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Abstract

Many alignment methods, including reinforcement learning from human feedback
(RLHF), rely on the Bradley-Terry reward assumption, which is insufficient to
capture the full range of general human preferences. To achieve robust alignment
with general preferences, we model the alignment problem as a two-player zero-
sum game, where the Nash equilibrium policy guarantees a 50% win rate against
any competing policy. However, previous algorithms for finding the Nash policy
either diverge or converge to a Nash policy in a modified game, even in a simple
synthetic setting, thereby failing to maintain the 50% win rate guarantee against
all other policies. We propose a meta-algorithm, Convergent Meta Alignment
Algorithm (COMAL), for language model alignment with general preferences,
inspired by convergent algorithms in game theory. Theoretically, we prove that our
meta-algorithm converges to an exact Nash policy in the last iterate. Additionally,
our meta-algorithm is simple and can be integrated with many existing methods de-
signed for RLHF and preference optimization with minimal changes. Experimental
results demonstrate the effectiveness of the proposed framework when combined
with existing preference policy optimization methods.

1 Introduction

Large Language Models (LLMs) [Brown et al., 2020, OpenAI, 2023, Dubey et al., 2024] have
fundamentally transformed the fields of natural language processing and artificial intelligence. They
excel in tasks ranging from text generation and translation to complex question answering and
interactive dialogue systems. As these models become more integrated into daily life, a key challenge
is ensuring they achieve high levels of alignment with human values and preferences.

One of the most widely adopted approaches to addressing this challenge is Reinforcement Learning
from Human Feedback (RLHF) [Christiano et al., 2017, Ouyang et al., 2022]. This framework
consists of two steps: first, learning a reward model from a dataset containing human preferences,
and second, optimizing the LLM using the proximal policy optimization (PPO) algorithm [Schulman
et al., 2017]. Recently, Rafailov et al. [2024] observed that the first step can be bypassed, proposing
the direct preference optimization (DPO) algorithm, directly optimizing the LLM from the dataset.

However, the aforementioned approaches crucially rely on the assumption that human preferences
can be expressed using the Bradley-Terry (BT) model [Bradley and Terry, 1952]. Unfortunately, the
BT model is too restrictive to capture the richness and complexity of human preferences. Specifically,
the BT model can only induce transitive preferences – i.e., if more people favor A over B, and B
over C, then more people must favor A over C. Such transitivity may not hold in the presence of
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diverse populations and is also incompatible with evidence from human decision-making [May, 1954,
Tversky, 1969].

To overcome this limitation, recent research has begun to explore alignment under general preferences.
Munos et al. [2024] formulate this alignment problem as a symmetric two-player zero-sum game,
where both players’ strategies are LLMs, and their payoffs are determined by the win rate against the
opponent’s LLM according to the preference model. The objective is to identify a Nash equilibrium
policy that guarantees at least a 50% win rate against any other policy [Munos et al., 2024, Swamy
et al., 2024, Azar et al., 2024, Calandriello et al., 2024], a property we refer to as robust alignment.
However, all the proposed algorithms either diverge or converge to the Nash policy of a modified
game, thereby failing to maintain the 50% win rate guarantee against all other policies.

Our Contribution. We introduce a novel meta-algorithm, Convergent Meta Alignment Algorithm
(COMAL), inspired by the conceptual prox-method, a convergent algorithm for solving two-player
zero-sum games [Nemirovski, 2004]. Our first observation is that many existing algorithms, including
PPO [Schulman et al., 2017], DPO [Rafailov et al., 2024], IPO [Azar et al., 2024], SPPO [Wu et al.,
2024], REBEL [Gao et al., 2024], DRO [Richemond et al., 2024], INPO [Zhang et al., 2024], etc.,
can be interpreted as implementations of the Prox operator [Nemirovski, 2004]. COMAL employs
the Prox operator as its fundamental building block and provably converges to the Nash equilibrium
policy in the last iterate, assuming the Prox operator can be computed exactly, thus achieving
robust alignment. This approach allows us to leverage many existing algorithms in a black-box
manner. While several algorithms, e.g., IPO, SPPO, etc., in the literature demonstrate average-
iterate convergence to the Nash equilibrium policy, they all diverge in the last iterate. Unfortunately,
iterate averaging can be cumbersome, particularly when deep-learning components are involved,
as it may not be feasible to average the outputs of LLMs.1 For the more desirable last-iterate
convergence [Munos et al., 2024, Zhang et al., 2024], existing algorithms only guarantee convergence
to a KL-regularized Nash equilibrium, which does not have the robust alignment property. Compared
to these algorithms, COMAL is the first to provably converge to a Nash equilibrium policy in the last
iterate, thus guaranteeing robust alignment.

In addition to our theoretical analysis, we validate the effectiveness of COMAL through both synthetic
and LLM-based experiments.

Synthetic experiments. We construct a 3× 3 two-player zero-sum preference game and compare
COMAL with a wide range of algorithms proposed in the literature. The result clearly shows that
COMAL is the only algorithm that converges to the Nash equilibrium of the game in the last iterate.

LLM-based experiments. Furthermore, we evaluate the performance of COMAL against existing
preference optimization algorithms under a practical setting, where a pre-trained LLM, Qwen2-
1.5B [Yang et al., 2024] is fine-tuned using different algorithms on the UltraFeedback [Cui et al.,
2023] dataset, which is commonly used for alignment fine-tuning of LLMs. We run iterative
algorithms up to 42 iterations and compare both the best and the last checkpoints. Our experimental
results demonstrate the advantages of COMAL: it consistently achieves a win rate strictly above 50%
compared to baseline algorithms, including DPO [Rafailov et al., 2024] and iterative algorithms such
as iterative IPO [Azar et al., 2024] and INPO [Zhang et al., 2024].2

2 Background

We use ∆(Z) to denote a distribution over a set Z . We denote x ∈ X as an instruction where X is
the instruction set. We assume a fixed distribution ρ ∈ ∆(X ) over the instruction set. We denote Y as
the response set and y ∈ Y as one response. Given any instruction x ∈ X , an LLM policy π specifies
the output distribution π(· | x) ∈ ∆(Y). For distributions p, q ∈ ∆(Z), the Kullback-Leibler (KL)
divergence is defined as KL(p||q) :=

∑
z∈Z p(z) log p(z)

q(z) . The sigmoid function is σ(x) := ex

ex+1 .
We use supp(p) to denote the support of a distribution p.

1Obtaining the average output from multiple LLMs requires serving all LLMs simultaneously, which can be
highly compute-inefficient and, to our knowledge, has not been implemented.

2Our codebase and trained models are available at https://github.com/yale-nlp/COMAL.
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Preference Models In this paper, we focus on general preference models.
Definition 1 (General Preference Model). A general preference model P : X × Y × Y → [0, 1]
satisfies P(y1 ≻ y2 | x) = 1− P(y2 ≻ y1 | x). When we query P with (x, y1, y2), it outputs 1 with
probability P(y1 ≻ y2 | x) meaning y1 is preferred over y2, and it outputs 0 otherwise.

We define P(π1 ≻ π2) := Ex∼ρ[Ey1∼π1,y2∼π2
[P(y1 ≻ y2 | x)]] as the win rate of π1 over π2 under

preference model P. We denote the preference distribution λP(y, y
′) as a binary distribution:

λP(y, y
′) =

{
(y, y′) with probability P[y ≻ y′]

(y′, y) with probability 1− P[y ≻ y′]
(1)

A special case of the general preference model is the Bradley-Terry (BT) model, which assumes a
reward function parameterizes the preference.
Definition 2 (Bradley-Terry Model). A preference model P satisfies the Bradley-Terry (BT) assump-
tion if there exists a reward function r∗ : X × Y → R such that

P(y1 ≻ y2 | x) =
exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)).

2.1 Alignment under the Bradley-Terry Model Assumption

RLHF The canonical formulation of Reinforcement Learning from Human Feedback (RLHF) is to
first learn a reward function r under the BT model and then find the optimal KL regularized policy
π∗ with respect to the learned reward function r:

π∗ := argmax
π

Ex∼ρ,y∼π(·|x)
[
r(x, y)− η−1 KL(π(· | x)||πref(· | x))

]
, (2)

where η−1 > 0 controls the regularization, and πref is the initial reference model, usually the policy
πsft obtained from pre-training and supervised fine-tuning.

DPO Rafailov et al. [2024] observe that the regularized optimization problem (2) has a closed-form
solution: for any x and y,

π∗(y | x) = πref(y | x) exp (ηr(x, y))
Zx

, (3)

where Zx = Ey∼πref (·|x)[exp(
1
η r(y, x))] is the normalization constant known as the partition function.

In (3), we see that π∗ implicitly parameterizes the reward function r. Rafailov et al. [2024] propose
direct preference optimization (DPO) to learn the optimal policy using the maximum likelihood
objective directly:

ℓDPO(π;πref) = −E(x,yw,yl)∼D

[
log σ

(
η−1 log

π(yw | x)
πref(yw | x)

− η−1 log
π(yl | x)
πref(yl | x)

)]
,

where D is a data set containing win-loss pair of responses {yw, yl} given prompt x.

2.2 Robust Alignment with General Preference Models

The BT model assumption is insufficient to capture the full range of general human preferences
[Munos et al., 2024, Swamy et al., 2024]. To achieve robust alignment with general preferences, we
model the policy optimization problem as a two-player zero-sum game with the objective function as
follows:3

J(π1, π2) := P(π1 ≻ π2)−
1

2
= Ex∼ρ[Ey1∼π1,y2∼π2

[P(y1 ≻ y2 | x)]]−
1

2
. (4)

In this game, the max-player controls π1 and tries to maximize J(π1, π2) while the min-player
controls π2 and tries to minimize J(π1, π2). We focus only on policies with Π := {π : supp(π) ⊆
supp(πsft)} in the support of the initial SFT policy. A Nash equilibrium policy (π⋆

1 , π
⋆
2) satisfies

π⋆
1 , π

⋆
2 ∈ argmax

π1∈Π
argmin
π2∈Π

J(π1, π2), J(π1, π
⋆
2) ≤ J(π⋆

1 , π
⋆
2) ≤ J(π⋆

1 , π2),∀π1, π2 ∈ Π.

3We introduce the constant 1
2

only to ensure the game is zero-sum and it has no effect on its Nash equilibria.
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Table 1: Property comparison of different preference optimization algorithms. The algorithms are
compared based on whether they work for general preferences, whether they exhibit last-iterate
convergence in two-player zero-sum games, and whether the output policy achieves robust alignment,
i.e., a 50% win rate against other policies. ✓\ : convergence only in the modified KL-regularized
game Jτ (π1, π2, πref) (5) but not in J(π1, π2) (4).

Algorithm General Preference Last-Iterate Convergence Robust Alignment

DPO [Rafailov et al., 2024] ✗ ✗ ✗

IPO [Azar et al., 2024] ✓ ✗ ✗
SPPO [Wu et al., 2024] ✓ ✗ ✗

Nash-MD [Munos et al., 2024] ✓ ✓\ ✗
INPO [Zhang et al., 2024] ✓ ✓\ ✗

COMAL (Algorithm 1) ✓ ✓ ✓

Since J(π1, π2) is symmetric, the game has a symmetric Nash equilibrium (π⋆, π⋆). Moreover,
the Nash equilibrium policy π⋆ guarantees that for any other policy π, its win rate is at least
P(π⋆ ≻ π) ≥ P(π⋆ ≻ π⋆) = 50%. We call this property robust alignment. Our goal is to find a
policy with robust alignment.

Existing online iterative preference optimization methods designed for or applicable to the original
game, including iterative IPO [Azar et al., 2024] and SPPO [Wu et al., 2024], are based on Multi-
plicative Weights Update (MWU, definition in Section 3.2), and thus diverge in the last iterate as
we show in Section 4.4 There is also a line of works including Nash-MD [Munos et al., 2024, Ye
et al., 2024], Online IPO [Calandriello et al., 2024], INPO [Zhang et al., 2024] aim to find the Nash
equilibrium of a modified KL-regularized game:

Jτ (π1, π2, πref) := J(π1, π2)− τEx∼ρ[KL(π1(· | x)||πref(· | x))] + τEx∼ρ[KL(π2(· | x)||πref(· | x))]. (5)

The additional KL regularization terms in the objective are introduced for training stability. However,
the Nash equilibrium of the modified game no longer achieves robust alignment, i.e., it has a win rate
of at least 50% against any competing policy. We present comparison of these algorithms in Table 1.

Moreover, most existing theoretical convergence guarantees only hold for the average iterate, i.e., the
uniform mixture of training iterates, which is not used in practice. We focus on designing algorithms
with provable last-iterate convergence to Nash equilibrium, which aligns with practice and is more
space-efficient [Munos et al., 2024].

As we show in the next section, our meta-algorithm COMAL can also be implemented with black-box
access to algorithms that solve the regularized game Jτ (π1, π2, πref).

3 A Convergent Meta-Algorithm for Alignment

We propose a simple meta-algorithm, Convergent Meta Alignment Algorithm (COMAL, Algo-
rithm 1), for robustly aligning LLMs with general preferences by solving the unregularized game
J(π1, π2) (4). In Section 3.1 and 3.2, we present the theoretical foundations of COMAL and analyze
its convergence properties. Section 3.3 describes its practical implementation that integrates COMAL
with existing preference learning methods.

3.1 COMAL

COMAL (Algorithm 1) is an online iterative algorithm inspired by the classic conceptual prox-
method [Nemirovski, 2004] first introduced in the optimization theory community. This method has
recently been applied to finding a Nash equilibrium in zero-sum games [Perolat et al., 2021, Abe
et al., 2024] and has had notable success in training advanced game AI models [Perolat et al., 2022].

4The MWU algorithm only has a weaker average-iterate convergence, i.e., 1
T

∑T
t=1 π

t converges.
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Algorithm 1: Convergent Meta Alignment Algorithm (COMAL) for solving J(π1, π2) (4)
Input: Initial policy πsft, preference oracle P, regularization τ > 0, number of iterations T ≥ 1
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← argmaxπ1

minπ2
Jτ (π1, π2, πref) using Algorithm 2 (discussed in Section 3.2)

πref ← πt+1

return πT

Update Rule of COMAL In each iteration t, COMAL uses a regularized game solver (Algorithm 2)
to update the next-iteration policy πt+1 as the Nash equilibrium policy of a regularized game
Jτ (π1, π2, πref) using the current policy as reference πref = πt. We defer further discussion of
Algorithm 2 to Section 3.2 for clarity. The rationale behind COMAL is simple: update the reference
policy when no further progress can be made, which occurs when the algorithm reaches the Nash
equilibrium of the regularized game. Denote π⋆ a Nash equilibrium of the original game. We show
that KL divergence to π⋆ is monotonically decreasing: KL(π⋆||πt+1) ≤ KL(π⋆||πt). Since πt+1

is closer to the Nash equilibrium than πt, COMAL updates the reference policy from πt to πt+1

for further optimization. We also note that in COMAL, KL(π⋆||πt+1) ≤ KL(π⋆||πt) holds for any
τ > 0, allowing us to choose the regularization parameter τt > 0 adaptively during the training
process, without requiring it to decrease over time.

Implementation of COMAL Each iteration of COMAL requires solving a zero-sum game with
additional KL regularization Jτ (π1, π2, πref). We will show momentarily that many existing policy
optimization methods for alignment can be applied to the KL regularized game and have exponen-
tially fast convergence. We also present one practical implementation of COMAL integrated with
INPO [Zhang et al., 2024] as the regularized game solver in Algorithm 4.

Last-Iterate Convergence We prove that the meta-algorithm COMAL achieves last-iterate conver-
gence to a Nash equilibrium, thereby ensuring robust alignment, which, to our knowledge, is the first
result of its kind in the context of LLM alignment. The proof is in Appendix B.
Theorem 1. We assume that there exists a Nash equilibrium π⋆ of J(π1, π2) (defined in (4)) such
that supp(π⋆) = supp(πsft). In every iteration t ≥ 1, it holds that KL(π⋆||πt+1) ≤ KL(π⋆||πt).
Moreover, COMAL has last-iterate convergence, i.e., limt→∞ πt exists and is a Nash equilibrium.

3.2 Solving a Regularized Game

We present Mirror Descent (MD) in Algorithm 2 to compute a Nash equilibrium of the regularized
game Jτ (π1, π2, πref). MD uses the prox operator as building blocks and we later show how to
implement the prox operator using existing policy optimization algorithms. For simplicity, we
consider policy π ∈ ∆(Y) and omit the dependence on the instruction x. All discussions can be
extended to the contextual setting in a straightforward way.

Algorithm 2: Regularized game solver for Jτ (π1, π2, πref) – argmaxπ1
minπ2

Jτ (π1, π2, πref)

Input: Reference policy πref , preference oracle P, regularization τ > 0, step size η > 0, number
of iterations K ≥ 1

Output: Regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
gkτ ← ∇µ(P(µ ≻ µk)− τ KL(µ||πref)) = P(· ≻ µk)− τ(log µk(·)

πref (·) + 1) // Gradient

µk+1 ← Prox(µk, ηg
k
τ )

return µK

Mirror Descent and Multiplicative Weights Update Mirror Descent (MD) is a classical family of
optimization algorithms [Nemirovskij and Yudin, 1983]. An important member of this family is the
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Multiplicative Weights Update (MWU) algorithm [Arora et al., 2012], which is MD with negative
entropy regularization. For a maximization problem maxπ f(π), given an existing policy πt, MWU
computes the update πt+1 as follows:

πt+1 := argmax
π

〈
∇f(πt), π

〉
− η−1 ·KL(π||πt). (6)

Note that RLHF in (2) is equivalent to MWU if we interpret f(π) as the expected reward under π
Ey∼π[r(y)], and the gradient ∇f corresponds directly to r.

We note that the update rule of MWU can be succinctly expressed using the prox operator as shown
in Algorithm 2.5 Therefore, our analysis will consider the general case of the Prox Operator.

Prox operator. Fix a 1-strongly convex function φ : Z → R over a closed convex set Z ⊂ Rn.
The Bregman divergence induced by φ is

Dφ(·||·) : Z × Z → R≥0,

Dφ(z||z′) := φ(z)− φ(z′)− ⟨∇φ(z′), z − z′⟩.

Given a reference point z ∈ Z and a vector g ∈ Rn, the prox operator Prox(z, g) generalizes the
notion of a gradient ascent step from z in the direction of g.
Definition 3 (Prox Operator). For a strongly convex regularizer φ, the prox operator is defined as

Prox(z, g) := argmax
z′

⟨g, z′⟩ −Dφ(z
′||z) = argmax

z′
⟨g +∇φ(z), z′⟩ − φ(z′).

When φ(z) = 1
2∥z∥

2
2 is the ℓ2 regularizer, the prox operator Prox(z, g) = ΠZ [z + g] is the

exactly the projected gradient ascent step. In this paper, without additional notes, we choose
φ =

∑n
i=1 z[i] ln z[i] as the negative entropy regularizer and the corresponding Bregman divergence

Dφ is the KL divergence. The update rule of MWU in (6) is equivalent to πt+1 = Prox(πt, η∇f(πt))

Exponentially Fast Convergence Denote π⋆
τ the Nash equilibrium of the KL regularized game

Jτ (π1, π2, πref), which is τ -strongly monotone. We can apply existing results to show that MWU
(Algorithm 2) achieves linear last-iterate convergence rate: the KL divergence to the Nash equilibrium
π⋆
τ decreases exponentially fast. The proof is in Appendix C.

Theorem 2. For step size 0 < η ≤ τ
τ2+0.5 , Algorithm 2 guarantees for every k ≥ 1,

KL(π⋆
τ ||µk+1) ≤ (1− ητ

2 )k KL(π⋆
τ ||πref).

3.3 Practical methods for computing the prox operator

We show how to implement COMAL in practical large-scale applications like LLM alignment by
computing the prox operator. Specifically, we observe that many existing algorithms designed for
RLHF and preference optimization with neural network parameters can be adapted to solve the
prox operator Prox(π, ηg) (η > 0 is the step size). These algorithms include RL algorithms like
PPO [Schulman et al., 2017] and loss-minimization algorithms like, DPO [Rafailov et al., 2024],
IPO [Azar et al., 2024], SPPO [Wu et al., 2024], REBEL [Gao et al., 2024], DRO [Richemond et al.,
2024], INPO [Zhang et al., 2024]. Each of them may be preferred in certain settings. Due to space
limit, we only present IPO and INPO here but defer discussion of other methods to Appendix D.

Our contribution here is not proposing new algorithms but unifying existing diverse preference
methods through the perspective of computing the prox operator. This perspective opens the possi-
bility of applying other algorithms from online learning and optimization to robust LLM alignment.
We include implementations for two other last-iterate convergent algorithms, the Mirror-Prox algo-
rithm [Nemirovski, 2004] and the Optimistic Multiplicative Weights Update algorithm [Rakhlin and
Sridharan, 2013, Syrgkanis et al., 2015], in Appendix E.

IPO for computing Prox for unregularized preferences Before we provide the a practical
implementation of Algorithm 2, we first show that the IPO loss could be used to solve πθ =
Prox(π, ηgµ) where g is the unregularized win-rate against a reference policy µ such that gµ(y) =

5The prox operator is also called the prox-mapping [Nemirovski, 2004].
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P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]]. Given a dataset of win-lose pairs sampled from µ: {yw, yl ∼ µ}, the
(population) IPO loss [Azar et al., 2024] is

ℓIPO(θ) := E (yw,yl)∼µ

(y+,y−)∼λP(yw,yl)(1)

[(
log

πθ(y
+)

πθ(y−)
− log

π(y+)

π(y−)
− η

2

)2
]
.

Azar et al. [2024] have shown that the minimizer of the ℓIPO(θ, µ) satisfies

πθ(y) ∝ π(y) exp (−ηP[y ≻ µ])⇔ πθ = Prox(π, ηgµ).

Thus we can compute the prox operator Prox(π, ηgµ) where gµ = P(· ≻ µ) by minimizing the IPO
loss against policy µ.

INPO for computing Prox for regularized preferences The Iterative Nash Policy Optimization
(INPO) loss [Zhang et al., 2024] is a generalization of the IPO loss to the regularized preference setting.
We show that INPO could be used to compute Prox(µ, ηgτµ), where gτµ := ∇πJτ (π, µ, πref) =

P(· ≻ µ)− τ log µ(·)
πref (·) is the gradient of the regularized objective (5). Given a win-loss pair data set

{yw, yl ∼ µ}, the INPO loss is

ℓINPO(π) := E (yw,yl)∼µ

(y+,y−)∼λP(yw,yl)(1)

[(
log

π(y+)

π(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µ(y+)

µ(y−)
− η

2

)2
]
.

It has been proved that the minimizer of the INPO loss is Prox(µ, ηgτµ) [Zhang et al., 2024]. Thus
we can use INPO in Algorithm 2 as a regularized game solver, as we show in Algorithm 3.

Algorithm 3: INPO [Zhang et al., 2024] for solving Jτ (π1, π2, πref)

Input: Reference policy πref , regularization τ > 0, step size η > 0, number of rounds K ≥ 1,
preference oracle P.

Output: Approximate regularized Nash equilibrium policy µK

Initialize µ1 ← πref

for k = 1, 2, . . . ,K − 1 do
Generate response pairs {y(i)1 , y

(i)
2 }ni=1 where y

(i)
1 , y

(i)
2 ∼ µk

Query preference oracle P to get preference data Dk = {y(i)w , y
(i)
l }ni=1

Compute µk+1 = argminπ∈Π E(yw,yl)∼Dk
ℓINPO(π) where

ℓINPO(π) := E(y+,y−)∼λP(yw,yl)
(1)

[(
log

π(y+)

π(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µt(y+)

µt(y−)
− η

2

)2
]

return µK

Practical Implementation of COMAL We present an implementation of COMAL in Algorithm 4
using the INPO [Zhang et al., 2024] as a subgame solver. We remark that COMAL can also be
implemented using PPO or many other preference learning algorithms, as we show in Section 3.3
and Appendix D. Given the implementation of these existing methods, our meta-algorithm requires
minimal change but achieves last-iterate convergence to a Nash equilibrium.

Algorithm 4: Practical Implementation of COMAL integrated with INPO (Algorithm 3)
Input: Initial policy πsft, regularization {τt > 0}, step size {ηt > 0}, number of iterations

T ≥ 1, number of inner optimization steps {Kt ≥ 1}, preference oracle P.
Output: Optimized policy πT

Initialize π1, πref ← πsft

for t = 1, 2, . . . , T − 1 do
πt+1 ← INPO(πref , τt, ηt,Kt,P) defined in Algorithm 3
πref ← πt+1

return πT
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4 Synthetic Experiments

We conduct experiments on a simple bandit problem with Y = {ya, yb, yc} and non-BT preference
model over Y . Specifically, we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. Observe
that the preference is intransitive and exhibits a preference cycle yc ≻ yb ≻ ya ≻ yc. The setup for
the synthetic experiment is included in Appendix F.
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Figure 1: Dyanmics on a simple 3-dimensional
preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We
initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

Experiments using noiseless gradient We
present numerical results of mirror-descent (MD)
algorithms (equivalent to MWU) and COMAL
(Algorithm 1) in Figure 1. We can see that the MD
algorithm diverges from the unique Nash equilib-
rium and suffers a large equilibrium gap, while
COMAL achieves fast last-iterate convergence to
the Nash equilibrium, aligned with our theoretical
results (Theorem 1).

Experiements using preference samples Since
the popular iterative DPO algorithm does not con-
tain a gradient step, we also conduct experiments
with only Oracle query access to the preference
model. We compare the performance of various
algorithms, including iterative DPO, iterative IPO,
SPPO, and INPO and present results in Figure 2.
The sample-only setting is also more aligned with
what happens in practice. We use a sufficient num-
ber of samples in each iteration for every algo-
rithm. As a result, the COMAL performs the same
as in the noiseless gradient setting, while the itera-
tive IPO algorithm becomes equivalent to the MD
algorithm. We note the following:

Iterative DPO: We observe that iterative DPO di-
verges and cycles between extreme policies (e.g., outputting ya with probability close to 1). This is
aligned with [Azar et al., 2024], where they found DPO will converge to the deterministic policy
regardless of the regularization parameter in extreme preference settings. The cycling behavior of
iterative DPO may be explained as follows: in each iteration, DPO converges to a nearly deterministic
policy output y; then the new preference data shows that y′ ̸= y is more preferred; finally, iterative
DPO cycles over Y since the preference itself exhibits a cycle and there is no clear winner.

Iterative IPO [Azar et al., 2024, Calandriello et al., 2024]: The IPO loss is a variant of the DPO loss,
but it does not rely on the BT model assumption and works for a general preference model. However,
as we have discussed before, (exactly) minimizing the IPO loss is equivalent to performing one MD
step, and thus, iterative IPO is equivalent to MD up to sampling error. As a result, we observe that
iterative IPO also exhibits cycling behavior.

SPPO [Wu et al., 2024]: The SPPO algorithm (see Appendix D) is not exactly the same as MWU since
SPPO assumes the partition function is always Z = log η

2 which may not be the case. We observe
that SPPO exhibits very similar cycling behavior as MD. We conclude that SPPO approximates MD
very well in this instance and exhibits similar behavior.

INPO [Zhang et al., 2024]: The INPO algorithm is designed for finding the Nash equilibrium of
the KL regularized game Jτ (π1, π2, πref). As we proved in Theorem 2, INPO does not diverge
and exhibits last-iterate convergence. However, it converges to a point that differs from the Nash
equilibrium of the game J(π1, π2) and, as a result, lacks the robust alignment property.
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Figure 2: Dyanmics on a simple 3-dimensional preference game. The unique Nash equilibrium
is [4/11, 3/11, 4/11] represented as red star. We initialize all algorithms at the blue dot point
[0.2, 0.5, 0.3].

5 LLM-Based Experiments

Apart from the controlled synthetic experiments, we conduct experiments with a pre-trained LLM,
Qwen2-1.5B [Yang et al., 2024], on a commonly used dataset UltraFeedback [Cui et al., 2023] to
show the effectiveness of COMAL under the practical preference optimization setting.

5.1 Experimental Settings

Datasets We use the UltraFeedback dataset, specifically its binarized version for preference fine-
tuning.6 It contains 64K data examples consisting of a user instruction and a positive-negative output
pair annotated by GPT-4. The instructions in this dataset span a wide range of types, making it
well-suited for studying preference optimization in practical settings. Since we focus on online and
iterative preference optimization, only the instructions are used because the output pairs will be
generated and annotated online. In addition, to reduce the computational cost, the instructions are
randomly split into 6 equal-size subsets. Each subset therefore contains around 10K instructions and
is used in one training iteration.

Preference Oracle The preference oracle we used is Llama-3-OffsetBias-8B [Park et al., 2024],
which is a pairwise preference model that predicts which output is better given an instruction and
a pair of outputs. Fine-tuned from Meta-Llama-3-8B-Instruct [Dubey et al., 2024], it achieves
strong performance on various human preference alignment benchmarks in RewardBench [Lambert
et al., 2024]. We selected it as the preference oracle for its balance of computational efficiency and
alignment with human preferences, making it suitable for iterative preference optimization.

Preference Data Generation To construct the preference data, i.e., output pairs with a preference
annotation specifying which one is better, we adopt the setting of Zhang et al. [2024] by sampling 5
candidate outputs for each instruction with a temperature of 0.8 and applying the preference oracle to
compare all the output pairs constructed. The best and the worst candidate outputs, derived from the
pairwise comparison results, are then selected to form a data point.

Baselines We include the following baselines for comparisons with COMAL: (1) SFT, which fine-
tunes the pre-trained Qwen2-1.5B on the UltraChat dataset, with the resulting checkpoint serving as
the starting point and/or reference policy for the other training algorithms; (2) vanilla DPO [Rafailov
et al., 2024] and (3) vanilla IPO [Azar et al., 2024], where one training iteration is performed over
the entire instruction set of UltraFeedback with output pairs sampled from the SFT policy; (4)
INPO [Zhang et al., 2024], where each iteration of training is performed on a single data split; (5)

6https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized.
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iterative IPO, which follows a training setting similar to INPO but without the KL regularization with
respect to the reference policy.

Evaluations We use the instructions in a widely used benchmark, AlpacaEval [Li et al., 2023], to
construct the test set, since these instructions are diverse and cover various task scenarios. However,
instead of using GPT-4, the default evaluator for the AlpacaEval benchmark, we chose to use the
same preference oracle used during data generation, Llama-3-OffsetBias-8B, as the evaluator. This
decision was made to maintain a controlled experimental setting, ensuring that the preference oracle
the model learns to fit is also the one used to evaluate its performance.

Training Details We follow the training recipe proposed in Tunstall et al. [2023] for the experiments.
Specifically, at each training iteration, the models are fine-tuned for 3 epochs with a batch size of 32
and maximum learning rate of 5 × 10−7, using a linear learning rate scheduler where 10% of the
steps are for warmup and the rest for linearly decreasing the rate. The checkpoints are selected based
on their validation loss on the UltraFeedback dataset. The training is performed on 8 NVIDIA A6000
Ada GPUs with 48GB memory, and one training iteration over the 10K instructions takes around
5 hours. Due to the relatively high computational requirements and the large number of training
iterations we tested (up to 42), we opted to use a moderately sized LLM and did not conduct an
exhaustive hyper-parameter search, instead referencing settings from previous work when appropriate.
To the best of our knowledge, multi-iteration training like ours has rarely been explored in previous
work. For example, INPO [Zhang et al., 2024] only performed optimization for up to 3 iterations,
which is equivalent to just one full round over UltraFeedback’s instructions.

Hyper-Parameters We conduct a grid search for the strength of the KL regularization, η−1, in
both vanilla DPO and IPO. We found that DPO achieves the best performance when η−1 is set to
0.01, while IPO achieves the best performance when η−1 is set within the range of 0.002 - 0.01.
We then choose the value of η−1 to be 0.002 to encourage larger learning steps.7 This value of η is
also used for iterative IPO. For INPO, we compare two settings where η−1 is set to 0.002 and 0.01,
corresponding to a small and a large regularization respectively. INPO has another hyper-parameter
τ which controls the strength of the KL regularization from the reference policy. We determine its
value following the setting of Zhang et al. [2024], where ητ is set to a fixed ratio, 1/3. Regarding
COMAL, which is implemented based on INPO as outlined in Algorithm 4, η−1 is also set to 0.002
at the beginning of the training. The reference policy used in COMAL is updated when the first
optimization step begins to converge or overfit, and η−1 is increased to 0.01 to improve training
stability.

5.2 Result Analysis

Figure 3 presents the training dynamics of three iterative preference optimization algorithms we
compared: iterative IPO (Iter-IPO), INPO with a small and a large regularization (INPO-Small and
INPO-Large), and COMAL, which are demonstrated by their checkpoints’ win rates against the best
checkpoints produced by 7 different algorithms: SFT, IPO, DPO, Iter-IPO, INPO-Small, INPO-Large,
COMAL, and the average lengths of their outputs. For iterative algorithms, the model is trained for
up to 42 iterations, equivalent to 7 training rounds over the entire instruction set since it has been
split into 6 subsets. We note that:

(1) Iter-IPO shows a quicker improvement rate at the beginning of the training, but its performance
begins to lag behind other algorithms after the first training round with a rapid increase in output
length, which indicates the inherent instability of this training algorithm.

(2) INPO achieves stronger performance and larger improvement rates compared to Iter-IPO. However,
the win rates of both INPO-Small and INPO-Large start to decrease after 5 training rounds. We
suspect this suggests that INPO has started to converge and/or overfit. Moreover, for INPO-Small, its
performance shows only a minor improvement and even a slight decline during training rounds 2 to 4
(iterations 12 - 24). Therefore, for COMAL, which shares the same training trajectory as INPO-Small
for the first two training rounds, we update the reference policy at the beginning of the third training
round, following the optimization process described in Algorithm 4.

7More details are in Appendix G.
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Figure 3: Comparisons of Iterative IPO (Iter-IPO), INPO, and COMAL. The average win rates of the
trained checkpoints against the best checkpoints of each training algorithm, and the average lengths
of the outputs are compared. For INPO, two variations with a small regularization (η−1 = 0.002,
INPO-Small) and a large regularization (η−1 = 0.01, INPO-Large) are compared.

Table 2: Performance comparison of different training algorithms. The row v.s. column win rate
(%) is reported. The best checkpoints produced by each training algorithm are compared. For
INPO, we report two variations with a small regularization (η−1 = 0.002, INPO-Small) and a large
regularization (η−1 = 0.01, INPO-Large).

Row/Column SFT DPO IPO Iter-IPO INPO-Large INPO-Small COMAL Avg

Iter-IPO 70.81 64.35 61.99 50.00 52.17 47.20 48.94 56.50
INPO-Large 77.02 69.81 67.83 47.83 50.00 46.21 44.84 57.65
INPO-Small 73.66 66.21 66.46 52.80 53.79 50.00 48.70 58.80
COMAL 74.53 70.56 68.82 51.06 55.16 51.30 50.00 60.20

(3) COMAL is able to further improve the model performance with the updated reference policy.
Notably, its performance continues to improve up until the 6th training round, when the other
algorithms begin to degrade, demonstrating the benefit of updating the reference policy.

Table 2 provides pairwise comparisons between the best checkpoints of the iterative preference
optimization algorithms and a few baselines. It demonstrates the clear advantage of COMAL,
which is able to achieve a win rate that is strictly above 50% against all the other checkpoints. The
comparison of the final checkpoints of different algorithms after the last iteration is presented in
Appendix H, where COMAL is able to achieve significantly better performance thanks to its stability.

6 Related Work

Alignment under Preference models Most existing approaches adopt the Bradley-Terry (BT)
preference model [Bradley and Terry, 1952, Christiano et al., 2017], which involves first learning a
preference model and then optimizing the objective function with a KL divergence penalty relative to
the original language model. For example, RLHF [Ouyang et al., 2022] aims to ensure that LLMs
follow instructions by initially learning a BT model and subsequently fine-tuning the model based on
the learned reward while regularizing it with the original LLM.

Building on this framework, Rafailov et al. [2024] introduces Direct Preference Optimization (DPO)
that maintains the assumption of the BT model for preferences but eliminates the preference learning
step by reformulating the objective and optimizing it directly. Additionally, Ethayarajh et al. [2024]
diverges from the traditional BT-based methods by deriving algorithms that bypass the preference
modeling step altogether. Instead, they model user preferences based on Kahneman and Tversky’s
utility theory.

Alignment Solution Concepts under General Preferences Azar et al. [2024] is the first to consider
general preferences. They propose the IPO algorithm, an offline algorithm that directly optimizes the
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win rate of the model penalized by the KL divergence with respect to the original model. Munos et al.
[2024] also consider general preferences and aim to find the von Neumann winner, which corresponds
to the Nash equilibrium of a game played between the two LLMs over the win rate. They propose a
variant of the Mirror Descent (MD) algorithm called Nash-MD and show last-iterate convergence
in the KL-regularized game. Concurrently, Swamy et al. [2024] study the same solution concept
focusing more on sequential games. Calandriello et al. [2024] proved that the objective of the the
IPO algorithm coincides with the Nash policy under a proper choice of the parameter that controls
the regularization.

Iterative Self-Play Algorithms Apart from the aforementioned works, recent research has also
proposed practical implementations of Mirror Descent (MD) algorithms, which can be used to learn
Nash equilibria through self-play. Rosset et al. [2024] propose Direct Nash Optimization (DNO),
where, at each iteration, the model regresses predicted preferences against actual preferences using
cross-entropy loss. Similarly, Wu et al. [2024] introduces the Self-Play Preference Optimization
(SPPO) method, Gao et al. [2024] introduces Reinforcement Learning via Regressing Relative
Rewards (REBEL), and Richemond et al. [2024] introduces the Direct Reward Optimization (DRO)
which regresses the loss using the ℓ2 distance at each iteration. Since these algorithms simulate the
MD update, when applied in a two-player zero-sum game, they only have average-iterate convergence
but all diverge in the last iterate. Moreover, all these methods require the estimation of the win rate,
which can be computationally expensive.

Most closely related to our work is Iterative Nash Policy Optimization (INPO) by Zhang et al. [2024],
which continues to use ℓ2 distance regression. However, by further reformulating and simplifying the
objective in a manner similar to IPO, INPO eliminates the need to estimate the expected win rate. The
primary distinction between our approach and INPO is that INPO is designed for the KL-regularized
game and is equivalent to MD; while our algorithm COMAL is inspired by the Conceptual Prox
algorithm and guarantees last-iterate convergence in the original game. This fundamental difference
allows COMAL to achieve more favorable convergence properties and outperform INPO, achieving a
win rate strictly greater than 50% against it.

Last-Iterate Convergence in Games Mirror Descent fails to converge in simple zero-sum games,
often resulting in cycling behavior [Mertikopoulos et al., 2018]. In contrast, several algorithms have
been shown to achieve last-iterate convergence including the Proximal Point (PP) method [Rockafellar,
1976], Extra-Gradient (EG) [Korpelevich, 1976], Optimistic Gradient Descent (OGD) [Popov, 1980,
Rakhlin and Sridharan, 2013], and the Conceptual Prox/Mirror Prox methods [Nemirovski, 2004].
The asymptotic convergence properties of these algorithms have been extensively studied [Popov,
1980, Facchinei and Pang, 2003, Iusem et al., 2003, Nemirovski, 2004, Daskalakis and Panageas,
2018]. Recently, there has been a growing focus on establishing finite-time convergence guarantees
for these methods, addressing the practical necessity of understanding their performance within a
limited number of iterations (see e.g., [Mokhtari et al., 2020b,a, Golowich et al., 2020b,a, Bauschke
et al., 2021, Wei et al., 2021, Cai et al., 2022, Gorbunov et al., 2022, Cai and Zheng, 2023a,b, Cai
et al., 2023, 2024b,a] and references therein).

7 Conclusion

We have proposed COMAL, a meta-algorithm for preference optimization that provably converges
to the Nash equilibrium policy in the last iterate. We have provided a theoretical analysis of the
properties of COMAL and have empirically demonstrated its effectiveness under both synthetic
and real-world experimental settings. We believe COMAL has significant potential to enhance the
performance of LLMs in the alignment fine-tuning setting, due to its theoretical guarantees and
flexibility, as it can be integrated with existing learning algorithms while overcoming their limitations.
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A Properties of the Prox Operator

Recall that Prox(z, g) = argmaxz′∈Z ⟨g, z′⟩ −Dφ(z
′||z) = argmaxz′∈Z ⟨g +∇φ(z), z′⟩ −φ(z′).

The following properties of the prox operator are well-known in the literature(e.g., [Nemirovski,
2004])
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Lemma 1. Prox(z, g) = z′ if and only if ⟨g +∇φ(z)−∇φ(z′), z′ − z∗⟩ ≥ 0 for all z∗ ∈ Z .
Corollary 1. Let Prox(z, g) = z′, then

⟨g, z∗ − z′⟩ ≤ Dφ(z
∗||z)−Dφ(z

∗||z′)−Dφ(z
′||z), ∀z∗ ∈ Z

B Proof of Theorem 1

The proof of Theorem 1 is largely inspired by existing results for the conceptual prox algorithm in
the literature [Facchinei and Pang, 2003, Nemirovski, 2004]. We first consider the case where each
step of COMAL, πt+1 ← argmaxπ1

minπ2 Jτ (π1, π2, πref), can be solved exactly in Appendix B.1.
We then extend the proof to the case where we only solve the regularized game approximately in
Appendix B.2. In both cases, we prove last-iterate convergence to Nash equilibrium, i.e., limt→∞ πt

exists and is a Nash equilibrium. The proof for the latter case seems to be the first in the literature.

In Theorem 1, we make the following assumption.
Assumption 1. We assume there exists a Nash equilibrium π⋆ such that supp(π⋆) = supp(πsft).

This assumption is mild and much weaker than the “Bounded Log Density" assumptions used in
previous works [Rosset et al., 2024, Zhang et al., 2024], which directly assumes | log πt

πsft
| is bounded.

B.1 Last-Iterate Convergence under Exact Solutions

Recall that Π := {π : supp(π) ⊆ supp(πsft)}. Then KL(π||πsft) ≤ D :=
maxy:πsft(y)>0 log πsft(y) is bounded for any π ∈ Π. We first prove KL(π⋆||πt+1) ≤ KL(π⋆||πt)
for any t ≥ 1.
Lemma 2. Let π⋆ be an Nash equilibrium of J(π1, π2). Then for any τ > 0, if

(π, π) = argmax
π1∈Π

argmin
π2∈Π

Jτ (π1, π2, πref),

then
KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref)

Proof. By definition of the prox operator, we have

π = argmax
π1∈Π

Jτ (π1, π, πref)

= argmax
π1∈Π

P(π1 ≻ π)− τ KL(π1, πref)

= Prox(πref ,
1

τ
P(· ≻ π)). (7)

Using Corollary 1, we have for any π′ ∈ Π,

1

τ
(P(π′ ≻ π)− P(π ≻ π)) ≤ KL(π′||πref)−KL(π′||π)−KL(π||πref). (8)

Plugging π′ = π⋆ into the above inequality and noting that P(π ≻ π) = 1
2 , we get

1

τ

(
P(π⋆ ≻ π)− 1

2

)
≤ KL(π⋆||πref)−KL(π⋆||π)−KL(π||πref).

Since π⋆ is a Nash equilibrium and thus P(π⋆ ≻ π) ≥ 1
2 , the lefthand side of the above inequality is

≥ 0. Then we have

KL(π⋆||π) ≤ KL(π⋆||πref)−KL(π||πref).

Lemma 2 implies the following properties on the trajectory {πt}.
Corollary 2. Denote π⋆ an Nash equilibrium such that supp(π⋆) = supp(πsft) as guaranteed by
Assumption 1. Then the following holds for the trajectory {πt} produced by COMAL:
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1. KL(π⋆||πt+1) ≤ KL(π⋆||πt) for all t ≥ 1.

2.
∑∞

t=1 KL(πt+1||πt) ≤ KL(π⋆||πsft) < +∞.

3. For all t ≥ 1, it holds that for y ∈ supp(πsft), πt(y) ≥ c > 0 where c is some constant c
depends only on π⋆ and πsft. This also holds even for any limit point of {πt}.

Proof. The first item is direct from Lemma 2. The second item is also direct by applying Lemma 2
for t ≥ 1:

∞∑
t=1

KL(πt+1||πt) ≤
∞∑
t=1

KL(π⋆||πt)−KL(π⋆||πt+1) ≤ KL(π⋆||πsft) ≤ D <∞.

Now we consider the third item. Define D := KL(π⋆||πsft) and pmin := miny∈supp(π⋆) π
⋆(y). By

Assumption 1, pmin > 0. Then

KL(π⋆||πt) ≤ D ⇒ pmin log
pmin

πt(y)
≤ D,∀y ∈ supp(π⋆)

⇒ πt(y) ≥ pmin

exp(D/pmin)
,∀y ∈ supp(π⋆).

Since the above holds for all πt, it also holds for any limit point of {πt}.

Since the sequence {πt} is bounded (all lies in the simplex), it has at least one limit point π̂. The
next lemma shows that a limit point must be a Nash equilibrium.

Lemma 3. If π̂ is a limit point of {πt}, then π̂ is a Nash equilibrium of J(π1, π2).

Proof. By item 2 in Corollary 2, we have limt→∞ KL(πt+1||πt) = 0. This implies
limt→∞ ∥πt+1 − πt∥ = 0. As π̂ is a limit point of {πt}, we let {πk : k ∈ κ} be the subsequence
that converges to π̂. Then by Equation (7), we have

lim
k∈κ,k→∞

πk+1 = lim
k∈κ,k→∞

Prox(πk,
1

τ
P(· ≻ πk+1))

⇒π̂ = Prox(π̂,
1

τ
P(· ≻ π̂)).

Thus π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π). Moreover, by item 3 in Corollary 2, we have

supp(π̂) = supp(πsft). Now consider both the max and min player running MWU initialized with
π1 = π̂. Then we have πt = π̂ for all t ≥ 1. By Equation (8), we have for any π′ ∈ Π,

1

τ

∞∑
t=1

(
P(π′ ≻ π̂)− 1

2

)
≤ KL(π′||π̂) <∞,

where the inequality holds since supp(π′) ⊆ supp(π̂). As a result, we get

P(π′ ≻ π̂) ≤ 1

2
,∀π′ ∈ Π⇔ P(π̂ ≻ π′) ≥ 1

2
,∀π′ ∈ Π

Thus π̂ is a Nash equilibrium of J(π1, π2).

Proof of Theorem 1 By Lemma 3, we know a limit point π̂ is a Nash equilibrium. Then by
Corollary 2, {KL(π̂||πt) ≥ 0} is a decreasing sequence. Thus {KL(π̂||πt)} converges. Let {πk :
k ∈ κ} be a subsequence that converges to π̂. Then we have

lim
t→∞

KL(π̂||πt) = lim
k∈κ,k→∞

KL(π̂||πk) = KL(π̂||π̂) = 0.

Thus we have limt→∞ πt = π̂ is a Nash equilibrium. This completed the proof of Theorem 1.
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B.2 Last-Iterate Convergence under Approximate Solutions

This section considers the case where we can not solve the regularized game Jτ (π1, π2, πref) exactly
but only compute an approximate solution. Specifically, we consider the following inexact COMAL
update: denote π̂t+1 = argmaxπ1∈Π minπ2∈Π Jτ (π1, π2, π

t) the exactly solution; the algorithm
updates the next iterate πt+1 as an εt-approximate solution such that

KL(π̂t+1, πt+1) ≤ εt = O

(
1

t4

)
. (9)

We note that we can compute πt+1 within εt error using O(log 1
εt
) = O(log t) iterations of Algo-

rithm 2 (Theorem 2).

We denote Π⋆ the set of Nash equilibria such that each π⋆ ∈ Π⋆ has support supp(π⋆) = supp(πsft)
as guaranteed by Assumption 1. We introduce a few quantities that depend on the Nash equilibria
and the initial policy.
Definition 4. We define the following constants.

1. psft := max{p > 0 : ∀y ∈ supp(πsft), πsft(y) ≥ p}; D := |Y| log 1
psft

so that
KL(π||πsft) ≤ D for all π ∈ Π

2. pmin := max{p > 0 : ∃π⋆ ∈ Π⋆,∀y ∈ supp(πsft), π
⋆(y) ≥ p}; Let π⋆ ∈ Π⋆ be a Nash

equilibrium so that π⋆(y) ≥ pmin holds for all y in its support.

3. c1 := pmin

exp (D+2)/pmin
and c2 := c1

exp(1/c1)
.

Our main result is that if each optimization problem at iteration t can be solved within approximation
error εt ≤ c1

3t2 , then COMAL converges in last-iterate to a Nash equilibrium.
Theorem 3 (COMAL with approximate regularized game solver). Assume Assumption 1 holds. If
in each iteration t ≥ 1, the returned iterate πt+1 is an εt-approximate solution to Jτ (π1, π2, π

t) as
defined in (9) with εt ≤ c21

9t4 (c1 defined in Definition 4), then {xt} converges to a Nash equilibrium
of J(π1, π2).

We need the following technical lemma in the proof of Theorem 3.

Lemma 4. Let εt ≤ c21
9t4 . Then for all t ≥ 1,

1. KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) + 1
t2 .

2. miny∈supp(πsft) π
t(y) ≥ c2.

3. limt→∞ ∥πt+1 − πt∥ = 0.

4. For any Nash equilibrium π̂ ∈ Π and t ≥ 1, we have KL(π̂||πt+1) ≤ KL(π̂||πt) + 1
t2

Proof. By Lemma 2, we have π̂t+1 = Prox(πt,P(· ≻ π̂t+1)) and

KL(π⋆||π̂t+1) ≤ KL(π⋆||πt)−KL(π̂t+1||πt). (10)

The above implies

KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) + KL(π⋆||πt+1)−KL(π⋆||π̂t+1)︸ ︷︷ ︸
E1

+KL(πt+1||πt)−KL(π̂t+1||πt)︸ ︷︷ ︸
E2

. (11)

Now, we use induction to prove the claim. For the base case, we define π0 := π1 and εt = 0, then

Base Case: t = 0 Since π0 = π1, we have KL(π1||π0) = 0. Then it is clear that

KL(π⋆||π1) ≤ KL(π⋆||π0)−KL(π1||π0).

Moreover, by Proposition 1 and D ≥ KL(π⋆||πsft), we have miny∈supp(π1) π
1(y) ≥ c1 ≥ c2.
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Induction: t ≥ 1 We have

KL(π⋆||π̂t+1) ≤ KL(π⋆||πt) ((10))

≤ KL(π⋆||πsft) +

t−1∑
t=1

1

t2
(inductive hypothesis)

≤ D + 2. (D ≥ KL(π⋆||πsft))

Using Proposition 1, we have miny∈supp(πsft) π̂
t+1(y) ≥ c1. By KL(π̂t+1||πt+1) ≤ εt ≤ 1 and

Proposition 1 again, we get miny∈supp(πsft) π
t+1(y) ≥ c2 := c1

exp(1/c1)
. Thus, both π̂t+1 and πt+1

are bounded away from the boundary in their support. Further by KL(π̂t+1||πt+1) ≤ εt, we have

∑
y

π̂t+1(y) log
π̂t+1(y)

πt+1(y)
≤ εt ⇒ max

y
log

π̂t+1(y)

πt+1(y)
≤ εt

c1
.

As a result, we can bound

E1 = KL(π⋆||πt+1)−KL(π⋆||π̂t+1)

=
∑
y

π⋆(y) log
π̂t+1(y)

πt+1(y)

≤ max
y

log
π̂t+1(y)

πt+1(y)

≤ εt
c1

.

Moreover, we have

E2 = KL(πt+1||πt)−KL(π̂t+1||πt)

=
∑
y

(πt+1(y)− π̂t+1(y)) log
πt+1(y)

πt(y)
−KL(π̂t+1||πt+1)

≤
∥∥πt+1 − π̂t+1

∥∥
1
·max

y
| log πt+1(y)

πt(y)
|

≤
√
KL(π̂t+1||πt+1) · log 1

c2
(Pinsker’s Inequality)

≤
2
√
εt

c1

Combining the above two inequalities with (11) and noting the fact that εt ≤
√
εt gives

KL(π⋆||πt+1) ≤ KL(π⋆||πt)−KL(πt+1||πt) +
3
√
εt

c1
.

We conclude the claim since εt ≤ c21
9t4 . This completes the proof for item 1 and item 2.

For item 3, we have
∑∞

t=1 ∥πt+1 − πt∥ ≤
∑∞

t=1 KL(πt+1||πt) ≤ D + 2. Thus
limt→∞ ∥πt+1 − πt∥ = 0.

For item 4, we can use Lemma 2 and π̂t+1 = Prox(πt,P(· ≻ π̂t+1)) to get

KL(π̂||πt+1) ≤ KL(π̂||πt)−KL(πt+1||πt) + KL(π̂||πt+1)−KL(π̂||π̂t+1)︸ ︷︷ ︸
E1

+KL(πt+1||πt)−KL(π̂t+1||πt)︸ ︷︷ ︸
E2

. (12)

23



We note that E2 ≤ 2
√
εt

c1
has been proved in the above. For E1, we have

E1 = KL(π̂||πt+1)−KL(π̂||π̂t+1)

=
∑
y

π̂(y) log
π̂t+1(y)

πt+1(y)

≤ max
y

log
π̂t+1(y)

πt+1(y)

≤ εt
c1

.

Thus we have KL(π̂||πt+1) ≤ KL(π̂||πt) + 1
t2 as εt ≤ c21

9t4 .

Proof of Theorem 3

Proof. Since the sequence {πt} is bounded, it has at least one limit point π̂. By item 2 in Lemma 4, we
know π̂(y) ≥ c2 for all y ∈ supp(πsft). By item 3 in Lemma 4, we have limt→∞ ∥πt+1 − πt∥ = 0.
Denote {πk : k ∈ κ} a subsequence that converges to π̂. Then we have

π̂ = lim
k∈κ,κ→∞

πk+1

= lim
k∈κ,κ→∞

π̂k+1 (KL(π̂k+1, πk+1) ≤ εk and limt→∞ εt = 0)

= lim
k∈κ,κ→∞

Prox(πk,
1

τ
P(· ≻ π̂k+1))

= lim
k∈κ,κ→∞

Prox(πk+1,
1

τ
P(· ≻ π̂k+1)) (limt→∞ ∥πt+1 − πt∥ = 0)

= lim
k∈κ,κ→∞

Prox(πk+1,
1

τ
P(· ≻ πk+1)) (KL(π̂k+1, πk+1) ≤ εk and limt→∞ εt = 0)

= Prox(π̂,
1

τ
P(· ≻ π̂)).

Since π̂ is a fixed point of Prox(π, 1
τ P(· ≻ π)) and supp(π̂) = supp(πsft), we can use the same

proof in Lemma 3 to show that π̂ is a Nash equilibrium of J(π1, π2).

Given that π̂ is a Nash equilibrium of the original game, we can apply item 4 in Lemma 4 and get

KL(π̂||πt+1) ≤ KL(π̂||πt) +
1

t2
.

Now we show the sequence {xt} converges to π̂. Fix any ϵ > 0. Let T1 ≥ 1 such that
∑∞

t=T1

1
t2 < ϵ

2 ,
Since π̂ is a limit point of {xt}, there exists T2 ≥ T1 such that KL(π̂||πT2) ≤ ϵ

2 . Then for any
t ≥ T2, we have

KL(π̂||πt+1) ≤ KL(π̂||πT2) +

∞∑
t=T2

1

t2
≤ ϵ

2
+

ϵ

2
= ϵ.

Since the above holds for any ε > 0, we know limt→∞ KL(π̂||πt) = 0 and thus {xt} converges to π̂.
This completes the proof.

B.3 Auxiliary propostion

Proposition 1. Let π1 and π2 be two distributions with the same support. If there exists p,D > 0
such that miny∈supp(π1) π1(y) ≥ p and KL(π1||π2) ≤ D, then supp(π2) = supp(π1) and

min
y∈supp(π1)

π2(y) ≥
p

exp(D/p)
.
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Proof. We have

KL(π1||π2) ≤ D ⇒ p log
p

π2(y)
≤ D,∀y ∈ supp(π1)

⇒ π2(y) ≥
p

exp(D/p)
,∀y ∈ supp(π1).

C Proof of Theorem 2

We show that MWU (Algorithm 2) has linear convergence to the unique Nash equilibrium of a
KL-regularized zero-sum game J(π1, π2, πref). We denote µ⋆ = π⋆

τ its unique Nash equilibrium.
We note that there are existing results showing linear convergence of MWU (e.g., [Abe et al., 2024,
Lemma F.1]). We include a slightly simpler proof for our setting for completeness.

We prove the following descent lemma, which immediately implies Theorem 2.
Lemma 5. If we choose η ∈ (0, τ

τ2+ 1
2

] in Algorithm 2, then we have for every k ≥ 1

KL(µ⋆, µk+1) ≤
(
1− ητ

2

)
KL(µ⋆, µk).

Proof. We define the gradient operator G : Π → R|Y| of J(π1, π2) and the gradient operator
A : Π→ R|Y| of the KL regularization KL(π, πref) as follows.

G(π) := P(· ≻ π)

A(π) := ∇π KL(π, πref) = log
π(·)
πref(·)

.

We define the composite operator F = G− τA. Then MWU update in Algorithm 2 is equivalent to

µk+1 = Prox(µk, ηF (µk)).

Using Corollary 1, we have〈
ηF (µk), µ⋆ − µk+1

〉
≤ KL(µ⋆||µk)−KL(µ⋆||µk+1)−KL(µk+1||µk)

We focus on the lefthand side of the above inequality. Since µ⋆ is a Nash equilibrium of the regularized
game with gradient F , we have ⟨ηF (µ⋆), µ⋆ − µk+1⟩ ≥ 0 and thus〈

ηF (µk), µ⋆ − µk+1
〉

≥
〈
ηF (µk), µ⋆ − µk+1

〉
−
〈
ηF (µ⋆), µ⋆ − µk+1

〉
= η

〈
G(µk)−G(µk+1), µ⋆ − µk+1

〉︸ ︷︷ ︸
term1

+ ητ
〈
A(µk)−A(µ⋆), µk+1 − µ⋆

〉︸ ︷︷ ︸
term2

+ η
〈
G(µk+1)−G(µ⋆), µ⋆ − µk+1

〉︸ ︷︷ ︸
term3=0

.

We note that term3 = 0 since G is the gradient of a zero-sum game:〈
G(µk+1)−G(µ⋆), µ⋆ − µk+1

〉
= P(µ⋆ ≻ µk+1) + P(µk+1 ≻ µ⋆)− 1

2
− 1

2
= 0.

For term2, we can apply the three-point identity for the Bregman divergence as follows:

term2 = ητ
〈
A(µk)−A(µ⋆), µk+1 − µ⋆

〉
= ητ

〈
log

µk

µ⋆
, µk+1 − µ⋆

〉
= ητ

(
KL(µ⋆||µk)−KL(µk+1||µk) + KL(µk+1||µ⋆)

)
≥ ητ

(
KL(µ⋆||µk)−KL(µk+1||µk)

)
.
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For term1, we will use the 1-Lipschitzness of G and Cauchy-Swarz inequality:

term1 = η
〈
G(µk)−G(µk+1), µ⋆ − µk+1

〉
≥ −η

(
1

2τ

∥∥G(µk)−G(µk+1)
∥∥2
∞ +

τ

2

∥∥µ⋆ − µk+1
∥∥2
1

)
≥ −η

(
1

2τ

∥∥µk − µk+1
∥∥2
1
+

τ

2

∥∥µ⋆ − µk+1
∥∥2
1

)
(G is 1-Lipschitz)

≥ − η

2τ
KL(µk+1||µk)− ητ

2
KL(µ⋆||µk+1)

Combining the above gives

(1− ητ

2
)KL(µ⋆||µk+1) ≤ (1− ητ)KL(µ⋆||µk)− (1− ητ − η

2τ
)KL(µk+1||µk)

Let η ≤ 1
τ+ 1

2τ

= τ
τ2+ 1

2

, then we have 1− ητ − η
2τ ≥ 0 and thus

KL(µ⋆||µk+1) ≤ 1− ητ

1− ητ
2

KL(µ⋆||µk) ≤
(
1− ητ

2

)
KL(µ⋆||µk).

This completes the proof.

D Computing the Prox Operator using Preference Learning Methods

We include additional examples showing how existing algorithms designed for RLHF and preference
optimization with neural network parameters can be adapted to solve the prox operator Prox(π, ηg)
(η > 0 is the step size). These algorithms include RL algorithms like PPO and loss-minimization
algorithms like DPO, IPO, SPPO, DRO, INPO, each of which may be preferred in certain settings.

Reinforcement Learning algorithms We can use the Proximal Policy Optimization (PPO) algo-
rithm [Schulman et al., 2017] to solve Prox(π, ηg). Observe that

Prox(π, ηg) = argmax
π′

{⟨ηg, π′⟩ −KL(π′||π)}

= argmax
π′

Ey∼π′
[
g[y]− η−1 ·KL(π′||π)

]
shares the same form as the objective in (2). Typically, we parameterize π′ = πθ with neural network
parameters θ and optimize over θ.

Loss minimization algorithms Let us denote π̂ the prox operator Prox(π, ηg), then we have

π̂[y] =
π(y) exp(ηg(y))

Z
⇔ log

π̂(y)

π(y)
− ηg(y) + logZ = 0,

where Z = Ey∼π[exp(ηg(y))] is the partition function. We can directly compute the partition
function Z and thus π̂ in small tabular cases. However, the partition function is hard to compute in
general large-scale applications. Several works have recently proposed to solve the above equality by
optimizing the corresponding L2 loss.

The Self-Play Preference Optimization (SPPO) loss [Wu et al., 2024] assumes logZ = η
2 and

optimizes

ℓSPPO(θ) =

(
log

πθ(y)

π(y)
− ηg(y)− η

2

)2

.

The Direct Reward Optimization (DRO) loss [Richemond et al., 2024] parameterizes both π̂ and
logZ with θ and Vϕ respectively and optimize8

ℓDRO(θ, ϕ) =

(
log

πθ(y)

π(y)
− ηg(y)− ηVϕ

)2

.

8We modified some constants in the original DRO loss to make it consistent with our presentation. The
modification has no other effects.
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The REBEL loss [Gao et al., 2024] uses differences in rewards to eliminate the partition function Z
and optimize the regression loss

ℓREBEL(θ) =

(
η−1

(
log

πθ(y)

π(y)
− log

πθ(y
′)

π(y′)

)
− (g(y)− g(y′))

)2

.

All the above approaches can be used to solve Prox(π, ηg). However, directly applying them
iteratively on J(π1, π2) is equivalent to running MWU, which provably diverges. In contrast, we can
apply them in Algorithm 2 and then apply our meta-algorithm COMAL to guarantee convergence to
a Nash equilibrium with robust alignment.
Remark 1. The above approaches are versatile and work well for any g that can be evaluated
efficiently. In particular, we should consider using them when (1) g = r is a reward function and
we can efficiently query r; (2) g = P(· | µ) is the win rate against a reference policy µ, and we can
efficiently sample from µ and have oracle access to P. These two setting are popular and practical in
the LLM alignment setting.

Now we turn attention to the more specific setting where g corresponds to a preference model P
(could be a BT model or a general preference) and that we can collect a win-loss preference data set
D = {(yw, yl)}, which is standard for LLM alignment. Although the abovementioned algorithms
apply, they all require estimating g (the win rate) and may be inefficient in practice. In the following,
we present algorithms directly working on the sampled dataset D without further estimation.

Sampled loss based on the BT preference model Assume g = r is the reward of the Bradley-
Terry model, and the dataset {(yw, yl)} consists of win-lose pairs of responses. Then we can solve
Prox(π, ηg) by optimize the DPO loss [Rafailov et al., 2024] defined as

ℓDPO((yw, yl); θ) = − log σ

(
η−1 log

πθ(yw)

π(yw)
− η−1 log

πθ(yl)

π(yl)

)
.

Sampled loss for general preference The DPO loss inspires many other loss functions that work
under even weaker assumptions on the preference model. Now, we assume a general preference
model P over Y (not necessarily the BT model). We assume g is the win-rate against some policy
µ such that gµ(y) = P[y ≻ µ] := Ey′∼µ[P[y ≻ y′]] (think of µ as the reference policy πref or other
online policy πt). We assume the dataset contains win-lose pairs sampled from µ: {yw, yl ∼ µ}.
Recall the preference distribution λP(y, y

′) is a binary distribution:

λP(y, y
′) =

{
(y, y′) with probability P[y ≻ y′]

(y′, y) with probability 1− P[y ≻ y′]

The (population) IPO loss [Tang et al., 2024, Calandriello et al., 2024] is defined as

ℓIPO(θ, µ) := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

π(y+)
− log

πθ(y
−)

π(y−)
− η

2

)2
]
.

It has been proved that the minimizer of the ℓIPO(θ, µ) satisfies

πθ(y) ∝ π(y) exp (−ηP[y ≻ µ])⇔ πθ = Prox(π, ηgµ).

Thus we can compute the prox operator Prox(π, ηgµ) where gµ = P(· ≻ µ) by minimizing the IPO
loss against policy µ.

A variant of the IPO loss applied to the regularized preference setting is the Iterative Nash Policy
Optimization (INPO) loss [Zhang et al., 2024]. Here, we define gτµ the gradient ∇πJτ (π, µ, πref) =

P(· ≻ µ)− τ log µ(·)
πref (·) of the regularized objective. The corresponding INPO loss is

ℓINPO := E(yw,yl)∼µ,(y+,y−)∼λP(yw,yl)

[(
log

πθ(y
+)

πθ(y−)
− ητ log

πref(y
+)

πref(y−)
− (1− ητ) log

µ(y+)

µ(y−)
− η

2

)2
]
.

Similarly, it has been shown that the INPO loss minimizer corresponds to the prox operator’s solution
Prox(π, ηgτµ). Thus we can use the INPO in Algorithm 2 directly.
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E Implementation of Mirror-Prox and Optimistic Multiplicative Weights
Update

We note that there are other algorithms that has provable last-iterate convergence to Nash equilibrium
in (unregularized) zero-sum games, including the Mirror-Prox algorithm [Nemirovski, 2004] and
Optimistic Multiplicative Weights Update (OMWU) algorithm [Rakhlin and Sridharan, 2013, Syrgka-
nis et al., 2015, Hsieh et al., 2021]. We present practical implementations of these two algorithms
in the context of LLM alignment for solving J(π1, π2) (4), where we use preference optimization
algorithms to solve the prox operator as shown in Section 3.3 and Appendix D.

We denote the gradient g(π) := P(· ≻ π).

Mirror-Prox The Mirror-Prox algorithm [Nemirovski, 2004] initialized π1 = πsft and updates in
each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

We can implement Mirror-Prox using PPO/DPO/IPO/SPPO/DRO/REBEL to compute the prox
operator. Specifically, we could sample from πt and construct a preference dataset Dt and optimize
certain regression loss (IPO/DRO/REBEL) to compute πt+ 1

2 = Prox(πt, ηg(πt)). The procedure
applies to the second step in each iteration. Thus in such an implementation, we require two sampling
and two optimization procedures in each iteration.

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm [Rakhlin and Srid-
haran, 2013] is an optimistic variant of the MWU algorithm. Although MWU diverges in zero-sum
games, it has been shown that OMWU has last-iterate convergence to Nash equilibrium [Wei et al.,
2021, Hsieh et al., 2021]. Initialized with π1 = π

1
2 = πsft, OMWU updates in each iteration t ≥ 1:

πt+ 1
2 = Prox(πt, ηg(πt− 1

2 ))

πt+1 = Prox(πt, ηg(πt+ 1
2 ))

Similarly, we can implement OMWU to solve J(π1, π2) using preference methods to compute the
prox operator as shown in Section 3.3. Moreover, OMWU has an equivalent update rule: initialize
π1 = π0 = πsft

πt+1 = Prox(πt, 2ηg(πt)− ηg(πt−1)),

which requires computing only one prox operator in each iteration.

We leave testing the practical performance of Mirror-Prox and OMWU for large-scale applications,
including LLM alignment, as future works.

F Setup for Synthetic Experiments

Recall that we set P[yb ≻ ya] = P[yc ≻ yb] = 0.9 and P[ya ≻ yc] = 0.8. This results in the
following zero-sum game: we have policies Π = ∆({ya, yb, yc}) and objective

J(π1, π2) = π⊤
1 Aπ2 − 0.5, where A =

[
0.5 0.1 0.8
0.9 0.5 0.1
0.2 0.9 0.5

]
.

The game has a unique Nash equilibrium [4/11, 3/11, 4/11]. We set the initial policy to be π1 =
[0.2, 0.5, 0.3] for all algorithms. We choose η = 0.3 for iterative DPO, iterative IPO, and SPPO. We
choose η = 0.3 and τ = 0.1 for INPO and COMAL. For COMAL (Algorithm 4), we set T = 200
and Kt = 25 so the total number of iterations is T ·Kt = 5000.

G Hyperparameter Search for LLM-Based Experiments

Here we outline the results of the hyperparameter search we conducted in Section 5.1 for identifying
the optimal value of η for DPO and IPO. Table 3 reports the win rates of different checkpoints trained
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with different values of η against the SFT policy. It shows that DPO achieves the best performance
when η−1 is set to 0.01. On the other hand, IPO achieves a relatively stable and strong performance
when η−1 is set within the range of 0.002-0.01. However, when compared against the best DPO
checkpoint, we found that IPO trained with η−1 = 0.002 achieves the highest win rate (51.43%),
therefore we chose it as the default value for the rest of the experiments.

Table 3: Results of the hyperparameter search for DPO and IPO regarding the strength of the KL
constraint η−1. The checkpoints’ win rates against the SFT policy are reported.

η−1 IPO DPO

0.02 64.34 67.32
0.01 69.06 69.44
0.005 68.44 65.71
0.002 68.94 61.49
0.001 58.01 53.29

H Additional Results for LLM-Based Experiments

Table 4: Performance comparison of different training algorithms. The row v.s. column win rate
(%) is reported. The last checkpoints produced by each training algorithm are compared. For
INPO, we report two variations with a small regularization (η−1 = 0.002, INPO-Small) and a large
regularization (η−1 = 0.01, INPO-Large).

Row/Column SFT DPO IPO Iter-IPO INPO-Large INPO-Small COMAL Avg

Iter-IPO 70.81 64.35 61.99 50.00 53.79 50.43 46.83 56.89
INPO-Large 70.43 62.98 61.61 46.21 50.00 48.07 41.61 54.42
INPO-Small 68.57 61.12 59.88 49.57 51.93 50.00 43.23 54.90
COMAL 74.53 67.83 65.09 53.17 58.39 56.77 50.00 60.83

In Section 5.2, the effectiveness of different iterative algorithms are compared using the performance
of their best checkpoints (Table 2). Here, we provide an additional comparison among the last
checkpoints produced by different algorithms. Table 4 shows that COMAL is able to achieve
significantly better performance at the last iteration, demonstrating its superior stability.
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