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Abstract

The query-based black-box attacks have raised serious threats to machine learning
models in many real applications. In this work, we study a lightweight defense
method, dubbed Random Noise Defense (RND), which adds proper Gaussian noise
to each query. We conduct the theoretical analysis about the effectiveness of RND
against query-based black-box attacks and the corresponding adaptive attacks. Our
theoretical results reveal that the defense performance of RND is determined by
the magnitude ratio between the noise induced by RND and the noise added by the
attackers for gradient estimation or local search. The large magnitude ratio leads
to the stronger defense performance of RND, and it’s also critical for mitigating
adaptive attacks. Based on our analysis, we further propose to combine RND with
a plausible Gaussian augmentation Fine-tuning (RND-GF). It enables RND to add
larger noise to each query while maintaining the clean accuracy to obtain a better
trade-off between clean accuracy and defense performance. Additionally, RND
can be flexibly combined with the existing defense methods to further boost the
adversarial robustness, such as adversarial training (AT). Extensive experiments on
CIFAR-10 and ImageNet verify our theoretical findings and the effectiveness of
RND and RND-GF.

1 Introduction

Deep neural networks (DNNs) have been successfully applied in many safety-critical tasks, such as
autonomous driving, face recognition and verification, etc. However, it has been shown that DNN
models are vulnerable to adversarial examples [18, 21, 26, 29, 48], which are indistinguishable from
natural examples but make a model produce erroneous predictions. For real-world applications, the
DNN model as well as the training dataset, are often hidden from users. Instead, only the model
feedback for each query (e.g., labels or confidence scores) is accessible. In this case, the product
providers mainly face severe threats from query-based black-box attacks, which don’t require any
knowledge about the attacked models.

In this work, we focus on efficient defense techniques against query-based black-box attacks, of which
the main challenges are 1) the defender should not significantly influence the model’s feedback to
normal queries, but it is difficult to know whether a query is normal or malicious; 2) the defender has
no information about what kinds of black-box attack strategies adopted by the attacker. Considerable
efforts have been devoted to improving the adversarial robustness of DNNs [13, 34, 49, 50]. Among
them, adversarial training (AT) is considered as the most effective defense techniques [3, 49].
However, the improved robustness from AT is often accompanied by significant degradation of the
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clean accuracy. Besides, the training cost of AT is much higher than that of standard training, and then
it also often suffers from poor generalization to new samples or adversarial attacks [20, 39, 45, 46].
Thus, we argue that AT-based defense is not a very suitable choice for black-box defense. In contrast,
we expect that a good defense technique should satisfy the following requirements: well keeping
clean accuracy, lightweight, and plug-and-play.

To this end, we study a lightweight defense strategy, dubbed Random Noise Defense (RND) against
query-based black-box attacks. For query-based attacks [1, 2, 7, 9, 11, 19, 23, 26, 27, 32, 35], the
core is to find an attack direction by gradient estimation or random search based on the exact feedback
of consecutive queries, which leads to a decrease of the designed objective. RND is realized by
adding random noise to each query at the inference time. Therefore, the returned feedback with
randomness results in poor gradient estimation or random search and slows down the attack process.

To better understand the effectiveness of RND, we provide a theoretical analysis of the defense
performance of RND against query-based attacks and adaptive attacks. Our theoretical results reveal
that the defense performance of RND is determined by the magnitude ratio between the noise induced
by RND and the noise added by the attackers for gradient estimation or random search. The attack
efficiency is significantly affected by a large magnitude ratio. The attackers need more queries to
find the adversarial examples or fail to find a successful attack under limited query settings. That
is, the larger ratio leads to the better defense performance of RND. Apart from standard attacks, the
adaptive attack (EOT) [3] has been considered as an effective strategy to mitigate the random effect
induced by the defenders. We also conduct theoretical analysis about the defense effect of RND
against EOT attacks, and demonstrate that the magnitude ratio is also crucial to mitigate adaptive
attacks and the adaptive attacks have the limited impact of evading the RND. On the other hand, large
random noises to each query may lead to degradation of clean accuracy. To achieve a better trade-off
between the defense effect and the clean accuracy while maintaining training time efficiency, we
further propose combining RND with a lightweight Gaussian augmentation Fine-tuning (RND-GF).
RND-GF enables us to adopt larger noise in inference time to disturb the query process better.

We conduct extensive experiments on CIFAR-10 and ImageNet. The experimental results verify
our theoretical results and demonstrate the effectiveness of RND-GF. It is worth noting that RND is
plug-and-play and easy to combine with existing defense methods such as AT to boost the defense
performance further. To verify these, we evaluate the performance of RND combined with AT [22]
and find that the RND can improve the robust accuracy of AT by up to 23.1% against the SOTA
black-box attack Square attack [2] with maintaining clean accuracy.

The main contributions of this work are four-fold.

• We study a lightweight random noise defense (RND) against black-box attacks theoretically
and empirically. Our theoretical results reveal that the effectiveness of RND is determined
by the magnitude ratio between the noise induced by RND and the noise added by the
attackers for gradient estimation and random search.

• We theoretically analyze the performance of RND against the adaptive attack (EOT) and
demonstrate that EOT has the limited effect of evading the RND.

• Leveraging our theoretical analysis, we further propose an efficient and stronger defense
strategy RND-GF by combining the Gaussian augmentation Fine-tuning and RND towards
a better trade-off between clean and adversarial performance.

• Extensive experiments verify our theoretical analysis and show the effectiveness of our
defense methods against several state-of-the-art query-based attacks.

2 Related Work

Query-based Methods. Here we mainly review the query-based black-box attack methods, which
can be categorized into two classes, including gradient estimation and search-based methods. Gra-
dient estimation methods are based on zero-order (ZO) optimization algorithms. The attacker utilizes
a direct search strategy to find the search direction in search-based methods instead of explicitly
estimating gradient. Furthermore, for our theoretical analysis, we focus on score-based queries. The
continuous score (e.g., the posterior probability or the logit) for each query is returned, in contrast
to the decision-based queries which return hard labels. Specifically, [26] proposed the first limited
query-based attack method by utilizing the Natural Evolutionary Strategies (NES) to estimate the
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gradient. [32] proposed the ZOsignSGD algorithm, which is similar to NES. Based on Bandit
Optimization, [27] proposed to combine the time and data-dependent gradient prior with gradient
estimation, which dramatically reduced the number of queries. For the `2 norm constrain, SimBA
[23] randomly sampled a perturbation from orthonormal basis. SignHunter [1] focuses on estimating
the sign of gradient and flipped the sign of perturbation to improve query efficiency. Square attack [2]
is the state-of-art query-based attack method that selects localized square-shaped updates at random
positions of images.

Black-Box Defense. Compared with the defense for white-box attacks, the defense specially
designed for black-box attacks has not been well studied. Two recent works [8, 31] proposed to
detect malicious queries based on the comparison with the history queries since the malicious queries
are more similar with each other compared with normal queries. AdvMind [37] proposed to infer
the intent of the adversary, and it also needed to store the history queries. However, suppose the
attacker adopted the strategy of long-interval malicious queries. In that case, the defender has to store
a long history, with a very high cost of storage and comparison. [42] proposed the first black-box
certified defense method, dubbed denoised smoothing. [5] also showed that adding random noise can
defend against query-based attacks through experimental evaluations, without theoretical analysis
of the defense effect. There are also a few randomization-based defenses. R&P [51] proposed a
random input transform-based method. RSE [33] added large Gaussian noise to both the input and
activation of each layer. PNI [25] combined adversarial training with adding Gaussian noise to the
input or weight of each layer. However, these methods significantly sacrificed the accuracy of benign
examples and also have a huge training cost. PixelDP [30] and random smoothing [13, 41] proposed
to train classifiers with large Gaussian noise to get certified robustness under the `2 norm. However,
they require to obtain a majority prediction of this query. Obviously, that places a huge burden on
model inference and even helps the attacker get the more accurate gradient estimation. The too large
Gaussian noise used in those methods also sacrifices clean accuracy. In contrast, RND maintains a
good clean accuracy and only perturbs each query once, without any extra burden. [40] showed that
the model with Gaussian augmentation training achieves the state-of-art defense against common
corruptions, while the defense to black-box attacks is not evaluated.

3 Preliminaries

3.1 Score-based Black-Box Attack

In this work, we mainly focus on the score-based attacks. The analysis and evaluation of decision-
based attacks are shown in supplementary materials. We denote the attacked model asM : X → Y
with X being the input space and Y being the output space. Given a benign data (x, y) ∈ (X ,Y), the
goal of adversarial attack is to generate an adversarial example xadv that is similar with x, but to
enforce prediction ofM to be different with the true label y (i.e., untargeted attack) or to be a target
label h (i.e., targeted attack). The optimization of untargeted attack can be formulated as follows,

min
xadv∈NR(x)

f(xadv) = min
xadv∈NR(x)

(My(xadv)−max
j 6=y
Mj(xadv)). (1)

For targeted attack, the objective function is maxj 6=hMj(xadv)−Mh(xadv).Mj(xadv) denotes
the logit or softmax output w.r.t. class j. NR(x) = {x′| ‖x′ − x‖p ≤ R} indicates a `p ball around
x (p is often specified as 2 or∞), with R > 0. In attack evaluation, as long as L(xadv) is less than 0,
attackers consider the attack to be successful.

The score-based attack algorithms commonly adopt the projected gradient descent algorithms,
xt+1 = ProjNR(x)(xt − ηtg(xt)). (2)

For white-box attacks, g(xt) is the gradient of f(x) w.r.t. xt. However, for black-box attacks, the
gradient g(xt) cannot be directly obtained. So the attackers utilize the gradient estimation or random
search to conduct the update g(xt).

3.2 Zero-Order Optimization for Black-Box Attack

Zero-order optimization (ZO) has become the mainstream of black-box attacks, dubbed ZO attacks.
The general idea of ZO attack methods is to estimate the gradient according to the objective values
returned by querying. The gradient estimator widely used in score-based and decision-based attacks
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[7, 10, 12, 12, 16, 26, 27, 32, 36] is

gµ(x) =
f(x+ µu)− f(x)

µ
u, (3)

where u ∼ N (0, I), and µ ≥ 0. Based on this gradient estimator, the update of attack becomes
xt+1 = ProjNR(x)(xt − ηtgµ(xt)). (4)

3.3 Random Search for Black-Box Attack

The search-based attacks also depend on the value of f(x+ µu)− f(x) to find attack directions.
Here, u is a searching direction sampled from some pre-defined distributions, such as gaussian noise
in [12], orthogonal basis in [23] and squared perturbations in [2]. The µ is the size of perturbation in
each search step such as the size of square in Square attack [2]. The work of [1, 35] adopt the fixed
size schedule. If f(x+ µu)− f(x) < 0, the attackers consider u as a valuable attack direction. So,
the direction searching becomes

s(x) = I(h(x) < 0) · µu where h(x) = f(x+ µu)− f(x), (5)

where, I is the indicator function. And the updating of search-based attacks becomes
xt+1 = ProjNR(x)(xt + s(xt)). (6)

4 RND: Random Noise Defense Against Query-based Attack Methods

4.1 Random Noise Defense

In the gradient estimator (e.g., Eq.(3)) and searching direction (e.g., Eq.(5)), the attacker adds one
small random perturbation µu to get the objective difference between two queries. Thus, if the
defender can further disturb this random perturbation, the gradient estimation or searching direction
is expected to be misled to decrease the attack efficiency. However, it’s also hard for defenders
to identify whether a query is normal or malicious. Inspired by those observations, we study a
lightweight defense method, dubbed Random Noise Defense (RND), that simply adds random noise
to each query. For RND, the feedback for one query x isM(x+ νv), with v ∼ N (0, I) is standard
Gaussian noise added by the defender, and the factor ν > 0 controls the magnitude of random
noise. Considering the task of defending query-based black-box attacks, RND should satisfy: 1) the
prediction of each query will not be changed significantly; 2) the estimated gradient or direction
searching should be perturbed as large as possible towards better defense performance. The gradient
estimator and searching direction under RND become

gµ,ν(x) =
f (x+ µu+ νv1)− f (x+ νv2)

µ
u, (7)

sν(x) = I(hν(x) < 0) · µu where hν(x) = f(x+ µu+ νv1)− f(x+ νv2), (8)

where v1,v2 ∼ N (0, I) are both standard Gaussian noise generated by the defender.

To satisfy the first requirement, one cannot add too large noise to each query. However, to meet
the second requirement, ν should be large enough to change the gradient estimation or searching
direction. We need to choose a proper ν to achieve a good trade-off between these two requirements.
In the following, we provide the theoretical analysis of RND, which can shed light on the setting of ν.

4.2 Theoretical Analysis of Random Noise Defense Against ZO Attacks

In this section, we will present the theoretical analysis of the effect of RND against ZO attacks.
Specifically, we study the convergence property of ZO attack in Eq.(4) with gµ,ν(x) in Eq.(7) being
the gradient estimator. Throughout our analysis, the measure of adversarial perturbation is specified
as `2 norm, corresponding to NR(x) = {x′|‖x′ − x‖2 ≤ R}. To facilitate subsequent analyses, we
first introduce some assumptions, notations, and definitions.

Assumption 1. f(x) is Lipschitz-continuous, i.e., |f(y)− f(x)| ≤ L0(f)‖y − x‖.
Assumption 2. f(x) is continuous and differentiable, and ∇f(x) is Lipschitz-continuous, i.e.,
‖∇f(y)−∇f(x)‖ ≤ L1(f)‖y − x‖.
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Notations. We denote the sequence of standard Gaussian noises added by the attacker as U t =
{u0,u1, . . . ,ut}, with t being the iteration index in the update Eq.(4). The sequence of standard
Gaussian noises added by the defender is denoted as Vt = {v01,v02, . . . ,vt1,vt2}. The generated
sequential solutions are denoted as {x0,x1, . . . ,xQ}, and the benign example x is used as the initial
solution, i.e., x0 = x. d = |X | denotes the input dimension.

Definition 1. The Gaussian-Smoothing function corresponding to f(x) with ν > 0,v ∼ N (0, I) is

fν(x) =
1

(2π)d/2

∫
f(x+ νv) · e− 1

2‖v‖
2
2 dv. (9)

Due to the noise inserted by the defender, fν becomes the objective function for the attacker. We also
define the minimum of fν(x), f∗ν = fν(x

∗) = minx∈NR(x0) fν(x).

4.2.1 Theoretical Analysis under General Non-Convex Case

Here, we report theoretical analysis of RND under general non-convex case satisfying Assumption 1.

Theorem 1. Under Assumption 1, for any Q ≥ 0, consider a sequence {xt}Qt=0 generated according
to the descent update Eq.(4) using the gradient estimator gµ,ν(x) in Eq.(7) , with the constant stepsize,

η =
[

Rε
γ(α)2d3L3

0(f)(Q+1)

]1/2
Then,

1

Q+ 1

Q∑
t=0

EUt,Vt(‖∇fµ,ν(xt)‖2) ≤
2L0(f)

5
2R

1
2 d

3
2

(Q+ 1)
1
2 ε

1
2

γ(α) (10)

where ν
µ = α and γ(α) = α+

√
2
2 , which is always increasing function of α.

Remark 1. Due to the non-convexity assumption, we only guarantee the convergence to a stationary
point of the function fµ,ν(x), which is a smoothing approximation of fν . To bound the gap ε between
fµ,ν(x) and fν(x), i.e., |fµ,ν(x)− fν(x)| ≤ ε, ∀ x ∈ NR(x), we could choose µ ≤ µ̂ = ε

d1/2L0(f)

[36]. The minimum of upper bound is denoted as δ, then the upper bound for the expected number of
queries is O

(
γ(α)2

d3L5
0(f)R
εδ2

)
.

The convergence rate of ZO attacks is important since attackers need to find adversarial examples
within limited queries effectively. Theorem 1 shows the convergence rate is positive related to the
ratio ν

µ . The larger ratio ν
µ will lead to the higher upper bound of convergence error and slower

convergence rate. In consequence, the attackers need much more queries to find adversarial examples.
Specifically, if νµ � 1, the query complexity is equivalent to the original constant term O( d

3

εδ2 ). When
ν
µ ≥ 1, the query complexity is really improved over O( d

3

εδ2 ). Therefore, the attack efficiency will
be significantly reduced under the queries limited setting, leading to failed attacks or a much larger
number of queries for successful attacks. Therefore, the large ratio ν

µ leads the effectiveness of
RND. In accordance with our intuition, the defenders should insert larger noise (i.e., ν) than that
added by the attack (i.e., µ) to achieve the satisfied defense effect.

Trade-off of Larger ν and Clean Accuracy: If f(x) is Lipschitz-continuous, then
|fν(x)− f(x)| ≤ νL0(f)d

1/2 [36]. The larger ν is, the larger the gap between fν(x) and f(x). So
the clean accuracy of the model with adding larger noise will also decrease. This is also shown in
Figure 1 (d), which forms a trade-off between defense performance of RND and clean accuracy.

Larger Noise Size µAdopted by Attackers: The attacker may be aware of the defense mechanism,
increasing the adopted noise size µ. Our experiment results also verify this point. As shown in Figure
2 (a), for NES attack, the attack failure rate is almost 0, when ν = µ = 0.01. This shows adding
small noise can’t always guarantee an effective defense. Previous work [5, 15] don’t consider this
and overestimate the effect of small noise. However, increasing the noise size µ will also lead to
less accurate gradient estimation and random search in Eq.(3) and Eq.(5), leading to a significant
decrease in attack performance consequentially. Taking the NES [26] and Bandit attack [27] on
ImageNet as examples, as shown in Figure 3, when µ increase from 0.01 to 0.05, the `∞ attack
failure rates increase from 5.1%, 5.0% to 22.8%, 25.7% respectively. For Square attack, [2], when
µ increases from 0.3 to 0.5, the average number of queries has doubled. To guarantee a successful
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attack, attackers cannot always increase µ. Our experimental results show that the attack performance
decreases significantly when the µ of ZO attacks and Square attack is larger than 0.01 and 0.3. Based
on the above analysis, we propose the stronger defense method in Section 4.4. It enables us to add
larger noise (ν > µ) and still maintains a good clean accuracy.

4.2.2 Theoretical Analysis of Random Noise Defense Against Adaptive Attacks

As suggested in recent studies of robust defense [3, 6, 49], the defender should take a robust evaluation
against the corresponding adaptive attack. The attacker is aware of the defense mechanism. Here we
study the defense effect of RND against adaptive attacks. Since the idea of RND is to insert random
noise to each query, an adaptive attacker could utilize Expectation Over Transformation (EOT) [4] to
obtain a more accurate estimation, i.e., querying one sample multiple times to get the average value.
Then, the gradient estimator used in ZO attacks Eq.(4) becomes

g̃µ,ν(x) =
1

M

M∑
j=1

f(x+ µu+ νvj1)− f(x+ νvj2)

µ
µ, (11)

where vj1,vj2 ∼ N (0, I), with j = 1, . . . ,M . Note that here the definition of the sequential
standard Gaussian noises added by the defender (see Section 4.2.1) should be updated to Vt =
{v01, . . . ,v0M , . . . ,vt1, . . . ,vtM}. vij ∈ Vt contains vij1 and vij2. The convergence analysis of
ZO attack with Eq.(11) against RND is presented in Theorem 2.

Theorem 2. Under Assumption 1 and 2, for any Q ≥ 0, consider a sequence {xt}Qt=0 generated
according to the descent update Eq.(4) using the gradient estimator g̃µ,ν(x) Eq.(11), we have

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤
L0(f)R

SQ
+

1

SQ

Q∑
t=0

η2t (L0(f)
2L1(f)d

2(
1

2
+

2ν2

µ2M
)

+
ν2L0(f)L1(f)

2

µ
d

5
2 +

ν4L1(f)
3(M + 1)

2µ2M
d3)

(12)

The larger M for EOT: Theorem 2 shows that the upper bound will be reduced with larger M .
So, EOT can mitigate the defense effect caused by the randomness of RND. However, with M going
to infinity, the upper bound of expected convergence error (i.e., Eq. (12)) is still determined by the
max term ν4

µ2 d
3. It implies that the attack improvement from EOT is limited, especially with

the larger ratio ν
µ . Experiments in Section 5.3 verify our analysis of EOT attack.

4.3 Theoretical Analysis of Random Noise Defense Against Search-based Attacks

In this section, we will show how RND affects search-based attacks. Based on the Eq.(5) and Eq.(8),
by adding noise νv, the value of hν(x) will be different from that of h(x), and there is certain
probability that Sign(hν(x)) be different from Sign(h(x)). When the random noise νv causes
inconsistence between Sign(hν(x)) and Sign(h(x)), RND will mislead the attackers to select the
incorrect attack directions (i.e., abandoning the descent direction w.r.t. f or selecting the ascent
direction), so as to decrease attack performance. We have following theoretical analysis about this.
Theorem 3. Under Assumption 1, considering the direction update Eq.(6) with Eq.(8) in search-based
attacks, we have,

P (Sign(h(x)) 6= Sign(hν(x)) ≤
2L0(f)ν

√
d

|h(x)|
(13)

The probability P is intuitively controlled by the relative values of the hν(x) and h(x). The proof
is shown in Section F of supplementary materials. Theorem 3 shows the probability of misleading
attacker is positive correlated with ν

|h(x)| . Due to the small value µ and local linearity of model,
we have |h(x)| = |f(x + µu) − f(x)| ≈ L0(f)µ‖u‖. Therefore, the |h(x)| is also positively
correlated with the stepsize µ within the small neighborhoods. So the probability of changing the
sign is positively correlated with ν

µ . The larger ratio ν
µ leads to the larger upper bound of the

probability. The attackers are more likely to be misleading and need much more queries to find
adversarial examples. So, the defense performance of RND is better. As shown in Figure 1 (a-c), the
evaluations on Square attack verify our analysis.
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(a) (b) (c) (d)
Figure 1: (a-c): Attack failure rate (%) of Square `∞ attacks on VGG-16(CIFAR-10), Inception
v3(ImageNet) and AT model (ImageNet) under different values of µ and ν, where µ is the square
size in Square attacks. (d): clean accuracy for different models on CIFAR-10 and ImageNet. The
circle lines and triangle lines represent models on CIFAR-10 and ImageNet respectively.

4.4 RND with Gaussian Augmentation Fine-tuning

The aforementioned theoretical analyses reveal that RND should choose a proper noise magnitude ν to
achieve a good balance between clean accuracy and defense effectiveness. To achieve a high-quality
balance, we could reduce the sensitivity of the target model to random noises. The influence of
the noise on the accuracy of each query will be reduced. To satisfy the lightweight requirement of
black-box defense, we propose to utilize Gaussian Augmentation Fine-tuning (GF), which fine-tunes
the deployed model with Gaussian augmentation. We add random Gaussian noise to each training
sample as a pre-processing step in the fine-tuning process. Consequently, the model fine-tuned with
GF is expected to maintain good accuracy, even though defenders add a relatively large random noise
to each query. As shown in Figure 1 (d), GF models still maintain the high clean accuracy under
larger noise.

5 Experiments

5.1 Experimental Settings

Datasets and Classification Models. We conduct experiments on two widely used benchmark
datasets in adversarial machine learning: CIFAR-10 [28] and ImageNet [14]. For classification
models, we use VGG-16 [43], WideResNet-16-10 and WideResNet-28-10 [54] on CIFAR-10. We
conducted standard training, and their clean accuracy on the test set is 92.76% 95.10, and 96.60%,
respectively. For ImageNet, we adopt the pretrained Inception v3 model [47] and ResNet-50 model
[24] provided by torchvision package and the clean accuracy are 76.80% and 74.90%, respectively.

Black-box Attack Methods and Compared Defense Methods. We consider several main-
streamed query-based black-box attack methods, including NES [26], ZO-signSGD (ZS) [32],
Bandit [27], ECO [35], SimBA [23], SignHunter [1] and Square attack [2]. Note that the NES, ZS,
Bandit are gradient estimation based attack methods, and the other four are search-based methods.
SimBA and ECO are only designed for `2 and `∞ attack, respectively. Following [26], we evaluate
all the attack methods on the whole test set of CIFAR-10 and 1,000 random sampled images from
the validation set of ImageNet. We present the evaluation performance against the untargeted attack
under both `∞ and `2 norm settings. The perturbation budget of `∞ is set to 0.05 for both datasets.
For `2 attack, the perturbation budget is set to 1 and 5 on CIFAR-10 and ImageNet, respectively.
The number of maximal queries is set to 10,000. We adopt the attack failure rate and the average
number of query as an evaluation metric. The higher the attack failure rate and the larger the
average number of query, the better the adversarial defense performance. We compare our methods
with RSE [33] and PNI [25] on CIFAR-10. We adopt the pre-trained AT model [22] which shows
better robustness than other AT models. For ImageNet, we compare pre-trained Feature Denoise
(FD) model [52] and adopt pre-trained AT in Robustness Library [17]. The implementation details of
those methods are given in the Section B.1 and B.2 of supplementary materials.

5.2 Evaluation of RND Against Query-based Black-Box Attacks

We first evaluate the defense performance of RND with various settings of µ and ν against query-
based black-box attacks and verify the theoretical results in Section 4.2 and 4.3. Specifically, we set
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(a) (b) (c) (d)
Figure 2: Attack failure rate (%) of query-based attacks on VGG-16 and CIFAR-10 under different
values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration. The complete
evaluation under `2 attack is given in Section B.4 of supplementary materials.

(a) (b) (c) (d)
Figure 3: Attack failure rate (%) of query-based attacks on Inception v3 and ImageNet under
different values of µ and ν. We adopt logarithm scale in subplot (a-c) for better illustration. The
complete evaluation under `2 attack is given in Section B.4 of supplementary materials.

ν ∈ {0.0, 0.01, 0.02} and µ ∈ {10−4, 5∗10−4, 10−3, 0.005, 0.01, 0.05} for ZO attacks on CIFAR-10
and µ ∈ {10−4, 0.001, 0.01, 0.05} on ImageNet. For Square attacks, we set µ ∈ {0.05, 0.1, 0.2, 0.3}.
Figure 1 (a-c) presents the defense performance of RND against Square attack on CIFAR-10 and
ImageNet, respectively. Figure 2 (a-c) and 3 (a-c) present the defense performance of RND against
NES, ZS and Bandit on CIFAR-10 and ImageNet, respectively.

The results in Figure 1 (a-c), 2 (a-c), and 3 (a-c) show that: the attack failure rate of all attack methods
generally increases as the value of ν

µ increases. Specifically, for a fixed value of ν (e.g., 0.01), the
attack failure rate increases as µ decreases. While for a certain value of µ (e.g., 10−4), the attack
failure rate increases as ν increases. These collaborate our theoretical analysis that the ratio of ν

µ

determines the probability of changing sign and the convergence rate of ZO attacks. The larger
ν
µ , the higher the probability of changing the sign and the convergence error of ZO attacks, which
results in poor attack performance under the query-limited settings.

We also evaluate the defense performance of RND with various values of ν against other search-
based black-box attacks and the results are shown in Figure 2 (d) for CIFAR-10 and Figure 3 (d)
for ImageNet. As shown in the plots, the RND can significantly boost the defense performance.
The attack failure rate increases as the value of ν increases. The complete evaluations, including
the WideResNet-16 on CIFAR-10, the `2 attack, and the mean and medium number of queries of
successful attacks, are reported in Section B.4 of supplementary materials.

5.3 Evaluation of RND Against Adaptive Attacks

We then evaluate the defense effect of RND against the adaptive attack EOT and verify our theoretical
analysis in Section 4.2.2. We evaluate EOT with M ∈ {1, 5, 10} on CIFAR-10 and ImageNet, and
ν is set to 0.02 and µ is set to 0.001 and 0.1 for ZO attacks and Square attack, respectively. The
evaluation with even larger M and µ is presented in Section B.5 of supplementary materials.

We consider two settings of query budget: 1) adaptive query budget that assigns query budget of
10,000 ×M for different value of M ; 2) fixed query budget that adopt a fixed query budget of 10,000
for all M . We first evaluate the performance with adaptive query budget on NES and ZS, and
their numerical results are shown in Table 1. As shown in Table 1, the attack failure rate decreases
as M increases on both datasets. However, the average number of the query of successful attack
also significantly increases as M increases, which demonstrates that the adaptive EOT attack can
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Table 1: The evaluation of EOT with `∞ attack on CIFAR-10 and ImageNet under the adaptive and
fixed query setting. The left part is the results on CIFAR-10 and the right part is on ImageNet.
The average number of query of successful attack as well as the attack failure rate are reported. The
performance of EOT with `2 attack is reported in Section B.5 of supplementary materials.

settings Methods M=1 M=5 M= 10 Methods M=1 M=5 M= 10

adaptive NES 1448/0.484 4078/0.361 5763/0.342 NES 2532/0.762 5364/0.705 7582/0.691
ZS 1489/0.493 3189/0.374 5912/0.349 ZS 2824/0.825 5735/0.761 7662/0.740

fixed

NES 1448/0.484 2528/0.452 3246/0.443 NES 2533/0.762 5240/0.775 5658/0.781
ZS 1489/0.493 2765/0.448 3123/0.421 ZS 2824/0.825 4023/0.842 4652/0.861

Bandit 436/0.696 276/0.582 314/0.543 Bandit 305/0.604 759/0.523 946/0.49
Square 380/0.301 181/0.162 223/0.121 Square 93/0.353 145/0.20 328/0.171

SignHunter 459/0.367 559/0.224 759/0.191 SignHunter 173/0.532 336/0.456 659/0.431
ECO 904/0.720 1681/0.761 2560/0.793 ECO 1237/0.666 3065/0.678 3091/0.692

SimBA 1353/0.650 3852/0.467 4103/0.396 SimBA 274/0.891 468/0.878 517/0.869

Table 2: The comparison of RND (ν = 0.02), GF, RND-GF (ν = 0.05), AT, RND-AT (ν = 0.05),
PNI, RSE, and FD on CIFAR-10 and Imagenet. The average number of queries of successful
attack and the attack failure rates are reported. The best and second best attack failure rate under
each attack are highlighted in bold and underlined, respectively. The evaluation under `2 attack is
shown in Section B.6 of supplementary materials.

Datasets Methods Clean Acc NES(`∞) ZS(`∞) Bandit(`∞) Sign(`∞) Square(`∞) SimBA(`2) ECO(`∞)

CIFAR-10
(WideNet-28)

Clean Model 96.60% 465.5/0.01 581.8/0.06 210.2/0.03 167.6/0.03 137.1/0.02 457.2/0.04 457.8/0.0
GF 91.72% 999.0/0.407 759.9/0.544 744.5/0.116 348.3/0.027 581.0/0.061 1146.8/0.395 883.9/0.067

RSE[33] 84.12% 1246.3/0.396 1327.8/0.422 281.7/0.372 243.7/0.221 413.3/0.243 498.3/0.337 578.3/0.534
PNI[25] 87.20% 1071.4/0.725 1310.7/0.823 324.9/0.824 267.0/0.708 295.3/0.612 945.0/0.857 2342.2/0.623
AT[22] 89.48% 821.6/0.807 614.9/0.862 1451.5/0.623 766.3/0.476 1135.4/0.499 1523.2/0.635 1180.4/0.484
RND 93.60% 842.5/0.05 941.8/0.143 273.1/0.478 977.2/0.226 762.4/0.116 2112.6/0.549 912.8/0.688

RND-GF 92.40% 2805.7/0.516 2966.3/0.730 1223.5/0.841 1017.1/0.407 1207.3/0.378 1220.2/0.863 687.2/0.872
RND-AT 87.40% 2499.2/0.842 2625.7/0.923 891.5/0.891 767.9/0.737 1170.7/0.730 1787.4/0.912 687.4/ 0.911

ImageNet
(ResNet-50)

Clean Model 74.90% 1031.9/0.0 2013.0/0.235 329.2/0.02 264.1/0.03 76.5/0.0 1234.5/0.281 347.7/0.0
GF[40] 74.70% 1685.5/0.03 1712.1/0.347 601.4/0.02 329.0/0.0 97.28/0.0 1417.4/0.112 362.4/0.0
FD[52] 54.20% 1997.2/0.679 1555.5/0.775 1579.2/0.426 1633.1/0.332 1092.4/0.242 2607.9/0.613 1501.0/0.240
AT[17] 61.60% 2113.4/0.724 1688.7/0.815 1091.5/0.416 1522.7/0.289 1109.0/0.159 2638.2/0.651 1440.6/0.200
RND 73.00% 3041.5/0.245 2266.2/0.330 390.6/0.536 661.0/0.314 81.5/0.101 825.3/0.612 2435.5/0.540

RND-GF 71.15% 2489.3/0.421 2053.5/0.563 495.9/0.603 514.0/0.348 1009.9/0.146 777.2/ 0.762 994.8/0.702
RND-AT 58.15% 2556.6/0.864 2596.6/0.870 448.0/0.810 724.2/0.632 1306.3/0.386 1210.5/0.953 631.1/0.865

increase the attacking success rate with a sacrifice of query efficiency. More importantly, we
observe that the relative performance improvements induced by EOT generally decrease as M
increases. These verify our theoretical analysis in Section 4.2.2.

The evaluation under the fixed query budget is also reported in Table 1. On small-scale dataset CIFAR-
10, the attack failure rate of all attacks generally decreases as M increases. Yet, we also observe
a similar phenomenon in that the relative performance improvements induced by EOT decrease
as M increases. For the large-scale dataset ImageNet, EOT can increase the attack performance
with a significant sacrifice of query efficiency under most cases, except for NES and ZS. The attack
performance of NES and ZS decreases as M increases. Specifically, for a fixed number of queries,
the larger the M , the smaller the number of iterations for ZO attack under limited query setting. The
poor performance of NES and ZS with larger M may be because the improvements induced by EOT
are less than the potential degeneration caused by the decrease of iterations.

5.4 Evaluation of RND-GF and the Combination of RND with AT

In this section, we evaluate the performance of RND combined with Gaussian augmentation Fine-
tuning, dubbed RNG-GF. In fine-tuning phase, we adopt the cyclic learning rate [44] to achieve
superconvergence in 50 epochs. The training detail is shown in Section B.3 of supplementary
materials. We adopt the attack failure rate and the average number of queries under the stronger
adaptive attack EOT for evaluation. As that in the Section 5.2, we also tune the parameter µ for
attackers and tune M ∈ {1, 5, 10} for EOT to achieve the best attack performance for all attack
methods.

The comparison with other defense methods is shown in Table 2, where GF refers to standard
fine-tuning with Gaussian augmentation. RND denotes the clean model coupled with random noise
defense, and RND-GF indicates the GF model coupled with RND. As shown in the Table 2, RND can
significantly boost the defense performance of the Clean Model on both datasets. For example, RNG
achieves 20% ∼ 40% improvement against Bandit and SignHunter on both datasets. The proposed
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GF can protect the clean accuracy from the larger noise induced by RND. Therefore, we adopt a
relatively larger ν = 0.05 for RND-GF. According to our theoretical analysis, larger ν will lead to
better defense performance. Experimental results also show that RNG-GF significantly improves
the defense performance under all attack methods while maintaining good clean accuracy compared
with RND. For example, RNG-GF achieves 40% ∼ 50% and 20% ∼ 30% improvements against ZO
and search-based attacks on CIFAR-10. Compared with RSE, PNI, and FD, RND-GF achieves a
higher failure rate against Bandit, SimBA, and ECO and leads to much more queries on other attacks.
Besides, it also maintains a much better clean accuracy and lower training cost.

Without any extra modification, RND can be easily combined with many existing defense methods.
We adopt the pre-trained AT WideNet-28 (`∞) model [22] and pre-trained AT ResNet-50 (`∞) model
in Robustness Library [17] on CIFAR-10 and ImageNet, respectively. As shown in Figure 1 (d), AT
models are less affected by adding noise like GF models. So we can adopt the larger noise (ν = 0.05)
in inference time. Combining AT with RND, RND-AT significantly improves the robustness against
all attacks and achieves the best performance among all methods. Based on AT models, RND-AT
achieves 23.1% and 22.7% improvements against Square attack on CIFAR-10 and ImageNet.

5.5 Discussion and Limitations

As shown in Section 3.1, we focus on the score-based attacks. The analysis and evaluation of RND
against decision-based attacks are shown in Section C of supplementary materials. Besides,
as we mainly focus on practical query-based black-box attacks where the models and the training
datasets are unknown to the attackers, we don’t cover the attacks utilizing the transferability from
surrogate to target models. These methods usually assume that the surrogate models are trained on the
same training set with the target model. It is difficult to obtain the training set behind the target model
in real scenarios. Meanwhile, there have been some defense strategies developed for transfer-based
attacks [38, 50, 53]. It is interesting to explore the combination of RND and these works towards
better defense performance against transfer-based attacks. We leave it to future works.

6 Conclusion

In this work, we study a lightweight black-box defense, dubbed Random Noise Defense (RND) for
query-based black-box attacks, which is realized by adding proper Gaussian noise to each query.
We give the first theoretical analysis of the effectiveness of RND against both standard and adaptive
query-based black-box attacks. Based on our analysis, we further propose RND-GF ,which combines
RND with Gaussian augmentation Fine-tuning to obtain a better trade-off between clean accuracy and
robustness. Extensive experiments verify our theoretical analysis and demonstrate the effectiveness
of the RND-GF against several state-of-the-art query-based attacks. Without any extra modification,
RND can easily combine with the existing defense methods, such as AT. We further demonstrate
that when combined with RND, RND-AT can significantly boost the adversarial robustness. Given
that RND is very simple and effective, we recommend it should become a baseline to evaluate new
query-based black-box attack methods.
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