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Abstract

Reinforcement learning (RL) allows an agent interacting sequentially with an environment
to maximize its long-term expected return. In the distributional RL (DistrRL) paradigm,
the agent goes beyond the limit of the expected value, to capture the underlying probabil-
ity distribution of the return across all time steps. The set of DistrRL algorithms has led
to improved empirical performance. Nevertheless, the theory of DistrRL is still not fully
understood, especially in the control case. In this paper, we present the simpler one-step
distributional reinforcement learning (OS-DistrRL) framework encompassing only the ran-
domness induced by the one-step dynamics of the environment. Contrary to DistrRL, we
show that our approach comes with a unified theory for both policy evaluation and control.
Indeed, we propose two OS-DistrRL algorithms for which we provide an almost sure con-
vergence analysis. The proposed approach compares favorably with categorical DistrRL on
various environments.

1 Introduction

In reinforcement learning (RL), a decision-maker or agent sequentially interacts with an unknown and
uncertain environment in order to optimize some performance criterion (Sutton & Barto, 2018). At each
time step, the agent observes the current state of the environment, then takes an action that influences both
its immediate reward and the next state. In other words, RL refers to learning through trial-and-error a
strategy (or policy) mapping states to actions that maximizes the long-term cumulative reward (or return):
this is the so-called control task. More accurately, this return is a random variable – due to the random
transitions across states – and classical RL only focuses on its expected value. On the other hand, the policy
evaluation task aims at assessing the quality of any given policy (not necessarily optimal as in control) by
computing its expected return in each initial state, also called value function. For both evaluation and
control, when the model (i.e. reward function and transition probabilities between states) is known, these
value functions can be seen as fixed points of some operators and computed by dynamic programming (DP)
under the Markov decision process (MDP) formalism (Puterman, 2014). Nevertheless, the model in RL is
typically unknown and the agent can only approximate the DP approach based on empirical trajectories. The
TD(0) algorithm for policy evaluation and Q-learning for control, respectively introduced in (Sutton, 1988)
and (Watkins & Dayan, 1992), are flagship examples of the RL paradigm. Formal convergence guarantees
were provided for both of these methods, see (Dayan, 1992; Tsitsiklis, 1994; Jaakkola et al., 1993). In
many RL applications, the number of states is very large and thus prevents the use of the aforementioned
tabular RL algorithms. In such a situation, one should rather use function approximation to approximate
the value functions, as achieved by the DQN algorithm (Mnih et al., 2013; 2015) combining ideas from
Q-learning and deep learning. More recently, the distributional reinforcement learning (DistrRL) framework
was proposed by Bellemare et al. (2017); see also (Morimura et al., 2010a;b). In DistrRL, the agent is
optimized to model the whole probability distribution of the return, not just its expectation. In this new
paradigm, several distributional procedures where proposed as extensions of the classic (non-distributional)
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RL methods, leading to improved empirical performance. In most cases, a DistrRL algorithm is composed of
two main ingredients: i) a parametric family of distributions serving as proxies for the distributional returns,
and ii) a metric measuring approximation errors between original distributions and parametric proxies.

Related work. We recall a few existing DistrRL approaches, all of which considering mixtures of Dirac
measures as their parametric family of proxy distributions. Indeed, the Categorical DistrRL (CDRL)
parametrization used in the C51 algorithm proposed in (Bellemare et al., 2017) was shown in (Rowland
et al., 2018) to correspond to orthogonal projections derived from the Cramér distance1. The CDRL ap-
proach learns the categorical probabilities p1(x, a), . . . , pK(x, a) of a distribution

∑K
k=1 pk(x, a)δzk with fixed

predefined support values z1, . . . , zK . On the other hand, the quantile regression approach was proposed
in (Dabney et al., 2018), where the support {Q1(x, a), . . . , QN (x, a)} of the proxy distribution 1

N

∑N
i=1 δQi(x,a)

is learned for fixed uniform probabilities 1
N over the N atoms. In (Dabney et al., 2018), these atoms result

from Wasserstein-1 projections, and correspond to quantiles of the unprojected distribution. Achab & Neu
(2021) and Achab et al. (2022) later investigated the Wasserstein-2 setup leading to the study of conditional
value-at-risk measures. For policy evaluation, the convergence analysis of CDRL and of the quantile approach
were respectively derived in (Rowland et al., 2018) and (Rowland et al., 2023). Nevertheless, the theory of
DistrRL is more challenging in the control case because the corresponding operator is not a contraction2 and
does not necessarily admits a fixed point. For that reason, Rowland et al. (2018) proved the convergence
of CDRL for control only under the restrictive assumption that the optimal policy is unique. Hence, it
seems natural to ask the following question: “Is there another formulation of DistrRL in which both the
evaluation and the control tasks lead to contractive operators?”. The answer provided by this paper is “Yes,
via a one-step approach!”. Contrary to classic DistrRL dealing with the randomness across all time steps,
the one-step variant (originally proposed by Achab (2020)) only cares about the one-step dynamics of the
environment.

Contributions. Our main contributions are as follows:

• We introduce a one-step variant of the DistrRL framework: we call that approach one-step distri-
butional reinforcement learning (OS-DistrRL).

• We show that our new method solves the well-known instability issue of DistrRL in the control case.

• We provide a unified almost-sure convergence analysis for both evaluation and control.

• We experimentally show the competitive performance of our new (deep learning-enhanced) algo-
rithms in various environments.

The paper is organized as follows. In Section 2, we recall a few standard RL tools and notations as well as
their DistrRL generalization. Then, our one-step approach is defined in Section 3. Section 4 introduces new
OS-DistrRL algorithms along with theoretical convergence guarantees. Finally, numerical experiments are
provided for illustration purpose in Section 5. The main proofs are deferred to the Supplementary Material.

Notations. The indicator function of any event E is denoted by I{E}. We let Pb(R) be the set of
probability measures on R having bounded support, and P(E) the set of probability mass functions on any
finite set E , whose cardinality is denoted by |E|. The support of any discrete distribution q ∈ P(E) is
support(q) = {y ∈ E : q(y) > 0}; the supremum norm of any function h : E → R is ‖h‖∞ = maxy∈E |h(y)|.
The cumulative distribution function (CDF) of a probability measure ν ∈ Pb(R) is the mapping F (z) =
PZ∼ν(Z ≤ z) (∀z ∈ R), and we denote its generalized inverse distribution function (a.k.a. quantile function)
by F−1 : τ ∈ (0, 1] 7→ inf{z ∈ R, F (z) ≥ τ}. Given ν1, ν2 ∈ Pb(R) with respective CDFs F1, F2, we denote
ν2 ≤ ν1 and say that ν1 stochastically dominates ν2 if F1(z) ≤ F2(z) for all z ∈ R. For any probability

1The Cramér distance `2 between two probability distributions ν1, ν2 with CDFs F1, F2 is equal to `2(ν1, ν2) =√∫
R(F1(x)− F2(x))2dx .

2A function mapping a metric space to itself is called a γ-contraction if it is Lipschitz continuous with Lipschitz constant
γ < 1.
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measure ν ∈ Pb(R) and measurable function f : R → R, the pushforward measure f#ν is defined for any
Borel set A ⊆ R by f#ν(A) = ν(f−1(A)) = ν({z ∈ R : f(z) ∈ A}). In this article, we only need the affine case
fr0,γ(z) = r0 + γz (with r0 ∈ R, γ ∈ [0, 1)) for which fr0,γ#ν ∈ Pb(R) and fr0,γ#ν(A) = ν({ z−r0

γ : z ∈ A}) if
γ 6= 0, or fr0,γ#ν = δr0 is the Dirac measure at r0 if γ = 0.

2 Background on distributional reinforcement learning

In this section, we recall some standard notations, tools and algorithms used in RL and DistrRL.

2.1 Markov decision process

Throughout the paper, we consider a Markov decision process (MDP) characterized by the tuple
(X ,A, P, r, γ) with finite state space X , finite action space A, transition kernel P : X × A → P(X ), re-
ward function r : X × A × X → R, and discount factor 0 ≤ γ < 1. If the agent takes some action a ∈ A
while the environment is in state x ∈ X , then the next state X1 is sampled from the distribution P (·|x, a)
and the immediate reward is equal to r(x, a,X1). In the discounted MDP setting, the agent seeks a policy
π : X → P(A) maximizing its expected long-term return for each pair (x, a) of initial state and action:

Qπ(x, a) = E

[ ∞∑
t=0

γtr(Xt, At, Xt+1)
∣∣∣ X0 = x,A0 = a

]
,

where Xt+1 ∼ P (·|Xt, At) and At+1 ∼ π(·|Xt+1). Qπ(x, a) and V π(x) =
∑
a∈A π(a|x)Qπ(x, a) are respec-

tively called the state-action value function and the value function of the policy π. Further, each of these
functions can be seen as the unique fixed point of a so-called Bellman operator (Bellman, 1966), that we
denote by Tπ for Q-functions. For any Q : X × A → R, the image of Q by Tπ is another Q-function given
by:

(TπQ)(x, a) =
∑
x′

P (x′|x, a)
[
r(x, a, x′) + γ

∑
a′

π(a′|x′)Q(x′, a′)
]
.

This Bellman operator Tπ has several nice properties: in particular, it is a γ-contraction in ‖ · ‖∞ and thus
admits a unique fixed point (by Banach’s fixed point theorem), namely Qπ = TπQπ. It is also well-known
from (Bellman, 1966) that there always exists at least one policy π∗ that is optimal uniformly for all initial
conditions (x, a):

Q∗(x, a) := Qπ
∗
(x, a) = sup

π
Qπ(x, a) and V ∗(x) := max

a
Q∗(x, a) = V π

∗
(x) = sup

π
V π(x) .

Similarly, this optimal Q-function Q∗ is the unique fixed point of some operator T called the Bellman
optimality operator and defined by:

(TQ)(x, a) =
∑
x′

P (x′|x, a)
[
r(x, a, x′) + γmax

a′
Q(x′, a′)

]
,

which is also a γ-contraction in ‖ · ‖∞. Noteworthy, knowing Q∗ is sufficient to behave optimally: indeed, a
policy π∗ is optimal if and only if in every state x, support

(
π∗(·|x)

)
⊆ arg maxaQ∗(x, a).

2.2 The distributional Bellman operator

In distributional RL, we replace scalar-valued functions Q by functions µ taking values that are entire
probability distributions: µ(x,a) ∈ Pb(R) for each pair (x, a). In other words, µ is a collection of distributions
indexed by states and actions. We recall below the definition of the distributional Bellman operator, which
generalizes the Bellman operator to distributions.
Definition 2.1 (Distributional Bellman operator, Bellemare et al. (2017)). Let π be a policy.
The distributional Bellman operator T π : Pb(R)X×A → Pb(R)X×A is defined for any distribution function
µ = (µ(x,a))x,a by

(T πµ)(x,a) =
∑
x′,a′

P (x′|x, a)π(a′|x′)fr(x,a,x′),γ#µ
(x′,a′) .
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State x1 State x2

P(x2|x1,a1)=0

P(x1|x2,a1)=0

P(x1|x1,a1)=1

P(x1|x1,a2)=0.5

r(x1,a1)=1 r(x2,a1)=2

P(x2|x1,a2)=0.5

P(x1|x2,a2)=0.5
r(x1,a2)=0.5 r(x2,a2)=2.5

P(x2|x2,a1)=1

P(x2|x2,a2)=0.5

Figure 1: Markov decision process with two states X = {x1, x2}, two actions A = {a1, a2} and reward
function independent of the next state: r(x, a, ·) ≡ r(x, a).

We know from Bellemare et al. (2017) that T π is a γ-contraction in the maximal p-Wasserstein metric3

W p(µ1, µ2) = max
(x,a)∈X×A

Wp(µ(x,a)
1 , µ

(x,a)
2 )

at any order p ∈ [1,+∞]. Consequently, T π has a unique fixed point µπ = (µ(x,a)
π )x,a equal to the collection

of the probability distributions of the returns:

µ(x,a)
π = Distr

( ∞∑
t=0

γtr(Xt, At, Xt+1)
∣∣∣∣X0 = x,A0 = a

)
. (1)

Applying T π may be prohibitive in terms of space complexity: if µ is discrete, then T πµ is still discrete but
with up to |X | · |A| times more atoms, as shown in the following example.
Example 2.2. Let µ = (µ(x,a))x,a be the collection of the atomic distributions

µ(x,a) =
K∑
k=1

pk(x, a)δQk(x,a) ,

where K ≥ 1, pk(x, a) ≥ 0 and p1(x, a) + · · · + pK(x, a) = 1. Then, T πµ is also a collection of atomic
distributions with (at most) |X | · |A| times more atoms:

(T πµ)(x,a) =
∑
x′,a′

P (x′|x, a)π(a′|x′)
K∑
k=1

pk(x′, a′)δr(x,a,x′)+γQk(x′,a′) ,

where we stress that the entire expression [r(x, a, x′)+γQk(x′, a′)] is the argument of the Dirac delta function.

Projected operators. Motivated by this space complexity issue, projected DistrRL operators were pro-
posed to ensure a predefined and fixed space complexity budget. A projected DistrRL operator is the com-
position of a DistrRL operator with a projection over some parametric family of distributions. The Cramér
distance projection ΠC has been considered in (Bellemare et al., 2017; Rowland et al., 2018; Bellemare et al.,
2019): we recall its definition below.
Definition 2.3 (Cramér projection). Let K ≥ 2 and z1 < · · · < zK be real numbers defining the support
of the categorical distributions. The Cramér projection is then defined by: for all z′ ∈ R,

ΠC(δz′) =


δz1 if z′ ≤ z1
zj+1−z′
zj+1−zj δzj + z′−zj

zj+1−zj δzj+1 if zj < z′ ≤ zj+1

δzK if z′ > zK

3For p ≥ 1, we recall that the p-Wasserstein distance between two probability distributions ν1, ν2 on R with CDFs F1, F2 is

defined as Wp(ν1, ν2) =
(∫ 1

τ=0

∣∣F−1
1 (τ)− F−1

2 (τ)
∣∣p dτ) 1

p
. If p =∞, W∞(ν1, ν2) = supτ∈(0,1) |F

−1
1 (τ)− F−1

2 (τ)|.
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(c) Both Q-functions at (x1, a1).
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(d) CDRL at (x1, a2).
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(f) Both Q-functions at (x1, a2).

Figure 2: Instability of categorical distributional control compared to the convergence of our one-step ap-
proach. The two leftmost plots are the iterations of the Cramér-projected “full” optimality operator ΠCT ,
while the center plots are obtained with our one-step operator ΠCT. The rightmost plots correspond to the
Q-functions Q(x, a) =

∑4
k=1 pk(x, a)zk .

and extended linearly to mixtures of Dirac measures.

We will also apply ΠC entrywise to collections of distributions: if µ = (µ(x,a))x,a, then ΠCµ = (ΠCµ(x,a))x,a.
The Cramér projection satisfies an important mean-preserving property: for any discrete distribution q with
support included in the interval [z1, zK ], then:

EZ∼ΠC(q)[Z] = EZ∼q[Z] . (2)

In this line of work, the proxy distributions
∑K
k=1 pk(x, a)δzk are parametrized by the categorical probabilities

p1(x, a), . . . , pK(x, a). In (Dabney et al., 2018), the Wasserstein-1 projection ΠW1 over atomic distributions
1
N

∑N
i=1 δQi(x,a) is used. For this specific projection, the atoms that best approximate some CDF Fx,a are

obtained through quantile regression with Qi(x, a) = F−1
x,a( 2i−1

2N ).

2.3 Instability of distributional control

Bellemare et al. (2017) have also proposed DistrRL optimality operators T , defined such that T µ = T πGµ
where πG is a greedy policy with respect to the expectation of µ. The authors showed in their Propositions 1-2
that, unfortunately, T is not a contraction and does not necessarily admits a fixed point. For that reason, the
convergence analysis of the control case in DistRL is more challenging than for the evaluation task. Rowland
et al. (2018) and Bellemare et al. (2023) (see chapter 7.4, in particular Theorem 7.9) circumvent this issue
by reducing the control task to evaluation under the assumption that the optimal policy is unique. We start
our investigation by verifying that this uniqueness hypothesis is critical to ensure convergence in DistrRL
control. For that purpose, we choose a toy example – fully described in Section 5 – with (infinitely) many
optimal policies and we run a CDRL procedure over it. As expected, we observe in Figure 2 the unstable
behavior of the DistrRL paradigm for the control task. Indeed, as explained in chapter 7.5 in Bellemare et al.
(2023), multiple optimal policies can produce different distributions that are then mixed by DistrRL control
algorithms which might never converge. In the next section, we introduce our new “one-step” distributional
approach converging even in this situation since all optimal policies will be shown to share the same fixed
point distribution.
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3 One-step distributional operators

This section introduces the building blocks of our new framework. The main goal here is to show that our
one-step approach is theoretically sound, though being less ambitious than “full” DistrRL. The main benefit
of this simplification is that it will allow us to derive in the next section a convergence result holding for
both evaluation and control. In particular in the control case, we will not need any additional assumption
such as the uniqueness of the optimal policy as in CDRL (Rowland et al., 2018).

3.1 Formal definitions

Let us now define the one-step DistrRL operators. Intuitively, they are similar to the “full” DistrRL operator
T π except that they average the randomness after the first random transition and are thus oblivious to the
randomness induced by the remaining time steps.
Definition 3.1 (One-step distributional Bellman operator). Let π be a policy. The one-step
distributional Bellman operator Tπ : Pb(R)X×A → Pb(R)X×A is defined for any distribution function µ by

(Tπµ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γ∑
a′
π(a′|x′)E

Z∼µ(x′,a′) [Z] ,

where we stress that the argument of the Dirac delta function is: r(x, a, x′) + γ
∑
a′ π(a′|x′)EZ∼µ(x′,a′) [Z].

Definition 3.2 (One-step distributional Bellman optimality operator). The one-step distribu-
tional Bellman optimality operator T : Pb(R)X×A → Pb(R)X×A is defined for any µ by

(Tµ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ EZ∼µ(x′,a′) [Z] .

Example 3.3. Let µ be the same discrete distribution function as in Example 2.2. Then,

(Tπµ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γ∑
a′
π(a′|x′)Q(x′,a′)

and (Tµ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q(x′,a′) ,

where Q(x′, a′) =
∑K
k=1 pk(x′, a′)Qk(x′, a′) .

Similarly to T , the one-step operators T and Tπ lead to a space complexity issue by producing distributions
with a number |X | of atoms, which can be too demanding for a large state space.

3.2 Main properties

Let us now discuss some key properties satisfied by our new one-step distributional operators. We first show
that, similarly to the non-distributional setting, our approach comes with contractive operators in both
evaluation and control.
Proposition 3.1 (Contractivity). Let π be a policy.

(i) For any 1 ≤ p ≤ ∞, the one-step operators Tπ and T are γ-contractions in W p.

(ii) The Cramér-projected one-step operators ΠC ◦ Tπ and ΠC ◦ T are γ-contractions in W 1.

We stress that Proposition 3.1 highly contrasts with classic DistrRL where the control operator T is not
a contraction in any metric. A major consequence of contractivity is the existence and uniqueness of fixed
points, whose explicit formulas are gathered in the next proposition and in Table 1.
Proposition 3.2 (Fixed points). Let π be a policy and consider ΠC from Definition 2.3.
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Figure 3: Illustration of Examples 2.2-3.3 in the two-states two-actions MDP depicted in Figure 1, with
discount factor γ = 1

2 , for the stochastic policy π(a|x) = 1
2 for all x, a. The probability distribution µ(x1,a2)

j

with histogram represented in red (resp. in blue) is obtained by applying j successive times the one-step
distributional operator Tπ (resp. the “full” distributional operator T π) to the initial distributions µ(x,a)

0 = δ0.
The red “one-step” histogram has a constant number of 2 atoms, corresponding to the number of states.
Meanwhile, the blue “full” histogram approximates a continuous probability density with an increasing
number of atoms along iterations.

(i) The unique fixed point of Tπ is νπ given by

ν(x,a)
π =

∑
x′

P (x′|x, a)δr(x,a,x′)+γV π(x′) .

(ii) The unique fixed point of T is ν∗ given by

ν
(x,a)
∗ =

∑
x′

P (x′|x, a)δr(x,a,x′)+γV ∗(x′) .

(iii) If z1 ≤ r(x, a, x′) + γV π(x′) ≤ zK for all triplets (x, a, x′), then the unique fixed point of ΠC ◦ Tπ is
ηπ = ΠC(νπ).

(iv) If z1 ≤ r(x, a, x′) + γV ∗(x′) ≤ zK for all triplets (x, a, x′), then the unique fixed point of ΠC ◦ T is
η∗ = ΠC(ν∗).

The proof of Proposition 3.2 (point i, for instance) involves replacing, inside each Dirac, the quantity∑
x′′ P (x′′|x′, a′)(r(x′, a′, x′′) + γV π(x′′)) with the simpler Q-value Qπ(x′, a′). This substitution is per-

missible due to the unique fixed-point characterization of V π and Qπ. Interestingly, Proposition 3.2-(iii)-(iv)
shows that, in our one-step framework, the fixed point of a projected operator is simply the projection of
the fixed point of the unprojected operator. Although this fact seems natural, it is not necessarily true in
DistrRL. Indeed, the proof of Proposition 3 in (Rowland et al., 2018) suggests that the fixed point of ΠC ◦T π
is a worse approximation of µπ than is ΠCµπ, by a multiplicative factor

√
1/(1− γ) in terms of Cramér dis-

tance. Furthermore, we stress that two policies sharing the same value function but with potentially distinct
distributions and risk-levels (e.g. different variances) cannot be distinguished via the one-step approach as,
from Proposition 3.2-(i), they necessarily share the same fixed point. This observation highlights a notable
limitation of one-step DistrRL: it is unable to distinguish between two policies with identical value functions
that would, however, yield distinct fixed points in the context of full DistrRL. Equipped with our projected
one-step operators, we derive in the next section variants of the CDRL algorithms.

4 One-step DistrRL algorithms

This section introduces new categorical algorithms based on the Cramér projection together with formal
convergence guarantees.
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DistrRL One-step DistrRL
Evaluation Distr (

∑∞
t=0 γ

tr(Xt, At, Xt+1))
∑
x′ P (x′|x, a)δr(x,a,x′)+γV π(x′)

Control does not necessarily exist
∑
x′ P (x′|x, a)δr(x,a,x′)+γV ∗(x′)

Table 1: Comparison of the fixed points of the distributional Bellman operators in DistrRL versus one-step
DistrRL.

CDRL One-step CDRL
Categorical target ΠC

(∑K
k=1 pt,k(xt+1, a

∗)δrt+γzk
)

ΠC
(
δrt+γQt(xt+1,a∗)

)
Time complexity O(K logK) O(logK)

Table 2: Comparison of the categorical targets in CDRL versus one-step CDRL. The notation a∗ refers to a
greedy action, namely a∗ ∈ arg maxa′ Qt(xt+1, a

′) .

4.1 One-Step CDRL

We propose two algorithms, for policy evaluation and control respectively, that are described in Algorithm 1.
These new categorical methods are derived from the stochastic approximation of the projected operators
ΠC ◦ Tπ and ΠC ◦ T. For each state-action pair (x, a), both methods learn a discrete probability distribution
p1(x, a), . . . , pK(x, a) over some fixed support z1 < · · · < zK . As in classic RL algorithms, we consider a
sequence of stepsizes αt(x, a) ≥ 0 indexed by states, actions and time steps t ≥ 0. At each time t, we
perform a mixture update between the current distribution and a distributional target which is the Cramér
projection of a single Dirac mass located at the target of TD(0) or Q-learning, computed from a single
transition (xt, at, rt, xt+1). The only difference with tabular CDRL lies in the target as shown in Table 2.
Contrary to the original CDRL target, ours remains the same whatever the greedy action a∗ we choose
inside the set arg maxa′ Qt(xt+1, a

′): this explains why our approach is stable even when the optimal policy
is not unique as illustrated in Figure 2. Moreover, our categorical target is faster to compute than in CDRL,
where the time complexity O(K log(K)) pays the price for inserting every atom rt + γzk into the sorted
array (z1, . . . , zK). Before moving forward to the convergence analysis of Algorithm 1, we propose its deep

Algorithm 1 Tabular one-step categorical DistrRL

Input: η
(x,a)
t =

∑K
k=1 pt,k(x, a)δzk for all (x, a)

Sample transition: (xt, at, rt, xt+1)
Estimate Q-values: Qt(xt+1, a)←

∑K
k=1 pt,k(xt+1, a) · zk

if policy evaluation then
η̂

(xt,at)
t ← ΠC(δrt+γ

∑
a′
π(a′|xt+1)Qt(xt+1,a′)) =

∑K
k=1 p̂t,kδzk

else if control then
η̂

(xt,at)
t ← ΠC(δrt+γmaxa′ Qt(xt+1,a′)) =

∑K
k=1 p̂t,kδzk

end if
Mixture update: η(xt,at)

t+1 ← (1− αt(xt, at))η(xt,at)
t + αt(xt, at)η̂(xt,at)

t

η
(x,a)
t+1 ← η

(x,a)
t , ∀(x, a) 6= (xt, at)

Output: ηt+1

RL counterpart in Algorithm 2 based on the minimization of a Kullback-Leibler (KL) loss.

Deep one-step CDRL. The main challenge in a non-tabular context is to learn the distributions in a
compact and efficient way. For that purpose, we use the same deep categorical approach as in C51 (Belle-
mare et al., 2017). As shown in Table 1, the one-step method aims at learning much simpler distributions
(necessarily atomic) than full DistrRL (typically, continuous distributions carrying more information). This
suggests choosing a smaller number of categories, e.g. K = 4 used in Section 5, compared to what is
commonly used in CDRL. Due to its similarity with C51, we call this new algorithm “OS-C51”.
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Algorithm 2 OS-C51 (single update)

Input: categorical distributions η(x,a)
θ =

∑K
k=1 pθ,k(x, a)δzk and a transition (xt, at, rt, xt+1)

Compute Q-function in next state: Q(xt+1, a
′)←

∑K
k=1 pθ,k(xt+1, a

′)zk
Compute categorical target: η̂(xt,at) ← ΠC(δrt+γmaxa′ Q(xt+1,a′))

Output: KL(η̂(xt,at)‖η(xt,at)
θ )

4.2 Convergence analysis

We now provide convergence guarantees for our tabular one-step DistrRL algorithms. The major difference
with the analysis of CDRL (Rowland et al., 2018) is that we do not require the uniqueness of the optimal
policy in the case of control. We also rely on the existing analysis of non-distributional RL (Dayan, 1992;
Tsitsiklis, 1994; Jaakkola et al., 1993). In particular, we require the following standard assumption.
Assumption 4.1. For any pair (x, a) ∈ X × A, the stepsizes (αt(x, a))t≥0 satisfy the Robbins-Monro
conditions: {∑∞

t=0 αt(x, a) =∞∑∞
t=0 αt(x, a)2 <∞

almost surely.

Equipped with stepsizes (αt(x, a)) satisfying the Robbins-Monro conditions, we are now ready to state our
main theoretical contribution: namely, the convergence of Algorithm 1.
Theorem 4.1. Consider Algorithm 1 and let us assume that Assumption 4.1 holds for the stepsizes
(αt(x, a))t,x,a .

(i) In the case of evaluation of a policy π,

W 1(ηt, ηπ) t→∞−−−→ 0 almost surely ,

where ηπ is defined in Proposition 3.2-(iii).

(ii) In the case of control,

W 1(ηt, η∗)
t→∞−−−→ 0 almost surely ,

where η∗ is defined in Proposition 3.2-(iv).

The proof of Theorem 4.1 is deferred to the Supplementary Material: it follows the same steps as the proofs
of Theorem 2 in (Tsitsiklis, 1994) and Theorem 1 in (Rowland et al., 2018). Notably, our analysis remains
the same for evaluation and control contrary to (Rowland et al., 2018), where the control case requires
additional assumptions (namely, uniqueness of the optimal policy and for all t ≥ 0, for all 1 ≤ k ≤ K such
that pt,k(xt+1, a

∗) 6= 0, rt + γzk ∈ [z1, zK ] almost surely).

5 Numerical experiments

In this section, we present numerical experiments on both tabular and Atari games environments.

5.1 Tabular setting

We describe our tabular experiments: first in a dynamic programming context i.e. knowing the transition
kernel P and the reward function r, then in the “Frozen Lake” environment by only observing empirical
transitions.
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Figure 4: Learning dynamics of the atomic probability distribution (pt,k(x, a))1≤k≤K=3 produced by Al-
gorithm 1 (control) on the Frozen Lake environment across 100000 iterations, with support (z1, z2, z3) =
(0, 10, 20), constant stepsize α = 0.6 and ε-greedy exploration. The results are averaged over 100 seeds.

Distributional dynamic programming. Figures 2-3 are obtained by exact dynamic programming in
the MDP in Figure 1 with γ = 1

2 : in this specific case, all policies are optimal. As discussed in subsection
2.3, this handcrafted example reveals the instability of classic CDRL in Figure 2 contrary to our one-step
approach: for both methods we consider K = 4 categories with (z1, z2, z3, z4) = (0, 1.9, 2.1, 10). We point
out that our results are sensitive to this specific choice of support. Indeed, always taking the action a1 in
state x1 results in a total discounted distributional return reduced to a Dirac mass at 2. However, taking
the action a2 leads to the same expected value Q∗(x1, a2) = 2 but with non-zero variance. Thus, CDRL
targets can occasionally (when taking action a2) fall outside the selected interval [1.9, 2.1], leading to the
depicted instability. Figure 3 illustrates the space complexity issue of DistrRL without projection: while
the number of atoms is multiplied by at most |X ||A| after each application of T π, our one-step operators
produce distributions with (at most) as many atoms as there are states, i.e. two in this example.

Frozen Lake. We also consider the Frozen Lake environment from OpenAI Gym (Brockman et al., 2016)
with discount factor γ = 0.95. It is characterized by 16 states x1, . . . , x16 and four actions a1, . . . , a4. Plus,
this is a stochastic environment i.e. the transition probabilities P (x′|x, a) are not all equal to either 0 or 1,
which justifies a distributional approach. The FrozenLake environment is a gridworld game (4x4 grid), where
an agent moves on slippery ice (stochastic transitions) towards a goal. The agent can take 4 actions (up,
down, left, right), aiming to reach the goal state from the starting state, avoiding holes, and only achieving
a reward of 1 upon reaching the goal, and 0 otherwise. Due to the slippery attribute of the environment, the
transitions are stochastic, meaning the agent may not always end up in the state it intended to move to. For
example, if the agent chooses to move right, it may actually move up, right, or down with equal probability
1/3 due to the slippery ice. In Figure 4, we plot the iterates pt,k(x, a) over 100000 steps generated by our
tabular Algorithm 1 with K = 3 atoms and (z1, z2, z3) = (0, 10, 20), constant stepsize α = 0.6 and ε-greedy
exploration with ε exponentially decaying from 1 to 0.25. We average the results over 100 seeds. Given a
pair (x, a), we observe the joint convergence of the three probabilities. As in CDRL, and because of the
mean-preserving property (Eq. 2), the average Qt(x, a) =

∑3
k=1 pt,k(x, a)zk coincides with the Q-learning

iterates and converges to Q∗.

5.2 Atari games

For the experiments on Atari games (Bellemare et al., 2013), we implement 4 the OS-C51 agent on top of the
popular “CleanRL” codebase (Huang et al., 2022). We compare the OS-C51 algorithm against C51 for two
different number of atoms: K = 4 or K = 51. In each of the two cases, we choose the support to be evenly
spread over the interval [−10, 10]: z1 = −10 < · · · < zK = 10 . We use the same architecture as C51: a deep
neural network, parameterized by θ, takes an observation as input and outputs a vector of K logits. We
run DQN and C51 with the default hyperparameters from CleanRL; for our new OC-C51 method, we take
the same hyperparameters as in C51 due to their similarities. All three methods are based on a deep neural
network with 3 convolutional layers followed by 2 fully connected layers with ReLU activation functions.

4here: https://github.com/mastane/cleanrl

10

https://github.com/mastane/cleanrl


Published in Transactions on Machine Learning Research (08/2023)

0.0 2.5 5.0 7.5 10.0
Million frames

0

2000

4000

6000

8000

10000
Ep

iso
de

 sc
or

e
BeamRiderNoFrameskip-v4

DQN
C51 (4 atoms)
C51 (51 atoms)
OS-C51 (4 atoms)
OS-C51 (51 atoms)

(a) Beamrider

0.0 2.5 5.0 7.5 10.0
Million frames

0

100

200

300

400

500

Ep
iso

de
 sc

or
e

BreakoutNoFrameskip-v4

DQN
C51 (4 atoms)
C51 (51 atoms)
OS-C51 (4 atoms)
OS-C51 (51 atoms)

(b) Breakout

0.0 2.5 5.0 7.5 10.0
Million frames

20

10

0

10

20

Ep
iso

de
 sc

or
e

PongNoFrameskip-v4

DQN
C51 (4 atoms)
C51 (51 atoms)
OS-C51 (4 atoms)
OS-C51 (51 atoms)

(c) Pong

Figure 5: Average evaluation episodic return over 10 million frames for three Atari games.

They all use the same linearly decaying ε-greedy exploration and the transitions are collected in a replay
memory buffer of size 1000000. In particular for DQN, we use the Adam optimizer (Kingma & Ba, 2014)
with learning rate equal to 0.0001 and batch size of 32. For the optimization of C51 and OS-C51, we use the
Adam optimizer with learning rate set to 0.00025 and batch size equal to 32. The results are averaged over
5 seeds. As shown in Figure 5, the performance of OS-C51 (with only four atoms) is comparable with C51
on the Beamrider and Pong games. However, there seems to be a significant advantage for C51 on Breakout:
this could be attributed to C51’s objective of approximating distributions with more complex and richer
information, potentially offering a deeper understanding and better representation of the game dynamics.
Finally, we highlight that we did not use “sticky actions”, where a chosen action is randomly repeated for
several consecutive frames, introducing a form of environmental stochasticity. This could be an interesting
source of stochasticity to explore for future experimental investigation, potentially adding complexity and
richness to the learning process.

6 Conclusion

We proposed new distributional RL algorithms that naturally extend TD(0) and Q-learning in the tabular
setting. The main novelty in our approach is the use of new one-step distributional operators circumventing
the instability issues of DistrRL control. We provided both theoretical convergence analysis and empirical
proof-of-concept. A significant limitation of one-step DistrRL, as underscored in our study, is its inability
to distinguish between two policies with identical value functions but differing distributions. This points
to a crucial advantage of full DistrRL, which can capture and exploit these subtleties. Future research
could investigate the generalization of our method based on the dynamics of several successive steps instead
of a single one. Investigating this multi-step extension would likely reveal further important insights into
the dynamics of RL processes. Another promising direction for future research lies in exploring the possible
connection between full DistrRL and a multi-step approach with infinitely many steps. Such an investigation
could offer a deeper understanding of the relationship between these methods and help to clarify the distinct
benefits and trade-offs involved.
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A Proof of Proposition 3.1

i). Contraction in Wasserstein distance. Let 1 ≤ p < ∞. Let µ1, µ2 ∈ Pb(R)X×A be two distribution
functions. Denoting Q1(x, a) and Q2(x, a) the respective expectations of µ(x,a)

1 and µ(x,a)
2 , we have for any

pair (x, a):

W p
p ((Tµ1)(x,a), (Tµ2)(x,a)) =

W p
p (
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q1(x′,a′),
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q2(x′,a′))

≤
∑
x′

P (x′|x, a)W p
p (δr(x,a,x′)+γmaxa′ Q1(x′,a′), δr(x,a,x′)+γmaxa′ Q2(x′,a′))

= γp
∑
x′

P (x′|x, a)|max
a′

Q1(x′, a′)−max
a′

Q2(x′, a′)|p

≤ γp
∑
x′

P (x′|x, a) max
a′
|Q1(x′, a′)−Q2(x′, a′)|p = γp

∑
x′

P (x′|x, a) max
a′

∣∣∣∫ 1

τ=0
(F−1
x′,a′(τ)− F̃−1

x′,a′(τ))dτ
∣∣∣p

≤ γp
∑
x′

P (x′|x, a) max
a′

∫ 1

τ=0

∣∣F−1
x′,a′(τ)− F̃−1

x′,a′(τ)
∣∣pdτ︸ ︷︷ ︸

Wp
p (µ(x′,a′)

1 ,µ
(x′,a′)
2 )

≤ γpW p

p(µ1, µ2) ,

where Fx,a, F̃x,a denote the respective CDFs of µ(x,a)
1 and µ

(x,a)
2 , and the first inequality follows from the

interpretation of the Wasserstein distance as an infimum over couplings. Indeed, we have upper bounded

W p
p ((Tµ1)(x,a), (Tµ2)(x,a)) = inf

λ∈Λ
E(Z1,Z2)∼λ[|Z1 − Z2|p] ,

where Λ denotes the set of all couplings of (Tµ1)(x,a) and (Tµ2)(x,a), via a specific coupling, λ0, such that

λ0({r(x, a, x′) + γmax
a′

Q1(x′, a′)} × {r(x, a, x′) + γmax
a′

Q2(x′, a′)}) = P (x′|x, a) , ∀x′ .

Hence, by taking the supremum over all (x, a), we deduce that T is a γ-contraction in W p:

W p(Tµ1,Tµ2) ≤ γW p(µ1, µ2).
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Similarly for p =∞,

W∞((Tµ1)(x,a), (Tµ2)(x,a)) =

W∞(
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q1(x′,a′),
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q2(x′,a′))

≤
∑
x′

P (x′|x, a)W∞(δr(x,a,x′)+γmaxa′ Q1(x′,a′), δr(x,a,x′)+γmaxa′ Q2(x′,a′))

= γ
∑
x′

P (x′|x, a)|max
a′

Q1(x′, a′)−max
a′

Q2(x′, a′)|

≤ γ
∑
x′

P (x′|x, a) max
a′
|Q1(x′, a′)−Q2(x′, a′)| = γ

∑
x′

P (x′|x, a) max
a′

∣∣∣∫ 1

τ=0
(F−1
x′,a′(τ)− F̃−1

x′,a′(τ))dτ
∣∣∣

≤ γ
∑
x′

P (x′|x, a) max
a′

∫ 1

τ=0

∣∣F−1
x′,a′(τ)− F̃−1

x′,a′(τ)
∣∣dτ ≤ γW∞(µ1, µ2) .

For policy evaluation, one can follow the same proofs by incorporating the following additional step:∣∣∣∑
a′

π(a′|x′)(Q1(x′, a′)−Q2(x′, a′))
∣∣∣ ≤∑

a′

π(a′|x′)
∣∣Q1(x′, a′)−Q2(x′, a′)

∣∣ ≤ max
a′

∣∣Q1(x′, a′)−Q2(x′, a′)
∣∣ .

ii). Let us write:

W1((ΠCTµ1)(x,a), (ΠCTµ2)(x,a)) =

W1(
∑
x′

P (x′|x, a)ΠCδr(x,a,x′)+γmaxa′ Q1(x′,a′),
∑
x′

P (x′|x, a)ΠCδr(x,a,x′)+γmaxa′ Q2(x′,a′))

≤
∑
x′

P (x′|x, a)W1(ΠCδr(x,a,x′)+γmaxa′ Q1(x′,a′),ΠCδr(x,a,x′)+γmaxa′ Q2(x′,a′))

≤ γ
∑
x′

P (x′|x, a)|max
a′

Q1(x′, a′)−max
a′

Q2(x′, a′)|

≤ γ
∑
x′

P (x′|x, a) max
a′
|Q1(x′, a′)−Q2(x′, a′)| = γ

∑
x′

P (x′|x, a) max
a′

∣∣∣∫ 1

τ=0
(F−1
x′,a′(τ)− F̃−1

x′,a′(τ))dτ
∣∣∣

≤ γ
∑
x′

P (x′|x, a) max
a′

∫ 1

τ=0

∣∣F−1
x′,a′(τ)− F̃−1

x′,a′(τ)
∣∣dτ︸ ︷︷ ︸

W1(µ(x′,a′)
1 ,µ

(x′,a′)
2 )

≤ γW 1(µ1, µ2) ,

where the second inequality follows from Lemma A.1. Taking the supremum over all (x, a) concludes the
proof. The proof for ΠCTπ is similar.
Lemma A.1. Let a, b be two real numbers. Then,

W1(ΠCδa,ΠCδb) ≤ |a− b|.

Proof. We proceed by exhaustion of all possible (redundant) cases, up to permuting a and b:

(i) a, b are both outside the interval (z1, zK ]: the proof is trivial in this case

(ii) a ∈ (z1, zK ], b ∈ {z1, . . . , zK} and a ≤ b

(iii) a ∈ (z1, zK ], b ∈ {z1, . . . , zK} and a > b

(iv) a ∈ (z1, zK ] and b /∈ (z1, zK ]

14



Published in Transactions on Machine Learning Research (08/2023)

(v) a, b are both inside the interval (z1, zK ]

Proof in case ii). We assume that b belongs to the support, b ≥ a and a lies inside the interval (z1, zK ]:

zj < a ≤ zj+1 and b = zk+1 with 1 ≤ j ≤ k ≤ K .

Then, we have:

W1(ΠCδa,ΠCδb) = zj+1 − a
zj+1 − zj

(
zk+1 − zj

)
+ a− zj
zj+1 − zj

(
zk+1 − zj+1

)
= (zk+1 − zj)

zj+1 − a+ a− zj
zj+1 − zj

− (zj+1 − zj)
a− zj

zj+1 − zj
= zk+1 − zj − (a− zj) = zk+1 − a = |a− b|.

Proof in case iii). Similar to (ii) except that we have b = zk with j ≥ k:

W1(ΠCδa,ΠCδb) = zj+1 − a
zj+1 − zj

(
zj − zk

)
+ a− zj
zj+1 − zj

(
zj+1 − zk

)
= (zj − zk)zj+1 − a+ a− zj

zj+1 − zj
+ (zj+1 − zj)

a− zj
zj+1 − zj

= zj − zk + a− zj = a− zk = |a− b|.

Proof in case iv). Now, if b is outside the interval (z1, zk], say b ≤ z1, we deduce from the previous
computation that W1(ΠCδa,ΠCδb) = a− z1 ≤ |a− b|.

Proof in case v). Finally, if both a and b lie in (z1, zK ],

W1(ΠCδa,ΠCδb) = W1( zj+1 − a
zj+1 − zj

δzj + a− zj
zj+1 − zj

δzj+1 ,ΠCδb)

≤ zj+1 − a
zj+1 − zj

W1(δzj ,ΠCδb) + a− zj
zj+1 − zj

W1(δzj+1 ,ΠCδb)

= zj+1 − a
zj+1 − zj

∣∣b− zj∣∣+ a− zj
zj+1 − zj

∣∣b− zj+1
∣∣, (3)

where we used cases (ii) and (iii) in the last equality. Then, if b ≥ zj+1, Eq. equation 3 implies

W1(ΠCδa,ΠCδb) ≤
zj+1 − a
zj+1 − zj

(b− zj) + a− zj
zj+1 − zj

(b− zj+1)

= (b− zj)
zj+1 − a+ a− zj

zj+1 − zj
− (zj+1 − zj)

a− zj
zj+1 − zj

= b− zj − a+ zj = b− a.

Symmetrically, if b ≤ zj , Eq. equation 3 implies

W1(ΠCδa,ΠCδb) ≤
zj+1 − a
zj+1 − zj

(zj − b) + a− zj
zj+1 − zj

(zj+1 − b) = a− b.

Lastly, if a, b both belong to the same segment (zj , zj+1], and say a ≤ b, we have by direct computation:

W1(ΠCδa,ΠCδb) = (zj+1 − zj)
zj+1 − a− (zj+1 − b)

zj+1 − zj
= b− a .
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B Proof of Proposition 3.2

Given the completeness of the Wasserstein space (see Bolley (2008)), by combining Proposition 3.1 with
Banach’s fixed point theorem, we deduce the existence and uniqueness of the fixed points.

For (i), we verify:

(Tνπ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γ∑
a′
π(a′|x′)

∑
x′′

P (x′′|x′,a′)(r(x′,a′,x′′)+γV π(x′′))

=
∑
x′

P (x′|x, a)δr(x,a,x′)+γ∑
a′
π(a′|x′)Qπ(x′,a′) = ν(x,a)

π .

ii). For the control case,

(Tν∗)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′
∑

x′′
P (x′′|x′,a′)(r(x′,a′,x′′)+γV ∗(x′′))

=
∑
x′

P (x′|x, a)δr(x,a,x′)+γmaxa′ Q∗(x′,a′) = ν
(x,a)
∗ .

iii). We start by computing:

(Tπ ◦ΠCνπ)(x,a) =
∑
x′

P (x′|x, a)δr(x,a,x′)+γ∑
a′
π(a′|x′)Qπ(x′,a′) = ν(x,a)

π ,

where we used the mean-preserving property of the Cramér projection (see Eq. equation 2). Then, we deduce
that

ΠC ◦ Tπ ◦ΠCνπ = ΠCνπ = ηπ .

iv). Similarly, one can show that η∗ is the fixed point of ΠC ◦ T.

C Proof of Theorem 4.1

We follow the same steps as in the proofs of Theorem 2 in (Tsitsiklis, 1994) and Theorem 1 in (Rowland
et al., 2018). We focus on the control case (ii), though the proof remains similar for policy evaluation. Let
us define for each (x, a) ∈ X ×A: L(x,a)

0 = δz1 , U
(x,a)
0 = δzK , and for j ≥ 0,

L
(x,a)
j+1 = 1

2L
(x,a)
j + 1

2(ΠCTLj)(x,a) and U
(x,a)
j+1 = 1

2U
(x,a)
j + 1

2(ΠCTUj)(x,a) .

We now state the two following lemmas and then, before proving them, explain how they allow us to conclude.
Lemma C.1. (i) In terms of entrywise stochastic dominance, it holds for all j ≥ 0: Lj+1 ≥ Lj and

Uj+1 ≤ Uj.

(ii) (Lj) and (Uj) both converge to η∗ in W 1.
Lemma C.2. Given j ≥ 0, there exists a random time Tj ≥ 0 such that

Lj ≤ ηt ≤ Uj for all t ≥ Tj , almost surely.

From Lemma C.1-(ii), let ε > 0 and take j ≥ 0 large enough such that
max{W 1(Lj , η∗),W 1(Uj , η∗)} < ε .

Then, it follows from Lemma C.2 followed by a triangular inequality that
W 1(ηt, Lj) ≤W 1(Lj , Uj) ≤W 1(Lj , η∗) +W 1(Uj , η∗) < 2ε ,

for all t ≥ Tj , almost surely. Finally,

W 1(ηt, η∗) ≤W 1(ηt, Lj) +W 1(Lj , Uj) +W 1(Uj , η∗) < 5ε ,
which implies Theorem 4.1. We still need to prove Lemmas C.1-C.2.
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C.1 Proof of Lemma C.1

(i). Let us show by induction that Uj+1 ≤ Uj . First, the base case U (x,a)
1 ≤ U

(x,a)
0 = δzK is true because

U
(x,a)
1 is supported in {z1, . . . , zK}. Now, let us assume that Uj+1 ≤ Uj for some j ≥ 0. We recall from

Proposition 5 in (Rowland et al., 2018) that ΠC is a monotone map for element-wise stochastic dominance.
Plus, it is easy to see that both Tπ and T are monotone too. Then, by monotonicity of ΠCT, it holds that
ΠCTUj+1 ≤ ΠCTUj and hence,

U
(x,a)
j+2 = 1

2U
(x,a)
j+1 + 1

2(ΠCTUj+1)(x,a) ≤ 1
2U

(x,a)
j + 1

2(ΠCTUj)(x,a) = U
(x,a)
j+1 ,

which proves the induction step. Symmetrically, one can show that Lj+1 ≥ Lj .

(ii). Similarly to Lemma 7 in (Rowland et al., 2018), we formulate the following general result.
Lemma C.3. Let (νk)∞k=0 be a sequence of probability distributions over {z1, . . . , zK} such that νk+1 ≤ νk
for all k ≥ 0. Then, there exists a limit probability distribution νlim over {z1, . . . , zK} such that νk → νlim
in W1.

Proof. Let us denote Fk the CDF of νk and F−1
k its quantile function valued in {z1, . . . , zK}. The assumption

that νk stochastically dominates νk+1 reformulates as F−1
k+1(τ) ≤ F−1

k (τ) for all 0 < τ ≤ 1. Hence for
each τ ∈ (0, 1], the sequence F−1

k (τ) is non-increasing and lower bounded by z1. Therefore, this sequence
converges: F−1

k (τ) → Hlim(τ). As F−1
k (τ) can only take discrete values, there exists N(τ) such that

∀k ≥ N(τ), F−1
k (τ) = Hlim(τ). The limit function Hlim is thus non-decreasing, valued in {z1, . . . , zK}

and right-continuous with left limits. It is therefore the quantile function of a probability distribution νlim
supported over {z1, . . . , zK}. Let us now show that W1(νk, νlim) → 0. Denoting Flim the CDF of νlim and
p0 = 0, p1 = Flim(z1), . . . , pK = Flim(zK) = 1, we have:

W1(νk, νlim) =
∫ 1

τ=0
|F−1
k (τ)−Hlim(τ)|dτ =

∑
1≤k≤K:pk 6=pk−1

∫ pk

τ=pk−1

|F−1
k (τ)− zk|dτ . (4)

Let ∆p = min1≤k≤K:pk 6=pk−1(pk − pk−1), ∆z = zK − z1 and 0 < ε < ∆p/2. Then for all k ≥
max1≤k≤K:pk 6=pk−1 max{N(pk−1 + ε), N(pk− ε)}, F−1

k (τ) is constant equal to zk for any τ ∈ [pk−1 + ε, pk− ε]
and we have:

W1(νk, νlim) =
∑

1≤k≤K:pk 6=pk−1

∫ pk

τ=pk−1

|F−1
k (τ)− zk|dτ

=
∑

1≤k≤K:pk 6=pk−1

∫ pk−1+ε

τ=pk−1

|F−1
k (τ)− zk|︸ ︷︷ ︸
≤∆z

dτ +
∫ pk−ε

τ=pk−1+ε
|F−1
k (τ)− zk|dτ︸ ︷︷ ︸
=0

+
∫ pk

τ=pk−ε
|F−1
k (τ)− zk|︸ ︷︷ ︸
≤∆z

dτ

≤ 2K∆zε ,

which proves the result.

By applying Lemma C.3 to the sequence (U (x,a)
k )k≥0 for each pair (x, a), we deduce the convergence of (Uk)

towards some limit distribution function Ulim in W 1. Finally, by continuity of ΠCT for the metric W 1, this
limit must verify:

Ulim = 1
2Ulim + 1

2ΠCTUlim =⇒ Ulim = ΠCTUlim ,

from which we deduce that Ulim = η∗ by unicity. The proof that (Lj) converges to η∗ in W 1 is analogous.
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C.2 Proof of Lemma C.2

Let us prove Lemma C.2 by induction. The base case j = 0 is true because for all t ≥ T0 = 0, η(x,a)
t is

supported on {z1, . . . , zK} and so:

L
(x,a)
0 = δz1 ≤ η

(x,a)
t ≤ δzK = U

(x,a)
0 .

Then, let us assume that the result is true for some j ≥ 0, i.e. there exists a random time Tj such that
Lj ≤ ηt ≤ Uj for all t ≥ Tj almost surely. Now, let us show that there exists a random time Tj+1 such that
ηt ≤ Uj+1 for all t ≥ Tj+1 almost surely ( the proof for ηt ≥ Lj+1 is analogous). For each state-action pair
(x, a), we define H(x,a)

Tj
= U

(x,a)
j and W (x,a)

Tj
the zero measure i.e. W (x,a)

Tj
(A) = 0 for all Borel sets A ⊆ R.

Then, for t ≥ Tj ,

H
(x,a)
t+1 = (1− αt(x, a))H(x,a)

t + αt(x, a)(ΠCTUj)(x,a)

and W
(x,a)
t+1 = (1− αt(x, a))W (x,a)

t + αt(x, a)[ΠC(δr(x,a,x′)+γmaxa′ Qt(x′,a′))− (ΠCTηt)(x,a)] , (5)

where x′ ∼ P (·|x, a), Qt(x′, a′) =
∑K
k=1 pt,k(x′, a′)zk. Moreover, if (x, a) = (xt, at), then x′ = xt+1 and

r(xt, at, xt+1) = rt. A consequence of Eq. (5) is thatW (x,a)
t is a signed measure on R with total measure equal

to zero: W (x,a)
t (R) = 0 for all t ≥ Tj . Let us now prove by (another) induction that η(x,a)

t ≤ H(x,a)
t +W

(x,a)
t

for all t ≥ Tj , (x, a) ∈ X × A almost surely. For t = Tj , it is true by assumption that ηTj ≤ Uj almost
surely. Then, suppose that ηt ≤ Ht + Wt almost surely for some t ≥ Tj . Recalling that αt(x, a) = 0 for all
(x, a) 6= (xt, at), it holds that:

η
(x,a)
t+1 = (1− αt(x, a))η(x,a)

t + αt(x, a)ΠC(δr(x,a,x′)+γmaxa′ Qt(x′,a′))

= (1− αt(x, a))η(x,a)
t + αt(x, a)(ΠCTηt)(x,a) + αt(x, a)[ΠC(δr(x,a,x′)+γmaxa′ Qt(x′,a′))− (ΠCTηt)(x,a)]

≤ (1−αt(x, a))(Ht +Wt)(x,a) +αt(x, a)(ΠCTUj)(x,a) +αt(x, a)[ΠC(δr(x,a,x′)+γmaxa′ Qt(x′,a′))− (ΠCTηt)(x,a)]

= H
(x,a)
t+1 +W

(x,a)
t+1 , (6)

where the inequality comes from the assumptions ηt ≤ Ht+Wt and ηt ≤ Uj combined with the monotonicity
of ΠCT. Now, observe that Ht can be explicitly expressed as follows:

H
(x,a)
t =

( t−1∏
t′=Tj

(1− αt′(x, a))
)
Uj +

(
1−

t−1∏
t′=Tj

(1− αt′(x, a))
)

(ΠCTUj)(x,a) .

Since by Assumption 4.1, it holds that
∑∞
t′=0 αt′(x, a) =∞ for all (x, a) almost surely, we deduce that there

exists a random time T̃j+1 ≥ Tj such that
∏t−1
t′=Tj (1−αt′(x, a)) ≤ 1

4 for all (x, a) and for all t ≥ T̃j+1 almost
surely. Then, because Lemma C.1-(i) implies that ΠCTUj ≤ Uj , we have for all t ≥ T̃j+1:

ηt ≤ Ht +Wt ≤
1
4Uj + 3

4ΠCTUj +Wt = 1
2Uj + 1

2ΠCTUj +Wt −
1
4(Uj −ΠCTUj)

= Uj+1 +Wt −
1
4(Uj −ΠCTUj) . (7)

We point out that the random noise term appearing in the definition of W (x,a)
t+1 has zero mean: for all

1 ≤ k ≤ K,

Ex′∼P (·|x,a)

[
ΠC(δr(x,a,x′)+γmaxa′ Qt(x′,a′))− (ΠCTηt)(x,a)

]
((−∞, zk]) = 0 . (8)

Eq. (8) implies via a classic stochastic approximation argument under Assumption 4.1 that
W

(x,a)
t ((−∞, zk]) → 0 almost surely, for all (x, a) and k ∈ {1, . . . ,K}. Finally, we take Tj+1 ≥ T̃j+1
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large enough so that |W (x,a)
t ((−∞, zk])| ≤ ∆

4 for all t ≥ Tj+1 and all (x, a), almost surely, where ∆ is given
by:

∆ = inf
{∣∣∣∣[U (x,a)

j − (ΠCTUj)(x,a)
]
((−∞, zk])

∣∣∣∣ 6= 0 : x ∈ X , a ∈ A, 1 ≤ k ≤ K
}
,

which concludes the proof by using Eq. (7). Indeed, if U (x,a)
j ((−∞, zk]) = (ΠCTUj)(x,a)((−∞, zk]), then

U
(x,a)
j ((−∞, zk]) = U

(x,a)
j+1 ((−∞, zk]).
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