) corresponds to data contaminated with added noise and the target (green) to the original data. In this case, the deep-learning
denoiser only shows an improvement for MSE.

text of AI model development.

To facilitate the creation of reproducible protocols, Ra-
manSPy incorporates a pipelining infrastructure, which sys-
tematises the process of creating, customising and execut-
ing preprocessing pipelines. Users can use a specialised
class, which defines a generic, multi-layered preprocessing
procedure, to assemble pipelines from selected built-in pre-
processing modules or other in-house methods. To reduce
overhead, constructed pipelines are designed to function
exactly as any single method, i.e., they are fully compatible
with the rest of the modules and data structures in the pack-
age. Furthermore, pipelines can be easily saved, reused and

shared (e.g., upon publication) to foster the development of
a shared repository of preprocessing protocols. As a seed to
this repository, RamanSPy provides a library of assembled
preprocessing protocols (custom pre-defined, or adapted
from the literature (Bergholt et al., 2016)), which users can
access and exploit.

3. AI and Raman Spectroscopy: Bridging the
gap with RamanSPy

To help accelerate the adoption of AI technologies for RS
analysis, RamanSPy is endowed with a permeable archi-
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Figure 3. RamanSPy as a suite for algorithmic development. a, Data representations in RamanSPy are compatible with the Python AI/ML
ecosystem, allowing data flow from RamanSPy to scikit-learn (Pedregosa et al., 2011), PyTorch (Paszke et al., 2019), tensorflow (Abadi
et al., 2016), etc. RamanSPy is also equipped with standard datasets and relevant metrics to support model development and validation.
b-e, Benchmarking ML classification models on the task of bacteria identification using Raman spectra from Ho et al. (2019). b, Mean
Raman spectra of each bacterial species in the dataset used for training. Spectra are min-max normalised to the range 0–1 for visualisation
purposes. c, Benchmarking results of 28 ML models. The best accuracy was achieved by the logistic regression classifier. d-e, Confusion
matrices for the best species-level (d) and antibiotic-level (e) classifier with accuracies of 79.63% and 94.63%, respectively.
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tecture that streamlines the interface between Raman spec-
troscopic data and the burgeoning machine learning (ML)
ecosystem in Python. This is complemented by access to
built-in datasets and performance metrics to further support
the development and testing of new models and algorithms.
We show below two examples of RamanSPy’s capabilities
for ML integration and validation.

AI integration. First, RamanSPy allows the seamless in-
tegration of methods from standard AI/ML frameworks
in Python (e.g., scikit-learn (Pedregosa et al., 2011), Py-
Torch (Paszke et al., 2019) and tensorflow (Abadi et al.,
2016)) as tools for RS analysis (Figure 2a). As an illustra-
tion of how custom methods can be integrated into analysis
pipelines within RamanSPy, we use our package to con-
struct a deep learning denoiser based on the one-dimensional
ResUNet model - a fully convolutional UNet neural net-
work with residual connections, presented in Horgan et al.
(2021). To do this, we simply wrap within RamanSPy the
pre-trained neural network1 as a custom denoising method.
Once wrapped, the denoiser is automatically compatible
with the rest of RamanSPy and can be readily employed for
different applications. For instance, we replicated the re-
sults in Horgan et al. (2021), and show in Figure 2b that the
application of this deep-learning denoiser to the low signal-
to-noise ratio (SNR) test set from Horgan et al. (2021) con-
sistently outperforms the commonly-used Savitzky-Golay
filter (Savitzky & Golay, 1964). This is quantified by various
metrics also coded within RamanSPy (e.g., mean squared
error (MSE), spectral angle distance (SAD) (Kruse et al.,
1993) and spectral information divergence (SID) (Chang,
1999)), which we use to measure the performance of each
denoising method by comparing denoised signals against
the provided high SNR data, which act as a reference.

Importantly, applying this pipeline to new data only involves
changing the data source. Taking advantage of this transfer-
ability, we test the denoiser on unseen volumetric Raman
data from another cell line (THP-1 (Kallepitis et al., 2017)),
to which we added Gaussian noise. For these data, Fig-
ure 2c shows improved denoising performance according
to the MSE metric, which is dependent on normalisation
and scale, but with lower significance according to scale-
invariant metrics available in RamanSPy. This example
emphasises the sensitivity of algorithms to data shifts and
the importance of incorporating robust validation criteria
based on the unique requirements of each application. The
collection of metrics that RamanSPy provides is intended to
serve as a starting resource to test performance according to
different objectives.

1Model was trained on spectra from MDA-MB-231 breast
cancer cells (Horgan et al., 2021). Deposited by authors at:
https://github.com/conor-horgan/DeepeR.

AI interoperability. Secondly, the data management back-
bone of RamanSPy ensures a direct data flow to the rest of
the Python ecosystem, i.e., data can be loaded, preprocessed,
and analysed in RamanSPy and then exported to conduct
further modelling and analysis elsewhere (Figure 3a). As an
example application, we perform AI-based bacteria identi-
fication using Raman measurements from 30 bacterial and
yeast isolates as provided in Ho et al. (2019) (Figure 3b). Af-
ter loading and visualising the spectra with RamanSPy, we
interface the data with the lazypredict Python package (Pan-
dala), which allows us to directly benchmark 28 ML classifi-
cation models (including logistic regression, support vector
machines and decision trees) on the task of predicting the
bacterial species from a given spectrum. The models were
first trained on the provided fine-tuning dataset (100 spectra
per isolate) and then tested on the unseen test set of the
same size. Our benchmarking analysis in Figure 3c finds
logistic regression as the best-performing model, achiev-
ing a classification accuracy of 79.63% on the species-level
classification task (Figure 3d), and 94.63% for antibiotic
treatment classification (Figure 3e).

Dataset suite for model evaluation. To further assist the
process of testing and evaluating new computational ap-
proaches, RamanSPy provides access to a library of curated
datasets collated from existing literature for different tasks
(e.g., classification, denoising, Raman imaging). With this
library, we aim to seed the growth of a common reposi-
tory of RS datasets that helps reduce barriers to data access,
especially for ML teams with limited access to RS instru-
ments (Luo et al., 2022). The dataset library in RamanSPy
already includes data loaders for Raman data from bacte-
rial species (Ho et al., 2019), cell lines (Horgan et al., 2021;
Kallepitis et al., 2017), COVID-19 samples (Yin et al., 2021;
2020), multi-instrument Surface Enhanced Raman Spec-
troscopy (SERS) measurements of adenine samples (For-
nasaro et al., 2020), wheat lines (ŞEN et al., 2023), miner-
als (Lafuente et al., 2015), and will continue to be expanded.
Recognizing the potential benefits that synthetic and surro-
gate datasets can provide for the generation of controlled
ground truths for algorithmic validation, we have also in-
tegrated the synthetic Raman data generator described in
Georgiev et al. (2024) within RamanSPy.

4. Conclusion
In this paper, we have introduced RamanSPy - a computa-
tional framework for integrative Raman spectroscopic data
analysis aimed at overcoming the limitations of currently
available commercial software tools in terms of accessi-
bility, flexibility and reproducibility, and facilitating the
adoption and validation of advanced AI technologies for
next-generation RS analysis.
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The codebase of RamanSPy is fully open-source and dissem-
inated under a permissive license that allows for unrestricted
use, adaptation, and extension, including for commercial
purposes. It is supplemented with extended online documen-
tation containing a comprehensive selection of tutorials and
example applications, as well as further information about
the analyses presented in this paper. We believe this will
be critical for the continuous development of the platform
and its adoption across different scientific domains, includ-
ing biomedical research, chemistry, and materials science,
among others. Future directions include the expansion of
our suite of built-in methods, tools and datasets; the incorpo-
ration of cutting-edge AI technologies into the framework
as the field progresses; and the integration of the package
into experimental setups and other software solutions.

Data availability
All data used in this article are previously published open-
access data that have been deposited by the respective
authors online. Instructions on how to access, down-
load, and load the data sets provided in RamanSPy are
available in the documentation at https://ramanspy.
readthedocs.io/en/latest/datasets.html.

Code availability
The codebase of RamanSPy is open-source and
hosted on GitHub at https://github.com/
barahona-research-group/RamanSPy. The
package can be installed via pip using ‘pip install ramanspy’.
Documentation, including detailed tutorials and examples, is
available at https://ramanspy.readthedocs.io.
The scripts used to produce the analysis results pre-
sented in this paper are also provided as executable
Jupyter Notebook examples at https://github.com/
barahona-research-group/RamanSPy/tree/
3dd2c1e09420c5ac473a72ebd6ed06a91c30a85c/
paper_reproducibility and as part of
the documentation of RamanSPy at https:
//ramanspy.readthedocs.io/en/latest/
auto_examples/index.html.
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