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ABSTRACT

Traditional image annotation tasks rely heavily on human effort for object se-
lection and label assignment, making the process time-consuming and prone to
decreased efficiency as annotators experience fatigue after extensive work. This
paper introduces a novel framework that leverages the visual understanding capa-
bilities of large multimodal models (LMMs), particularly GPT, to assist annotation
workflows. In our proposed approach, human annotators focus on selecting ob-
jects via bounding boxes, while the LMM autonomously generates relevant labels.
This human-AI collaborative framework enhances annotation efficiency by reduc-
ing the cognitive and time burden on human annotators. By analyzing the system’s
performance across various types of annotation tasks, we demonstrate its ability to
generalize to tasks such as object recognition, scene description, and fine-grained
categorization. Our proposed framework highlights the potential of this approach
to redefine annotation workflows, offering a scalable and efficient solution for
large-scale data labeling in computer vision. Finally, we discuss how integrating
LMMs into the annotation pipeline can advance bidirectional human–AI align-
ment, as well as the challenges of alleviating the “endless annotation” burden in
the face of information overload by shifting some of the work to AI.

1 INTRODUCTION

With the rapid development of deep learning and big data technologies, image annotation, an es-
sential component in computer vision tasks has found widespread applications in fields (Najafabadi
et al., 2015) such as autonomous driving (Huang et al., 2018), intelligent surveillance (Dharmawan
et al., 2022), medical imaging (Hu et al., 2003), and emotional-behavior analysis (Zhang et al.,
2024a). However, traditional image annotation tasks primarily rely on manual processes for select-
ing objects and assigning labels (Zhang et al., 2012). This approach is not only time- and labor-
intensive (Zhang et al., 2012) but also prone to causing annotator fatigue due to prolonged repetitive
work, which in turn affects the quality and consistency of the annotations (Herde et al., 2021).
To alleviate the burden of manual annotation, crowdsourcing methods have been widely adopted.
For example, by leveraging Completely Automated Public Turing test to tell Computers and Hu-
mans Apart (CAPTCHAs) (Von Ahn et al., 2003; Barnard et al., 2003; Chew & Tygar, 2004) and
crowdsourcing platforms, large-scale annotation projects can be decomposed into numerous small
tasks that are distributed to participants worldwide, with each participant responsible for annotating
only a subset of images (Luz et al., 2015). This approach not only effectively reduces costs and
improves efficiency but also enhances annotation accuracy through multiple rounds of verification
and the collective intelligence of the crowd (Nowak & Rüger, 2010). Crowdsourcing is generally
well-suited for simple, highly repetitive, and standardized tasks, such as basic image annotation or
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classification (e.g., the CAPTCHAs commonly seen on websites’ login page). However, due to lim-
itations in human knowledge, cultural differences, and experience, crowdsourcing is not suitable for
generating more detailed labels (as illustrated in Figure 2, which simulates tasks that may be beyond
the capabilities of non-experts) (Nassar & Karray, 2019).
In addition, automated tools and semi-automated annotation methods have gradually emerged in
recent years. By leveraging pre-trained object detection models, semantic segmentation algorithms,
and image captioning technologies, some systems attempt to automatically generate candidate
bounding boxes and initial labels, with subsequent human correction through a human–machine
collaborative process (Zhang et al., 2012; Cheng et al., 2018). Although these methods have im-
proved annotation efficiency to some extent, they still suffer from limitations in generalization and
user interaction. Existing automated tools often rely on specific datasets and scenarios, and when
faced with diverse or complex situations, models are prone to misclassification and may struggle to
accurately capture all details (Fernandes et al., 2024).
Recently, large language models (LLMs) and large multimodal models (LMMs) such as GPT have
achieved groundbreaking progress in the field of natural language processing, and their exceptional
semantic understanding and generation capabilities have provided new perspectives for annotation
tasks (Gilardi et al., 2023; Belal et al., 2023; Zhang et al., 2024b; Nasution & Onan, 2024; Nguyen
& Rudra, 2024; Zhu et al., 2024; He et al., 2024; Tan et al., 2024; Zendel et al., 2024; Wang et al.,
2024; Li et al., 2024; Zhang et al., 2023; Lu et al., 2023; Zhang & Fu, 2025). This paper pro-
poses a human–AI collaborative annotation framework (as shown in Figure 1), where humans are
responsible for selecting target regions in images while an LMM automatically generates labels that
align with the image context. The framework has the following two main advantages: (1) reduced
human workload by delegating the laborious task of label assignment to the LMM, human anno-
tators can focus solely on target selection, thereby significantly enhancing overall efficiency; and
(2) bidirectional human–AI alignment in terms of knowledge and annotation accuracy. From the
human annotators’ perspective, they provide guidance (through the selection of regions) to help the
LMM more effectively address specific task objectives and use their expertise to verify, correct, and
offer feedback on the labels generated by the LMM. From the LMM’s perspective, it can offer more
detailed labels to compensate for the human annotators’ potential lack of domain-specific knowl-
edge. Furthermore, by leveraging the LMM’s visual analysis capabilities, human annotators are not
confined to the limitations of the annotation task, enabling them to broaden the scope of the task.

2 PROPOSED FRAMEWORK

Our proposed framework (shown in Figure 1) streamlines the image annotation process through a
systematic workflow. The process begins with a collection of raw images containing various objects
of interest. Human annotators then review these images and draw bounding boxes around target
objects, helping AI focus on the target and establishes connections between objects and the possible
labels. These annotated images are then processed by a LMM, which analyzes the content within
each bounding box using prompts such as “Please tell me what is selected by the bounding box
in each image.” The LMM leverages its natural language understanding capabilities to generate
precise labels for the outlined objects. This approach yields specific, high-quality annotations, for
example, identifying specimens like “Saddle-Billed Stork”, “Elephant Rhinoceros”, “Giraffe”, and
“Ankole-Watusi”, that serve as valuable input for downstream tasks such as object recognition or
classification. If an image does not have a bounding box, the LMM will analyze the entire image. In
some cases where the image contains only a single subject, a bounding box might not be necessary.

2.1 COMPARISON OF THE TRADITIONAL WORKFLOW AND THE LMM-ENHANCED
ANNOTATION WORKFLOW

Figure 2 compares the workflow of traditional annotation tasks with the framework proposed
in this paper. The traditional workflow places the entire burden of annotation on human an-
notators, who must both select objects and assign labels. These annotators first choose a spe-
cific predefined task, such as identifying animals, and maintain this focus throughout the pro-
cess. They carefully draw bounding boxes around relevant objects, a step that demands preci-
sion since box accuracy directly influences annotation quality. The annotators then assign la-
bels to each bounded region, a task that often requires specialized knowledge. When iden-
tifying animal species, for instance, annotators must navigate challenges such as blurry im-
ages or complex scenes. While this method can yield high-quality results, it suffers from
three key limitations: heavy labor requirements, potential inconsistencies, and poor scalability.
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Figure 1: Image Annotation Workflow. The figure illustrates the steps involved
in the image annotation process. It begins with a collection of original images,
followed by human selection of relevant images. Selected images are then an-
notated with bounding boxes to highlight objects of interest. The final output
consists of labeled bounding boxes, which are used for downstream tasks in
computer vision. The rightmost part indicates the task levels that annotators
with different knowledge levels can complete. A single asterisk (*) marks labels
that can be annotated by the average person. Double asterisks (**) mark labels
that can be annotated by those with some foundational or passing-knowledge.
Triple asterisks (***) signify labels that only expert groups are deemed capable
of annotating (Note: GPT-4o can annotate at this level).

The LMM-
enhanced work-
flow addresses
these limitations
by dividing
responsibilities
between humans
and machines.
Human annota-
tors now focus
solely on draw-
ing bounding
boxes around
objects of in-
terest, without
restricting them-
selves to specific
categories. This
approach reduces
cognitive load
while establish-
ing the necessary
context for sub-
sequent machine processing. The LMM then analyzes these bounded regions and generates
appropriate labels based on contextual prompts. In the example case of animal identification, the
LMM can supply precise species names without requiring specialized knowledge from human
annotators. This hybrid approach offers several advantages over the traditional workflow. By
delegating the classification task to LMMs, it reduces the need for specialized expertise, lowers
annotation costs, and significantly improves scalability. The division of labor between human visual
expertise and machine classification capabilities creates a more efficient and sustainable annotation
process, particularly for large datasets.

2.2 TESTING AND RESULTS

Figure 2: A Synergistic Loop Illustrating Bidirectional Hu-
man–AI Alignment.

To validate our LMM-enhanced
annotation approach, we ex-
tended our evaluation to the
Asirra dataset (Elson et al.,
2007)1, employing GPT-4-mini
for rapid annotation testing2.
The results revealed remarkable
accuracy in primary classifica-
tion tasks, achieving a 99.63%
success rate in distinguishing
between cats and dogs. Beyond
basic classification, the pro-
posed framework demonstrated
sophisticated labeling capabili-
ties. The LMM successfully generated detailed breed-specific annotations, such as ”Dachshund
(Dog)”, ”German Shepherd (Dog)”, ”Siamese cat (Cat)”, and ”Himalayan cat (Cat)”. This granular
classification ability highlights the system’s potential for specialized annotation tasks that tradi-
tionally require expert knowledge. These results underscore two key advantages of our approach:
exceptional accuracy in basic classification tasks and the ability to provide detailed, breed-specific
labels without additional human expertise. This combination of high accuracy and detailed classifi-

1Testing utilized the annotated version available on Kaggle, https://www.kaggle.com/
datasets/alvarole/asirra-cats-vs-dogs-object-detection-dataset

2Given the predominantly single-subject nature of the images, we omitted bounding box selection. Addi-
tionally, we utilized basic functionality prompts
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cation capabilities suggests that LMM-enhanced annotation systems can effectively bridge the gap
between efficiency and annotation depth.

3 FRAMEWORK SUPPORTS BIDIRECTIONAL HUMAN-AI ALIGNMENT

Figure 3: A Synergistic Loop Il-
lustrating Bidirectional Human–AI
Alignment.

This framework emphasizes bidirectional alignment (Shen
et al., 2024) between human annotators and AI systems,
specifically examining the interplay of labor distribution,
knowledge transfer, and collaboration. On the one hand,
from the human perspective, annotators provide essential
guidance by selecting objects of interest through bounding
boxes, helping LMMs focus on relevant areas and generate
accurate labels. This division of labor reduces the cogni-
tive burden on human annotators while LMMs complement
potential gaps in human knowledge by generating detailed,
contextually relevant labels, particularly in domains requir-
ing specialized expertise like fine-grained animal species
identification. On the other hand, from the AI perspective,
LMMs benefit from the structured input provided by human annotators, enhancing their ability to
understand and interpret visual content. Through prompt engineering and human selection, LMMs
align their outputs with task objectives. This bidirectional interaction not only improves annotation
accuracy but also creates a collaborative environment where human and AI systems learn from each
other, forming a synergistic loop (as shown in Figure 3). Over time, this alignment leads to more
robust and adaptable annotation systems capable of handling complex tasks across diverse domains.

4 FUTURE WORK: DATA EXPLOSION AND ENDLESS ANNOTATION

In recent years, the exponential growth of digital data has spawned what’s commonly called a “Data
Explosion/Information Explosion.” (Turi, 2024; Sweeney, 2001) As information proliferates across
sectors, the demand for annotated datasets has surged to train and maintain high-performance AI
models (Liang et al., 2022; Zini & Awad, 2022). Traditional annotation methods, heavily reliant
on manual labor, struggle to keep pace with this relentless influx, creating a seemingly endless
annotation backlog.
Our framework accelerates the annotation process by leveraging LMM capabilities. By shifting
repetitive, labor-intensive tasks to AI, human annotators can focus on critical decisions like object
selection and quality validation. Furthermore, it is essential to consider the economic and ethi-
cal implications of this approach. From an economic perspective, using LMM for annotation can
undoubtedly reduce substantial labor costs, but it also raises further demands for computing re-
sources (Bhattacharya et al., 2024). This trade-off can be analyzed in future work by comparing
the savings from reduced human labor against the costs associated with using the LMM’s API, po-
tentially providing a clearer understanding of sustainability and return on investment. Additionally,
deploying LMM locally and utilizing smaller-scale models might further reduce costs. From an
ethical perspective, although automated annotation can improve efficiency, it also raises concerns
about job cuts (Zarifhonarvar, 2024). Future work could focus on mitigating the negative impact
on human workers, possibly by redefining their roles in the annotation workflow and directing them
toward more strategic, high-level tasks. This balanced approach not only advances technological
progress but also addresses broader societal impacts.
Despite these improvements, maintaining annotation quality across expanding datasets remains chal-
lenging. Future research could explore ways to enhance our framework’s scalability. For instance,
integrating active learning techniques (Prince, 2004) could help the system prioritize the most in-
formative samples, optimizing both human and AI efforts. Additionally, employing image segmen-
tation techniques (Han et al., 2024) to replace reliance on manual object boxing could enable the
framework to operate more autonomously, adapting to new tasks and domains with minimal hu-
man intervention, ultimately transferring the endless annotation tasks brought by the data explosion
entirely to AI.
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