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ABSTRACT

Time series data is prevalent across numerous fields, necessitating the development
of robust and accurate forecasting models. Capturing patterns both within and
between temporal and multivariate components is crucial for reliable predictions.
We introduce xLSTM-Mixer, a model designed to effectively integrate temporal
sequences, joint time-variate information, and multiple perspectives for robust
forecasting. Our approach begins with a linear forecast shared across variates,
which is then refined by xLSTM blocks. They serve as key elements for modeling
the complex dynamics of challenging time series data. xLSTM-Mixer ultimately
reconciles two distinct views to produce the final forecast. Our extensive evalu-
ations demonstrate its superior long-term forecasting performance compared to
recent state-of-the-art methods. A thorough model analysis provides further in-
sights into its key components and confirms its robustness and effectiveness. This
work contributes to the resurgence of recurrent models in time series forecasting.

1 INTRODUCTION

Time series are an essential data modality ubiquitous in many critical fields of application, such
as medicine (Hosseini et al., 2021), manufacturing (Essien & Giannetti, 2020), logistics (Seyedan
& Mafakheri, 2020), traffic management (Lippi et al., 2013), finance (Lin et al., 2012), audio
processing (Latif et al., 2023), weather modeling (Lam et al., 2023). While significant progress
in time series forecasting has been made over the decades, the field is still far from being solved.
The regular appearance of yet better models and improved combinations of existing approaches
exemplifies this. Further increasing the forecast quality obtained from machine learning models
promises a manifold of improvements, such as more accurate medical treatments, higher efficiency in
manufacturing and transportation, and higher crop yields.

Historically, recurrent neural networks (RNNs) and their powerful successors were natural choices
for deep learning-based time series forecasting (Hochreiter & Schmidhuber, 1997; Cho et al., 2014).
Today, large Transformers (Vaswani et al., 2017) are applied extensively to time series tasks, including
forecasting. Many improvements to the vanilla architecture have since been proposed, including
patching (Nie et al., 2023), decompositions (Zeng et al., 2023), tokenization inversions (Liu et al.,
2023). However, some of their limitations are yet to be lifted. For instance, they are inefficient
when applied to long sequences due to the cost of the attention mechanism being quadratic in the
number of variates and time steps, depending on the specific choice of tokenization. Therefore,
recurrent and state space models (SSMs) (Patro & Agneeswaran, 2024) are experiencing a resurgence
of interest to overcome such limitations. Specifically, Beck et al. (2024) revisited recurrent models
by borrowing insights gained from Transformers applied to many domains, specifically to natural
language processing. They propose Extended Long Short-Term Memory (xLSTM) models as a viable
alternative to current sequence models.

We propose xLSTM-Mixer1, a new state-of-the-art method for time series forecasting using recurrent
deep learning methods. Specifically, we augment the highly expressive xLSTM architecture with
carefully crafted time, variate, and multi-view mixing. These operations regularize the training and
limit the model parameters by weight-sharing, effectively improving the learning of features necessary
for accurate forecasting. xLSTM-Mixer initially computes a channel-independent linear forecast

1https://anonymous.4open.science/r/xLSTM-Mixer
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Figure 1: The xLSTM-Mixer architecture consists of three stages: (1) An initial NLinear forecast
assuming channel independence and performing time mixing; (2) subsequent joint mixing, which
mixes variate and time information through crucial applications of sLSTM blocks in two views;
and (3) a final view mixing, where the two latent forecast views are reconciled into a coherent final
forecast.

shared over the variates. It is then up-projected to a higher hidden dimension and subsequently refined
by an xLSTM stack. It performs multi-view forecasting by producing a forecast from the original and
reversed up-projected embedding. The powerful xLSTM cells thereby jointly mix time and variate
information to capture complex patterns from the data. Both forecasts are eventually reconciled by a
learned linear projection into the final prediction, again by mixing time. An overview of our method
is shown in Fig. 1.

Overall, we make the following contributions:

(i) We investigate time and variate mixing in the context of recurrent models and propose a joint
multistage approach that is highly effective for multivariate time series forecasting. We argue
that marching over the variates instead of the temporal axis yields better results if suitably
combined with temporal mixing.

(ii) We propose xLSTM-Mixer, a state-of-the-art method for time series forecasting using recurrent
deep learning methods.

(iii) We extensively compare xLSTM-Mixer with existing methods for multivariate long-term time
series forecasting and in-depth model analysis. The experiments demonstrate that xLSTM-Mixer
consistently achieves state-of-the-art performance in a wide range of benchmarks.

The following work is structured as follows: In the upcoming Sec. 2, we introduce preliminaries
to allow us to motivate and explain xLSTM-Mixer in Sec. 3. We then present comprehensive
experiments on its effectiveness and inner workings in Sec. 4. We finally review related work in
Sec. 5 and close with a conclusion and outlook in Sec. 6.

2 BACKGROUND

After introducing the notation used throughout this work, we review xLSTM blocks and discuss
leveraging channel mixing or their independence in time series models.

2.1 NOTATION

In multivariate time series forecasting, the model is presented with a time series X = (x1, . . . ,xT ) ∈
RV×T consisting of T time steps with V variates each. Given this context, the forecaster shall predict
the future values Y = (xT+1, . . . ,xT+H) ∈ RV×H up to a horizon H . A variate (sometimes called
a channel) can be any scalar measurement, such as the temperature at a given point, the occupancy
of a road, or the oil temperature in a power plant. The measurements are assumed to be carried
out jointly, such that the T +H time steps reflect a regularly sampled signal. A time series dataset
consists of N such pairs

{(
X(i),Y (i)

)}
i∈{1,...,N} divided into train, validation, and test portions.

2
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2.2 EXTENDED LONG SHORT-TERM MEMORY (XLSTM)

Beck et al. (2024) propose xLSTM architectures consisting of two building blocks, namely the
sLSTM and mLSTM modules. To harness the full expressivity of xLSTMs within each step and
across the computation sequence, we employ a stack of sLSTM blocks without any mLSTM blocks.
The latter are less suited for joint mixing due to their independent treatment of the sequence elements,
making it impossible to learn any relationships between them directly. We will continue by recalling
how sLSTM cells function.

The standard LSTM architecture of Hochreiter & Schmidhuber (1997) involves updating the cell state
ct through a combination of input, forget, and output gates, which regulate the flow of information
across tokens. sLSTM blocks enhance this by incorporating exponential gating and memory mix-
ing (Greff et al., 2017) to handle complex temporal and cross-variate dependencies more effectively.
The sLSTM updates the cell ct and hidden state ht using three gates as follows:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (1)
nt = ft · nt−1 + it normalizer state (2)

ht = ot ⊙ ct ⊙ n−1
t hidden state (3)

zt = tanh
(
Wzxt +Rzht−1 + bz

)
cell input (4)

it = exp
(̃
it −mt

)
ĩt = Wixt +Riht−1 + bi input gate (5)

ft = exp
(
f̃t +mt−1 −mt

)
f̃t = Wfxt +Rfht−1 + bf forget gate (6)

ot = σ
(
Woxt +Roht−1 + bo

)
output gate (7)

mt = max
(
f̃t +mt−1, ĩt

)
stabilizer state (8)

In this setup, the matrices Wz,Wi,Wf , and Wo are input weights mapping the input token xt to
the cell input zt, input gate, forget gate, and output gate, respectively. The states nt and mt serve as
necessary normalization and training stabilization, respectively.

As Beck et al. have shown, it is beneficial to restrict the memory mixing performed by the recurrent
weight matrices Rz,Ri,Rf , and Ro to individual heads, inspired by the multi-head setup of
Transformers (Zeng et al., 2023), yet more restricted and efficient. In particular, each token gets
broken up into separate pieces, where the input weights Wz,i,f,o act across all of them, but the
recurrence matrix Rz,i,f,o is implemented as block-diagonal and therefore only acts within each
piece. This permits specialization of the individual heads to patterns specific to the respective section
of the tokens and empirically does not sacrifice expressivity.

2.3 CHANNEL INDEPENDENCE AND MIXING IN TIME SERIES MODELS

Multiple works have investigated whether it is beneficial to learn representations of the time and
variate dimensions jointly or separately. Intuitively, because joint mixing is strictly more expressive,
one might think it should always be preferred and is indeed used by many works such as Temporal
Convolutional Networks (TCN) (Lea et al., 2016), N-BEATS (Oreshkin et al., 2019), N-HiTS (Challu
et al., 2023), and many Transformers (Vaswani et al., 2017), including Temporal Fusion Trans-
former (TFT) (Lim et al., 2021), Autoformer (Wu et al., 2021), and FEDFormer (Zhou et al., 2022).
However, treating slices of the input data independently assumes an invariance to temporal or variate
positions and serves as a strong regularization against overfitting, reminiscent of kernels in CNNs.
Prominent models implementing some aspects of channel independence in multivariate time series
forecasting are PatchTST (Nie et al., 2023) and iTransformer (Liu et al., 2023). TiDE (Das et al.,
2023), on the other hand, contains a time-step shared feature projection and temporal decoder but
treats variates jointly. As Tolstikhin et al. (2021) have shown with MLP-Mixer, interleaving mixing
of all channels in each token and all tokens per channel does not empirically sacrifice any expressivity
and instead improves performance. This idea has since been applied to time series too, namely in
architectures such as TimeMixer and TSMixer (Chen et al., 2023c), and is one key component of our
method xLSTM-Mixer.

3
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3 XLSTM-MIXER

We now explain xLSTM-Mixer shown in Fig. 1 in more detail. It carefully integrates several
key components: an initial linear forecast with time mixing, joint mixing using powerful sLSTM
modules, and an eventual combination of two views by a final fully connected layer. The transposing
steps between the components enable capturing complex temporal and intra-variate patterns while
facilitating easy trainability and limiting parameter counts. The sLSTM block, in particular, can learn
intricate non-linear relationships hidden within the data along both the time and variate dimensions.
The architecture is furthermore equipped with normalization layers and skip connections to improve
training stability and overall effectiveness.

3.1 NORMALIZATION AND INITIAL LINEAR FORECAST

Normalization has become an essential ingredient of modern deep learning architectures (Huang
et al., 2023). For time series in particular, reversible instance norm (RevIN) (Kim et al., 2022) is a
general recipe for improving forecasting performance, where each time series instance is normalized
by its mean and variance and furthermore scaled and offset by learnable scalars γ and β:

xnorm
t = RevIN(xt) = γ

(
xt − E [x]√
Var [x] + ϵ

)
+ β.

We apply it as part of xLSTM-Mixer, and at the end of the entire pipeline, we invert the RevIN
operation to obtain the final prediction. In the case of xLSTM-Mixer, the typical skip connections
found in mixer acrchitectures (Tolstikhin et al., 2021; Chen et al., 2023c) are taken up by RevIN, the
normalization in the NLinear forecast, and the integral skip connections within each sLSTM block.

It has been shown previously that simple linear models equipped with appropriate normalization
schemes are, already by themselves, decent long-term forecasters (Zeng et al., 2023; Li et al., 2023).
Our observations confirm this finding. Therefore, we first process each variate separately by an
NLinear model by computing:

xinitial = NLinear(xnorm) = FC (xnorm
1:T − xnorm

T ) + xnorm
T ,

where FC(·) : RT → RH denotes a fully-connected linear layer with bias term. Sharing this model
across variates limits parameter counts, and the weight-tying serves as a useful regularization. The
quality of this initial forecast will be investigated in Sec. 4.1 and 4.2.

3.2 SLSTM REFINEMENT

While the NLinear forecast xinitial ∈ RV×H captures the basic patterns between the historic and
future time steps, its quality alone is insufficient for today’s challenging time series datasets. We,
therefore, refine it using powerful sLSTM blocks. As a first step, it is crucial to increase the
embedding dimension of the data to provide enough latent dimensions D for the sLSTM cells: xup =
FCup (xinitial

)
. This prior up-projection is similar to what is commonly performed in SSMs (Beck

et al., 2024). We weight-share FCup : RH → RD across variates to perform time-mixing similar to
the initial forecast. Note that this step does not maintain the temporal ordering within the embedding
token dimensions, as was the case up until this step, and instead embeds it into a higher latent
dimension.

The stack of M sLSTM blocks S(·) transforms xup ∈ RV×D as defined in Eq. 1 to 8. The recurrent
models’ strides of the data in variate order, i.e., where each token represents all time steps from
a single variate as in the work of Liu et al. (2023). The sLSTM blocks learn intricate non-linear
relationships hidden within the data along both the time and variate dimensions. The mixing of the
hidden state is still limited to blocks of consecutive dimensions, aiding efficient learning and inference
while allowing for effective cross-variate interaction during the recurrent processing. Striding over
variates has the benefit of linear time scaling in the number of variates at a constant number of
parameters. It, however, comes at the cost of possibly fixing a suboptimal order of variates. While
this is empirically not a significant limitation, we leave investigations into how to find a suitable
ordering for future work. In addition to a large embedding dim, we observed a high number of heads
being crucial for effective forecasting.

4
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Table 1: The long-term forecasting benchmark datasets and their key properties.

Dataset Source Domain Horizons Sampling #Variates Hurst exp.

Weather Zhou et al. (2021) Weather 96–720 10 min 21 0.333–1.000
Electricity Zhou et al. (2021) Power Usage 96–720 1 hour 321 0.555–1.000
Traffic Wu et al. (2021) Traffic Load 96–720 1 hour 862 0.162–1.000
ETT Zhou et al. (2021) Power Production 96–720 15&60 min 7 0.906–1.000
Illness (ILI) Wu et al. (2021) Influenza cases 24–60 1 week 7 0.499–0.907

The sLSTM cells’ first hidden state ht−1 must be initialized before each sequence of tokens can
be processed. Extending the initial description of these blocks, we propose learning a single initial
embedding token η ∈ RD that gets prepended to each encoded time series xup. These initial
embeddings draw from recent advances in Large Language Models, where learnable "soft prompt"
tokens are used to condition models and improve their ability to generate coherent outputs (Lester
et al., 2021; Li & Liang, 2021; Chen et al., 2023a;b). Recent research has extended the application of
soft prompts to LLM-based time series forecasting (Cao et al., 2023; Sun et al., 2024), emphasizing
their adaptability and effectiveness in improving model performance across modalities. These
tokens enable greater flexibility and conditioning, allowing the model to adapt its initial memory
representation to specific dataset characteristics and to dynamically interact with the time and variate
data. Soft prompts can be readily optimized through back-propagation with very little overhead.

3.3 MULTI-VIEW MIXING

To further regularize the training of the sLSTM as with the linear projections, we compute forecasts
from the original embedding xup as well as the reversed embedding x̂up, where the order of the latent
dimensions including the representation of η is inverted. Learning forecasts y′,y′′ ∈ RV×D for both
views while sharing weights helps learn better representations. Such multi-task learning settings are
known to benefit training (Zhang & Yang, 2022). The final forecast is obtained by a linear projection
FCview : RD → RH of the two forecasts, again per-variate. Specifically, we compute:

ynorm = FCview (y′,y′′) , where y′ = S(xup) and y′′ = S(x̂up).

The final forecast is obtained after de-normalizing the reconciled forecasts as y = RevIN−1(ynorm).

4 EXPERIMENTS

We conduct a series of experiments to evaluate the forecasting capabilities of xLSTM-Mixer, aiming
to provide comprehensive insights into its performance. Our primary focus is on long-term forecasting,
following the work of Das et al. (2023); Chen et al. (2023c). An evaluation of xLSTM-Mixer’s
competitiveness in short-term forecasting on the PEMS dataset is provided in App. A.2. Additionally,
we perform an extensive model analysis consisting of an ablation study to identify the contributions of
individual components of xLSTM-Mixer, followed by an inspection of the initial embedding tokens,
a hyperparameter sensitivity analysis, and an investigation into its robustness.

Datasets. We generally follow the established benchmark procedure of Wu et al. (2021) and
Zhou et al. (2021) for best backward and future comparability. The datasets we thus used are
provided as an overview in Tab. 1. The last column shows the range of Hurst exponents (Hurst,
1951) over the variates measuring long-term patterns. Training. We follow standard practice in the
forecasting literature by evaluating long-term forecasts using mean squared error (MSE) and mean
absolute error (MAE). Based on our experiments, we used MAE as the training loss function since it
yielded the best results. The datasets were standardized for consistency across features. In addition,
we conducted all experiments three times and reported the averaged values. Further details on
hyperparameter selection, metrics, and implementation can be found in App. A.1. Baseline Models.
We compare xLSTM-Mixer to the recurrent models xLSTMTime (Alharthi & Mahmood, 2024) and
LSTM (Hochreiter & Schmidhuber, 1997); multi-perceptron (MLP) based models TimeMixer (Wang
et al., 2024a), TSMixer (Chen et al., 2023c), DLinear (Zeng et al., 2023), and TiDE (Das et al., 2023);
the transformers PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2023), FEDFormer (Zhou
et al., 2022), and Autoformer (Wu et al., 2021); and the convolutional architectures MICN (Wang
et al., 2022) and TimesNet (Wu et al., 2022).
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Figure 2: Example Forecasts Across Models and Datasets. This figure shows example forecasts
on the Weather and ETTm1 datasets for multiple models. The lookback window and forecasting
horizon are fixed at 96. The blue lines represent the ground truth target, and the orange lines show
the predictions. The first panel illustrates the forecast from xLSTM-Mixer, while the second panel
shows the forecast extracted before the up-projection step, highlighting the effectiveness of our added
components. Comparisons with xLSTMTime, TimeMixer, and PatchTST provide insights into the
performance of xLSTM-Mixer relative to these baseline models.

Table 2: xLSTM-Mixer is effective in long-term forecasting. The results are averaged from 4
different prediction lengths {96, 192, 336, 720}, and {24, 36, 48, 60} for Ili. A lower MSE or MAE
indicates a better prediction. The best result for each dataset is highlighted in bold red, while the
second-best result is blue and underlined. Wins for each model out of all 32 settings are shown at the
bottom.

Models
Recurrent MLP Transformer Convolutional

xLSTM-Mixer xLSTMTime LSTM TimeMixer TSMixer DLinear TiDE PatchTST iTransformer FEDFormer Autoformer MICN TimesNet
(Ours) 2024 1997a 2024a 2023c 2023 2023 2023 2023 2022 2021 2022 2022

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.219 0.250 0.222 0.255 0.444 0.454 0.222 0.262 0.225 0.264 0.246 0.300 0.236 0.282 0.241 0.264 0.258 0.278 0.309 0.360 0.338 0.382 0.242 0.299 0.259 0.287
Electricity 0.153 0.245 0.157 0.250 0.559 0.549 0.156 0.246 0.160 0.256 0.166 0.264 0.159 0.257 0.159 0.253 0.178 0.270 0.214 0.321 0.227 0.338 0.186 0.295 0.192 0.295
Traffic 0.392 0.253 0.391 0.261 1.011 0.541 0.387 0.262 0.408 0.284 0.434 0.295 0.356 0.261 0.391 0.264 0.428 0.282 0.609 0.376 0.628 0.379 0.541 0.315 0.620 0.336
Illness 1.426 0.719 1.488 0.714 6.538 1.829 1.747 0.829 2.476 1.060 2.616 1.090 1.899 0.934 1.480 0.807 1.845 0.906 2.847 1.144 3.006 1.161 2.664 1.086 2.139 0.931
ETTh1 0.397 0.420 0.408 0.428 1.198 0.821 0.411 0.423 0.412 0.428 0.423 0.437 0.419 0.430 0.413 0.434 0.454 0.448 0.440 0.460 0.496 0.487 0.558 0.535 0.458 0.450
ETTh2 0.340 0.382 0.346 0.386 3.095 1.352 0.316 0.384 0.355 0.401 0.431 0.447 0.345 0.394 0.324 0.381 0.383 0.407 0.433 0.447 0.453 0.462 0.588 0.525 0.414 0.427
ETTm1 0.339 0.366 0.347 0.372 1.142 0.782 0.348 0.375 0.347 0.375 0.357 0.379 0.355 0.378 0.353 0.382 0.407 0.410 0.448 0.452 0.588 0.517 0.392 0.413 0.400 0.406
ETTm2 0.248 0.307 0.254 0.310 2.395 1.177 0.256 0.315 0.267 0.322 0.267 0.332 0.249 0.312 0.256 0.317 0.288 0.332 0.304 0.349 0.324 0.368 0.328 0.382 0.291 0.333

Wins 20 25 2 4 0 0 3 5 0 0 0 0 5 1 2 1 0 0 0 0 0 0 0 0 0 0

a Taken from Wu et al. (2022).

4.1 LONG-TERM TIME SERIES FORECASTING

We present the performance of xLSTM-Mixer compared to prior models in Tab. 2. As shown,
xLSTM-Mixer consistently delivers highly accurate forecasts across a wide range of datasets. It
achieves the best results in 20 out of 32 cases for MSE and 25 out of 32 cases for MAE, demonstrating
its superior performance in long-term forecasting. In particular, xLSTM-Mixer exhibits exceptional
forecasting accuracy, as evidenced particularly by its strong MAE performance across all datasets.
Notably, on Weather, xLSTM-Mixer reduces the MAE by 2% compared to xLSTMTime and 4.8%
compared to TimeMixer. Similarly, for ETTm1, xLSTM-Mixer outperforms TimeMixer by 2.46% in
MAE and shows a strong competitive edge over xLSTMTime. Although xLSTM-Mixer performs
slightly less well on the Traffic and ETTh2 datasets, where it encounters challenges with handling
outliers, it remains highly competitive and outperforms the majority of baseline models. This suggests
that despite these few cases, xLSTM-Mixer can consistently deliver state-of-the-art performance
in long-term forecasting. A qualitative inspection of several baseline models, including the initial
forecast extracted before the sLSTM refinement, is shown in Fig. 2. In this comparison, the lookback
window and forecasting horizon are both fixed at 96.
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Table 3: Ablation Study on the Weather and ETTm1 Datasets. MSE and MAE are reported for
each numbered configuration across four prediction lengths. The best results are highlighted in bold
red, while the second-best results are blue and underlined.

#1 (full) #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
Time Mixing ✓ ✓ ✓ DLinear ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

xLSTM type sLSTM mLSTM sLSTM sLSTM sLSTM sLSTM sLSTM None sLSTM sLSTM sLSTM sLSTM
Recurr. order Variates Variates Time Variates Variates Variates Variates None Variates Variates Variates Variates
Init. Token ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗

View Mixing ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.143 0.184 0.148 0.192 0.148 0.194 0.145 0.187 0.145 0.186 0.144 0.185 0.144 0.186 0.173 0.223 0.149 0.193 0.151 0.195 0.149 0.192 0.152 0.195

192 0.186 0.226 0.193 0.235 0.196 0.239 0.188 0.229 0.188 0.228 0.186 0.226 0.188 0.228 0.219 0.257 0.192 0.233 0.192 0.234 0.191 0.234 0.193 0.236
336 0.237 0.266 0.241 0.272 0.252 0.281 0.237 0.267 0.239 0.267 0.241 0.270 0.242 0.270 0.261 0.288 0.240 0.271 0.242 0.273 0.242 0.273 0.244 0.274
720 0.310 0.324 0.313 0.325 0.315 0.328 0.312 0.325 0.310 0.324 0.309 0.323 0.309 0.323 0.320 0.334 0.320 0.329 0.319 0.329 0.322 0.330 0.319 0.328

E
T

T
m

1 96 0.275 0.328 0.285 0.339 0.298 0.348 0.274 0.329 0.277 0.329 0.278 0.331 0.279 0.333 0.295 0.338 0.282 0.339 0.285 0.341 0.281 0.337 0.284 0.339
192 0.319 0.354 0.329 0.365 0.337 0.369 0.319 0.356 0.321 0.354 0.321 0.356 0.322 0.358 0.329 0.357 0.329 0.364 0.330 0.365 0.337 0.367 0.335 0.366
336 0.353 0.374 0.363 0.384 0.368 0.388 0.351 0.376 0.354 0.375 0.355 0.377 0.357 0.379 0.359 0.376 0.367 0.385 0.367 0.385 0.366 0.384 0.366 0.385
720 0.409 0.407 0.417 0.414 0.420 0.416 0.409 0.408 0.411 0.408 0.413 0.411 0.414 0.411 0.412 0.407 0.422 0.412 0.422 0.413 0.417 0.410 0.418 0.411

4.2 MODEL ANALYSIS

Ablation Study. To assess the contributions of each component in xLSTM-Mixer to its strong
forecast performance, we conducted an ablation study with results listed in Tab. 3. Each configuration
represents a different combination of the four key components: mixing time with NLinear and
DLinear (D), using sLSTM blocks, learning an initial embedding token, and multi-view mixing. We
evaluated the performance using the MSE and MAE across prediction lengths {96, 192, 336, 720}.
The full version of xLSTM-Mixer (#1), which integrates all components, achieves the best perfor-
mance overall. However, we also observe that some configurations of xLSTM-Mixer, which exclude
specific components, remain competitive. For instance, #5, which excludes the initial embedding to-
ken, still performs very well. Similarly, depending on the dataset and target metric, initial forecasting
with DLinear instead of NLinear is a viable option, too (#4). This suggests that while it contributes
positively to the overall performance, the model can sometimes still achieve competitive results
without it. In general, removing specific components leads to a performance drop. For example,
removing the time mixing (#9) increases the MAE by 3.4% on ETTm1 at length 96 or 3.1% at length
192, highlighting its critical role in capturing cross-time dependencies. When we now omit everything
except for time mixing on Weather at 192, we suffer a 13.7% performance decrease. In summary, the
ablation study confirms that all components of xLSTM-Mixer contribute to its effectiveness, with
the full configuration yielding the best results. Furthermore, we identified the sLSTM blocks and
time-mixing components as critical for ensuring high accuracy across datasets and prediction lengths.
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Figure 4: Sensitivity analysis of the xLSTM hidden di-
mension D on the Electricity dataset. Increasing the up-
projection dimension becomes beneficial with increasing
prediction length.

Sensitivity to xLSTM Hidden
Dimension. In Fig. 4, we visualize
the performance of xLSTM-Mixer on
the Electricity dataset with increasing
sLSTM embedding (hidden) dimen-
sion realized by FCup. The results
indicate that larger hidden dimensions
consistently enhance the model’s per-
formance, particularly for longer pre-
diction lengths. This suggests that a
larger embedding dimension enables
xLSTM-Mixer to better capture the
complexity of the time series data
over extended horizons, leading to im-
proved forecasting accuracy.

Initial Token Embedding. We qualitatively inspect decodings of the initial embedding tokens η
on multiple datasets to further understand and interpret the initializations learned by xLSTM-Mixer.
η are decoded to a forecast y by transforming them through the sLSTM stack S and applying
multi-view mixing. The resulting output of FCview can then be interpreted as the conditioning time

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2

1

0

1

W
ea

th
er

Prediction Length 96 Prediction Length 192 Prediction Length 338 Prediction Length 720

1

0

1

ET
Tm

1

0 24 48 72 96
Time

2

1

0

1

ET
Th

2

0 48 96 144 192
Time

0 85 170 255 338
Time

0 180 360 540 720
Time

Figure 3: Initial Tokens Capture Dataset Characteristics. The plot illustrates the learned tokens
across multiple datasets and prediction lengths. The lookback length is set to 96 for all evaluations.
For clarity and the high noise levels of the data, only a single seed is shown for ETTm1 and ETTh2.

series used to initialize the sLSTM blocks. Fig. 3 shows the dataset-specific patterns the initial
embedding tokens have learned on Weather, ETTm1, and ETTh2 for various prediction horizons.
With increasing prediction horizons, we observe longer spans of time, eventually revealing underlying
seasonal patterns and respective dataset dynamics.

Learning Cross-Variate Patterns. As the sLSTM refinement blocks recurrently process the
variates, it is important to assess the extent to which inter-variate relationships are effectively
captured. To this end, we adopt a perturbation-based approach to compute attributions, approximating
Shapley Values through sampling. Hereby, we use a zero baseline and follow the horizon aggregation
method proposed by Kraus et al. (2024), where the forecasts over the entire horizon are aggregated
into a single scalar, which serves as the target for the attribution computation. We visualize these
Shapley-based feature attribution scores, illustrating the degree to which each output variate of the
xLSTM-Mixer depends on each input variate. Fig. 5 demonstrates the ability of xLSTM-Mixer to
model cross-variate relationships effectively. Due to the design of the sLSTM refinement module,
which strides over the variates, each variate can only be influenced by the ones preceding it. This
restriction is reflected in the attribution scores, which appear exclusively in the lower-left triangle. In
addition to these results on the Weather dataset, App. A.3 provides results for ETTh2 and ETTm1.
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Figure 7: Model efficiency.

Model Efficiency. To survey
the computational resources re-
quired for using xLSTM-Mixer,
we measured the averaged wall-
clock time and peak graphics
card memory required to perform
a training step. Fig. 7 shows how
this changes over multiple look-
back lengths T and two datasets
at a forecast horizon of H = 336.
We also perform this experiment
for NLinear, PatchTST, and TimeMixer to put the measurements into context. xLSTM-Mixer scales
very favorably in T , exhibiting a negligible increase in time and memory requirements compared to
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Figure 5: xLSTM-Mixer effectively learns cross-variate patterns, as this feature attribution of
each output to input variate on the Weather dataset demonstrates.

0.275

0.300

0.325

0.350

0.375

M
SE

Prediction Length: 96

0.30

0.35

0.40

0.45 Prediction Length: 192

27 28 29 210 211

Lookback Length

0.35

0.40

0.45

0.50

M
SE

Prediction Length: 336

27 28 29 210 211

Lookback Length

0.400

0.425

0.450

0.475

0.500 Prediction Length: 720

Model
NLinear
PatchTST
TimeMixer
TimesNet
iTransformer
xLSTM-Mixer

Figure 6: Increasing the lookback window increases forecasting performance, with xLSTM-
Mixer virtually always providing the best results. Shows the MSE (↓) on the ETTm1 dataset.

the other models. While computations take slightly longer for small lookback sizes, the increase is
much smaller than for Transformer-based models. One advantage of TimeMixer was its efficiency
over Transformers, upon which xLSTM-Mixer now significantly improves by requiring one or two
orders of magnitude less memory.

Robustness to Lookback Length. Fig. 6 illustrates the performance of xLSTM-Mixer across
varying lookback lengths T and prediction horizons H . Note that we had to rerun some experiments
for TimeMixer at T = 720 with varying seeds since many training runs diverged. We observe that
xLSTM-Mixer can effectively utilize longer lookback windows than the baselines, especially when
compared to transformer-based models. This advantage stems from xLSTM-Mixer’s avoidance of self-
attention, allowing it to handle extended lookback lengths efficiently. On short prediction lengths with
T ∈ {96, 192}, information of more than 768 time steps in the past becomes redundant to inform the
comparatively short forecast, causing models to deteriorate slightly. On longer horizons, increasingly
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farther lookbacks become useful for forecasting. Additionally, xLSTM-Mixer demonstrates stable
and consistent performance with low variance across scales.

5 RELATED WORK

Time Series Forecasting. A long line of machine learning research led from early statistical meth-
ods like ARIMA to contemporary models based on deep learning, where four architectural families
take center stage: based on recurrence, state spaces, convolutions, Multilayer Perceptrons (MLPs),
and Transformers. While all of them are used by practitioners today, the research focus is gradually
shifting over time. Initially, the naturally sequential recurrent models such as Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho et al.,
2014) were used for time series analysis. Their main benefits are the high inference efficiency and
arbitrary input and output lengths due to their autoregressive nature. While their effectiveness has
historically been constrained by a limited ability to capture long-range dependencies, active research
remains to alleviate these limitations (Salinas et al., 2020), including the xLSTM architecture pre-
sented in Sec. 2 (Beck et al., 2024; Alharthi & Mahmood, 2024) and SutraNets (Bergsma et al., 2023).
Closely related are state space models (SSMs) such as Mamba (Gu & Dao, 2024; Wang et al., 2024c),
which permit parallel inference for improved efficiency. Similarly efficient, yet more restricted in
their output length, are the location-invariant CNNs (Li et al., 2022; Lara-Benítez et al., 2021), such
as TCN (Lea et al., 2016), TimesNet (Wu et al., 2022), and MICN (Wang et al., 2022). Recently,
some MLP-based architectures have also shown good success, including the simplistic DLinear and
NLinear models (Zeng et al., 2023), the encoder-decoder architecture of TiDE (Das et al., 2023), the
mixing architectures TimeMixer (Wang et al., 2024a) and TSMixer (Chen et al., 2023c), as well as the
hierarchical N-BEATS Oreshkin et al. (2019) and N-HiTS (Challu et al., 2023) models. Finally, a lot
of models have been proposed based on Transformers (Vaswani et al., 2017), such as Autoformer (Wu
et al., 2021), TFT (Lim et al., 2021), FEDFormer (Zhou et al., 2022), PatchTST (Nie et al., 2023),
and iTransformer (Liu et al., 2023).

xLSTM Models for Time Series. Some initial experiments of applying xLSTMs (Beck et al.,
2024) to time series were already performed by Alharthi & Mahmood (2024) with their proposed
xLSTMTime model. While it showed promising forecasting performance, these initial soundings
did not surpass stronger recent models such as TimeMixer (Wang et al., 2024a) on multivariate
benchmarks, and the reported performance is challenging to reproduce. We ensure that our method
xLSTM-Mixer is well suited as a foundation for further research by providing extensive model
analysis, including an ablation study with ten variants and more, and ensuring that results are
readily reproducible. Our methodology draws from xLSTMTime yet improves on it by several
key components. Most importantly, our novel multi-view mixing consistently enhances forecasting
performance. Furthermore, we find the trend-seasonality decomposition redundant and a simple
NLinear normalization scheme (Zeng et al., 2023) to suffice. Concurrently, Kong et al. (2024) also
investigate using xLSTMs for time series forecasting, arriving at similar conclusions.

6 CONCLUSION

In this work, we introduced xLSTM-Mixer, a method that combines a linear forecast with further
refinement using xLSTM blocks. Our architecture effectively integrates time, joint, and view mixing
to capture complex dependencies. In long-term forecasting, xLSTM-Mixer consistently achieved
state-of-the-art performance, outperforming previous methods in 45 out of 64 cases. Furthermore,
our detailed model analysis provided valuable insights into the contribution of each component and
demonstrated its robustness to varying hyperparameter settings.

While xLSTM-Mixer has shown extraordinary performance in long-term forecasting, it should be
noted that due to the transpose of the input, i.e., processing the variates as sequence elements, the
number of variates may limit the overall performance. To overcome this, we plan to explore how
different variate orderings influence performance and whether incorporating more than two views
could lead to further improvements. This study focused on long-term forecasting, yet extending
xLSTM-Mixer to tasks such as short-term forecasting, time series classification, or imputation offers
promising directions for future research.
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ETHICS STATEMENT

Our research advances machine learning by enhancing the capabilities of long-term forecasting in time
series models, significantly improving both accuracy and efficiency. By developing xLSTM-Mixer,
we introduce a robust framework that can be applied across various industries, including finance,
healthcare, energy, and logistics. The improved forecasting accuracy enables better decision-making
in critical areas, such as optimizing resource allocation, predicting market trends, and managing risk.

However, we also recognize the potential risks associated with the misuse of these advanced models.
Time series forecasting models could be leveraged for malicious purposes, especially when applied at
scale. For example, in the financial sector, adversarial agents might manipulate forecasts to create
market instability. In political or social contexts, these models could be exploited to predict and
influence public opinion or destabilize economies. Additionally, the application of these models in
sensitive domains like healthcare and security may lead to unintended consequences if not carefully
regulated and ethically deployed.

Therefore, it is essential that the use of xLSTM-Mixer, like all machine learning technologies, is
guided by responsible practices and ethical considerations. We encourage stakeholders to adopt
rigorous evaluation processes to ensure fairness, transparency, and accountability in its deployment,
and to remain vigilant to the broader societal implications of time series forecasting technologies.

REPRODUCIBILITY STATEMENT

All implementation details, including dataset descriptions, metric calculations, and experiment
configurations, are provided in Sec. 4 and App. A.1. We make sure to exclusively use openly available
software and datasets and provide the source code for full reproducibility at
https://anonymous.4open.science/r/xLSTM-Mixer.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Experimental Details. Our codebase is implemented in Python 3.11, leveraging PyTorch
2.4 (Paszke et al., 2019) in combination with Lightning 2.42 for model training and optimiza-
tion. We used the custom CUDA implementation3 for sLSTM which has a reliance on the NVIDIA
Compute Capability >= 8.0. Thus, our experiments were conducted on a single NVIDIA A100 80GB
GPU. The majority of our baseline implementations, along with data loading and preprocessing steps,
are adapted from the Time-Series-Library4 of Wang et al. (2024b). Additionally, for xLSTMTime
we used code based on the official repository5. We employ Captum6 (Kokhlikyan et al., 2020) to
compute the SHAP values used in model analysis.

Training and Hyperparameters. We optimized xLSTM-Mixer for up to 60 epochs with a cosine-
annealing scheduler with the Adam optimizer (Kingma & Ba, 2017), using β1 = 0.9 and β2 = 0.999
and no weight decay. Hyperparameter tuning was conducted using Optuna (Akiba et al., 2019) with
the choices provided in Tab. 4. We optimized for the L1 forecast error, also known as the Mean
Absolute Error (MAE). To further stabilize the training process, gradient clipping with a maximum
norm of 1.0 was applied. All experiments were run with three different random seeds {2021, 2022,
2023}.

Table 4: Hyperparameters and their choices.

Hyperparameter Choices

Batch size {16, 32, 64, 128, 256, 512}
Initial learning rate {1 · 10−2, 3 · 10−3, 1 · 10−3, 5 · 10−4, 2 · 10−4, 1 · 10−4}
Scheduler warmup steps {5, 10, 15}
Lookback length {96, 256, 512, 768, 1024, 2048}
Embedding dimension D {32, 64, 128, 256, 512, 768, 1024}
sLSTM conv. kernel width {disabled, 2, 4}
sLSTM dropout rate {0.1, 0.25}
# sLSTM blocks {1, 2, 3, 4}
# sLSTM heads {4, 8, 16, 32}

Metrics. We follow common practice in the literature (Wu et al., 2021; Wang et al., 2024a) for
maximum comparability and, therefore, evaluate long-term forecasting of all models on the mean
absolute error (MAE), mean squared error (MSE), and for short-term forecasting, using the MAE,
root mean squared error (RMSE), and mean absolute percentage error (MAPE). The metrics are
averaged over all variates and computed as:

MAE(y, ŷ) =

H∑
i=1

|yi − ŷi| MSE(y, ŷ) =

H∑
i=1

(yi − ŷi)
2

RMSE(y, ŷ) =
√

MSE(y, ŷ) MAPE(y, ŷ) =
100

H

H∑
i=1

|yi − ŷi|
|yi|

,

where y are the targets, ŷ the predictions, and ϵ a small constant added for numerical stability.

2https://lightning.ai/pytorch-lightning
3https://github.com/NX-AI/xlstm
4https://github.com/thuml/Time-Series-Library
5https://github.com/muslehal/xLSTMTime
6https://captum.ai
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A.2 OUTLOOK: SHORT-TERM TIME SERIES FORECASTING

Having shown superior long-term forecasting accuracies in Sec. 4.1, we also provide an initial
exploration of the effectiveness of xLSTM-Mixer to short-term forecasts. To this end, we compare
it to applicable baselines on PEMS datasets with input lengths uniformly set to 96 and prediction
lengths to 12. The results in Tab. 5 show that the performance of xLSTM-Mixer is competitive with
existing methods. We provide the MAE, MAPE, and RMSE as is common practice.

Table 5: Short-term forecasting evaluation of xLSTM-Mixer and baselines on the multivariate
PEMS datasets. A lower MAE, MAPE, or RMSE indicates a better prediction. The best result for
each dataset is highlighted in bold red, while the second-best result is blue and underlined. Wins for
each model are shown at the bottom.

Models
Recurrent MLP Transformer Convolutional

xLSTM-Mixer xLSTMTime LSTM TimeMixer DLinear PatchTST FEDFormer Autoformer MICN TimesNet
(Ours) 2024 1997a 2024a 2023 2023 2022 2021 2022 2022

PEMS03
MAE 15.71 16.59 18.65 14.63 19.70 18.95 19.00 18.08 15.71 16.41

MAPE 14.92 15.31 17.39 14.54 18.35 17.29 18.57 18.75 15.67 15.17
RMSE 24.82 26.47 31.73 23.28 32.35 30.15 30.05 27.82 24.55 26.72

PEMS08
MAE 16.56 17.44 20.34 15.22 20.26 20.35 20.56 20.47 17.76 19.01

MAPE 10.24 10.58 13.05 9.67 12.09 13.15 12.41 12.27 10.76 11.83
RMSE 26.65 28.13 31.90 24.26 32.38 31.04 32.97 31.52 27.26 30.65

a Configuration following Wu et al. (2021).

A.3 ADDITIONAL RESULTS ON CROSS-VARIATE PATTERN LEARNING

Fig. 8 extends the experimental findings in Sec. 4.2.
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Figure 8: xLSTM-Mixer effectively learns cross-variate patterns.
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A.4 FULL RESULTS FOR LONG-TERM FORECASTING

Tab. 6 shows the full results for long-term forecasting.

Table 6: Full long-term forecasting results for Tab. 2. Avg is averaged from all four prediction
lengths {96, 192, 336, 720}, and {24, 36, 48, 60} for IlI. A lower MSE or MAE indicates a better
prediction. The best result for each dataset is highlighted in bold red, while the second-best result is
blue and underlined. Wins for each model are shown at the bottom.

Models
Recurrent MLP Transformer Convolutional

xLSTM-Mixer xLSTMTime LSTM TimeMixer TSMixer DLinear TiDE PatchTST iTransformer FEDFormer Autoformer MICN TimesNet
(Ours) 2024 1997a 2024a 2023c 2023 2023 2023 2023 2022 2021 2022 2022

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.143 0.184 0.144 0.187 0.369 0.406 0.147 0.197 0.145 0.198 0.176 0.237 0.166 0.222 0.149 0.198 0.174 0.214 0.217 0.296 0.266 0.336 0.161 0.229 0.172 0.220
192 0.186 0.226 0.192 0.236 0.416 0.435 0.189 0.239 0.191 0.242 0.220 0.282 0.209 0.263 0.194 0.241 0.221 0.254 0.276 0.336 0.307 0.367 0.220 0.281 0.219 0.261
336 0.236 0.266 0.237 0.272 0.455 0.454 0.241 0.280 0.242 0.280 0.265 0.319 0.254 0.301 0.306 0.282 0.278 0.296 0.339 0.380 0.359 0.395 0.278 0.331 0.280 0.306
720 0.310 0.323 0.313 0.326 0.535 0.520 0.310 0.330 0.320 0.336 0.323 0.362 0.313 0.340 0.314 0.334 0.358 0.347 0.403 0.428 0.419 0.428 0.311 0.356 0.365 0.359

Avg 0.219 0.250 0.222 0.255 0.444 0.454 0.222 0.262 0.225 0.264 0.246 0.300 0.236 0.282 0.241 0.264 0.258 0.278 0.309 0.360 0.338 0.382 0.242 0.299 0.259 0.287

E
le

ct
ri

ci
ty

96 0.126 0.218 0.128 0.221 0.375 0.437 0.129 0.224 0.131 0.229 0.140 0.237 0.132 0.229 0.129 0.222 0.148 0.240 0.193 0.308 0.201 0.317 0.164 0.269 0.168 0.272
192 0.144 0.235 0.150 0.243 0.442 0.473 0.140 0.220 0.151 0.246 0.153 0.249 0.147 0.243 0.147 0.240 0.162 0.253 0.201 0.315 0.222 0.334 0.177 0.285 0.184 0.289
336 0.157 0.250 0.166 0.259 0.439 0.473 0.161 0.255 0.161 0.261 0.169 0.267 0.161 0.261 0.163 0.259 0.178 0.269 0.214 0.329 0.231 0.338 0.193 0.304 0.198 0.300
720 0.183 0.276 0.185 0.276 0.980 0.814 0.194 0.287 0.197 0.293 0.203 0.301 0.196 0.294 0.197 0.290 0.225 0.317 0.246 0.355 0.254 0.361 0.212 0.321 0.220 0.320

Avg 0.153 0.245 0.157 0.250 0.559 0.549 0.156 0.246 0.160 0.256 0.166 0.264 0.159 0.257 0.159 0.253 0.178 0.270 0.214 0.321 0.227 0.338 0.186 0.295 0.192 0.295

Tr
af

fic

96 0.357 0.236 0.358 0.242 0.843 0.453 0.360 0.249 0.376 0.264 0.410 0.282 0.336 0.253 0.360 0.249 0.395 0.268 0.587 0.366 0.613 0.388 0.519 0.309 0.593 0.321
192 0.377 0.241 0.378 0.253 0.847 0.453 0.375 0.250 0.397 0.277 0.423 0.287 0.346 0.257 0.379 0.256 0.417 0.276 0.604 0.373 0.616 0.382 0.537 0.315 0.617 0.336
336 0.394 0.250 0.392 0.261 0.853 0.455 0.385 0.270 0.413 0.290 0.436 0.296 0.355 0.260 0.392 0.264 0.433 0.283 0.621 0.383 0.622 0.337 0.534 0.313 0.629 0.336
720 0.439 0.283 0.434 0.287 1.500 0.805 0.430 0.281 0.444 0.306 0.466 0.315 0.386 0.273 0.432 0.286 0.467 0.302 0.626 0.382 0.660 0.408 0.577 0.325 0.640 0.350

Avg 0.392 0.253 0.391 0.261 1.011 0.541 0.387 0.262 0.408 0.284 0.434 0.295 0.356 0.261 0.391 0.264 0.428 0.282 0.609 0.376 0.628 0.379 0.541 0.315 0.620 0.336

Il
ln

es
s

(I
L

I) 24 1.351 0.707 1.514 0.694 5.914 1.734 1.811 0.823 2.424 1.033 2.398 1.040 2.043 0.943 1.319 0.754 1.834 0.883 3.228 1.260 3.483 1.287 2.684 1.112 2.317 0.934
36 1.408 0.712 1.519 0.722 6.631 1.845 1.763 0.835 2.431 1.050 2.646 1.088 1.862 0.922 1.579 0.870 1.742 0.884 2.679 1.080 3.103 1.148 2.667 1.068 1.972 0.920
48 1.434 0.721 1.500 0.725 6.736 1.857 1.705 0.818 2.459 1.061 2.614 1.086 1.796 0.920 1.553 0.815 1.996 0.938 2.622 1.078 2.669 1.085 2.558 1.052 2.238 0.940
60 1.512 0.737 1.418 0.715 6.870 1.879 1.708 0.839 2.591 1.096 2.804 1.146 1.896 0.950 1.470 0.788 1.806 0.917 2.857 1.157 2.770 1.125 2.747 1.110 2.027 0.928

Avg 1.426 0.719 1.488 0.714 6.538 1.829 1.747 0.829 2.476 1.060 2.616 1.090 1.899 0.934 1.480 0.807 1.845 0.906 2.847 1.144 3.006 1.161 2.664 1.086 2.139 0.931

E
T

T
h1

96 0.359 0.386 0.368 0.395 1.044 0.773 0.361 0.390 0.361 0.392 0.375 0.399 0.375 0.398 0.370 0.400 0.386 0.405 0.376 0.419 0.449 0.459 0.421 0.431 0.384 0.402
192 0.402 0.417 0.401 0.416 1.217 0.832 0.409 0.414 0.404 0.418 0.405 0.416 0.412 0.422 0.413 0.429 0.441 0.436 0.420 0.448 0.500 0.482 0.474 0.487 0.436 0.429
336 0.408 0.429 0.422 0.437 1.259 0.841 0.430 0.429 0.420 0.431 0.439 0.443 0.435 0.433 0.422 0.440 0.487 0.458 0.459 0.465 0.521 0.496 0.569 0.551 0.491 0.469
720 0.419 0.448 0.441 0.465 1.271 0.838 0.445 0.460 0.463 0.472 0.472 0.490 0.454 0.465 0.447 0.468 0.503 0.491 0.506 0.507 0.514 0.512 0.770 0.672 0.521 0.500

Avg 0.397 0.420 0.408 0.428 1.198 0.821 0.411 0.423 0.412 0.428 0.423 0.437 0.419 0.430 0.413 0.434 0.454 0.448 0.440 0.460 0.496 0.487 0.558 0.535 0.458 0.450

E
T

T
h2

96 0.267 0.329 0.273 0.333 2.522 1.278 0.271 0.330 0.274 0.341 0.289 0.353 0.270 0.336 0.274 0.337 0.297 0.349 0.346 0.388 0.358 0.397 0.299 0.364 0.340 0.374
192 0.338 0.375 0.340 0.378 3.312 1.384 0.317 0.402 0.339 0.385 0.383 0.418 0.332 0.380 0.314 0.382 0.380 0.400 0.429 0.439 0.456 0.452 0.441 0.454 0.402 0.414
336 0.367 0.401 0.373 0.403 3.291 1.388 0.332 0.396 0.361 0.406 0.448 0.465 0.360 0.407 0.329 0.384 0.428 0.432 0.496 0.487 0.482 0.486 0.654 0.567 0.452 0.452
720 0.388 0.424 0.398 0.430 3.257 1.357 0.342 0.408 0.445 0.470 0.605 0.551 0.419 0.451 0.379 0.422 0.427 0.445 0.463 0.474 0.515 0.511 0.956 0.716 0.462 0.468

Avg 0.340 0.382 0.346 0.386 3.095 1.352 0.316 0.384 0.355 0.401 0.431 0.447 0.345 0.394 0.324 0.381 0.383 0.407 0.433 0.447 0.453 0.462 0.588 0.525 0.414 0.427

E
T

T
m

1

96 0.275 0.328 0.286 0.335 0.863 0.664 0.291 0.340 0.285 0.339 0.299 0.343 0.306 0.349 0.293 0.346 0.334 0.368 0.379 0.419 0.505 0.475 0.316 0.362 0.338 0.375
192 0.319 0.354 0.329 0.361 1.113 0.776 0.327 0.365 0.327 0.365 0.335 0.365 0.335 0.366 0.333 0.370 0.377 0.391 0.426 0.441 0.553 0.496 0.363 0.390 0.374 0.387
336 0.353 0.374 0.358 0.379 1.267 0.832 0.360 0.381 0.356 0.382 0.369 0.386 0.364 0.384 0.369 0.392 0.426 0.420 0.445 0.459 0.621 0.537 0.408 0.426 0.410 0.411
720 0.409 0.407 0.416 0.411 1.324 0.858 0.415 0.417 0.419 0.414 0.425 0.421 0.413 0.413 0.416 0.420 0.491 0.459 0.543 0.490 0.671 0.561 0.481 0.476 0.478 0.450

Avg 0.339 0.366 0.347 0.372 1.142 0.782 0.348 0.375 0.347 0.375 0.357 0.379 0.355 0.378 0.353 0.382 0.407 0.410 0.448 0.452 0.588 0.517 0.392 0.413 0.400 0.406

E
T

T
m

2

96 0.157 0.244 0.164 0.250 2.041 1.073 0.164 0.254 0.163 0.252 0.167 0.260 0.161 0.251 0.166 0.256 0.180 0.264 0.203 0.287 0.255 0.339 0.179 0.275 0.187 0.267
192 0.213 0.285 0.218 0.288 2.249 1.112 0.223 0.295 0.216 0.290 0.224 0.303 0.215 0.289 0.223 0.296 0.250 0.309 0.269 0.328 0.281 0.340 0.307 0.376 0.249 0.309
336 0.269 0.322 0.271 0.322 2.568 1.238 0.279 0.330 0.268 0.324 0.281 0.342 0.267 0.326 0.274 0.329 0.311 0.348 0.325 0.366 0.339 0.372 0.325 0.388 0.321 0.351
720 0.351 0.377 0.361 0.380 2.720 1.287 0.359 0.383 0.420 0.422 0.397 0.421 0.352 0.383 0.362 0.385 0.412 0.407 0.421 0.415 0.422 0.419 0.502 0.490 0.408 0.403

Avg 0.248 0.307 0.254 0.310 2.395 1.177 0.256 0.315 0.267 0.322 0.267 0.332 0.249 0.312 0.256 0.317 0.288 0.332 0.304 0.349 0.324 0.368 0.328 0.382 0.291 0.333

Wins 20 25 2 4 0 0 3 5 0 0 0 0 5 1 2 1 0 0 0 0 0 0 0 0 0 0

a Taken from Wu et al. (2022).
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A.5 MEASURING THE IMPACT OF VARIATE ORDERING

xLSTM-Mixer fixes one variate ordering to learn multivariate relationships efficiently. We investigate
its impact by randomly permuting variate orders and comparing results with the baseline. Tab. 7
shows the results for four such permutations over four horizons on the Weather and ETTm1 datasets,
averaged over three initializations each. We observe that the specific ordering does play some role in
forecasting performance. However, the standard ordering provided by the dataset sources already
permits highly effective forecasting.

Table 7: Performance of xLSTM-Mixer under variate permutations.

From Dataset Perm. #1 Perm. #2 Perm. #3 Perm. #4

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.143 0.184 0.149 0.189 0.146 0.187 0.147 0.188 0.148 0.188

192 0.186 0.226 0.192 0.229 0.191 0.229 0.192 0.229 0.192 0.230
336 0.236 0.266 0.242 0.269 0.241 0.269 0.242 0.269 0.240 0.269
720 0.310 0.323 0.310 0.323 0.310 0.323 0.310 0.323 0.310 0.323

E
T

T
m

1 96 0.275 0.328 0.278 0.331 0.276 0.330 0.277 0.330 0.275 0.329
192 0.319 0.354 0.321 0.356 0.321 0.356 0.320 0.355 0.319 0.355
336 0.353 0.374 0.355 0.376 0.355 0.376 0.354 0.376 0.354 0.376
720 0.409 0.407 0.412 0.409 0.413 0.410 0.413 0.410 0.413 0.410

E
le

ct
ri

ci
ty 96 0.126 0.218 0.127 0.220 0.126 0.218 0.127 0.219 0.125 0.218

192 0.144 0.235 0.145 0.237 0.144 0.235 0.145 0.236 0.144 0.235
336 0.157 0.250 0.160 0.252 0.159 0.251 0.157 0.248 0.159 0.250
720 0.183 0.276 0.230 0.315 0.225 0.312 0.206 0.295 0.218 0.306

A.6 ERROR BARS

This work involves conducting all experiments three times using seeds 2021, 2022, and 2023,
following the setup of prior research (Wu et al., 2021; Nie et al., 2023; Wang et al., 2024a). We
therefore present the standard deviation of our model and the second-best models in terms of MSE
and MAE in Tab. 8. This table, along with our experiments described in Fig. 4 and Fig. 6, further
underscores the robustness of xLSTM-Mixer.

Table 8: The standard deviation for xLSTM-Mixer (ours) and the second-best method in
MAE (TimeMixer) and MSE (TiDE), each on ETT, Weather, ILI, Electricity, and Traffic datasets.

Model xLSTM-Mixer TimeMixer TiDE

Metric MSE MAE MSE MAE MSE MAE

Weather 0.219 ± 0.000 0.250 ± 0.000 0.240 ± 0.010 0.271 ± 0.009 0.236 ± 0.001 0.282 ± 0.001
Illness 1.426 ± 0.046 0.719 ± 0.011 0.175 ± 0.045 0.829 ± 0.120 1.899 ± 0.001 0.934 ± 0.004
Electricity 0.153 ± 0.001 0.245 ± 0.001 0.182 ± 0.017 0.272 ± 0.006 0.159 ± 0.002 0.257 ± 0.001
Traffic 0.392 ± 0.000 0.253 ± 0.000 0.484 ± 0.015 0.297 ± 0.013 0.356 ± 0.001 0.261 ± 0.001
ETTh1 0.397 ± 0.001 0.420 ± 0.001 0.047 ± 0.002 0.440 ± 0.005 0.419 ± 0.000 0.430 ± 0.000
ETTh2 0.340 ± 0.001 0.382 ± 0.000 0.364 ± 0.008 0.375 ± 0.010 0.345 ± 0.002 0.394 ± 0.001
ETTm1 0.339 ± 0.000 0.366 ± 0.000 0.381 ± 0.003 0.395 ± 0.006 0.355 ± 0.000 0.378 ± 0.000
ETTm2 0.248 ± 0.001 0.307 ± 0.001 0.275 ± 0.001 0.323 ± 0.003 0.249 ± 0.000 0.312 ± 0.000
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