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Abstract

Many alignment methods, including reinforcement learning from human feedback1

(RLHF), rely on the Bradley-Terry reward assumption, which is insufficient to cap-2

ture the full range of general human preferences. To achieve robust alignment with3

general preferences, we model the alignment problem as a two-player zero-sum4

game, where the Nash equilibrium policy guarantees a 50% win rate against any5

competing policy. However, previous algorithms for finding the Nash policy either6

diverge or converge to a Nash policy in a modified game, even in a simple synthetic7

setting, thereby failing to maintain the 50% win rate guarantee against all other8

policies. We propose a meta-algorithm for language model alignment with general9

preferences, inspired by convergent algorithms in game theory. Theoretically, we10

prove that our meta-algorithm converges to an exact Nash policy. Additionally, our11

meta-algorithm is simple and can be integrated with many existing methods de-12

signed for RLHF and preference optimization with minimal changes. Experimental13

results demonstrate the effectiveness of the proposed framework when combined14

with existing preference policy optimization methods.15

1 Introduction16

Large Language Models (LLMs) [Brown et al., 2020, OpenAI, 2023, Dubey et al., 2024] have17

fundamentally transformed the fields of natural language processing and artificial intelligence. They18

excel in tasks ranging from text generation and translation to complex question answering and19

interactive dialogue systems. As these models become more integrated into daily life, a key challenge20

is ensuring they achieve high levels of alignment with human values and preferences.21

One of the most widely adopted approaches to addressing this challenge is Reinforcement Learning22

from Human Feedback (RLHF) [Christiano et al., 2017, Ouyang et al., 2022]. This framework23

consists of two steps: first, learning a reward model from a dataset containing human preferences,24

and second, optimizing the LLM using the proximal policy optimization (PPO) algorithm [Schulman25

et al., 2017]. Recently, Rafailov et al. [2024] observed that the first step can be bypassed, proposing26

the direct preference optimization (DPO) algorithm, which directly optimizes the LLM from the27

dataset.28

However, the aforementioned approaches crucially rely on the assumption that human preferences29

can be expressed using the Bradley-Terry (BT) model [Bradley and Terry, 1952]. Unfortunately, the30

BT model is too restrictive to capture the richness and complexity of human preferences. Specifically,31

the BT model can only induce transitive preferences—i.e., if more people favor A over B, and B32

over C, then more people must favor A over C. Such transitivity may not hold in the presence of33

diverse populations and is also incompatible with evidence from human decision-making [May, 1954,34

Tversky, 1969].35
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To overcome this limitation, recent research has begun to explore alignment under general preferences.36

Munos et al. [2024] formulate this alignment problem as a symmetric two-player zero-sum game,37

where both players’ strategies are LLMs, and their payoffs are determined by the win rate against the38

opponent’s LLM according to the preference model. The objective is to identify a Nash equilibrium39

policy that guarantees at least a 50% win rate against any other policy [Azar et al., 2024, Munos40

et al., 2024, Calandriello et al., 2024]. However, the trajectory of all the proposed algorithms either41

diverge or converge to the Nash policy of a modified game, thereby failing to maintain the 50% win42

rate guarantee against all other policies.43

Our Contribution. We introduce a novel meta-algorithm, Last-Iterate Nash Equilibrium Policy44

Optimization (LINE-PO), inspired by the proximal point method, a convergent algorithm for45

solving two-player zero-sum games [Nemirovski, 2004]. Our first observation is that many existing46

algorithms, including PPO [Schulman et al., 2017], DPO [Rafailov et al., 2024], IPO [Azar et al.,47

2024], SPPO [Wu et al., 2024], INPO [Zhang et al., 2024], etc., can be interpreted as implementations48

of the Prox operator [Nemirovski, 2004]. LINE-PO employs the Prox operator as its fundamental49

building block and provably converges to the Nash equilibrium policy in the last iterate, assuming50

the Prox operator can be computed exactly. This approach allows us to leverage many existing51

algorithms in a black-box manner. While several algorithms in the literature demonstrate average-52

iterate convergence to the Nash equilibrium policy, they all diverge in the last iterate. Unfortunately,53

iterate averaging can be cumbersome, particularly when deep-learning components are involved, as54

it may not be feasible to average the outputs of LLMs.1 Compared to these algorithms, LINE-PO55

achieves the more desirable last-iterate convergence.56

Additionally, we validate the effectiveness of LINE-PO in both synthetic and LLM settings.57

Synthetic Setting. We construct a 3 × 3 two-player zero-sum preference game, and compare58

LINE-PO with a wide range of algorithms proposed in the literature. The result clearly shows that59

LINE-PO is the only algorithm that converges to the Nash equilibrium of the game in the last iterate.60

LLM Setting. Furthermore, we evaluate the performance of LINE-PO against existing preference61

optimization algorithms under a real-world setting, where a pre-trained LLM, Qwen2-1.5B [Yang62

et al., 2024], is fine-tuned using different algorithms on the UltraFeedback [Cui et al., 2023] dataset,63

which is commonly used for alignment fine-tuning of LLMs. Our experimental results demonstrate64

the advantages of LINE-PO: it achieves at least 55% win rate compared against baseline algorithms65

including iterative algorithms such as iterative IPO [Azar et al., 2024] and INPO [Zhang et al., 2024].66

2 Backgrouds67

We use ∆(Z) to denote a distribution over a set Z . We denote x ∈ X as an instruction where X is68

the instruction set. We assume a fixed distribution ρ ∈ ∆(X ) over the instruction set. We denote Y as69

the response set and y ∈ Y as one response. Given any instruction x ∈ X , an LLM policy π specifies70

the output distribution π(· | x) ∈ ∆(Y). For distributions p, q ∈ ∆(Z), the Kullback-Leibler (KL)71

divergence is defined as KL(p||q) :=
∑

z∈Z p(z) log p(z)
q(z) . The sigmoid function is σ(x) := ex

ex+1 .72

We use supp(p) to denote the support of a distribution p.73

Preference Models In this paper, we focus on general preference models.74

Definition 1 (General Preference Model). A general preference model P : X × Y × Y → [0, 1]75

satisfies P(y1 ≻ y2 | x) = 1− P(y2 ≻ y1 | x). When we query P with (x, y1, y2), it outputs 1 with76

probability P(y1 ≻ y2 | x) meaning y1 is preferred over y2, and it outputs 0 otherwise.77

We define P(π1 ≻ π2) := Ex∼ρ[Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]] as the win rate of π1 over π2 under78

preference model P. A special case of the general preference model is the Bradley-Terry (BT) model,79

which assumes a reward function parameterizes the preference. We review alignment under the BT80

model in Appendix A.81

1Storing all LLMs produced during training could solve this, but it is highly space-inefficient and, to our
knowledge, has not been implemented.
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Table 1: Property comparison of different preference optimization algorithms. (*) Means convergence
in the original game J(π1, π2)

Algorithm General Preference Regularized Game Solver Last-Iterate Convergence*

DPO [Rafailov et al., 2024] ✗ ✗ ✗
IPO [Azar et al., 2024] ✓ ✗ ✗
SPPO [Wu et al., 2024] ✓ ✗ ✗
INPO [Zhang et al., 2024] ✓ ✓ ✗
LINE-PO ✓ ✓ ✓

Definition 2 (Bradley-Terry Model). A preference model P satisfies the Bradley-Terry (BT) assump-82

tion if there exists a reward function r∗ : X × Y → R such that83

P(y1 ≻ y2 | x) =
exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)).

2.1 Alignment with General Preference Models84

The BT model assumption is insufficient to capture the full range of general human preferences85

[Munos et al., 2024, Swamy et al., 2024]. To achieve robust alignment with general preferences, we86

model the policy optimization problem as a two-player zero-sum game with the objective function as87

follows:288

J(π1, π2) := P(π1 ≻ π2)−
1

2
= Ex∼ρ[Ey1∼π1,y2∼π2 [P(y1 ≻ y2 | x)]]−

1

2
. (1)

In this game, the max-player controls π1 and tries to maximize J(π1, π2) while the min-player89

controls π2 and tries to minimize J(π1, π2). We focus only on policies with Π := {π : supp(π) ⊆90

supp(πsft)} in the support of the initial SFT policy. A Nash equilibrium policy (π⋆
1 , π

⋆
2) satisfies91

π⋆
1 , π

⋆
2 ∈ argmax

π1∈Π
argmin
π2∈Π

J(π1, π2), J(π1, π
⋆
2) ≤ J(π⋆

1 , π
⋆
2) ≤ J(π⋆

1 , π2),∀π1, π2 ∈ Π.

Since J(π1, π2) is symmetric, the game has a symmetric Nash equilibrium (π⋆, π⋆). Moreover,92

the Nash equilibrium policy π⋆ guarantees that for any other policy π, its win rate is at least93

P(π⋆ ≻ π) ≥ P(π⋆ ≻ π⋆) = 50%. We call this property robust alignment. Our goal is to find a94

policy with robust alignment.95

Existing online iterative preference optimization methods designed for or applicable to the original96

game including iterative IPO [Azar et al., 2024] and SPPO [Wu et al., 2024], are based on Multi-97

plicative Weights Update, and thus diverge as we show in Section 4. There is also a line of works98

including Nash-MD [Munos et al., 2024, Ye et al., 2024], Online IPO [Calandriello et al., 2024],99

INPO [Zhang et al., 2024] aim to find the Nash equilibrium of a modified KL-regularized game:100

Jτ (π1, π2, πref) := J(π1, π2)− τEx∼ρ[KL(π1(· | x)||πref(· | x))] + τEx∼ρ[KL(π2(· | x)||πref(· | x))].
The additional KL regularization terms in the objective are introduced for training stability. However,101

the Nash equilibrium of the modified game no longer achieves robust alignment, i.e., has a win rate102

of at least 50% against any competing policy.103

Moreover, most existing theoretical convergence guarantees only hold for the average iterate, i.e., the104

uniform mixture of training iterates, which is not used in practice. We focus on designing algorithms105

with provable last-iterate convergence to Nash equilibrium, which aligns with practice and is more106

space-efficient [Munos et al., 2024].107

In the next section, we propose a meta-algorithm that uses algorithms designed for the regular-108

ized game Jτ (π1, π2, πref) or other preference optimization methods as black-boxes to find Nash109

equilibrium of J(π1, π2) (1), thereby achieving robust alignment.110

3 Last-Iterate Nash Equilibrium Policy Optimization111

We propose an extremely simple meta-algorithm, Last-Iterate Nash Equilibrium Policy Optimization112

(LINE-PO, Algorithm 1), for robustly aligning LLMs with general preferences. LINE-PO is an113

2We introduce the constant 1
2

only to ensure the game is zero-sum and it has no effect on its Nash equilibria.
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Algorithm 1: Last-Iterate Convergent Nash Equilibrium Policy Optimization (LINE-PO)
Input: Initial policy πsft, preference oracle P, regularization τ > 0

1 Initialize π1, πref ← πsft

2 for t = 1, 2, . . . , T − 1 do
3 πt+1 ← argmaxπ1

minπ2
Jτ (π1, π2, πref) using Algorithm 2

4 πref ← πt+1

5 return πT

online iterative algorithm inspired by the classic Conceptual Prox method [Nemirovski, 2004] first114

introduced in the optimization theory community. This method has recently been applied to finding115

a Nash equilibrium in zero-sum games [Perolat et al., 2021, Abe et al., 2024] and has had notable116

success in training advanced game AI models [Perolat et al., 2022].117

3.1 LINE-PO118

In each iteration t, LINE-PO updates the next-iteration policy πt+1 as the Nash equilibrium policy of119

a regularized game Jτ (π1, π2, πref) using the current policy as reference πref = πt. The rationale120

behind LINE-PO is simple: update the reference policy when there is no improvement in the121

regularized game. Denote π⋆ the Nash equilibrium of the original game. We show that KL divergence122

to π⋆ is monotonically decreasing: KL(π⋆||πt+1) ≤ KL(π⋆||πt). Since πt+1 is closer to the Nash123

equilibrium than πt, LINE-PO updates the reference policy from πt to πt+1 for further optimization.124

We also remark that in LINE-PO, the regularization amount τ > 0 does not need to decrease and125

could be kept constant.126

Each iteration of LINE-PO requires solving a zero-sum game with additional KL regularization127

Jτ (π1, π2, πref). We will show momentarily that many existing policy optimization methods for128

alignment can be applied to the KL regularized game and have exponentially fast convergence. We129

prove the meta-algorithm LINE-PO achieves last-iterate convergence to a Nash equilibrium with130

robust alignment property, which appears to be the first in the context of LLM alignment.131

Theorem 1. We assume that there exists a Nash equilibrium π⋆ of J(π1, π2) (defined in (1)) such132

that supp(π⋆) = supp(πsft). In every iteration t ≥ 1, it holds that KL(π⋆||πt+1) ≤ KL(π⋆||πt).133

Moreover, LINE-PO has last-iterate convergence, i.e., limt→∞ πt exists and is a Nash equilibrium.134

3.2 Solving a Regularized Game135

We show how to solve the Nash equilibrium of the regularized game Jτ (π1, π2, πref) using the Mirror136

Descent (MD) algorithm and how to implement MD using existing policy optimization algorithms.137

For simplicity, we consider policy π ∈ ∆(Y) and omit the dependence on the instruction x. All138

discussions can be extended to the contextual setting in a straightforward way.139

Mirror Descent and Multiplicative Weights Update Mirror Descent (MD) is a classical family of140

optimization algorithms. An important member of this family is the Multiplicative Weights Update141

(MWU) algorithm, which is MD with negative entropy regularization. For a maximization problem142

maxπ f(π), given an existing policy πt, MWU computes the update πt+1 as follows:143

πt+1 := argmax
π

〈
∇f(πt), π

〉
− η−1 ·KL(π||πt). (2)

Note that RLHF in (4) is equivalent to one step of MWU if we interpret the reward r as the gradient144

∇f(πref).145

Prox operator. The update rule of MWU can be compactly written using the prox operator as146

shown in Algorithm 2.3 Fix a 1-strongly convex function φ : Z → R over a closed convex set147

Z ⊂ Rn. The Bregman divergence induced by φ is148

Dφ(·||·) : Z × Z → R≥0,

Dφ(z||z′) := φ(z)− φ(z′)− ⟨∇φ(z′), z − z′⟩.
3The prox operator is also called the prox-mapping [Nemirovski, 2004].
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Algorithm 2: Regularized game solver
Input: Reference policy πref , preference oracle P, regularization τ > 0, step size η > 0, number

of iterations K ≥ 1
Output: A Nash policy argmaxπ1 minπ2

Jτ (π1, π2, πref)
1 Initialize µ1 ← πref

2 for k = 1, 2, . . . ,K − 1 do
3 gkτ ← ∇µ(P(µ ≻ µk)− τ KL(µ||πref)) = P(· ≻ µk)− τ(log µk(·)

πref (·) + 1)

4 µk+1 ← Prox(µk, ηg
k
τ )

5 return µK

Given a reference point z ∈ Z and a vector g ∈ Rn, the prox operator Prox(z, g) generalizes the149

notion of a gradient ascent step from z in the direction of g.150

Definition 3 (Prox Operator). For a strongly convex regularizer φ, the prox operator is defined as151

Prox(z, g) := argmax
z′

⟨g, z′⟩ −Dφ(z
′||z) = argmax

z′
⟨g +∇φ(z), z′⟩ − φ(z′). (3)

When φ(z) = 1
2∥z∥

2
2 is the ℓ2 regularizer, the prox operator Prox(z, g) = ΠZ [z + g] is the152

exactly the projected gradient ascent step. In this paper, without additional notes, we choose153

φ =
∑n

i=1 z[i] ln z[i] as the negative entropy regularizer and the corresponding Bregman divergence154

Dφ is the KL divergence.155

The flexibility of the prox operator lies in the choice of g for different objectives. In RLHF, g is156

the reward model r and we compute the optimal policy π⋆ = Prox(πref , ηr). For vanilla MWU, g157

is the gradient ∇f(πt) and we update πt+1 = Prox(πt, η∇f(πt)). When a preference model P is158

available, we can choose g as the preference function P(· ≻ π) over the current policy π. For our159

theoretical results, we assume the prox operator Prox can be evaluated exactly or approximately.160

Practically, we can use many existing preference optimization methods to compute the prox operator161

as shown in the next section.162

Exponentially Fast Convergence Denote π⋆
τ the Nash equilibrium of the KL regularized game163

Jτ (π1, π2, πref), which is τ -strongly monotone. We can apply classical results to show that MWU164

(Algorithm 2) achieves linear last-iterate convergence rate: the distance to the Nash equilibrium π⋆
τ165

decreases exponentially fast.166

Theorem 2. For appropriate step size η > 0, Algorithm 2 guarantees for every k ≥ 1,167

KL(π⋆
τ ||µk+1) ≤ (1− ητ

2 )k KL(π⋆
τ ||πref).168

3.3 Computing the prox operator169

We show how to compute the prox operator in practical large-scale applications like LLM alignment.170

Specifically, we show that many existing algorithms designed for RLHF and preference optimization171

with neural network parameters can be adapted to solve the prox operator Prox(π, ηg) (η > 0 is172

the step size). These algorithms include RL algorithms like PPO, and loss-minimization algorithms173

like DPO, IPO, SPPO, DRO, each of which may be preferred in certain settings. Our contribution174

here is not proposing new algorithms but unifying existing diverse preference methods through175

the perspective of computing the prox operator. Due to space limit, we defer the discussion to176

Appendix F. This perspective opens the possibility of applying other algorithms from online learning177

and optimization to robust LLM alignment and we include implementation for two other algorithms178

in Appendix H.179

4 Synthetic Experiments180

We conduct experiments on a simple bandit problem with Y = {ya, yb, yc} and non-BT preference181

model over Y . Specifically, we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. We can182

observe that the preference is intransitive and exhibits a preference cycle yc ≻ yb ≻ ya ≻ yc.183
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Figure 1: Dyanmics on a simple 3-dimensional
preference game. The unique Nash equilibrium
is [4/11, 3/11, 3/11] represented as red star. We
initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

Experiments using noiseless gradient We184

present numerical results of mirror-descent185

(MD) algorithms (equivalent to MWU) and186

LINE-PO (Algorithm 1) in Figure 1. We can see187

that the MD algorithm diverges from the unique188

Nash equilibrium and suffers a large equilibrium189

gap, while LINE-PO achieves fast last-iterate190

convergence to the Nash equilibrium, aligned191

with our theoretical results (Theorem 1).192

Experiements using preference samples193

Since the popular iterative DPO algorithm does194

not contain a gradient step, we also conduct ex-195

periments with only Oracle query access to the196

preference model. We compare the performance197

of various algorithms, including iterative DPO,198

iterative IPO, SPPO, and INPO and present re-199

sults in Figure 2. We remark that iterative DPO200

and iterative IPO both diverge in the last iterate;201

INPO converges to a point that is not Nash equi-202

librium and does not guarantee robust alignment;203

LINE-PO is the only algorithm that achieves204

last-iterate convergence to the Nash equilibrium.205

We defer a more detailed discussion to Appendix I.206
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Figure 2: Dyanmics on a simple 3-dimensional preference game. The unique Nash equilibrium
is [4/11, 3/11, 3/11] represented as red star. We initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

5 Real-World Experiments207

Apart from the controlled synthetic experiments, we conduct experiments with a pre-trained LLM,208

Qwen2-1.5B [Yang et al., 2024], on a commonly used dataset UltraFeedback [Cui et al., 2023] to209

show the effectiveness of LINE-PO under the real-world preference optimization setting.210
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5.1 Experimental Settings211

Datasets We use the UltraFeedback dataset, specifically its binarized version for preference fine-212

tuning.4 It contains 64K data examples consisting of a user instruction and a positive-negative output213

pair annotated by GPT-4. The instructions contained in this dataset cover a wide range of instruction214

types, making it suitable to study preference optimization in a real-world setting. Since we focus on215

online and iterative preference optimization, only the instructions are used because the output pairs216

will be generated and annotated online. In addition, to reduce the computation cost, the instructions217

are randomly split into 6 equal-size subsets. Each subset therefore contains around 10K instructions218

and is used in one training iteration.219

Preference Oracle The preference oracle we chose is Llama-3-OffsetBias-8B [Park et al., 2024a],220

which is a pairwise preference model that predicts which output is better given an instruction and221

an output pair. Fine-tuned from Meta-Llama-3-8B-Instruct [Dubey et al., 2024], it achieves strong222

performance on various human preference alignment benchmarks on RewardBench [Lambert et al.,223

2024]. We chose it as the preference oracle since it strikes a balance between computation efficiency224

and alignment with human preferences, making it suitable for iterative preference optimization.225

Online Preference Data Generation To construct the preference data, i.e., output pairs with a226

preference annotation specifying which one is better, we adopt the setting of Zhang et al. [2024]227

by sampling 5 candidate outputs for each instruction with a temperature of 0.8 and applying the228

preference oracle to compare all the output pairs constructed. The best and the worst candidate229

outputs, derived from the pairwise comparison results, are then selected to form a data point.230

Baselines We include the following baselines for comparisons with LINE-PO: (1) SFT, which231

fine-tunes the pre-trained Qwen2-1.5B on the UltraChat dataset, and the resulted checkpoint serves232

as the start point and/or the reference policy for the other training algorithms; (2) vanilla online233

DPO [Rafailov et al., 2024] and (3) vanilla online IPO [Azar et al., 2024], where one training iteration234

is performed over the entire instruction set of UltraFeedback; (4) INPO [Zhang et al., 2024], where235

at each iteration the training is performed on one data split; (5) iterative IPO, which has a similar236

training setting to INPO but without the KL constraint from the reference policy.237

Evaluations We use the instructions in a widely used benchmark, AlpacaEval [Li et al., 2023], to238

construct the test set, since these instructions are diverse and cover various task scenarios. However,239

we choose not to use the default evaluator of the AlpacaEval benchmark, GPT-4, to perform the240

evaluation, but instead use the same preference oracle used in data generation, Llama-3-OffsetBias-241

8B, as the evaluator. This is because we aim for a controlled experimental setting – the preference242

oracle that the model learns to fit should also be the one used to evaluate the model performance.243

Training Details We follow the training recipe proposed in Tunstall et al. [2023] for the experiments.244

Specifically, at each training iteration, the models are fine-tuned for 3 epochs with the batch size245

setting to 32 and with a linear learning rate scheduler. The checkpoints are selected based on their246

validation loss on the UltraFeedback dataset. As for the hyper-parameters, we perform a grid search247

for the strength of the KL regularization, η−1, in vanilla DPO and IPO. Specifically, we found that248

DPO achieves the best performance when it is set to 0.01, while IPO achieves the best performance249

when η−1 is set within the range of 0.01 - 0.002. We then choose the value of η to be 0.002 to250

encourage larger learning steps. This value of η is also used for iterative IPO and INPO. INPO has251

another hyper-parameter τ which controls the strength of the KL regularization from the reference252

policy. We determine its value following the setting of Zhang et al. [2024], where ητ is set to a fixed253

ratio, 1/3. Regarding LINE-PO, the second training round starts when the first training round based254

on INPO begins to converge/overfit, and η−1 is set to 0.01 for the second round for training stability.255

5.2 Result Analysis256

Figure 3 presents the training dynamics of three iterative preference optimization algorithms we com-257

pared: iterative IPO (Iter-IPO), INPO, and LINE-PO, which are demonstrated by their checkpoints’258

win rates against the SFT checkpoint and the average length of their outputs. For INPO and LINE-PO,259

the model is trained for up to 18 iterations, which are equivalent to 3 training rounds over the entire260

instruction set since it has been split into 6 subsets. We note that:261

4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized.
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Figure 3: Comparisons of Iterative IPO (Iter-IPO), INPO, and LINE-PO. The win rate of the trained
checkpoints against the SFT checkpoint, and the average length of the outputs are compared. The red
vertical lines mark the end of one training round – a complete iteration over the 6 data splits.

Table 2: Performance comparison of different training algorithms. The row v.s. column win rate (%)
is reported. For INPO, we report its performance with 2-round (R2) and 3-round (R3) training.

Row/Col SFT DPO IPO Iter-IPO INPO-R2 INPO-R3 LINE-PO Avg

Iter-IPO 65.84 56.40 54.04 50.00 47.83 46.21 39.01 51.33
INPO-R2 72.55 60.25 58.39 52.17 50.00 49.32 41.37 54.86
INPO-R3 66.09 60.25 58.51 53.79 50.68 50.00 44.97 54.90
LINE-PO 73.91 66.71 66.21 60.99 58.63 55.03 50.00 61.64

(1) Iter-IPO shows a quicker improvement rate at the beginning of the training, but its performance262

against the SFT checkpoint starts to degrade in the second training round, which indicates the inherent263

instability of this training algorithm.264

(2) INPO archives a relatively stable win rate against SFT at the end of the second training round.265

However, its win rate starts to slightly degrade in the third training round. We suspect this suggests266

that INPO has started to converge and/or overfit. Therefore, for LINE-PO, which shares the same267

training trajectory as INPO for the first two training rounds, we update the reference policy at the268

beginning of the third training round, following the optimization process described in Algorithm 1.269

(3) LINE-PO is able to further improve the model performance with the updated reference policy.270

Notably, it also results in the shortest outputs compared to Iter-IPO and INPO, suggesting that it is271

more robust to the length bias of the preference models which preference optimization algorithms272

tend to exploit [Park et al., 2024b].273

Table 2 provides pairwise comparisons between the final checkpoints of the iterative preference274

optimization algorithms and a few baselines. It demonstrates the clear advantage of LINE-PO, which275

is able to achieve an above 50% win rate against all the other checkpoints. In contrast, Iter-IPO can276

only outperform the vanilla DPO and IPO settings. Regarding INPO, we found that the average win277

rate of its checkpoint after the third training round (INPO-R3) is only slightly higher than that of278

its intermediate checkpoint at the end of the second training round (INPO-R2) (54.90 vs. 54.86),279

suggesting that its performance plateaued by the end of the second training round.280

6 Conclusion281

We have proposed LINE-PO, a meta-algorithm for preference optimization that provably converges282

to the Nash equilibrium policy in the last iterate. We have provided a theoretical analysis of the283

properties of LINE-PO and have empirically demonstrated its effectiveness under both synthetic284

and real-world experimental settings. We believe LINE-PO has significant potential to enhance the285

performance of LLMs in the alignment fine-tuning setting, due to its theoretical guarantees and286

flexibility, as it can be integrated with existing learning algorithms while overcoming their limitations.287
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A Alignment under the Bradley-Terry Model Assumption569

RLHF The canonical formulation of Reinforcement Learning from Human Feedback (RLHF) is to570

first learn a reward function r under the BT model and then find the optimal KL regularized policy571

π∗ with respect to the learned reward function r:572

π∗ := argmax
π

Ex∼ρ,y∼π(·|x)
[
r(x, y)− η−1 KL(π(· | x)||πref(· | x))

]
, (4)

where η−1 > 0 controls the regularization, and πref is the initial reference model, usually the policy573

πsft obtained from pre-training and supervised fine-tuning.574
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DPO Rafailov et al. [2024] observe that the regularized optimization problem (4) has a closed-form575

solution : for any x and y,576

π∗(y | x) = πref(y | x) exp (ηr(x, y))
Zx

, (5)

where Zx = Ey∼πref (·|x)[exp(
1
η r(y, x))] is the normalization constant known as the partition function.577

In (5), we see that π∗ implicitly parameterizes the reward function r. Rafailov et al. [2024] propose578

direct preference optimization (DPO) to learn the optimal policy using the maximum likelihood579

objective directly:580

ℓDPO(π;πref) = −E(x,yw,yl)∼D

[
log σ

(
η−1 log

π(yw | x)
πref(yw | x)

− η−1 log
π(yl | x)
πref(yl | x)

)]
,

where D is a data set containing win-loss pair of responses {yw, yl} given prompt x.581

B Related Work582

Alignment under Preference models Most existing approaches adopt the Bradley-Terry (BT)583

preference model [Bradley and Terry, 1952, Christiano et al., 2017], which involves first learning a584

preference model and then optimizing the objective function with a KL divergence penalty relative to585

the original language model. For example, RLHF [Ouyang et al., 2022] aims to ensure that LLMs586

follow instructions by initially learning a BT model and subsequently fine-tuning the model based on587

the learned reward while regularizing it with the original LLM.588

Building on this framework, Rafailov et al. [2024] introduces Direct Preference Optimization (DPO)589

that maintains the assumption of the BT model for preferences but eliminates the preference learning590

step by reformulating the objective and optimizing it directly. Additionally, Ethayarajh et al. [2024]591

diverges from the traditional BT-based methods by deriving algorithms that bypass the preference592

modeling step altogether. Instead, they model user preferences based on Kahneman and Tversky’s593

utility theory.594

Alignment Solution Concepts under General Preferences Azar et al. [2024] are the first to595

consider general preferences and propose a family of optimization objectives that optimize a function596

of the preferences probabilities regularized by the KL divergence with respect to the original model.597

They propose the IPO algorithm, an offline algorithm that directly optimizes the win rate of the598

model penalized by the KL divergence with respect to the original model. Munos et al. [2024]599

also consider general preferences and aim to find the von Neumann winner, which corresponds to600

the Nash equilibrium of a game played between the two LLMs over the win rate. They propose a601

variant of the Mirror Descent (MD) algorithm called Nash-MD and show last-iterate convergence602

in the KL-regularized game. Concurrently, Swamy et al. [2024] study the same solution concept603

focusing more on sequential games. Calandriello et al. [2024] proved that the objective of the the604

IPO algorithm coincides with the Nash policy under a proper choice of the parameter that controls605

the regularization.606

Iterative Self-Play Algorithms Apart from the aforementioned works, a line of recent work also607

propose practical implementation of the Mirror Dscent (MD) algorithms, which can be used to learn608

the Nash equilibrium via self-play.Rosset et al. [2024] propose Direct Nash Optimization (DNO),609

where at each iteration, the model regresses the predicted preferences against the actual preferences610

using cross-entropy loss. Similarly, Wu et al. [2024] introduce the Self-Play Preference Optimization611

(SPPO) method, Gao et al. [2024] introduce Reinforcement Learning via Regressing Relative Rewards612

(REBEL), and Richemond et al. [2024] introduce the Direct Reward Optimization (DRO) which613

regresses the loss using the L2 distance at each iteration. Since these algorithms simulate the MD614

update, when applied in a (unregularized) zero-sum game, they only have average-iterate convergence615

but all diverge in last iterate. Moreover, all these methods require the estimation of the win rate,616

which can be computationally intensive and may introduce estimation errors.617

Most closely related to our work is Iterative Nash Policy Optimization (INPO) by Zhang et al. [2024],618

which continues to use L2 distance regression. However, by further reformulating and simplifying619

the objective similar to IPO, INPO eliminates the need to estimate the expected win rate. The primary620
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distinction between our approach and INPO is that INPO is designed for the KL-regularized game621

and is equivalent to MD; while our algorithm LINE-PO is inspired by the Conceptual Prox algorithm622

and guarantees last-iterate convergence in the unregularized game. This fundamental difference623

allows LINE-PO to achieve more favourable convergence properties with robust alignment (i.e., 50%624

against any other policy) for large language models.625

Last-Iterate Convergence on Games It is well-established that Mirror Descent fails to converge626

in simple zero-sum games, often resulting in cycling behavior [Mertikopoulos et al., 2018]. In627

contrast, several prominent algorithms have been shown to achieve last-iterate convergence including628

the Proximal Point (PP) method [Rockafellar, 1976], Extra-Gradient (EG) [Korpelevich, 1976],629

Optimistic Gradient Descent (OGD) [Popov, 1980, Rakhlin and Sridharan, 2013], and the Conceptual630

Prox/Mirror Prox methods [Nemirovski, 2004]. The asymptotic convergence properties of these631

algorithms have been extensively studied [Popov, 1980, Facchinei and Pang, 2003, Iusem et al., 2003,632

Nemirovski, 2004, Daskalakis and Panageas, 2018]. Recently, there has been a growing focus on633

establishing finite-time convergence guarantees for these methods, addressing the practical necessity634

of understanding their performance within a limited number of iterations (see e.g. [Mokhtari et al.,635

2020b,a, Golowich et al., 2020b,a, Bauschke et al., 2021, Wei et al., 2021, Cai et al., 2022, Gorbunov636

et al., 2022] and references therein).637

C Properties of the Prox Operator638

Recall that Prox(z, g) = argmaxz′∈Z ⟨g, z′⟩ −Dφ(z
′||z) = argmaxz′∈Z ⟨g +∇φ(z), z′⟩ −φ(z′).639

The following properties of the prox operator are well-known in the literature(e.g., [Nemirovski,640

2004])641

Lemma 1. Prox(z, g) = z′ if and only if ⟨g +∇φ(z)−∇φ(z′), z′ − z∗⟩ ≥ 0 for all z∗ ∈ Z .642

Corollary 1. Let Prox(z, g) = z′, then643

⟨g, z∗ − z′⟩ ≤ Dφ(z
∗||z)−Dφ(z

∗||z′)−Dφ(z
′||z), ∀z∗ ∈ Z

D Proof of Theorem 1644

The proof of Theorem 1 is relatively standard in the literature [Facchinei and Pang, 2003, Nemirovski,645

2004]. We include a formal proof here for completeness. In Theorem 1, we make the following646

assumption.647

Assumption 1. We assume there exists a Nash equilibrium π⋆ such that supp(π⋆) = supp(πsft).648

This assumption is mild and much weaker than the “Bounded Log Density" assumptions used in649

previous works [Rosset et al., 2024, Zhang et al., 2024], which requires | log πt

πsft
| is bounded.650

Recall that Π := {π : supp(π) ⊆ supp(πsft)}. Then KL(π||πsft) ≤ D :=651

maxy:πsft(y)>0 log πsft(y) is bounded for any π ∈ Π. We first prove KL(π⋆||πt+1) ≤ KL(π⋆||πt)652

for any t ≥ 1.653

In the proof, we assume that each step of LINE-PO, πt+1 ← argmaxπ1
minπ2

Jτ (π1, π2, πref) can654

be solved exactly. Our proof extends to the case the optimization problem is solved approximately655

with sufficient accuracy.656

Lemma 2. Let π⋆ be an Nash equilibrium of J(π1, π2). Then for any τ > 0, if657

(π, π) = argmax
π1

argmin
π2

Jτ (π1, π2, πref),

then658

KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref)
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Proof. By definition of the prox operator, we have659

π = argmax
π1

Jτ (π1, π, πref)

= argmax
π1

P(π1 ≻ π)− τ KL(π1, πref)

= Prox(πref ,
1

τ
P(· ≻ π)). (6)

Using Corollary 1, we have for any π′ ∈ Π,660

1

τ
(P(π′ ≻ π)− P(π ≻ π)) ≤ KL(π′||πref)−KL(π′||π)−KL(π||πref). (7)

Plugging π′ = π⋆ into the above inequality and noting that P(π ≻ π) = 1
2 , we get661

1

τ

(
P(π⋆ ≻ π)− 1

2

)
≤ KL(π⋆||πref)−KL(π⋆||π)−KL(π||πref).

Since π⋆ is a Nash equilibrium and thus P(π⋆ ≻ π) ≥ 1
2 , the lefthand side of the above inequality is662

≥ 0. The we have663

KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref).

664

Lemma 2 implies the following properties on the trajectory {πt}.665

Corollary 2. In LINE-PO, we have666

1. KL(π⋆||πt+1) ≤ KL(π⋆||πt) for all t ≥ 1.667

2.
∑∞

t=1 KL(πt+1||πt) ≤ KL(π⋆||πsft) < +∞.668

3. supp(πt) = supp(πsft) for all t ≥ 1.669

Proof. The first item is direct from Lemma 2. The second item is also direct by applying Lemma 2670

for t = 1, 2 . . .:671

∞∑
t=1

KL(πt+1||πt) ≤
∞∑
t=1

KL(π⋆||πt)−KL(π⋆||πt+1) ≤ KL(π⋆||πsft) ≤ D <∞.

For the third item, let π⋆ be a Nash equilibrium such that supp(π⋆) = supp(πsft) as guaranteed672

by Assumption 1. On one hand, since KL(πt||πt−1) < ∞ for all t ≥ 1, we have supp(πt) ⊆673

supp(πt−1) ⊆ . . . ⊆ supp(πsft). On the other hand, KL(π⋆||πt) < ∞ implies supp(π⋆) ⊆674

supp(πt). Since supp(πsft) = supp(π⋆), we have supp(πt) = supp(πsft) = supp(π⋆).675

Since the sequence {πt} is bounded (all lies in the simplex), it has at least one limit point π̂. The676

next lemma shows that a limit point must be a Nash equilibrium.677

Lemma 3. If π̂ is a limit point of {πt}, then π̂ is a Nash equilibrium of J(π1, π2).678

Proof. By item 2 in Corollary 2, we have limt→∞ KL(πt+1||πt) = 0. This implies679

limt→∞ ∥πt+1 − πt∥ = 0. As π̂ is a limit point of {πt}, we let {πk : k ∈ κ} be the subsequence680

that converges to π̂. Then by Equation (6), we have681

lim
k∈κ,k→∞

πk+1 = lim
k∈κ,k→∞

Prox(πk,
1

τ
P(· ≻ πk+1))

⇒π̂ = Prox(π̂,
1

τ
P(· ≻ π̂)).

Thus π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π). Moreover, by item 3 in Corollary 2, we have682

supp(π̂) = supp(πsft). Now consider both the max and min player running MWU initialized with683

π1 = π̂. Then we have πt = π̂ for all t ≥ 1. By Equation (7), we have for any π′ ∈ Π,684

1

τ

∞∑
t=1

(
P(π′ ≻ π̂)− 1

2

)
≤ KL(π′||π̂) <∞,
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where the inequality holds since supp(π′) ⊆ supp(π̂). As a result, we get685

P(π′ ≻ π̂) ≤ 1

2
,∀π′ ∈ Π⇔ P(π̂ ≻ π′) ≥ 1

2
,∀π′ ∈ Π

Thus π̂ is a Nash equilibrium of J(π1, π2).686

Proof of Theorem 1 Since π̂ is a Nash equilibrium, by Corollary 2, {KL(π̂||πt) ≥ 0} is a687

decreasing sequence. Thus {KL(π̂||πt)} converges. As a result,688

lim
t→∞

KL(π̂||πt) = lim
k∈κ,k→∞

KL(π̂||πk) = KL(π̂||π̂) = 0.

Thus we have limt→∞ πt = π̂ is a Nash equilibrium. This completed the proof of Theorem 1.689

E Proof of Theorem 2690

We show that MWU has linear convergence to the unique Nash equilibrium of a KL-regularized691

zero-sum game J(π1, π2, πref).692

We denote µ⋆ = π⋆
τ the unique Nash equilibrium of the KL regularized game Jτ(π1, π2, πref). We693

note that J(π1, π2) is 1-smooth. We then can adapt [Abe et al., 2024, Lemma F.1] to our setting.694

Lemma 4 (Adapted from Lemma F.1 in Abe et al. [2024]). If we choose η ∈ (0, 2τ
3τ2+8 ], then we695

have for every k ≥ 1696

KL(µ⋆, µk+1) ≤ (1− ητ

2
)KL(µ⋆, µk).

Applying the lemma recursively implies KL(µ⋆||µk+1) ≤ (1− ητ
2 )k KL(µ⋆||πref) and completes697

the proof.698

F Computing the Prox Operator using Preference Learning Methods699

Reinforcement Learning algorithms We can use the Proximal Policy Optimization (PPO) algo-700

rithm [Schulman et al., 2017] to solve Prox(π, ηg). Observe that701

Prox(π, ηg) = argmax
π′

{⟨ηg, π′⟩ −KL(π′||π)}

= argmax
π′

Ey∼π′
[
g[y]− η−1 ·KL(π′||π)

]
shares the same form as the objective in (4). Typically, we parameterize π′ = πθ with neural network702

parameters θ and optimize over θ.703

Loss minimization algorithms Let us denote π̂ the prox operator Prox(π, ηg), then we have704

π̂[y] =
π(y) exp(ηg(y))

Z
⇔ log

π̂(y)

π(y)
− ηg(y) + logZ = 0,

where Z = Ey∼π[exp(ηg(y))] is the partition function. We can directly compute the partition705

function Z and thus π̂ in small tabular cases. However, the partition function is hard to compute in706

general large-scale applications. Several works have recently proposed to solve the above equality by707

optimizing the corresponding L2 loss. Specifically, the Self-Play Preference Optimization (SPPO)708

loss [Wu et al., 2024] assumes logZ = η
2 and optimizes709

ℓSPPO(θ) =

(
log

πθ(y)

π(y)
− ηg(y)− η

2

)2

.

The Direct Reward Optimization (DRO) loss [Richemond et al., 2024] parameterizes both π̂ and710

logZ with θ and Vϕ respectively and optimize5711

ℓDRO(θ, ϕ) =

(
log

πθ(y)

π(y)
− ηg(y)− ηVϕ

)2

.

5we modified some constants in the original DRO loss to make it consistent with our presentation. The
modification has no other effects.
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The REBEL loss [Gao et al., 2024] uses differences in rewards to eliminate the partition function Z712

and optimize the regression loss713

ℓREBEL(θ) =

(
η−1

(
log

πθ(y)

π(y)
− log

πθ(y
′)

π(y′)

)
− (g(y)− g(y′))

)2

.

All the above approaches can be used to solve Prox(π, ηg). However, directly applying them714

iteratively on J(π1, π2) is equivalent to running MWU, which provably diverges. In contrast, we can715

apply them in Algorithm 2 and then apply our meta-algorithm LINE-PO to guarantee convergence to716

a Nash equilibrium with robust alignment.717

Remark 1. The above approaches are versatile and work well for any g that can be evaluated718

efficiently. In particular, we should consider using them when (1) g = r is a reward function and719

we can efficiently query r; (2) g = P(· | µ) is the win rate against a reference policy µ, and we can720

efficiently sample from µ and have oracle access to P. These two setting are popular and practical in721

the LLM alignment setting.722

Now we turn attention to the more specific setting where g corresponds to a preference model P723

(could be a BT model or a general preference) and that we can collect a win-loss preference data set724

D = {(yw, yl)}, which is standard for LLM alignment. Although the abovementioned algorithms725

apply, they all require estimating g (the win rate) and may be inefficient in practice. In the following,726

we present algorithms directly working on the sampled dataset D without further estimation.727

Sampled loss based on the BT preference model Assume g = r is the reward of the Bradley-728

Terry model, and the dataset {(yw, yl)} consists of win-lose pairs of responses. Then we can solve729

Prox(π, ηg) by optimize the DPO loss [Rafailov et al., 2024] defined as730

ℓDPO((yw, yl); θ) = − log σ

(
η−1 log

πθ(yw)

π(yw)
− η−1 log

πθ(yl)

π(yl)

)
.

Sampled loss for general preference The DPO loss inspires many other loss functions that work731

under even weaker assumptions on the preference model. Now, we assume a general preference732

model P over Y (not necessarily the BT model). We assume g is the win-rate against some policy733

µ such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]] (think of µ as the reference policy πref or other734

online policy πt). We assume the dataset contains win-lose pairs sampled from µ: {yw, yl ∼ µ}. We735

denote the preference distribution λP(y, y
′) as a binary distribution:736

λP(y, y
′) =

{
(y, y′) with probability P[y ≻ y′]

(y′, y) with probability 1− P[y ≻ y′]

The (population) IPO loss [Tang et al., 2024, Calandriello et al., 2024] is defined as737

ℓIPO(θ, µ) := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

π(y+)
− log

πθ(y
−)

π(y−)
− η

2

)2
]
.

It has been proved that the minimizer of the ℓIPO(θ, µ) satisfies738

πθ(y) ∝ π(y) exp (−ηP[y ≻ µ])⇔ πθ = Prox(π, ηgµ).

Thus we can compute the prox operator Prox(π, ηgµ) where gµ = P(· ≻ µ) by minimizing the IPO739

loss against policy µ.740

A variant of the IPO loss applied to the regularized preference setting is the Iterative Nash Policy741

Optimization (INPO) loss [Zhang et al., 2024]. Here, we define gτµ the gradient ∇πJτ (π, µ, πref) =742

P(· ≻ µ)− τ log µ(·)
πref (·) of the regularized objective. The corresponding INPO loss is743

ℓINPO := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

πθ(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µ(y+)

µ(y−)
− η

2

)2
]
.

Similarly, it has been shown that the INPO loss minimizer corresponds to the prox operator’s solution744

Prox(π, ηgτµ). Thus we can use the INPO in Algorithm 2 directly.745

19



G Practical Implementation of Algorithms746

We present an implementation of LINE-PO using the INPO [Zhang et al., 2024] as a subgame solver747

here. We remark that LINE-PO can also be implemented using PPO or many other preference learning748

algorithms, as we show in Section 3.3. Given the implementation of these existing methods, our749

meta-algorithm requires minimal change but archives last-iterate convergence to Nash equilibrium750

with robust alignment.

Algorithm 3: Practical Implementation of LINE-PO integrated with INPO (Algorithm 4)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
1 Initialize π1, πref ← πsft

2 for t = 1, 2, . . . , T − 1 do
3 πt+1 ← INPO(πref , τt, ηt,Kt,P)
4 πref ← πt+1

5 return πT

751

Algorithm 4: INPO [Zhang et al., 2024]
Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,

preference oracle P.
1 Initialize µ1 ← πref

2 for k = 1, 2, . . . ,K − 1 do
3 Generate response pairs {y(i)1 , y

(i)
2 }ni=1 where y

(i)
1 , y

(i)
2 ∼ µk

4 Query preference oracle P to get preference data Dk = {y(i)w , y
(i)
l }ni=1

5 Compute µk+1 as

µt+1 = argmin
π∈Π

E(yw,yl)∼Dk
ℓINPO(π)

ℓINPO(π) := E(y+,y−)∼λP(yw,yl)

[(
log

π(y+)

π(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µt(y+)

µt(y−)
− η

2

)2
]

6

7 return µK

H Implementation of Mirror-Prox and Optimistic Multiplicative Weights752

Update753

We note that there are other algorithms that has provable last-iterate convergence to Nash equilibrium754

in (unregularized) zero-sum games, including the Mirror-Prox algorithm [Nemirovski, 2004] and755

Optimistic Multiplicative Weights Update (OMWU) algorithm [Rakhlin and Sridharan, 2013, Syrgka-756

nis et al., 2015, Hsieh et al., 2021]. We present practical implementations of these two algorithms757

in the context of LLM alignment for solving J(π1, π2) (1), where we use preference optimization758

algorithms to solve the prox operator as shown in Section 3.3.759

We denote the gradient g(π) := P(· ≻ π).760

Mirror-Prox The Mirror-Prox algorithm [Nemirovski, 2004] initialized π1 = πsft and updates in761

each iteration t ≥ 1:762

πt+ 1
2 = Prox(πt, ηg(πt))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

As we have shown in Section 3.3, we can implement Mirror-Prox using763

PPO/DPO/IPO/SPPO/DRO/REBEL to compute the prox operator. Specifically, we could764
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sample from πt and construct a preference dataset Dt and optimize certain regression loss765

(IPO/DRO/REBEL) to compute πt+ 1
2 = Prox(πt, ηg(πt)). The procedure applies to the second step766

in each iteration. Thus we require two sampling and two optimization procedure in each iteration.767

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm [Rakhlin and Srid-768

haran, 2013] is an optimistic variant of the MWU algorithm. Although MWU diverges in zero-sum769

games, it has been shown that OMWU has last-iterate convergence to Nash equilibrium [Wei et al.,770

2021, Hsieh et al., 2021]. Initialized with π1 = π
1
2 = πsft, OMWU updates in each iteration t ≥ 1:771

πt+ 1
2 = Prox(πt, ηg(πt− 1

2 ))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

Similarly, we can implement OMWU to solve J(π1, π2) using preference methods to compute the772

prox operator as shown in Section 3.3. Moreover, OMWU has an equivalent update rule: initialize773

π1 = π0 = πsft774

πt+1 = Prox(πt, 2ηg(πt)− ηg(πt−1)),

which requires computing only one prox operator in each iteration.775

We leave testing the practical performance of Mirror-Prox and OMWU for large-scale applications776

including LLM alignment as future works.777

I Detailed Discussion on Synthetic Experiments778

The sample-only setting is also more aligned with the practice. We use sufficient samples in each779

iteration for every algorithm. As a result, the LINE-PO performs the same as in the noiseless gradient780

setting, while the iterative IPO algorithm becomes equivalent to the MD algorithm. We present the781

results in Figure 2 and noting that summarize the results below.782

• Iterative DPO: We observe that iterative DPO diverges and cycles between extreme policies783

(e.g., outputting ya with probability close to 1). This is aligned with [Azar et al., 2024],784

where they found DPO will converge to the deterministic policy regardless of the regulariza-785

tion parameter in extreme preference settings. The cycling behavior of iterative DPO may786

be explained as follows: in each iteration, DPO converges to a nearly deterministic policy787

output y; then the new preference data shows that y′ ̸= y is more preferred; finally, iterative788

DPO cycles over Y since the preference itself exhibits a cycle and there is no clear winner.789

• Iterative IPO [Azar et al., 2024, Calandriello et al., 2024]: The IPO loss is a variant of790

the DPO loss, but it does not rely on the BT model assumption and works for a general791

preference model. However, as we have discussed before, (exactly) minimizing the IPO loss792

is equivalent to performing one mirror descent step, and thus, iterative IPO is equivalent to793

mirror descent up to sampling error. As a result, we observe that iterative IPO also exhibits794

cycling behavior.795

• SPPO [Wu et al., 2024]: The SPPO algorithm is not exactly the same as MWU since796

SPPO assumes the partition function is always Z = log η
2 which may not be the case. We797

observe that SPPO exhibits very similar cycling behavior as MD. We conclude that SPPO798

approximates MD very well in this instance and exhibits similar behavior.799

• INPO [Zhang et al., 2024]: The INPO algorithm is designed for finding the Nash equilibrium800

of the KL regularized game Jτ (π1, π2, πref). As we proved in Theorem 2, INPO does not801

diverge but exhibits last-iterate convergence. However, it converges to a regularized Nash802

equilibrium without the robust alignment property.803
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