

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OUTCOME-AWARE SPECTRAL FEATURE LEARNING FOR INSTRUMENTAL VARIABLE REGRESSION

Anonymous authors

Paper under double-blind review

## ABSTRACT

We address the problem of causal effect estimation in the presence of hidden confounders using nonparametric instrumental variable (IV) regression. An established approach is to use estimators based on learned *spectral features*, that is, features spanning the top singular subspaces of the operator linking treatments to instruments. While powerful, such features are agnostic to the outcome variable. Consequently, the method can fail when the true causal function is poorly represented by these dominant singular functions. To mitigate, we introduce *Augmented Spectral Feature Learning*, a framework that makes the feature learning process *outcome-aware*. Our method learns features by minimizing a novel contrastive loss derived from an *augmented* operator that incorporates information from the outcome. By learning these task-specific features, our approach remains effective even under spectral misalignment. We provide a theoretical analysis of this framework and validate our approach on challenging benchmarks.

## 1 INTRODUCTION

We study the nonparametric instrumental variable (NPIV) model, a cornerstone of causal inference in the presence of unobserved confounding (Newey & Powell, 2003), which assumes a relationship

$$Y = h_0(X) + U, \quad \mathbb{E}[U | Z] = 0, \quad Z \not\perp\!\!\!\perp X, \quad (1)$$

where the confounder  $U$  is conditionally mean zero with respect to the instrument  $Z$ . The goal is to recover the causal effect from treatment  $X$  to outcome  $Y$  by estimating the structural function  $h_0$  from i.i.d. samples of  $(Y, X, Z)$ . An example is the economic problem of estimating the effect of education on earnings (Card, 1993).  $X$  represents years of schooling and  $Y$  an individual's wage. A direct regression is likely biased because unobserved factors like innate ability or family background ( $U$ ) can influence both educational attainment and earning potential. To disentangle this effect, one could use an individual's proximity to a college as an instrument ( $Z$ ), as living closer may increase years of schooling ( $X$ ) but is unlikely to be directly correlated with innate ability ( $U$ ).

The NPIV model can be reformulated as a linear inverse problem (Darolles et al., 2011). Taking the conditional expectation with respect to  $Z$  on both sides of Eq. (1) yields the integral equation

$$\mathcal{T}h_0 = r_0, \quad r_0 \doteq \mathbb{E}[Y | Z], \quad (2)$$

where  $\mathcal{T}: L_2(X) \rightarrow L_2(Z)$  is a bounded linear operator that maps every function  $h \in L_2(X)$  to its conditional expectation  $\mathbb{E}[h(X)|Z] \in L_2(Z)$ . Here both the function  $r_0$  and the operator  $\mathcal{T}$  are unknown, and we only have access to the set of i.i.d. observations. Throughout this work, we assume that there exists a solution to the NPIV problem, that is  $r_0$  is in the range of  $\mathcal{T}$ .

State-of-the-art techniques for NPIV estimation rely on learning adaptive features and integrating them into classic algorithms like two-stage least squares (2SLS) (Xu et al., 2021; Petrushev et al., 2024) or primal-dual strategies (Dikkala et al., 2020; Liao et al., 2020; Bennett et al., 2023). One successful technique is SpecIV (Sun et al., 2025), which learns neural net features by approximating a low-rank decomposition of the operator  $\mathcal{T}$ . Meunier et al. (2025) showed SpecIV to be optimal when the structural function  $h_0$  is well-aligned with the top singular functions of  $\mathcal{T}$ , but degrades otherwise. The issue is that the feature learning process is agnostic to the outcome  $Y$ ; it only captures

the main aspects of the relationship between the treatment  $X$  and the instrument  $Z$ . If  $h_0$  lies outside of this dominant subspace, the resulting features are uninformative for the final task, leading to failure. In this paper, we address this limitation by proposing a framework for outcome-aware feature learning in NPIV estimation. We introduce a new spectral objective that incorporates information from the outcome  $Y$ , guiding the feature learning to identify components of  $X$  that are predictable from  $Z$  and predictive of  $Y$ . This is equivalent to learning a low-rank decomposition of a perturbed version of  $\mathcal{T}$ . Our approach ensures good performance even in cases of spectral misalignment, where target-agnostic methods fail. While our work focuses on IV regression for causal effect estimation, our method may also be useful in settings where learning spectral decompositions of conditional operators is relevant. For instance, in off-policy evaluation in reinforcement learning, where value function estimation can be framed as an IV problem (Hu et al., 2024), or when learning evolution operators in fields like molecular dynamics and climate science (Turri et al., 2025).

**Contributions.** Our contributions are as follows:

1. We identify a fundamental limitation of existing spectral methods for NPIV: the learned features are outcome-agnostic, degrading performance in cases of spectral misalignment. To address this, we propose **Augmented Spectral Feature Learning** and introduce an augmented operator,  $\mathcal{T}_\delta$ , which incorporates information on the outcome into the feature learning problem. This leads to a new, principled contrastive loss function for learning task-specific spectral features.
2. We provide a comprehensive theoretical analysis of our method. This includes a full generalization error bound for the resulting 2SLS estimator, characterizing the settings where the augmented approach remains robust to the spectral misalignment issues of previous methods.
3. We validate our theory on challenging synthetic and semi-synthetic examples, including a new and more challenging version of a dSprites IV benchmark (Xu et al., 2021). The results demonstrate the practical benefits of outcome-aware feature learning in the challenging regimes where standard SpecIV fails. **In addition, we include an Off-Policy Evaluation (OPE) experiment in the context of reinforcement learning (Chen et al., 2022), showing that our approach remains robust and competitive in challenging, dynamically changing environments.**

**Paper Organization.** The remainder of the paper is structured as follows. Sec. 2 introduces the notation, reviews the 2SLS estimator, and the SpecIV method (Sun et al., 2025). In Sec. 3, we introduce our outcome-aware framework. Sec. 4 presents our main theoretical results. We situate our contribution within the broader literature in Sec. 5. In Sec. 6 we present numerical experiments that validate our theory and demonstrate the effectiveness of our approach. All proofs are deferred to the appendix.

## 2 PRELIMINARIES

**Function Spaces.**  $Y$  is defined on  $\mathbb{R}$ , while  $X$  and  $Z$  take values in measurable spaces  $\mathcal{X}$  and  $\mathcal{Z}$ , respectively. For  $R \in \{X, Z\}$ ,  $L_2(R)$  is the space of square-integrable functions ( $\mathbb{E}[f(R)^2] < \infty$ ).

**Operators on Hilbert Spaces.** Let  $\mathcal{H}$  be a Hilbert space. For a bounded linear operator  $A$  acting on  $\mathcal{H}$ , we denote by  $\|A\|$  its operator norm,  $\|A\|_{\text{HS}}$  its Hilbert–Schmidt norm,  $A^\dagger$  its Moore–Penrose inverse, and  $A^*$  its adjoint. For finite-dimensional operators, the Hilbert–Schmidt norm coincides with the Frobenius norm. We denote  $\mathcal{R}(A)$  and  $\mathcal{N}(A)$  the range and null spaces of  $A$ , respectively. Given a closed subspace  $M \subseteq \mathcal{H}$ , we write  $M^\perp$  its orthogonal complement,  $\bar{M}$  its closure, and  $\Pi_M$  the orthogonal projection onto  $M$ . Denote the orthogonal projection onto  $M^\perp$  by  $(\Pi_M)^\perp \doteq I_{\mathcal{H}} - \Pi_M$ . For  $f, h \in L_2(X)$ ,  $g \in L_2(Z)$ , the rank-one operator  $g \otimes f$  is defined as  $(g \otimes f)(h) = \langle h, f \rangle g$ , generalizing the standard outer product. For  $x \in \mathbb{R}^d$ , we write  $\|x\|_{\ell_2}$  for the Euclidean norm.

**Data Splitting and Empirical Expectations.** We consider two independent datasets:  $\tilde{\mathcal{D}}_m = \{(\tilde{z}_i, \tilde{x}_i, \tilde{y}_i)\}_{i=1}^m$ , to learn features for  $X$  and  $Z$ , and  $\mathcal{D}_n = \{(z_i, x_i, y_i)\}_{i=1}^n$ , to estimate the structural function.  $\hat{\mathbb{E}}_m$  and  $\hat{\mathbb{E}}_n$  denote empirical expectations with respect to  $\tilde{\mathcal{D}}_m$  and  $\mathcal{D}_n$ , respectively.

**Feature Maps, Covariance Operators and Projections.** Let  $d \in \mathbb{N}^*$ ,  $\varphi^{(d)}: \mathcal{X} \rightarrow \mathbb{R}^d$  be a feature map with linearly independent components  $\varphi_1^{(d)}, \dots, \varphi_d^{(d)} \in L_2(X)$ , and  $\Phi^{(d)} \doteq [\varphi_1^{(d)}, \dots, \varphi_d^{(d)}]$  be the operator defined as  $\Phi^{(d)}: \mathbb{R}^d \rightarrow L_2(X)$ ,  $\alpha \mapsto \sum_{i=1}^d \alpha_i \varphi_i^{(d)}$ . Its adjoint is given by  $\Phi^{(d)*}: h \mapsto$

( $\langle h, \varphi_i^{(d)} \rangle_{L_2(X)}\}_{i=1}^d$ . Let  $C_{\varphi^{(d)}} \doteq \Phi^{(d)*}\Phi^{(d)} = \mathbb{E}[\varphi^{(d)}(X)\varphi^{(d)}(X)^\top]$  be the (uncentered) covariance operator,  $\widehat{C}_{\varphi^{(d)}} \doteq \widehat{\mathbb{E}}_n[\varphi^{(d)}(X)\varphi^{(d)}(X)^\top]$  its empirical counterpart, and  $\Pi_{\varphi^{(d)}} = \Phi^{(d)}(C_{\varphi^{(d)}})^{-1}\Phi^{(d)*}$  be the corresponding orthogonal projection operator. Analogous definitions apply for a feature map  $\psi^{(d)}: \mathcal{Z} \rightarrow \mathbb{R}^d$ , yielding  $\Psi^{(d)}$ ,  $C_{\psi^{(d)}}$ ,  $\widehat{C}_{\psi^{(d)}}$  and  $\Pi_{\psi^{(d)}}$ . The (uncentered) cross-covariance operator between  $\varphi^{(d)}$  and  $\psi^{(d)}$  is defined as  $C_{\psi^{(d)}, \varphi^{(d)}} \doteq \Psi^{(d)*}\Phi^{(d)} = \mathbb{E}[\psi^{(d)}(Z)\varphi^{(d)}(X)^\top] = C_{\varphi^{(d)}, \psi^{(d)}}^\top$ . Denote  $\widehat{C}_{\psi^{(d)}, \varphi^{(d)}}$  its empirical counterpart. We drop the superscript  $d$  when it is clear from context.

**2SLS in feature space.** Given feature maps  $\varphi^{(d)}: \mathcal{X} \rightarrow \mathbb{R}^d$  and  $\psi^{(p)}: \mathcal{Z} \rightarrow \mathbb{R}^p$ , a prominent estimator for NPIV is the 2SLS estimator (see, e.g., [Blundell et al., 2007](#)), given by

$$\widehat{h}_{2\text{SLS}}(x) = \varphi^{(d)}(x)^\top \widehat{\beta}_{2\text{SLS}}, \quad \text{with } \widehat{\beta}_{2\text{SLS}} = \left\{ \widehat{C}_{\varphi^{(d)}, \psi^{(p)}} \widehat{C}_{\psi^{(p)}}^{-1} \widehat{C}_{\psi^{(p)}, \varphi^{(d)}} \right\}^{-1} \widehat{C}_{\varphi^{(d)}, \psi^{(p)}} \widehat{C}_{\psi^{(p)}}^{-1} \widehat{\mathbb{E}}_n[Y\psi^{(p)}(Z)].$$

When  $d=p$  and the cross-covariance matrix is invertible, it simplifies to  $\widehat{\beta}_{2\text{SLS}} = \widehat{C}_{\varphi^{(d)}, \psi^{(d)}}^{-1} \widehat{\mathbb{E}}_n[Y\psi^{(d)}(Z)]$ .

**2SLS with spectral features.** Features plugged into the 2SLS estimator can be either fixed or learned adaptively from data (see Section 5 for a discussion on related work). In the SpecIV approach ([Sun et al., 2025](#)), features are learned to approximate the top eigenstructure of  $\mathcal{T}$ . Throughout the paper, we make the following mild assumption ([Darolles et al., 2011](#); [Meunier et al., 2025](#)).

**Assumption 1.**  $\mathcal{T}: L_2(X) \rightarrow L_2(Z)$  is a compact operator.

This allows us to write a countable singular value decomposition (SVD) for  $\mathcal{T}$ ,

$$\mathcal{T} = \sum_{i \geq 1} \lambda_i u_i \otimes v_i, \quad u_i \in L_2(Z), \quad v_i \in L_2(X), \quad \lambda_1 \geq \lambda_2 \geq \dots > 0,$$

where  $u_i$ 's and  $v_i$ 's are orthonormal basis for  $\overline{\mathcal{R}(\mathcal{T})} \subseteq L_2(Z)$  and  $\mathcal{N}(\mathcal{T})^\perp \subseteq L_2(X)$ , respectively. The operator  $\mathcal{T}^{(d)} \doteq \sum_{i=1}^d \lambda_i u_i \otimes v_i$  is the best (in terms of operator or Hilbert–Schmidt norm) rank- $d$  approximation to  $\mathcal{T}$ . To avoid ambiguity, we assume that  $\lambda_d > \lambda_{d+1}$ . We do not assume that  $\mathcal{T}$  is injective, since we can always target the minimum-norm solution ([Florens et al., 2011](#))

$$\bar{h}_0 \doteq \mathcal{T}^\dagger r_0 = \sum_{i \geq 1} \frac{1}{\lambda_i} \langle r_0, u_i \rangle_{L_2(Z)} v_i.$$

When  $\mathcal{T}$  is injective,  $h_0 = \bar{h}_0$ . In what follows, we denote  $\bar{h}_0$  as  $h_0$  and do not distinguish between the structural function and the minimal solution to the NPIV problem.

Given feature maps  $\varphi_\theta^{(d)}: \mathcal{X} \rightarrow \mathbb{R}^d$  and  $\psi_\theta^{(d)}: \mathcal{Z} \rightarrow \mathbb{R}^d$ , parametrized by neural networks, [Sun et al. \(2025\)](#) proposed to learn the features by minimizing the empirical counterpart to the following loss

$$\mathcal{L}_0^{(d)}(\theta) \doteq \mathbb{E}_X \mathbb{E}_Z [(\varphi_\theta^{(d)}(X)^\top \psi_\theta^{(d)}(Z))^2] - 2\mathbb{E}[\varphi_\theta^{(d)}(X)^\top \psi_\theta^{(d)}(Z)], \quad (3)$$

where the first expectation is over the product of the marginals of  $X$  and  $Z$ , and the second is over the joint distribution. It is shown by [Meunier et al. \(2025, Theorem 2\)](#) that  $\mathcal{L}_0^{(d)} \geq -\|\mathcal{T}\|_{\text{HS}}^2$ , and that the minimum is achieved if and only if  $\Psi_\theta^{(d)} \Phi_\theta^{(d)*} = \mathcal{T}_d$ . Therefore, by minimizing the empirical counterpart to Eq. (3), one learns features that approximate the best low-rank approximation to  $\mathcal{T}$ .

### 3 OUTCOME-AWARE SPECTRAL FEATURE LEARNING

As discussed in Section 1, standard SpecIV learns features that are agnostic to the outcome  $Y$ . This can lead to poor performance when the structural function  $h_0$  is not well-aligned with the top singular functions of  $\mathcal{T}$  ([Meunier et al., 2025](#)). To mitigate this, we augment the SpecIV loss with a regularization term that incorporates information from the outcome  $Y$  by projecting it onto the orthonormal basis of the  $Z$ -features. The resulting loss is defined as

$$\mathcal{L}_\delta^{(d)}(\theta) = \mathcal{L}_0^{(d)}(\theta) - \delta^2 \mathbb{E}[Y\psi_\theta^{(d)}(Z)]^\top C_{\psi_\theta^{(d)}}^{-1} \mathbb{E}[Y\psi_\theta^{(d)}(Z)]. \quad (4)$$

We propose to learn features by minimizing the empirical counterpart of Eq. (4) over the training set  $\tilde{\mathcal{D}}_m$ . The regularization term, controlled by the hyperparameter  $\delta$ , encourages the learned instrument features to be predictive of  $Y$ . As backpropagation through the inverse covariance matrix can be numerically unstable, we instead minimize the following equivalent loss jointly over  $\theta$  and  $\omega \in \mathbb{R}^d$ :

$$\mathcal{L}_\delta^{(d)}(\theta, \omega) = \mathcal{L}_0^{(d)}(\theta) - 2\delta \mathbb{E}[Y\psi_\theta^{(d)}(Z)]^\top \omega + \omega^\top C_{\psi_\theta^{(d)}} \omega. \quad (5)$$

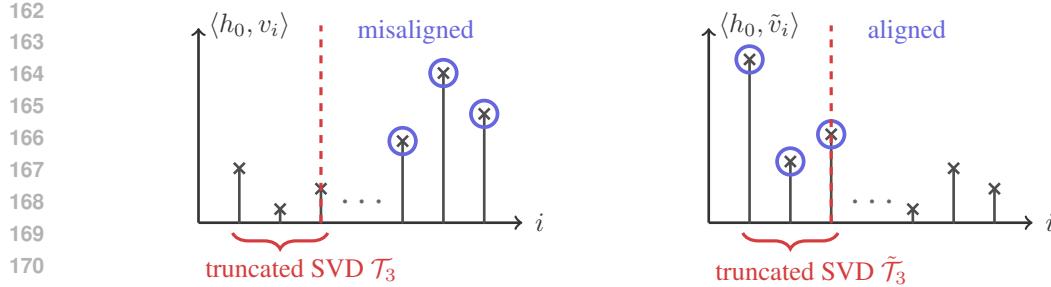


Figure 1: In case of severe misalignment of  $h_0$  and  $\mathcal{T}$  (left), an ideal solution would aim to find another operator  $\tilde{\mathcal{T}}$  whose top singular functions  $\tilde{v}_i$  capture the signal in  $h_0$  (right).

For any fixed  $\theta$ , this loss is convex in  $\omega$  and its minimum is attained at  $\omega_\theta^{(d)} = \delta C_{\psi_\theta^{(d)}}^{-1} \mathbb{E}[Y \psi_\theta^{(d)}(Z)]$ . Substituting this solution back into Eq. (5) recovers the profile loss in Eq. (4).

**Operator learning perspective.** We now show this modification is equivalent to learning a low-rank approximation of an augmented version of the operator  $\mathcal{T}$ . For  $\delta \in \mathbb{R}$ , we define the operator

$$\mathcal{T}_\delta : L_2(X) \times \mathbb{R} \rightarrow L_2(Z), (h, a) \mapsto \mathcal{T}h + a \cdot \delta \cdot r_0.$$

$\mathcal{T}_\delta$  augments  $\mathcal{T}$  with an additional ‘‘column’’ aligned with  $r_0$ , as captured by the compact notation  $\mathcal{T}_\delta = [\mathcal{T} \mid \delta r_0] = \mathcal{T}[I_{L_2(X)} \mid \delta h_0]$ . As  $\mathcal{T}$  is compact,  $\mathcal{T}_\delta$  is also compact and admits an SVD

$$\mathcal{T}_\delta = \sum_{i \geq 1} \sigma_{*,i} \psi_{*,i} \otimes (\varphi_{*,i}, \omega_{*,i}), \quad \psi_{*,i} \in L_2(Z), \quad (\varphi_{*,i}, \omega_{*,i}) \in L_2(X) \times \mathbb{R}, \quad (6)$$

with  $\sigma_{*,1} \geq \sigma_{*,2} \geq \dots > 0$ . The following proposition formalizes the connection: minimizing the augmented loss  $\mathcal{L}_\delta^{(d)}$  is equivalent to finding the best rank- $d$  approximation of the augmented operator  $\mathcal{T}_\delta$ . We denote this best approximation by  $\mathcal{T}_\delta^{(d)} = \sum_{i=1}^d \sigma_{*,i} \psi_{*,i} \otimes (\varphi_{*,i}, \omega_{*,i})$ .

**Proposition 1.** *Given  $\delta \in \mathbb{R}$ , for all parameters  $\theta$  and  $\omega$  it holds that  $\mathcal{L}_\delta^{(d)}(\theta, \omega) \geq -\|\mathcal{T}_\delta\|_{\text{HS}}^2$ . The lower bound is achieved if and only if the learned operator  $\Psi_\theta^{(d)}[\Phi_\theta^{(d)*} \mid \omega]$  is equal to  $\mathcal{T}_\delta^{(d)}$ .*

Intuitively, augmenting the operator with outcome information amplifies the components of  $h_0$  that would otherwise lie in the low singular value region of  $\mathcal{T}$ , thereby improving their alignment with the top spectral features of the augmented operator, as illustrated in Figure 1. Section 4 formalizes this effect by bounding the distance between the learned subspaces and the signal subspaces of  $\mathcal{T}$ . One can also encourage the learned features to retain predictive information about additional aspects of the outcome by extending the augmentation to multiple functions of  $Y$ , such as higher conditional moments  $\mathbb{E}[Y^k \mid Z]$ . We discuss this higher rank extension in Appendix E. The learning objective and optimality characterization via truncated SVD remain unchanged. A complete theoretical analysis of general rank  $K$  perturbations requires further development of the perturbation framework and is left for future work.

## 4 ANALYSIS

We now present the statistical guarantees for our estimator of  $h_0$ . Our first result is a non-asymptotic, high-probability error bound for the 2SLS estimator that is agnostic to the choice of representation  $(\varphi_\theta^{(d)}, \psi_\theta^{(d)})$ . This improves upon prior results, such as Chen & Christensen (2018), which typically provide guarantees in expectation. To this end, we introduce three standard assumptions. The first requires the whitened features to be uniformly bounded.

**Assumption 2** (Representation Boundedness). *Denoting the covariances of the instrument and feature representations by  $C_{Z,\theta} = \mathbb{E}[\psi_\theta^{(d)}(Z) \psi_\theta^{(d)}(Z)^\top]$  and  $C_{X,\theta} = \mathbb{E}[\varphi_\theta^{(d)}(X) \varphi_\theta^{(d)}(X)^\top]$ , respectively, there exists  $\rho \geq 1$  such that representations satisfy*

$$\text{ess sup}_{x \sim \mathbb{P}_X} \max_{j \in [d]} \left\{ |(C_{X,\theta}^{-1/2} \varphi_\theta^{(d)}(x))_j| \right\} \sqrt{\text{ess sup}_{z \sim \mathbb{P}_Z} \max_{j \in [d]} \left\{ |(C_{Z,\theta}^{-1/2} \psi_\theta^{(d)}(z))_j| \right\}} \leq \rho.$$

**Assumption 3** (Measure of ill-posedness). *Denoting the cross-covariance between the instrument and feature representations by  $C_{ZX,\theta} = \mathbb{E}[\psi_\theta^{(d)}(Z) \varphi_\theta^{(d)}(X)^\top]$ , the measure of ill-posedness  $c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}} := \sigma_d(C_{Z,\theta}^{-1/2} C_{ZX,\theta} C_{X,\theta}^{-1/2})$ , where  $\sigma_d(\cdot)$  denotes the  $d$ -th singular value, is positive.*

The measure of ill-posedness  $c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}^{(d)}$ , is equal to  $\sigma_d(\Pi_{\Psi_\theta^{(d)}} \mathcal{T} \Pi_{\Phi_\theta^{(d)}})$  and captures the stability of the inverse problem when restricted to the learned feature spaces. Its positiveness implies non-singularity of  $C_{ZX, \theta}$ , which guarantees that there exists a vector  $\beta_\theta \in \mathbb{R}^d$  such that  $h_\theta(x) = \varphi_\theta^{(d)}(x)^\top \beta_\theta$  satisfies the instrumental moment condition:  $C_{ZX, \theta} \beta_\theta = \mathbb{E}[Y \psi_\theta^{(d)}(Z)] = \mathbb{E}[r_0(Z) \psi_\theta^{(d)}(Z)] = \mathbb{E}[h_0(X) \psi_\theta^{(d)}(Z)]$ . Assumption 3 is reasonable provided that some conditions on the eigenvalues of  $\mathcal{T}$  are satisfied and our features capture an accurate representation of the singular spaces of  $\mathcal{T}_d$  (see Proposition 8 in the appendix).

Our final assumption concerns the tail behavior of the model's error terms. For the precise definition of sub-Gaussian random variables, we refer to Definition 1 in Appendix C.2.

**Assumption 4** (Sub-Gaussian distributions). *The model noise  $U = Y - h_0(X)$  and the function approximation error  $(h_0 - h_\theta)(X)$  are sub-Gaussian random variables.*

With these conditions, we can state our main result for the 2SLS estimator, which is given by  $\hat{h}_\theta(x) = \varphi_\theta^{(d)}(x)^\top \hat{\mathbb{E}}_n[\psi_\theta^{(d)}(Z) \varphi_\theta^{(d)}(X)^\top]^{-1} \hat{\mathbb{E}}_n[Y \psi_\theta^{(d)}(Z)]$ .

**Theorem 1.** *Let Assumptions 2-4 be satisfied. Given  $\tau \in (0, 1)$ , let  $n \geq 16 d \rho^2 \log^2(4d/\tau) c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}^{-2}$ . Then there exists an absolute constant  $C > 0$  s.t. with probability at least  $1 - \tau$ :*

$$\|\hat{h}_\theta - h_0\|_{L_2(X)} \leq C \left( \|h_0 - h_\theta\|_{L_2(X)} + \frac{1}{c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}} \sqrt{\frac{d}{n}} \sqrt{\sigma_U^2 + \frac{\rho^2}{n} \log \frac{4}{\tau}} \right),$$

where  $\sigma_U^2$  is the noise variance.

This theorem provides a non-asymptotic excess-risk bound that separates the error into a deterministic approximation error ( $\|h_0 - h_\theta\|$ ) and a statistical error. The latter depends on the dimension  $d$ , sample size  $n$ , and the feature-dependent ill-posedness. It improves on existing guarantees (Theorem B.1. Chen & Christensen, 2018) by holding in high probability under a sub-Gaussian assumption.

**Controlling the approximation error with learned representations.** We now specialize the general bound from Theorem 1 to the features learned by our outcome-aware method. In light of Proposition 1, recalling that the leading left and right singular subspaces of  $\mathcal{T}_\delta$  are the ranges of  $\Psi_*^{(d)} = [\psi_{*,1} | \dots | \psi_{*,d}]$  and  $[\Phi_*^{(d)} | \omega_*]^*$ , where  $\Phi_*^{(d)} = [\varphi_{*,1} | \dots | \varphi_{*,d}]$ , see Eq. (6), the feature learning stage of our approach produces  $\psi_{\hat{\theta}_m}^{(d)}$  and  $\varphi_{\hat{\theta}_m}^{(d)}$ , where the parametrization  $\hat{\theta}_m$  is learned from dataset  $\tilde{\mathcal{D}}_m$ . To quantify their quality, as proposed in Kostic et al. (2024) and Meunier et al. (2025), we use the optimality gap

$$\mathcal{E}_d(\theta, \omega, \delta) = \|\mathcal{T}_\delta^{(d)} - \Psi_\theta^{(d)} [\Phi_\theta^{(d)*} | \omega] \|_{L^2(Z) \times \mathbb{R} \rightarrow L^2(X)}, \quad (7)$$

noting that bounding it requires architecture-specific generalization bounds for DNN training with the spectral contrastive loss, an open problem in its own right.

With this setup, our analysis hinges on relating the singular subspaces of the augmented operator  $\mathcal{T}_\delta$  back to the original singular subspaces of  $\mathcal{T}$ . To do this, we first partition the singular components of  $\mathcal{T}$  into a  $d$ -dimensional “signal” subspace and an infinite-dimensional “noise” subspace. Namely, let  $\overline{N} \dot{\cup} \underline{N} = \mathbb{N}$  be the partition, where we take  $|\overline{N}| = d$  spectral features for the signal. We define the signal components  $s_d = \overline{V}_d \overline{V}_d^* h_0 = \sum_{i \in \overline{N}} \overline{\alpha}_i v_i$  and noise components  $q_d = \underline{V}_d \underline{V}_d^* h_0 = \sum_{i \in \underline{N}} \underline{\alpha}_i v_i$ , where the partition of the SVD of  $\mathcal{T}$  is  $\mathcal{T} = \overline{U}_d \overline{\Lambda}_d \overline{V}_d^* + \underline{U}_d \underline{\Lambda}_d \underline{V}_d^*$  with  $\overline{\Lambda}_d = \text{diag}(\lambda_i)_{i \in \overline{N}}$ . The augmented operator  $\mathcal{T}_\delta$  can be viewed as a perturbation of  $\mathcal{T}$  relative to the positioning of the signal:

$$\mathcal{T}_\delta = [\mathcal{T} | \delta \mathcal{T} h_0] = \overline{U}_d \overline{\Lambda}_d [\overline{V}_d^* | \delta \overline{\alpha}] + \underline{U}_d \underline{\Lambda}_d [\underline{V}_d^* | 0] + [0 | \delta \underline{U}_d \underline{\Lambda}_d \underline{\alpha}].$$

This decomposition shows that if the noise  $\|q_d\| = \|\underline{\alpha}\|_{\ell^2}$  is small,  $\mathcal{T}_\delta$  is well-approximated by the first two terms (the noiseless part) that expose how the left and right singular subspaces of  $\mathcal{T}$ , relative to the partition, align with those of  $\mathcal{T}_\delta$ . If the singular value gap between first and the second term

$$\gamma_d(\delta) = \|[\overline{\Lambda}_d (I + \delta^2 \overline{\alpha} \overline{\alpha}^\top)^{1/2}]^{-1}\|^{-1} - \|\underline{\Lambda}_d\| \quad (8)$$

is positive, the dominant singular subspace of the noiseless perturbation of  $\mathcal{T}$  is exactly  $\mathcal{R}(\overline{U}_d)$ . Therefore, by carefully applying perturbation results, we are able to control the differences in orthogonal projections  $\|\Pi_{\overline{U}_d} - \Pi_{\Psi_{\hat{\theta}_m}^{(d)}}\| \leq \|\Pi_{\overline{U}_d} - \Pi_{\Psi_*^{(d)}}\| + \|\Pi_{\Psi_*^{(d)}} - \Pi_{\Psi_{\hat{\theta}_m}^{(d)}}\|$  to align the appropriate

left subspaces. The first term depends on the interplay between the parameter  $\delta$ , the positioning, and the size of the signal, and is bounded by  $\delta \|q_d\|_{L^2(X)} / \gamma_d(\delta)$ . The second term is the error from learning the features of  $\mathcal{T}_\delta$  from dataset  $\tilde{\mathcal{D}}_m$  with our representation learning method, quantified by the optimality gap  $\mathcal{E}_d(\hat{\theta}_m, \hat{\omega}_m, \delta)$  given in Eq. (7). A similar decomposition holds for the right subspaces. By bounding these components, we can control the total approximation error. A detailed proof is provided in Theorem 4 in Appendix B.3; in the following, we present the consequences for the “good” and “bad” scenarios from Meunier et al. (2025).

**Learning in the “good” scenario.** When the signal  $s_d$  is spanned by the top- $d$  singular functions of  $\mathcal{T}$  (i.e.,  $\bar{N} = \{1, \dots, d\}$ ), our method works efficiently even with  $\delta = 0$ . In this case, the spectral gap  $\gamma_d(0) = \lambda_d - \lambda_{d+1}$  is positive by assumption. A direct corollary of Theorems 1, and 4 yields

$$\|h_0 - \hat{h}_\theta\|_{L_2(X)} \lesssim \|q_d\|_{L^2(X)} + \frac{\mathcal{E}_d(\hat{\theta}_m, \hat{\omega}_m, 0)}{\lambda_d} + \frac{1}{\lambda_d} \sqrt{\frac{d}{n} \log \tau^{-1}} \quad \text{w.p.a.l. } 1-\tau.$$

This result is the high probability version of Meunier et al. (2025, Theorem 3).

**Learning in the “bad” scenario.** Our outcome-aware method is designed to succeed even when the structural function  $h_0$  is highly aligned with a “bad” singular function  $v_k$  (for large  $k$ ). Meunier et al. (2025) showed that standard SpecIV would require learning a high-dimensional feature space of dimension  $d \geq k$  (out of which  $k-1$  are spurious). In contrast, our method can isolate the relevant signal by setting  $d = 1$  with the signal concentrating mostly on space defined by  $v_k$  ( $\bar{N} = \{k\}$ ). As shown in Appendix B.3, choosing a  $\delta$  large enough guarantees that the one-dimensional spectral gap  $\gamma_1(\delta)$  becomes positive. Applying Theorem 4 of Appendix B.3 in this setting shows:

$$\|h_0 - \hat{h}_\theta\|_{L_2(X)} \lesssim \frac{1}{\lambda_k^2} \frac{\|q_1\|_{L^2(X)}}{\|s_1\|_{L^2(X)}} + \frac{\mathcal{E}_d(\hat{\theta}_m, \hat{\omega}_m, \delta)}{\lambda_k} + \frac{\log \tau^{-1}}{\lambda_k \sqrt{n}} \quad \text{w.p.a.l. } 1-\tau,$$

indicating that whenever signal-to-noise ratio dominates the decay  $\|s_1\|_{L^2(X)} / \|q_1\|_{L^2(X)} \gg \lambda_k^{-2}$ , our method can recover the structural function with one feature, while for the standard SpecIV one would need to learn  $k$  of them, as illustrated in Figure 1.

## 5 RELATED WORK

This section provides an overview of the research areas that are most relevant to our study.

**2SLS methods.** The classical approach to IV regression is the 2SLS method. In its nonparametric form, the first stage involves estimating the conditional expectation of the treatment given the instrument, and the second stage uses these predictions to estimate the structural function. Early influential works used sieve or series estimators, approximating unknown functions with basis functions like polynomials or splines (Newey & Powell, 2003; Hall & Horowitz, 2005; Blundell et al., 2007; Chen & Pouzo, 2012; Chen & Christensen, 2018). Other approaches include Tikhonov regularization to stabilize the inverse problem (Darolles et al., 2011) or frame the problem in reproducing kernel Hilbert spaces (Singh et al., 2019; Meunier et al., 2024). More recently, deep learning has been used to handle the nonparametric components of the 2SLS procedure. DeepIV (Hartford et al., 2017) uses a mixture density network to estimate the conditional distribution of the treatment given the instruments in the first stage, and then a second network for the structural function in the second stage. Deep Feature IV (DFIV; Xu et al., 2021) uses neural networks to learn optimal features of the instruments, which are then used as inputs for the first-stage regression.

**Saddle-point methods.** An alternative to 2SLS is to frame NPIV as a minimax optimization problem. These methods, often rooted in a generalized method of moments (GMM) framework, seek an equilibrium between a player that minimizes a loss function and an adversary that maximizes the violation of the moment conditions. This approach can bypass the direct estimation of conditional expectations. Different formulations exist, such as those based on the Lagrangian of a constrained least-norm problem (Bennett et al., 2023; Liao et al., 2020) or on maximizing the moment deviation directly (Lewis & Syrgkanis, 2018; Dikkala et al., 2020; Wang et al., 2022). These methods are particularly well-suited for high-dimensional settings and integration with deep learning models.

**Spectral features learning.** When the instrument-treatment relationship is complex, learning good features is crucial. Spectral methods use techniques like SVD to find a low-dimensional representation of the conditional expectation operator  $\mathcal{T}$ . Such an SVD can typically be estimated via

324 minimizing a contrastive loss that has been used in various contexts (Sun et al., 2025; Hu et al.,  
 325 2024; Kostic et al., 2024; Turri et al., 2025). While these methods are powerful, the learned features  
 326 are agnostic to the outcome; they only capture the dominant modes of the instrument-treatment  
 327 relationship, which may not be enough for predicting the outcome.

328 **Outcome-aware and adaptive methods.** Our work is part of a growing literature on adaptive methods  
 329 for NPIV. While spectral methods like SpecIV (Sun et al., 2025) are powerful, their outcome-  
 330 agnostic nature can be a significant drawback, as we demonstrated. The features are learned based  
 331 only on the instrument-treatment relationship and may not be informative for predicting the out-  
 332 come. Our approach addresses this by making the feature learning process outcome-aware and  
 333 ensures that the learned representations are not just predictive of the treatment, but are also relevant  
 334 for the causal relationship of interest.

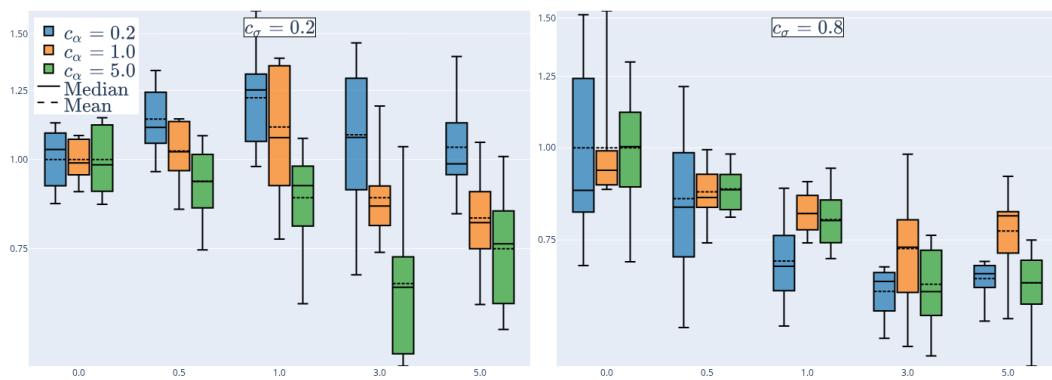
## 336 6 EXPERIMENTS

337 We first illustrate the utility of our method on a synthetic example in which all parameters of  $\mathcal{T}$  are  
 338 controlled. To further support our claims, we benchmark outcome-aware spectral learning on two  
 339 challenging benchmarks based on the dSprites dataset (Matthey et al., 2017). Finally, we include  
 340 an Off-Policy Evaluation (OPE) experiment in the context of reinforcement learning, which demon-  
 341 strates that the method remains robust and competitive in demanding environments. We find that  
 342 a small positive  $\delta$  always leads to improved performance. In most challenging cases, the resulting  
 343 method outperforms standard SpecIV ( $\delta = 0$ ) by a wide margin.

### 344 6.1 SYNTHETIC DATA

345 Following Meunier et al. (2025), we generate a  $(Z, X, Y)$  dataset from a conditional expectation  
 346 operator  $\mathcal{T} = \mathbb{1}_Z \otimes \mathbb{1}_X + \sum_{i=1}^{d-1} \sigma_i u_i \otimes v_i$  with explicit  $\sigma_i, v_i, u_i$ . We take  $\sigma_i$  to decay linearly from  
 347 a fixed  $\sigma_1$  to  $\sigma_{d-1} = c_\sigma \sigma_1$ , with  $c_\sigma \in [0, 1]$ .  $u_i, v_i$  are random orthonormal bases of the span of  
 348  $(\sin(\ell \cdot x))_{\ell=1}^{d-1}$  on  $[-\pi, \pi]$ . By setting the structural function  $h_0 = \sum_{i=1}^{d-1} \alpha_i v_i$  with the constraint  
 349  $\|\alpha\|_{\ell_2} = 1$ , and having the coefficients  $\alpha_i$  change linearly in  $i$ , we are able to control the alignment  
 350 of  $h_0$  with the spectrum of  $\mathcal{T}$ . We parametrise the rate at which  $\alpha_i$  change with  $c_\alpha \doteq \alpha_{d-1}/\alpha_1$ .

351 **Synthetic data results.** Figure 2 shows the distribution  $\|\hat{h}_\theta - h_0\|^2$  for different values of  $\delta$ , nor-  
 352 malised so that for each  $c_\alpha$ , the mean loss for  $\delta = 0$  equals 1. The reported figures show how the  
 353 losses change relative to the baseline performance of SpecIV. In cases of very poor spectral align-  
 354 ment, corresponding to  $c_\alpha = 5.0$ , increasing  $\delta$  leads to improvement in the IV regression loss even  
 355 when the singular values decay quickly. Moreover, when  $c_\sigma$  is sufficiently large, that is more singu-  
 356 lar functions can be learned easily, we observe improvement even on a very well-aligned case when  
 357  $c_\alpha = 0.2$ . A more extensive evaluation of how the benefit of using  $\delta$  change with the rate of decay  
 358 of singular values can be found in Appendix D.3.



359 Figure 2: Distributions of relative IV regression MSEs ( $\|\hat{h}_\theta - h_0\|^2$ ) for the synthetic example with  
 360  $\delta \in \{0, 0.5, 1.0, 3.0, 5.0\}$  and  $c_\sigma \in \{0.2, 0.8\}$

378  
379

## 6.2 dSPRITES DATA

380 The original dSprites dataset of [Matthey et al. \(2017\)](#) consists of  $64 \times 64$  noisy images (sprites) of  
 381 hearts, squares, and ellipses with varying position, size, and orientation. In the standard IV bench-  
 382 marking setting, as described in, *e.g.*, [Sun et al. \(2025\)](#), only the heart images are used. The structural  
 383 function takes the form  $h_0(x) = (\|A \circ X\|^2 - 3000)/500$ , where  $A_{ij} = |32 - j|/32$  measures the dis-  
 384 tance from the central vertical bar in the image and  $\circ$  denotes the pointwise (Hadamard) product.  
 385 The instrumental variable is defined as  $Z = (\text{sprite orientation}, \text{sprite } x\text{-position}, \text{sprite scale})$ , and the  
 386 outcome is  $Y = h(X) + 32((\text{sprite } y\text{-position}) - 32) + \epsilon$ ,  $\epsilon \sim \mathcal{N}(0, 0.5)$ . For reasons discussed below,  
 387 we shall refer to this  $h_0$  as  $h_{\text{old}}$ .  
 388

389 **New structural function.** As first argued in [Meunier et al. \(2025\)](#) and further discussed in Ap-  
 390 pendix D.1, the standard dSprites benchmark is an instance of the “good” case where  $h_0$  is well-  
 391 aligned with the leading singular functions of  $\mathcal{T}$ . Hence, we propose an alternative, more challeng-  
 392 ing structural function. We refer to the new function as  $h_{\text{new}}$ . It is based on sprite images of ellipses,  
 393 as opposed to the hearts in the original case, and approximates the ellipse’s orientation, which we  
 394 expect to be a property that is only recovered from singular functions associated to small singular  
 395 values of  $\mathcal{T}$ . The details of our argument and construction can be found in Appendix D.1.

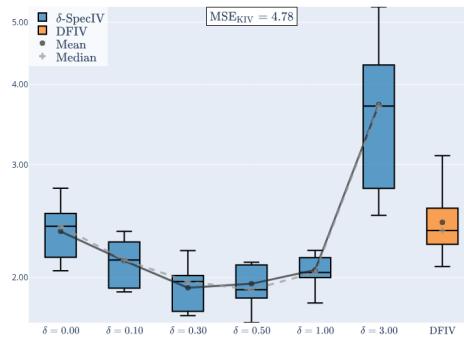
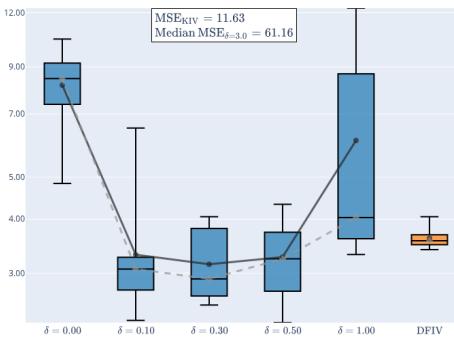
396  
397400  
401  
402  
403  
404  
405  
406  
407

Figure 3: Distribution of  $\|\hat{h}_\theta - h_0\|^2$  on  $h_{\text{old}}$  (left) and  $h_{\text{new}}$  (right) evaluated for a range of  $\delta$  values, compared to those attained by DFIV and KIV ([Singh et al., 2019](#)). Our method is evaluated on 9 independently fitted models with identical hyperparameters for each  $x$ -axis value. 16 DFIV models were fitted in both settings.

408  
409  
410  
411

412 **Experiment results.** We compare to DFIV ([Xu et al., 2021](#)), which is currently the most competitive  
 413 method to benchmark against. In the setting of  $h_{\text{old}}$  we observe an average 20% improvement  
 414 from selecting a small positive  $\delta$  over using standard SpecIV. The standard benchmark is well-  
 415 aligned but there is still some benefit in this setting. By comparison, for  $h_{\text{new}}$ , we see that vanilla  
 416 spectral learning ( $\delta=0$ ) severely underperforms DFIV. This is in line with the fact that the top of  
 417 the eigenspectrum of  $\mathcal{T}$  is not an optimal set of features for the downstream problem. Increasing  $\delta$   
 418 allows the model to tune the learned features, increasing the projection of  $h_{\text{new}}$  onto their span, and  
 419 hence match or slightly exceed the performance of DFIV. Since good performance is contingent on  
 420 the choice of  $\delta$ , we next investigate strategies for  $\delta$  selection.

421  
422

## 6.3 OFF-POLICY EVALUATION

423  
424  
425  
426  
427  
428  
429  
430  
431

424 To further illustrate the applicability of our augmented method, we showcase its performance in  
 425 Off-Policy Evaluation (OPE). OPE is a fundamental problem in reinforcement learning that can be  
 426 approached via NPIV ([Chen et al., 2022](#)), but poses a significant challenge for standard SpecIV be-  
 427 cause it involves a noncompact operator that cannot be learned through the usual contrastive frame-  
 428 work. Instead, one has to learn a simpler compact operator while iteratively updating the outcome  
 429  $Y$ , which SpecIV is agnostic to. Following the experimental pipeline of [Chen et al. \(2022\)](#), we  
 430 showcase scenarios where our proposed modification significantly improves SpecIV and performs  
 431 comparably well to state-of-the-art methods for NPIV applied to OPE ([Xu et al., 2021; Chen et al.,  
 432 2022; Petrushev et al., 2024](#)), suggesting that our method broadens the applicability of spectral  
 433 feature-based NPIV for OPE.

432 **OPE context.** The goal of OPE is to estimate the value of a *known* target policy,  $\pi(a|s)$ , where  
 433  $a$  denotes an action and  $s$  denotes a state. The challenge is that we only have access to a fixed,  
 434 “offline” dataset of transitions,  $\mathcal{D} = \{(s_i, a_i, r_i, s'_i)\}_i$ , where  $r$  denotes a reward, and  $s'$  a next state  
 435 transition. The dataset could have been collected by one or a mixture of potentially unknown policies  
 436 of potentially unknown analytical form, denoted by  $\pi_b(a|s)$ . This problem is central to offline  
 437 reinforcement learning, as it allows one to select the best-performing policy among a collection of  
 438 candidate policies without having to directly interact with the environment, which can be costly or  
 439 unethical, as is often the case, e.g., in healthcare (Gottesman et al., 2018). For a detailed overview  
 440 of OPE, see the work of Levine et al. (2020).

441 **OPE via NPIV.** The standard objective in OPE is to estimate the Q-function  $Q_\pi$  of a policy  $\pi$   
 442 (uniformly well or in a suitable  $L_2$  norm). Xu et al. (2021) showed that Q-function estimation can  
 443 be framed as a NPIV problem (see Appendix D.7.2). However, their formulation is not amenable to  
 444 spectral feature learning as the conditional expectation operator  $\mathcal{T}$  they obtain is noncompact (Chen  
 445 et al., 2022, Eq. (19)). To overcome this, we instead recover  $Q_\pi$  through a modified NPIV problem  
 446 where  $X = (s', a')$  and  $Z = (s, a)$  are such that  $a' \sim \pi(\cdot | s')$  and  $a \sim \pi_b(\cdot | s)$ .  $Q_\pi$  is then  
 447 identified as the solution to  $\mathcal{T}Q_\pi = \mathbb{E}[Y(Q_\pi) | Z]$ , where  $Y(Q_\pi) = -\gamma^{-1}(R - Q_\pi(X))$ , where  
 448  $R | Z$  is the random reward associated to  $Z$ , and  $\gamma$  is the discount factor. As the outcome  $Y(Q_\pi)$   
 449 depends on  $Q_\pi$ , which is the very function we are estimating, we introduce an iterative procedure  
 450 to estimate  $Q_\pi$ . We start with a random guess  $Q_0$  (e.g.  $Q_0 = 0$ ) and build  $Y_0 = Y(Q_0)$ . We then  
 451 estimate  $Q_1$  with Augmented Spec IV. We repeat this process for  $K$  steps. We defer the details of  
 452 the iterative procedure and the derivation of the new NPIV problem for OPE to Appendix D.7.2.  
 453 The key point is that the iterative process introduces a potential for dynamic spectral misalignment,  
 454 as the target  $Y_k$  changes at every iteration. If the spectral features required to estimate  $Y_k$  are not the  
 455 same as the dominant spectral features of  $\mathcal{T}$ , or if this direction shifts as  $Q_k$  converges, an outcome-  
 456 agnostic method will fail. This is precisely the scenario where Augmented SpecIV can help.

457 **Experiment results.** We follow the experimental setting of Chen et al. (2022). In particular, we  
 458 evaluate the performance of DFIV, SpecIV ( $\delta = 0$ ), and Augmented SpecIV (AugSpecIV;  $\delta > 0$ )  
 459 on estimating the value of policies learned by Deep Q-Networks (Mnih et al., 2015) across random-  
 460 ized versions of the BSuite Cartpole (Barto et al., 1983), Mountain Car (Moore, 1990), and Catch  
 461 environments. The OPE datasets are the pure offline versions from Chen et al. (2022), containing  
 462 approximately  $n = 700k/150k/20k$  (Cartpole/Mountain Car/Catch) transition tuples  $(s, a, r, s')$ .  
 463 The results are shown in Appendix D.7, Figures 9 to 11. Compared with Chen et al. (2022),  
 464 DFIV performed slightly worse, likely due to randomness in hyperparameter sampling. SpecIV  
 465 and AugSpecIV both achieved strong performance on Catch but struggled on Mountain Car. Con-  
 466 sistent with prior findings (Chen et al., 2022), no OPE method performed uniformly well across all  
 467 tasks. In our experiments, DFIV performed poorly on Cartpole but well on Mountain Car, whereas  
 468 AugSpecIV showed the opposite trend. SpecIV also underperformed on Cartpole, likely due to  
 469 spectral misalignment. Since  $\delta$  was automatically tuned as a hyperparameter and took the values of  
 1/10<sup>-3</sup>/10<sup>-2</sup> for Cartpole/Mountain Car/Catch, these results suggest that our approach can adapt  
 to the underlying spectral alignment structure.

#### 470 6.4 SELECTING $\delta$

471 **Balancing the terms in the loss.** Let  $\theta$  denote the trainable parameters of the feature-learning net-  
 472 works. Recall the definition of the augmented loss (Eq. (4))

$$473 \quad \mathcal{L}_\delta^{(d)}(\theta) = \mathcal{L}_0^{(d)}(\theta) + \mathcal{R}_\delta^{(d)}(\theta), \quad \mathcal{R}_\delta^{(d)}(\theta) \doteq -\delta^2 \mathbb{E}[Y \psi_\theta^{(d)}(Z)]^\top C_{\psi_\theta^{(d)}}^{-1} \mathbb{E}[Y \psi_\theta^{(d)}(Z)].$$

474 Given that our ability to learn the actual truncated SVD of  $\mathcal{T}_\delta$  hinges on the convergence of the fea-  
 475 ture neural networks to the population-level optimum, the optimal choice of  $\delta$  is in part an empirical  
 476 challenge. In particular, consider what happens if  $\delta$  is sufficiently large that  $\mathcal{R}_\delta^{(d)}$  dominates the joint  
 477 loss value. The features  $\psi^{(\theta)}$  minimising  $\mathcal{R}_\delta^{(d)}$  are non-unique. Any choice such that  $r_0$  lies in their  
 478 span is equally good. Therefore, the rest of the  $Z$ -features should be used to learn an approxima-  
 479 tion of the conditional expectation. However, if the gradients with respect to  $\mathcal{R}_\delta$  are too large, they  
 480 effectively drown out the signal needed to learn  $\mathcal{T}$  and cause a significant decrease in  $\mathcal{L}_0^{(d)}$ .

481 A useful heuristic for selecting  $\delta$  is to treat  $\mathcal{R}_\delta^{(d)}$  as an additional regularisation on the learned fea-  
 482 tures, and tune its strength so that it influences the learned features without leading the models to  
 483 neglect the original  $\mathcal{L}_0^{(d)}(\theta)$  term. A heuristic, which we find leads to good results, is to increase  $\delta$  as

long as doing so leads to big drops in  $\mathcal{R}_\delta^{(d)}(\theta)$  with minor changes in  $\mathcal{L}_0^{(d)}(\theta)$ . Small values of  $\delta$  are always observed to lead to improved spectral alignment. As long as increasing  $\delta$  remains “free” in that our ability to approximate  $\mathcal{T}$ , as measured by  $\mathcal{L}_0^{(d)}(\theta)$ , does not change by much, we continue to increase it. As seen in Figure 4, the  $\mathcal{R}_\delta^{(d)}$  term eventually becomes dominant and  $\mathcal{L}_0^{(d)}$  increases by a lot. Those settings, in our experiments, correspond to parameters which lead to bad results in IV regression. We also note that the performance of the method is not sensitive to minor changes to the value of  $\delta$ . We see in Figures 2 and 3 that all sufficiently small values of  $\delta$  lead to improvement.

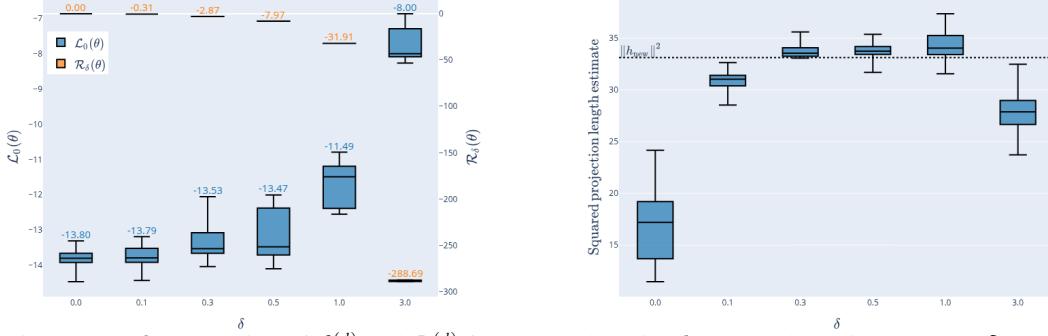


Figure 4: **Left:** Evolution of  $\mathcal{L}_0^{(d)}$  and  $\mathcal{R}_\delta^{(d)}$  for models learning  $h_{\text{new}}$ . Models with non-zero  $\delta$  and a small  $\mathcal{L}_0^{(d)}$  (close to the value attained at  $\delta = 0$ ) demonstrate the best results. Each bar’s mean value is noted above it. **Right:** Estimation of  $\|\Pi_{\varphi_*^{(d)}} h_{\text{new}}\|^2$  for a range of  $\delta$  values.

**Estimating alignment with  $h_0$ .** By Proposition 1, our strategy targets the features  $\varphi_*^{(d)}$  from the SVD of  $\mathcal{T}_\delta$  as a basis in which to learn  $h_0$  (see Eq. (6)). The next result shows that we can estimate the length of the projection of  $h_0$  onto the span of these features.

**Proposition 2.** For  $\alpha_i = \mathbb{E}[Y \psi_{*,i}(Z)] \sigma_{*,i}^{-1} \in \mathbb{R}^d$ , it holds that  $\|\Pi_{\varphi_*^{(d)}} h_0\|_{L_2(X)}^2 = \alpha^\top (I_d - \omega_* \omega_*^\top)^{-1} \alpha$ .

Now, we can construct an estimator of this projection length that utilises a fitted  $\widehat{\mathcal{T}}_\delta$  instead of the true operator. Having learned the operator, we can approximate its SVD using a  $(Z, X)$  dataset. We do so by decomposing the operator into features that are orthonormal with respect to the  $L^2(\widehat{\mu}_X) \times \mathbb{R}$  and  $L^2(\widehat{\mu}_Z)$  inner products, were  $\widehat{\mu}$  denote empirical distributions based on the samples. This procedure yields  $\widehat{\mathcal{T}}_\delta = \sum_{i=1}^d \widehat{\sigma}_i \widehat{\psi}_i \otimes (\widehat{\varphi}_i, \widehat{\omega}_i)$  where  $(\widehat{\psi}_i)_{i=1}^d$  and  $(\widehat{\varphi}_i)_{i=1}^d$  are orthonormal systems with respect to the aforementioned empirical inner products. For the plug-in estimator  $\|\Pi_{\varphi_*^{(d)}} h_0\|_{L_2(X)}^2 \approx \widehat{\alpha}^\top (I_d - \widehat{\omega} \widehat{\omega}^\top)^{-1} \widehat{\alpha}$ , which shows how well our features approximate the true underlying function and can be used to select  $\delta$ , in Figure 4, we observe that the estimated spectral alignment increases very rapidly with small  $\delta$  and stays roughly constant for all the choices of  $\delta$  that lead to good results in IV regression. The exception is  $\delta = 1.0$  where our IV performance has already somewhat degraded but the estimated alignment remains high.

**Minimisation of second stage loss.** A natural approach to selecting an optimal IV model is to pick one which yields the smallest 2SLS error (Xu et al., 2021; Chen et al., 2022). We find that it works relatively well in experiments on dSprites and off-policy evaluation (where it is the default model selection strategy employed in standard IV-based benchmarks). However, as we discuss in Appendix D.8, the theoretical justification of this method’s consistency remains elusive.

**Recommended procedure.** In light of these results, we believe that the first approach should be more robust. Both are informative about very poor choices of  $\delta$  but the method based on balancing the loss terms provided more conclusive information about  $\delta = 1.0$  being beyond the “optimal” regime. Further investigation on selection of this parameter is an important topic for future work.

## 7 CONCLUSION

We have proposed **Augmented Spectral Feature Learning**, a new framework for outcome-aware feature learning in nonparametric instrumental variable regression. By introducing an augmented operator and a contrastive loss, our method addresses the fundamental limitation of outcome-agnostic spectral features, and achieves robustness in regimes with spectral misalignment to the targeted structural function. Our current approach relies on a rank-one augmentation; extending the framework to richer, higher-rank perturbations remains a promising direction for future research.

540 REFERENCES  
541

542 Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. In  
543 *IEEE Transactions on Information Theory*, volume 48-3, pp. 569–579, 2002. doi: 10.1109/TIT.  
544 2002.998035.

545 Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements  
546 that can solve difficult learning control problems. *IEEE Transactions on Systems, Man, and*  
547 *Cybernetics*, SMC-13(5):834–846, 1983. doi: 10.1109/TSMC.1983.6313077.

549 Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, and Masatoshi  
550 Uehara. Minimax instrumental variable regression and  $l_2$  convergence guarantees without iden-  
551 tification or closedness. In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 2291–  
552 2318. PMLR, 2023.

553 Richard Blundell, Xiaohong Chen, and Dennis Kristensen. Semi-nonparametric iv estimation of  
554 shape-invariant engel curves. *Econometrica*, 75(6):1613–1669, 2007.

556 Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for temporal difference  
557 learning. *Machine Learning*, 22(1–3):33–57, 1996. ISSN 1573-0565. doi: 10.1007/bf00114723.  
558 URL <http://dx.doi.org/10.1007/BF00114723>.

559 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.  
560 *Foundations of Computational Mathematics*, 7(3):331–368, 2007.

562 David Card. Using geographic variation in college proximity to estimate the return to schooling,  
563 1993.

565 Xiaohong Chen and Timothy M Christensen. Optimal sup-norm rates and uniform inference on  
566 nonlinear functionals of nonparametric iv regression. *Quantitative Economics*, 9(1):39–84, 2018.

567 Xiaohong Chen and Demian Pouzo. Estimation of nonparametric conditional moment models with  
568 possibly nonsmooth generalized residuals. *Econometrica*, 80(1):277–321, 2012.

570 Yutian Chen, Liyuan Xu, Caglar Gulcehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, and  
571 Arnaud Doucet. On instrumental variable regression for deep offline policy evaluation. *Journal*  
572 *of Machine Learning Research*, 23(302):1–40, 2022.

573 Serge Darolles, Yanqin Fan, Jean-Pierre Florens, and Eric Renault. Nonparametric instrumental  
574 regression. *Econometrica*, 79(5):1541–1565, 2011.

576 Nishanth Dikkala, Greg Lewis, Lester Mackey, and Vasilis Syrgkanis. Minimax estimation of con-  
577 ditional moment models. *Advances in Neural Information Processing Systems*, 33, 2020.

579 Jean-Pierre Florens, Jan Johannes, and Sébastien Van Bellegem. Identification and estimation by pe-  
580 nalization in nonparametric instrumental regression. *Econometric Theory*, 27(3):472–496, 2011.

581 Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan,  
582 Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher Mosch,  
583 Li wei H. Lehman, Matthieu Komorowski, Matthieu Komorowski, Aldo Faisal, Leo Anthony  
584 Celi, David Sontag, and Finale Doshi-Velez. Evaluating reinforcement learning algorithms in  
585 observational health settings, 2018. URL <https://arxiv.org/abs/1805.12298>.

586 Peter Hall and Joel L Horowitz. Nonparametric methods for inference in the presence of instrumen-  
587 tal variables. *Annals of Statistics*, 33(6):2904–2929, 2005.

589 Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible approach for  
590 counterfactual prediction. In *International Conference on Machine Learning*, pp. 1414–1423.  
591 PMLR, 2017.

593 Yang Hu, Tianyi Chen, Na Li, Kai Wang, and Bo Dai. Primal-dual spectral representation for off-  
594 policy evaluation, 2024. URL <https://arxiv.org/abs/2410.17538>.

594 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training  
 595 by reducing internal covariate shift. In Francis Bach and David Blei (eds.), *Proceedings of*  
 596 *the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Ma-*  
 597 *chine Learning Research*, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/ioffe15.html>.

598

599 Nan Jiang and Tengyang Xie. Offline reinforcement learning in large state spaces: Algorithms and  
 600 guarantees. *arXiv preprint arXiv:2510.04088*, 2025.

601

602 Vladimir Kostic, Grégoire Pacreau, Giacomo Turri, Pietro Novelli, Karim Lounici, and Massimil-  
 603 iano Pontil. Neural conditional probability for uncertainty quantification. *Advances in Neural*  
 604 *Information Processing Systems*, 37, 2024.

605

606 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-  
 607 torial, review, and perspectives on open problems, 2020. URL <https://arxiv.org/abs/2005.01643>.

608

609 Greg Lewis and Vasilis Syrgkanis. Adversarial generalized method of moments. *arXiv preprint*  
 610 *arXiv:1803.07164*, 2018.

611

612 Luofeng Liao, You-Lin Chen, Zhuoran Yang, Bo Dai, Mladen Kolar, and Zhaoran Wang. Provably  
 613 efficient neural estimation of structural equation models: An adversarial approach. *Advances in*  
 614 *Neural Information Processing Systems*, 33, 2020.

615

616 Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement  
 617 testing sprites dataset. <https://github.com/deepmind/dsprites-dataset/>, 2017.

618

619 Dimitri Meunier, Zhu Li, Tim Christensen, and Arthur Gretton. Nonparametric instrumental regres-  
 620 sion via kernel methods is minimax optimal. *arXiv preprint arXiv:2411.19653*, 2024.

621

622 Dimitri Meunier, Antoine Moulin, Jakub Wornbard, Vladimir R. Kostic, and Arthur Gretton. De-  
 623 mystifying spectral feature learning for instrumental variable regression, 2025. URL <https://arxiv.org/abs/2506.10899>.

624

625 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization  
 626 for generative adversarial networks. In *International Conference on Learning Representations*,  
 627 2018. URL <https://openreview.net/forum?id=B1QRgziT->.

628

629 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-  
 630 mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,  
 631 Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-  
 632 stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.  
 $\text{Nature}$ , 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL  
<http://dx.doi.org/10.1038/nature14236>.

633

634 Andrew William Moore. *Efficient Memory-Based Learning for Robot Control*. Phd thesis, Uni-  
 635 versity of Cambridge, 1990.

636

637 Whitney K Newey and James L Powell. Instrumental variable estimation of nonparametric models.  
 $\text{Econometrica}$ , 71(5):1565–1578, 2003.

638

639 Ieva Petruskonyte, Julien Mairal, and Michael Arbel. Functional bilevel optimization for machine  
 640 learning. *Advances in Neural Information Processing Systems*, 37, 2024.

641

642 Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. *Ad-*  
 643 *vances in Neural Information Processing Systems*, 32, 2019.

644

645 Haotian Sun, Antoine Moulin, Tongzheng Ren, Arthur Gretton, and Bo Dai. Spectral represen-  
 646 tation for causal estimation with hidden confounders. In *The 28th International Conference on*  
 $\text{Artificial Intelligence and Statistics}$ , pp. 2719–2727. PMLR, 2025.

647

648 Joel A Tropp. An introduction to matrix concentration inequalities. *Foundations and Trends® in*  
 $\text{Machine Learning}$ , 8(1-2):1–230, 2015.

648 Giacomo Turri, Luigi Bonati, Kai Zhu, Massimiliano Pontil, and Pietro Novelli. Self-  
649 supervised evolution operator learning for high-dimensional dynamical systems. *arXiv preprint*  
650 [arXiv:2505.18671](https://arxiv.org/abs/2505.18671), 2025.

651

652 Ziyu Wang, Yuhao Zhou, and Jun Zhu. Fast instrument learning with faster rates. *Advances in*  
653 *Neural Information Processing Systems*, 35:16596–16611, 2022.

654 Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. *BIT Nu-*  
655 *merical Mathematics*, 12(1):99–111, 1972.

656

657 Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, and Arthur Gret-  
658 ton. Learning deep features in instrumental variable regression. In *International Conference on*  
659 *Learning Representations*, 2021.

660 Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its applica-  
661 tion to confounded bandit policy evaluation, 2024. URL <https://arxiv.org/abs/2106.03907>.

663

664 Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions  
665 and how to fix it. *Advances in Neural Information Processing Systems*, 33:1583–1594, 2020.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A TECHNICAL TOOLS  
703704  
705 **Notation.** Throughout the appendix, for a compact operator  $A$ ,  $\sigma_d(A)$  denotes the  $d$ -th largest  
706 singular value of  $A$  and if  $A$  is self-adjoint,  $\lambda_d(A)$  denotes the  $d$ -th largest eigenvalue of  $A$ .  
707708 **Proposition 3** (Weyl's inequality). *For any two compact operators  $A$  and  $B$ , the singular values  
709 are stable under perturbation:  $|\sigma_i(A) - \sigma_i(B)| \leq \|A - B\|$ ,  $i \leq \min\{\text{rank}(A), \text{rank}(B)\}$ .*  
710711 **Theorem 2** (Wedin sin- $\Theta$  Theorem). *Let  $A$  and  $B$  be compact operators. Let  $P_A$  and  $P_B$  be the  
712 orthogonal projections onto the subspaces spanned by the top- $d$  left singular vectors of  $A$  and  $B$   
713 respectively (the same property holds with the right singular vectors). If  $\gamma := \sigma_d(A) - \sigma_{d+1}(B) > 0$ ,  
714 then,*

715 
$$\|P_A - P_B\| \leq \frac{\|A - B\|}{\gamma}.$$
  
716

717 *Additionally, if  $\gamma_A := \sigma_d(A) - \sigma_{d+1}(A) > 0$  and  $\|A - B\| \leq \gamma_A/2$ , then*  
718

719 
$$\|P_A - P_B\| \leq 2 \cdot \frac{\|A - B\|}{\gamma_A}.$$

720 *Proof.* The first inequality is the original theorem (Wedin, 1972). We prove the second inequality.  
721 By Weyl's inequality, Proposition 3,

722 
$$|\sigma_{d+1}(A) - \sigma_{d+1}(B)| \leq \|A - B\|.$$
  
723

724 Hence,

725 
$$\gamma \geq \sigma_d(A) - \sigma_{d+1}(A) - \|A - B\| = \gamma_A - \|A - B\| \geq \gamma_A/2.$$

726 Therefore,

727 
$$\|P_A - P_B\| \leq 2 \cdot \frac{\|A - B\|}{\gamma_A}.$$
  
728

729  $\square$ 730 **Theorem 3** (Eckart-Young-Mirsky Theorem). *Let  $A : \mathcal{H}_1 \rightarrow \mathcal{H}_2$  be a compact operator between  
731 Hilbert spaces with Singular Value Decomposition*  
732

733 
$$A = \sum_{i \geq 1} \sigma_i u_i \otimes v_i,$$
  
734

735 *where  $\{v_i\} \subset \mathcal{H}_1$  and  $\{u_i\} \subset \mathcal{H}_2$  are orthonormal sets, and  $(\sigma_i)_i$  are the singular values of  $A$ ,  
736 which satisfy  $\sigma_1 \geq \sigma_2 \geq \dots \geq 0$ . For all  $d \geq 1$ ,  $A_d \doteq \sum_{i=1}^d \sigma_i u_i \otimes v_i$  satisfies*

737 
$$\|A - A_d\| = \min_{B: \text{rank}(B) \leq d} \|A - B\|.$$
  
738

739 *Moreover, if  $\sigma_d > \sigma_{d+1}$ ,  $A_d$  is the unique minimizer.*  
740741 B OMITTED PROOFS  
742743 We provide the proofs omitted from the main text below.  
744745 B.1 PROOF OF PROPOSITION 1  
746747 Given  $d \geq 1$ ,  $\delta \geq 0$ , parameter  $\theta$  and  $\omega \in \mathbb{R}^d$ , define the operator  
748

749 
$$\mathcal{T}_{\theta, \omega} = \Psi_{\theta}^{(d)} [\Phi_{\theta}^{(d)*} \mid \omega] = \sum_{i=1}^d \psi_{\theta, i}^{(d)} \otimes (\varphi_{\theta, i}^{(d)}, \omega_i) : L_2(X) \times \mathbb{R} \rightarrow L_2(Z).$$
  
750

751 We show that  
752

753 
$$\mathcal{L}_{\delta}(\theta, \omega) = \|\mathcal{T}_{\delta} - \mathcal{T}_{\theta, \omega}\|_{\text{HS}}^2 - \|\mathcal{T}_{\delta}\|_{\text{HS}}^2.$$
  
754

To simplify the notations in this proof, we drop the  $(d)$  subscript on the features. Let us define  $\tilde{\Phi}_{\theta,\omega} : \mathbb{R}^d \rightarrow L_2(X) \times \mathbb{R}$  the operator whose adjoint is  $\tilde{\Phi}_{\theta,\omega}^* = [\Phi_\theta^* \mid \omega] : L_2(X) \times \mathbb{R} \rightarrow \mathbb{R}^d$  such that we have  $\mathcal{T}_{\theta,\omega} = \Psi_\theta \tilde{\Phi}_{\theta,\omega}^*$ .  $\tilde{\Phi}_{\theta,\omega}$  is such that

$$\tilde{\Phi}_{\theta,\omega} \beta = \sum_{i=1}^d \beta_i (\varphi_{\theta,i}, \omega_i), \quad \tilde{\Phi}_{\theta,\omega}^* (h, a) = \Phi_\theta^* h + a \cdot \omega.$$

Therefore,

$$\tilde{\Phi}_{\theta,\omega}^* \tilde{\Phi}_{\theta,\omega} = \mathbb{E}[\varphi_\theta(X) \varphi_\theta(X)^\top] + \omega \omega^\top = C_{\varphi_\theta} + \omega \omega^\top \quad (9)$$

Using the definition of the Hilbert-Schmidt norm and the cyclic property of the trace, we have

$$\|\mathcal{T}_\delta - \mathcal{T}_{\theta,\omega}\|_{\text{HS}}^2 - \|\mathcal{T}_\delta\|_{\text{HS}}^2 = \|\mathcal{T}_{\theta,\omega}\|_{\text{HS}}^2 - 2 \text{Tr}(\mathcal{T}_{\theta,\omega}^* \mathcal{T}_\delta) = \text{Tr}(\Psi_\theta^* \Psi_\theta \tilde{\Phi}_{\theta,\omega}^* \tilde{\Phi}_{\theta,\omega}) - 2 \text{Tr}(\Psi_\theta^* \mathcal{T}_\delta \tilde{\Phi}_{\theta,\omega}).$$

For the first term, exploiting Eq. (9) and the linearity of the trace, we have

$$\begin{aligned} \text{Tr}(\Psi_\theta^* \Psi_\theta \tilde{\Phi}_{\theta,\omega}^* \tilde{\Phi}_{\theta,\omega}) &= \text{Tr}(C_{\varphi_\theta} C_{\varphi_\theta} + C_{\psi_\theta} \omega \omega^\top) \\ &= \text{Tr}(C_{\psi_\theta} C_{\varphi_\theta}) + \omega^\top C_{\psi_\theta} \omega \\ &= \mathbb{E}_X \mathbb{E}_Z [(\varphi_\theta(X)^\top \psi_\theta(Z))^2] + \omega^\top C_{\psi_\theta} \omega, \end{aligned}$$

where  $\mathbb{E}_X \mathbb{E}_Z$  denotes the expectation where  $X$  and  $Z$  are treated as independent random variables drawn from their respective marginal distributions.

For the second term, recall that  $\mathcal{T}_\delta = [\mathcal{T} \mid \delta r_0]$ . For all  $\beta \in \mathbb{R}^d$ , we have

$$\begin{aligned} [\Psi_\theta^* \mathcal{T}_\delta \tilde{\Phi}_{\theta,\omega} \beta]_j &= \sum_{i=1}^d \beta_i [\Psi_\theta^* \mathcal{T}_\delta (\varphi_{\theta,i}, \omega_i)]_j \\ &= \sum_{i=1}^d \beta_i [\Psi_\theta^* (\omega_i \cdot \delta \cdot r_0 + \mathcal{T} \varphi_{\theta,i})]_j \\ &= \sum_{i=1}^d \beta_i (\omega_i \cdot \delta \cdot \mathbb{E}[Y \psi_{\theta,j}(Z)] + \mathbb{E}[\varphi_{\theta,i}(X) \psi_{\theta,j}(Z)]). \end{aligned}$$

Therefore  $\Psi_\theta^* \mathcal{T}_\delta \tilde{\Phi}_{\theta,\omega} \beta = \delta \cdot \mathbb{E}[Y \psi_\theta(Z)] \omega^\top + \mathbb{E}[\psi_\theta(Z) \varphi_\theta(X)^\top]$ , and

$$\text{Tr}(\Psi_\theta^* \mathcal{T}_\delta \tilde{\Phi}_{\theta,\omega}) = \mathbb{E}[\varphi_\theta(X)^\top \psi_\theta(Z)] + \delta \cdot \omega^\top \mathbb{E}[Y \psi_\theta(Z)].$$

Putting it together, we obtain

$$\begin{aligned} \|\mathcal{T}_\delta - \mathcal{T}_{\theta,\omega}\|_{\text{HS}}^2 - \|\mathcal{T}_\delta\|_{\text{HS}}^2 &= \mathbb{E}_X \mathbb{E}_Z [(\varphi_\theta(X)^\top \psi_\theta(Z))^2] + \omega^\top C_{\psi_\theta} \omega - 2 \mathbb{E}[\varphi_\theta(X)^\top \psi_\theta(Z)] - 2 \delta \cdot \omega^\top \mathbb{E}[Y \psi_\theta(Z)] \\ &= \mathcal{L}_0(\theta) + \omega^\top C_{\psi_\theta} \omega - 2 \delta \cdot \omega^\top \mathbb{E}[Y \psi_\theta(Z)] \\ &= \mathcal{L}_\delta(\theta, \omega). \end{aligned}$$

We conclude the proof with Theorem 3.

## B.2 PROOF OF PROPOSITION 2

Recall the SVD of  $\mathcal{T}_\delta$  (Eq. (6))

$$\mathcal{T}_\delta = \sum_{i \geq 1} \sigma_{\star,i} \psi_{\star,i} \otimes (\varphi_{\star,i}, \omega_{\star,i}).$$

The key relationships it satisfies are  $\sigma_{\star,i} \varphi_{\star,i} = \mathcal{T}^* \psi_{\star,i}$ , and  $\sigma_{\star,i} \omega_{\star,i} = \delta \langle r_0, \psi_{\star,i} \rangle = \delta \cdot \sigma_{\star,i} \langle h_0, \varphi_{\star,i} \rangle$ . In Eq. (14), we show that  $\Phi_\star^{(d)*} \Phi_\star^{(d)} = I_d - \omega_\star \omega_\star^\top$ . Thus

$$\Pi_{\varphi_\star^{(d)}} = \Phi_\star^{(d)} (\Phi_\star^{(d)*} \Phi_\star^{(d)})^{-1} \Phi_\star^{(d)*} = \Phi_\star^{(d)} (I_d - \omega_\star \omega_\star^\top) \Phi_\star^{(d)*}.$$

Next, observe that

$$\langle \varphi_{\star,i}, h_0 \rangle = \sigma_{\star,i}^{-1} \langle \mathcal{T}^* \psi_i, h_0 \rangle = \sigma_i^{-1} \langle \psi_{\star,i}, \mathcal{T} h_0 \rangle = \sigma_{\star,i}^{-1} \mathbb{E}[Y \psi_{\star,i}(Z)] = \alpha_i.$$

Therefore,  $\alpha$  is such that  $\alpha = \Phi_\star^{(d)} h_0$ . Alignment of  $h_0$  to the true spectral features (of  $\mathcal{T}_\delta$ ) then satisfies:

$$\|\Pi_{\varphi_\star^{(d)}} h_0\|^2 = \langle h_0, \Pi_{\varphi_\star^{(d)}} h_0 \rangle = (\Phi_\star^{(d)*} h_0)^\top (I_d - \omega_\star \omega_\star^\top)^{-1} \Phi_\star^{(d)*} h_0 = \alpha^\top (I_d - \omega_\star \omega_\star^\top)^{-1} \alpha.$$

810 B.3 APPROXIMATION ERROR ANALYSIS  
811812 Recall that for  $d \geq 1$ , we fixed a partition  $\overline{N} \dot{\cup} \underline{N} = \mathbb{N}$ , such that  $|\overline{N}|=d$ ,  $\mathcal{T}=\overline{U}_d \overline{\Lambda}_d \overline{V}_d^* + \underline{U}_d \underline{\Lambda}_d \underline{V}_d^*$ .  
813 We introduce the projection operators

814 
$$\Pi_{\overline{U}_d} = \overline{U}_d \overline{U}_d^* \quad \Pi_{\overline{V}_d} = \overline{V}_d \overline{V}_d^* \quad \Pi_{\underline{U}_d} = \underline{U}_d \underline{U}_d^* = I - \Pi_{\overline{U}_d} \quad \Pi_{\underline{V}_d} = \underline{V}_d \underline{V}_d^* = I - \Pi_{\overline{V}_d}.$$
  
815

816 We then decompose  $h_0$  as

817 
$$h_0 = \overline{h}_0 + \underline{h}_0 = \Pi_{\overline{V}_d} h_0 + \Pi_{\underline{V}_d} h_0 = \sum_{i \in \overline{N}} \overline{\alpha}_i v_i + \sum_{i \in \underline{N}} \underline{\alpha}_i v_i.$$
  
818

819 Let us define  $\bar{\lambda}_{\min}$  as the smallest positive entries of  $\overline{\Lambda}_d$ .820 **Proposition 4.**  $\bar{\lambda}_{\min}$  is such that

821 
$$\sup_{h \neq 0} \frac{\|\Pi_{\overline{V}_d} h\|_{L_2(X)}}{\|\mathcal{T} \Pi_{\overline{V}_d} h\|_{L_2(Z)}} = \bar{\lambda}_{\min}^{-1}.$$
  
822

823 *Proof.* Since the quantity is homogeneous in  $h$ , we may restrict the supremum to  
824

825 
$$\|\Pi_{\overline{V}_d} h\|_{L_2(X)} = 1.$$
  
826

827 Write  $\Pi_{\overline{V}_d} h = \sum_{i \in \overline{N}} \alpha_i v_i$  so that  $\sum_{i \in \overline{N}} |\alpha_i|^2 = 1$ . Using  $\mathcal{T} v_i = \lambda_i u_i$  for  $i \in \overline{N}$  we get  
828

829 
$$\|\mathcal{T} \Pi_{\overline{V}_d} h\|_{L_2(Z)}^2 = \sum_{i \in \overline{N}} \lambda_i^2 |\alpha_i|^2.$$
  
830

831 Hence, for such  $h$ ,

832 
$$\frac{\|\Pi_{\overline{V}_d} h\|_{L_2(X)}}{\|\mathcal{T} \Pi_{\overline{V}_d} h\|_{L_2(Z)}} = \frac{1}{\left(\sum_{i \in \overline{N}} \lambda_i^2 |\alpha_i|^2\right)^{1/2}} \leq \frac{1}{\bar{\lambda}_{\min}},$$
  
833

834 Equality is attained by taking  $h$  proportional to the singular vector  $v_{i^*}$  with  $\lambda_{i^*} = \bar{\lambda}_{\min}$ , which  
835 conclude the proof.  $\square$   
836837 The following proposition states a general approximation error bound when the span of the learned  
838 features is close to the singular spaces of  $\mathcal{T}$  associated to  $\overline{N}$ .839 **Proposition 5.** Let  $A, B$  be constants such that  $\|\Pi_{\overline{U}_d} - \Pi_{\psi_\theta}\| \leq A$ ,  $\|\Pi_{\overline{V}_d} - \Pi_{\varphi_\theta}\| \leq B$ , and  
840

841 
$$1 - B - \frac{A}{\bar{\lambda}_{\min}} > 0.$$
  
842

843 Then,

844 
$$\|h_\theta - h_0\|_{L_2(X)} \leq \left(1 - B - \frac{A}{\bar{\lambda}_{\min}}\right)^{-1} (B\|h_0\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)}).$$
  
845

846 *Proof.* Recall that under Assumption 3,  $h_\theta(x) = \varphi_\theta(x)^\top \beta_\theta$  satisfies  $C_{ZX,\theta} \beta_\theta = \mathbb{E}[r_0(Z)\psi_\theta(Z)]$ .  
847 Observing that  $\mathbb{E}[r_0(Z)\psi_\theta(Z)] = \Psi_\theta^* r_0 = \Psi_\theta^* \mathcal{T} h_0$  and using that  $C_{ZX,\theta} = \Psi_\theta^* \mathcal{T} \Phi_\theta$ , we have  
848  $C_{ZX,\theta} \beta_\theta = \Psi_\theta^* \mathcal{T} h_\theta$ . Therefore  $0 = \Psi_\theta^* \mathcal{T} (h_\theta - h_0)$ , which implies

849 
$$\Pi_{\psi_\theta} \mathcal{T} (h_\theta - h_0) = 0 \tag{10}$$
  
850

851 We then have the following chain of inequalities,  
852

853 
$$\begin{aligned} \|h_\theta - h_0\|_{L_2(X)} &\leq \|\Pi_{\overline{V}_d} (h_\theta - h_0)\|_{L_2(X)} + \|\Pi_{\underline{V}_d} (h_\theta - h_0)\|_{L_2(X)} \\ &\leq \bar{\lambda}_{\min}^{-1} \|\mathcal{T} \Pi_{\overline{V}_d} (h_\theta - h_0)\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_\theta\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)} \\ &= \bar{\lambda}_{\min}^{-1} \|\Pi_{\overline{U}_d} \mathcal{T} (h_\theta - h_0)\|_{L_2(X)} + \|(\Pi_{\underline{V}_d} - \Pi_{\varphi_\theta}^\perp) h_\theta\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)} \\ &\leq \bar{\lambda}_{\min}^{-1} \|\Pi_{\overline{U}_d} - \Pi_{\psi_\theta}\| \|\mathcal{T}\| \|h_\theta - h_0\|_{L_2(X)} + \|\Pi_{\overline{V}_d} - \Pi_{\varphi_\theta}\| \|h_\theta\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)} \\ &\leq \frac{A}{\bar{\lambda}_{\min}} \|h_\theta - h_0\|_{L_2(X)} + B \|h_\theta - h_0\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)} \\ &\leq \left( \frac{A}{\bar{\lambda}_{\min}} + B \right) \|h_\theta - h_0\|_{L_2(X)} + B \|h_0\|_{L_2(X)} + \|\Pi_{\underline{V}_d} h_0\|_{L_2(X)}, \end{aligned}$$

864 where in the second inequality we used Proposition 4 and the triangular inequality, in the equality  
 865 we used  $\mathcal{T} \Pi_{\bar{V}_d} = \Pi_{\bar{U}_d} \mathcal{T}$  and  $\Pi_{\varphi_\theta}^\perp h_\theta = 0$ , in the third inequality we used Eq. (10) and in the fourth  
 866 inequality we used  $\|\mathcal{T}\| \leq 1$ . Re-arranging, we obtain  
 867

$$868 \quad \left(1 - \frac{A}{\lambda_{\min}} + B\right) \|h_\theta - h_0\|_{L_2(X)} \leq B\|h_0\|_{L_2(X)} + \|\Pi_{\bar{U}_d} h_0\|_{L_2(X)},$$

870 and the result follows.  $\square$

872 Then next step is to obtain  $A$  and  $B$ . Recall the SVD of  $\mathcal{T}_\delta$  Eq. (6)

$$874 \quad \mathcal{T}_\delta = \sum_{i \geq 1} \sigma_{*,i} \psi_{*,i} \otimes (\varphi_{*,i}, \omega_{*,i}), \quad \psi_{*,i} \in L_2(Z), \quad (\varphi_{*,i}, \omega_{*,i}) \in L_2(X) \times \mathbb{R},$$

876 We denote by  $\Pi_{\psi_*^{(d)}}$  and  $\Pi_{\varphi_*^{(d)}}$  and orthogonal projection onto the span of  $(\psi_{*,i})_{i=1}^d$  and  $(\varphi_{*,i})_{i=1}^d$   
 877 respectively. It is important to note that  $\varphi_{*,i}$  is not a singular function of  $\mathcal{T}_\delta$  but the first component  
 878 of the singular function  $(\varphi_{*,i}, \omega_{*,i})$ . Therefore the family  $\{\varphi_{*,i}\}_i$  is not orthonormal. From the  
 879 SVD, we deduce the following relationships for all  $i \geq 1$

$$880 \quad \begin{cases} \sigma_{*,i} \psi_{*,i} = \mathcal{T}_\delta(\varphi_{*,i}, \omega_{*,i}), \\ \sigma_{*,i} \varphi_{*,i} = \mathcal{T}^* \psi_{*,i}, \\ \sigma_{*,i} \omega_{*,i} = \delta \langle \psi_{*,i}, r_0 \rangle_{L_2(Z)}, \end{cases} \quad (11)$$

885 where we use the fact that  $\mathcal{T}_\delta^* r = \mathcal{T}^* r + \delta \langle r, r_0 \rangle_{L_2(Z)}$ ,  $r \in L_2(Z)$ .

887 By the triangular inequality,

$$888 \quad \|\Pi_{\bar{U}_d} - \Pi_{\psi_\theta}\| \leq \|\Pi_{\bar{U}_d} - \Pi_{\psi_*^{(d)}}\| + \|\Pi_{\psi_*^{(d)}} - \Pi_{\psi_\theta}\| \quad (Z - \text{features})$$

$$889 \quad \|\Pi_{\bar{V}_d} - \Pi_{\varphi_\theta}\| \leq \|\Pi_{\bar{V}_d} - \Pi_{\varphi_*^{(d)}}\| + \|\Pi_{\varphi_*^{(d)}} - \Pi_{\varphi_\theta}\| \quad (X - \text{features})$$

891 **Proposition 6** (Control of the  $X$ -features).

$$893 \quad \|\Pi_{\varphi_*^{(d)}} - \Pi_{\bar{V}_d}\| \leq \frac{\|\Pi_{\psi_*^{(d)}} - \Pi_{\bar{U}_d}\|}{\lambda_{\min}(1 - \|\Pi_{\psi_*^{(d)}} - \Pi_{\bar{U}_d}\|)}. \quad (12)$$

895 Assume in addition that  $\bar{\lambda}_{\min} - \|\Pi_{\psi_*^{(d)}} - \Pi_{\bar{U}_d}\| > 0$ . Then,

$$897 \quad \|\Pi_{\varphi_*^{(d)}} - \Pi_{\varphi_\theta}\| \leq \frac{\|\mathcal{T}_\delta^{(d)} - \mathcal{T}_{\theta,\omega}\|}{\bar{\lambda}_{\min} - \|\Pi_{\psi_*^{(d)}} - \Pi_{\bar{U}_d}\|}. \quad (13)$$

900 *Proof.* We start with Eq. (13). Let  $\pi : L_2(X) \times \mathbb{R} \rightarrow L_2(X)$  be the canonical projection such that  
 901  $\pi(h, a) = h$ . Recall that

$$903 \quad \Phi_\star^{(d)} \beta = \sum_{i=1}^d \beta_i \varphi_{*,i}.$$

905 Let us define

$$907 \quad \tilde{\Phi}_\star^{(d)} \beta = \sum_{i=1}^d \beta_i (\varphi_{*,i}, \omega_{*,i}),$$

909 that is such that  $\pi \tilde{\Phi}_\star^{(d)} = \Phi_\star^{(d)}$ . We then have the following decomposition

$$911 \quad \Phi_\star^{(d)} \Sigma_\star^{(d)} \Psi_\star^{(d)*} = \pi(\tilde{\Phi}_\star^{(d)} \Sigma_\star^{(d)} \Psi_\star^{(d)*}) = \pi(\mathcal{T}_\delta^{(d)})^* = \pi(\mathcal{T}_\delta^{(d)} - \mathcal{T}_{\theta,\omega})^* + \pi \mathcal{T}_{\theta,\omega}^*$$

$$912 \quad = \pi(\mathcal{T}_\delta^{(d)} - \mathcal{T}_{\theta,\omega})^* + \Phi_\theta \Psi_\theta^*$$

913 We will apply Wedin Sin- $\Theta$  Theorem, Theorem 2, to  $A = \Phi_\star^{(d)} \Sigma_\star^{(d)} \Psi_\star^{(d)*}$  and  $B = \Phi_\theta \Psi_\theta^*$ . Note that

$$915 \quad \|A - B\| = \|\Phi_\star^{(d)} \Sigma_\star^{(d)} \Psi_\star^{(d)*} - \Phi_\theta \Psi_\theta^*\|$$

$$916 \quad = \|\pi(\mathcal{T}_\delta^{(d)})^* (\Pi_{\psi_*^{(d)}} - \Pi_{\psi_\theta}) + \pi(\mathcal{T}_\delta^{(d)} - \mathcal{T}_{\theta,\omega})^* \Pi_{\psi_\theta}\|$$

$$917 \quad \leq \sigma_1(\mathcal{T}_\delta^{(d)}) \|\Pi_{\psi_*^{(d)}} - \Pi_{\psi_\theta}\| + \|\mathcal{T}_\delta^{(d)} - \mathcal{T}_{\theta,\omega}\|$$

As  $(\varphi_{*,i}, \omega_{*,i})_{i=1}^d$  forms an orthonormal family, we have  $\tilde{\Phi}_{*}^{(d)*} \tilde{\Phi}_{*}^{(d)} = I_d$ . On the other hand, similarly to Eq. (9), we have

$$I_d = \tilde{\Phi}_{*}^{(d)*} \tilde{\Phi}_{*}^{(d)} = \Phi_{*}^{(d)*} \Phi_{*}^{(d)} + \omega_{*} \omega_{*}^{\top} \quad (14)$$

Therefore,

$$\begin{aligned} \sigma_d(A)^2 &= \sigma_d(\Phi_{*}^{(d)} \Sigma_{*}^{(d)} \Psi_{*}^{(d)*})^2 = \sigma_d(\Psi_{*}^{(d)} \Sigma_{*}^{(d)} \Phi_{*}^{(d)*} \Phi_{*}^{(d)} \Sigma_{*}^{(d)} \Psi_{*}^{(d)*}) \\ &= \sigma_d(\Psi_{*}^{(d)} \Sigma_{*}^{(d)} (I_d - \omega_{*} \omega_{*}^{\top}) \Sigma_{*}^{(d)} \Psi_{*}^{(d)*}) \\ &= \sigma_d(\mathcal{T}_{\delta}^{(d)} (\mathcal{T}_{\delta}^{(d)})^* - \delta^2 (\Psi_{*}^{(d)} \Psi_{*}^{(d)*} r_0) \otimes (\Psi_{*}^{(d)} \Psi_{*}^{(d)*} r_0)) \\ &= \sigma_d(\Pi_{\psi_{*}^{(d)}} (\mathcal{T}_{\delta} (\mathcal{T}_{\delta})^* - \delta^2 r_0 \otimes r_0) \Pi_{\psi_{*}^{(d)}}) \\ &= \sigma_d(\Pi_{\psi_{*}^{(d)}} \mathcal{T} \mathcal{T}^* \Pi_{\psi_{*}^{(d)}}) \\ &= \sigma_d(\Pi_{\psi_{*}^{(d)}} \mathcal{T})^2, \end{aligned}$$

where in the third equality, we used that fact that  $\omega_{*} = \delta(\Sigma_{*}^{(d)})^{-1} \Psi_{*}^{(d)*} r_0$  by Eq. (11) and in the fifth equality we used  $\mathcal{T}_{\delta} (\mathcal{T}_{\delta})^* = \mathcal{T} \mathcal{T}^* + \delta^2 r_0 \otimes r_0$ . Next, by Weyl's inequality, Proposition 3,

$$|\sigma_d(\Pi_{\psi_{*}^{(d)}} \mathcal{T}) - \bar{\lambda}_{\min}| = |\sigma_d(\Pi_{\psi_{*}^{(d)}} \mathcal{T}) - \sigma_d(\Pi_{\bar{U}_d} \mathcal{T})| \leq \|(\Pi_{\psi_{*}^{(d)}} - \Pi_{\bar{U}_d}) \mathcal{T}\| \leq \|\Pi_{\psi_{*}^{(d)}} - \Pi_{\bar{U}_d}\|.$$

Hence  $\sigma_d(A) \geq \bar{\lambda}_{\min} - \|\Pi_{\psi_{*}^{(d)}} - \Pi_{\bar{U}_d}\|$  and  $\sigma_{d+1}(B) = 0$ . We obtain Eq. (13) applying Theorem 2.

We now prove Eq. (12). We use

$$\Phi_{*}^{(d)} \Sigma_{*}^{(d)} = \mathcal{T}^* \Psi_{*}^{(d)} = \bar{V}_d \bar{\Lambda}_d \bar{U}_d^* \Psi_{*}^{(d)} + \underline{V}_d \underline{\Lambda}_d \underline{U}_d^* \Psi_{*}^{(d)},$$

We will apply Wedin Sin- $\Theta$  Theorem, Theorem 2, to  $A' = \bar{V}_d \bar{\Lambda}_d \bar{U}_d^* \Psi_{*}^{(d)}$  and  $B' = \Phi_{*}^{(d)} \Sigma_{*}^{(d)}$ . Note that

$$\|A' - B'\| = \|\bar{V}_d \bar{\Lambda}_d \bar{U}_d^* \Psi_{*}^{(d)} - \Phi_{*}^{(d)} \Sigma_{*}^{(d)}\| = \|\underline{V}_d \underline{\Lambda}_d \underline{U}_d^* \Psi_{*}^{(d)}\| \leq \|\Pi_{\bar{U}_d} - \Pi_{\psi_{*}^{(d)}}\|,$$

where for the last inequality, we use

$$\underline{U}_d^* \Psi_{*}^{(d)} = \underline{U}_d^* \Pi_{\underline{U}_d} \Psi_{*}^{(d)} = \underline{U}_d^* \Pi_{\bar{U}_d}^{\perp} \Psi_{*}^{(d)} = \underline{U}_d^* [\Pi_{\bar{U}_d}^{\perp} - \Pi_{\psi_{*}^{(d)}}^{\perp}] \Psi_{*}^{(d)} = \underline{U}_d^* [\Pi_{\bar{U}_d} - \Pi_{\psi_{*}^{(d)}}] \Psi_{*}^{(d)}.$$

By the inequality for singular values of product of matrices, we have

$$\begin{aligned} \sigma_d(A') &= \sigma_d(\bar{V}_d \bar{\Lambda}_d \bar{U}_d^* \Psi_{*}^{(d)}) \geq \sigma_d(\bar{V}_d \bar{\Lambda}_d) \sigma_d(\bar{U}_d^* \Psi_{*}^{(d)}) \\ &= \sigma_d(\bar{\Lambda}_d) \sigma_d(\bar{U}_d^* \Psi_{*}^{(d)}) \\ &= \bar{\lambda}_{\min} \sigma_d(\bar{U}_d^* \Psi_{*}^{(d)}) \\ &\geq \bar{\lambda}_{\min} (1 - \|\Pi_{\psi_{*}^{(d)}} - \Pi_{\bar{U}_d}\|). \end{aligned}$$

We conclude with Theorem 2, using that  $\sigma_{d+1}(B') = 0$ .  $\square$

**Proposition 7** (Control of the  $Z$ -features). *Assume that  $\varepsilon_d(\theta, \omega, \delta) \leq \sigma_d(\mathcal{T}_{\delta})/2$ . Then,*

$$\|\Pi_{\psi_{*}^{(d)}} - \Pi_{\psi_{\theta}}\| \leq 2 \cdot \frac{\varepsilon_d(\theta, \omega, \delta)}{\sigma_d(\mathcal{T}_{\delta})}$$

Assume that  $\gamma_d(\delta) := \|[\bar{\Lambda}_d(I + \delta^2 \bar{\alpha} \bar{\alpha}^{\top})^{1/2}]^{-1}\|^{-1} - \|\underline{\Lambda}_d\| > 0$  and  $\|\underline{\Lambda}_d\| \|\underline{\alpha}_0\|_{\ell_2} \leq \gamma_d(\delta)/2$ . Then,

$$\|\Pi_{\bar{U}_d} - \Pi_{\psi_{*}^{(d)}}\| \leq 2 \cdot \frac{\delta \|\underline{\Lambda}_d\| \|\underline{\alpha}_0\|_{\ell_2}}{\gamma_d(\delta)}.$$

*Proof.* The first inequality follows from Theorem 2 and the definition of  $\varepsilon_d(\theta, \omega, \delta)$ .

For the second inequality, using  $\mathcal{T} = \bar{U}_d \bar{\Lambda}_d \bar{V}_d^* + \underline{U}_d \underline{\Lambda}_d \underline{V}_d^*$ , we get the following decomposition

$$\mathcal{T}_{\delta} = [\mathcal{T} \mid \delta r_0] = [\mathcal{T} \mid \delta \mathcal{T} h_0] = \underbrace{[\mathcal{T} \mid \delta \bar{U}_d \bar{\Lambda}_d \bar{V}_d^* h_0]}_{\tilde{Q}} + [0 \mid \delta \underline{U}_d \underline{\Lambda}_d \underline{V}_d^* h_0]$$

972 Note that

$$973 \quad \|\mathcal{T}_\delta - \tilde{Q}\| = \|\delta \underline{U}_d \underline{\Lambda}_d \underline{\alpha}_0\|_{L_2(Z)} \leq \delta \|\underline{\Lambda}_d\| \|\underline{\alpha}_0\|_{L_2(X)}$$

974 To analyze the spectrum of  $\tilde{Q}$ , we look at

$$976 \quad \tilde{Q}\tilde{Q}^* = \mathcal{T}\mathcal{T}^* + \delta^2 (\overline{U}_d \overline{\Lambda}_d \overline{V}_d^* h_0) \otimes (\overline{U}_d \overline{\Lambda}_d \overline{V}_d^* h_0) = [\overline{U}_d | \underline{U}_d] \begin{bmatrix} \overline{M} & 0 \\ 0 & \underline{\Lambda}_d^2 \end{bmatrix} [\overline{U}_d | \underline{U}_d]^*,$$

978 where  $\overline{M} = \overline{\Lambda}_d^2 + \delta^2 \overline{\Lambda}_d \overline{V}_d^* (h_0 \otimes h_0) \overline{V}_d \overline{\Lambda}_d$ . When  $\lambda_{\min}(\overline{M}) > \|\underline{\Lambda}_d^2\|$  then  $\Pi_{\overline{U}_d}$  is associated to the  
979 top spectrum of  $\tilde{Q}$  and we can apply Wedin Sin- $\Theta$  Theorem, Theorem 2, to  $A = \tilde{Q}$  and  $B = \mathcal{T}_\delta$ . As  
980

$$981 \quad \overline{M} = \overline{\Lambda}_d (I + \delta^2 \overline{\alpha} \overline{\alpha}^\top) \overline{\Lambda}_d,$$

982 we have

$$983 \quad \lambda_{\min}(\overline{M}) = \sigma_{\min}^2(\overline{\Lambda}_d (I + \delta^2 \overline{\alpha} \overline{\alpha}^\top)^{1/2}) = \|[\overline{\Lambda}_d (I + \delta^2 \overline{\alpha} \overline{\alpha}^\top)^{1/2}]^{-1}\|^{-2}.$$

984 Therefore  $\lambda_{\min}(\overline{M}) > \|\underline{\Lambda}_d^2\|$  is equivalent to

$$985 \quad \sigma_d(A) - \sigma_{d+1}(B) = \|[\overline{\Lambda}_d (I + \delta^2 \overline{\alpha} \overline{\alpha}^\top)^{1/2}]^{-1}\|^{-1} - \|\underline{\Lambda}_d\| = \gamma_d(\delta) > 0.$$

986  $\square$

987 **Proposition 8** (Control of ill-posedness). *Under the assumptions of Proposition 5, it holds that*

$$988 \quad c_{\varphi_\theta, \psi_\theta} \geq \bar{\lambda}_{\min} \left( 1 - B - \frac{A}{\bar{\lambda}_{\min}} \right).$$

989 *Proof.* Start by decomposing projections as

$$990 \quad \Pi_{\Psi_\theta} \mathcal{T} \Pi_{\varphi_\theta} = \Pi_{\overline{U}_d} \mathcal{T} (\Pi_{\varphi_\theta} + \Pi_{\underline{U}_d}) + (\Pi_{\Psi_\theta} - \Pi_{\overline{U}_d}) \mathcal{T} \Pi_{\varphi_\theta}.$$

991 Now, using inequalities of sums and products of singular values we have that

$$992 \quad \sigma_d(\Pi_{\Psi_\theta} \mathcal{T} \Pi_{\varphi_\theta}) \geq \sigma_d(\Pi_{\overline{U}_d} \mathcal{T}) \sigma_{\min}(\Pi_{\varphi_\theta} + \Pi_{\underline{U}_d}) - \sigma_1((\Pi_{\Psi_\theta} - \Pi_{\overline{U}_d}) \mathcal{T} \Pi_{\varphi_\theta}).$$

993 But, since

$$994 \quad \sigma_{\min}(\Pi_{\varphi_\theta} + \Pi_{\underline{U}_d}) = \|[I - (\Pi_{\overline{U}_d} - \Pi_{\varphi_\theta})]^{-1}\|^{-1} \geq 1 - \|\Pi_{\overline{U}_d} - \Pi_{\varphi_\theta}\|,$$

995 whenever  $\|\Pi_{\overline{U}_d} - \Pi_{\varphi_\theta}\| < 1$ , the proof is completed.  $\square$

1000 We combine the previous proposition in the following general approximation error bound.

1001 **Theorem 4.** *Given any  $\delta > 0$  and partition  $\overline{N} \dot{\cup} \underline{N} = \mathbb{N}$ , denoting  $\bar{\lambda}_{\min} = \min_{i \in [\overline{N}]} \lambda_i$  and  $\lambda_{\max} = \max_{i \in [\underline{N}]} \lambda_i$ ,  
1002 if*

$$1003 \quad \frac{6\delta\lambda_{\max}}{\bar{\lambda}_{\min}\gamma_d(\delta)} \|q_d\|_{L^2(X)} + \frac{2\lambda_d + \bar{\lambda}_{\min}}{\lambda_d\bar{\lambda}_{\min}} \mathcal{E}_d(\theta, \delta) \leq \kappa \leq 1/2 \quad (15)$$

1004 *then*  $c_{\varphi_\theta, \psi_\theta} \geq (1 - \kappa) \bar{\lambda}_{\min}$ , *and*

$$1005 \quad \|h_0 - h_\theta\|_{L_2(X)} \leq \left( 1 + \frac{4\delta\lambda_{\max} \|h_0\|_{L^2(X)}}{\bar{\lambda}_{\min}\gamma_d(\delta)} \right) \frac{\|q_d\|_{L^2(X)}}{1 - \kappa} + \frac{(2\lambda_d + \bar{\lambda}_{\min}) \|h_0\|_{L^2(X)}}{\bar{\lambda}_{\min}\lambda_d} \frac{\mathcal{E}_d(\theta, \delta)}{1 - \kappa}. \quad (16)$$

1006 *Proof.* First, observe that  $\sigma_d(\mathcal{T}_\delta) \geq \lambda_d$  and  $\sigma_1(\mathcal{T}_\delta) \leq (1 + \delta \|r_0\|_{L^2(Z)})$ . Now, recalling Proposition  
1007 5, due to Proposition 7 we can take

$$1008 \quad A = \frac{2\delta\lambda_{\max} \|q_d\|_{L^2(X)}}{\gamma_d(\delta)} + \frac{\mathcal{E}_d(\theta, \delta)}{\lambda_d}$$

1009 But, since Eq. (15) ensures that  $A/\bar{\lambda}_{\min} < 1/2$ , from Proposition 6 we can set

$$1010 \quad B = \frac{4\delta\lambda_{\max} \|q_d\|_{L^2(X)}}{\bar{\lambda}_{\min}\gamma_d(\delta)} + \mathcal{E}_d(\theta, \delta) \left( \frac{1}{\lambda_d} + \frac{2}{\bar{\lambda}_{\min}} \right)$$

1011 and obtain that  $A/\bar{\lambda}_{\min} + B \leq \kappa < 1/2$ . To complete the proof we apply Proposition 8.  $\square$

1026 **Good scenario.** Setting  $\bar{N} = \{1, \dots, d\}$  and  $\delta = 0$  we obtain the control of the approximation  
 1027 error for the SpecIV learning method. That is, equation 16 becomes  
 1028

$$1029 \quad \|h_0 - h_\theta\|_{L_2(X)} \leq \frac{1}{1 - \kappa} \left( \|q_d\|_{L^2(X)} + \frac{3 \|h_0\|_{L^2(X)}}{\lambda_d} \mathcal{E}_d(\theta, \delta) \right), \quad (17)$$

1032 whenever  $\mathcal{E}_d(\theta, \delta) \leq \kappa \lambda_d / 3$ . Here we see that the representation learning error needs to scale as  
 1033  $\mathcal{E}_d(\theta, \delta) \asymp \lambda_d \|q_d\|_{L^2(X)} / \|h_0\|_{L^2(X)}$ , as  $d \rightarrow \infty$ .  
 1034

1035 **Bad scenario.** Let  $\bar{N} = \{k\}$  and assume that  $\|s_1\|_{L^2(X)} = |\langle h_0, v_k \rangle| > \|h_0 - \alpha_k v_k\|_{L^2(X)} = \|q_1\|_{L^2(X)}$ . From Eq. (8), we have that for large enough  $\delta > 0$  the gap  
 1036  $\gamma_1(\delta) = \lambda_k \sqrt{1 + \delta^2 \|s_1\|_{L^2(x)}^2} - 1$  is positive. So, taking  $\delta = 7(1 - \lambda_k) / (\lambda_k \|s_1\|_{L^2(X)})$ , we have  
 1037 that  $\gamma_1(\delta) > \lambda_k \delta \|s_1\|_{L^2(x)} - (1 - \lambda_k) = 6(1 - \lambda_k)$ , and, hence applying Theorem 4 of Appendix B.3),  
 1038 we conclude that  
 1039

$$1041 \quad \|h_0 - h_\theta\|_{L_2(X)} \leq \frac{1}{1 - \kappa} \left( \frac{5 \|h_0\|_{L^2(X)} + \lambda_k^2 \|s_1\|_{L^2(X)}}{\lambda_k^2 \|s_1\|_{L^2(X)}} \|q_1\|_{L^2(X)} + \frac{2 \|h_0\|_{L^2(X)}}{\lambda_k} \mathcal{E}_d(\theta, \delta) \right), \quad (18)$$

1044 whenever  $7 \|q_1\|_{L^2(x)} / \|s_1\|_{L^2(x)} + 3 \mathcal{E}_1(\theta, \omega, \delta) \lambda_k \leq \kappa \lambda_k^2$ . Therefore, whenever  $\|s_1\|_{L^2(X)} \gg \|q_1\|_{L^2(X)}$ , we are able to learn the most dominant part of the structural function with just one  
 1045 feature.  
 1046

## C STATISTICAL ANALYSIS

1051 We recall our estimation procedure.  
 1052

1053 **Estimator:** Given i.i.d. data  $(Y_i, X_i, Z_i)_{i=1}^n$ , we estimate  $h_0$  via the two-stage procedure:  
 1054

$$1055 \quad \hat{C}_{ZX, \theta} = \frac{1}{n} \sum_{i=1}^n \psi_\theta(Z_i) \varphi_\theta(X_i)^\top \in \mathbb{R}^{d \times d}, \quad \hat{g} = \frac{1}{n} \sum_{i=1}^n Y_i \psi_\theta(Z_i) \in \mathbb{R}^d. \quad (19)$$

$$1057 \quad \hat{\beta}_\theta = \hat{C}_{ZX, \theta}^{-1} \hat{g}, \quad \hat{h}_\theta(x) = \varphi_\theta(x)^\top \hat{\beta}_\theta. \quad (20)$$

### C.1 PROOF OF THEOREM 1

1062 We decompose the excess risk as  
 1063

$$1064 \quad \|\hat{h}_\theta - h_0\|_{L_2(X)} \leq \|\hat{h}_\theta - h_\theta\|_{L_2(X)} + \|h_\theta - h_0\|_{L_2(X)}.$$

1065 Proposition 9 provides the control on the estimation error, that is, w.p.a.l.  $1 - \tau$   
 1066

$$1067 \quad \|\hat{h}_\theta - h_\theta\|_{L_2(X)} \leq \frac{c}{c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}} \sqrt{\frac{d}{n}} \sqrt{\sigma_{\text{eff}}^2 + \frac{\rho^2}{n}} \log \frac{4}{\tau}, \quad (21)$$

1069 where  $\sigma_{\text{eff}}^2 := \|h_0 - h_\theta\|_{L^2(X)}^2 + \sigma_U^2$  and  $c > 0$  is an absolute constant.  
 1070

### C.2 PROOF OF AUXILIARY RESULTS

1074 We also recall the definition of sub-Gaussian random variables.  
 1075

1076 **Definition 1** (Sub-Gaussian random vector). *We define the proxy variance  $\bar{\sigma}_{\mathbf{x}}$  of a real-valued ran-  
 1077 dom variable  $\mathbf{x}$ , which controls the tail behavior of  $\mathbf{x}$  via  $\mathbb{P}(|\mathbf{x} - \mathbb{E}[\mathbf{x}]| > t) \leq 2 \exp(-t^2 / \bar{\sigma}_{\mathbf{x}}^2)$ . A  
 1078 random vector  $X \in \mathbb{R}^d$  will be called sub-Gaussian iff, there exists an absolute constant such that,  
 1079 for all  $u \in \mathbb{R}^d$ ,  $\bar{\sigma}_{\langle X, u \rangle} \leq c \|\langle X, u \rangle - \mathbb{E}[\langle X, u \rangle]\|_{L_2(\mathbb{P})}$ .*

1080  
**Proposition 9** (Concentration for Sub-Gaussian Random Variables). *Let Assumptions 2-4 be satisfied. Given  $\tau \in (0, 1)$ , let  $n \geq 16d\rho^2 \log(4d/\tau) c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}^{-2}$ . Then there exists an absolute constant  $c > 0$  such that, with probability at least  $1 - \tau$ ,*

$$1084 \quad \|\hat{h}_\theta - h_\theta\|_{L_2(X)} \leq \frac{c}{c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}} \sqrt{\frac{d}{n}} \sqrt{\sigma_{\text{eff}}^2 + \frac{\rho^2}{n}} \log \frac{4}{\tau}, \quad (22)$$

1087 where  $\sigma_{\text{eff}}^2 := \|h_0 - h_\theta\|_{L^2(X)}^2 + \sigma_U^2$ .

1090 *Proof of Proposition 9.* Let us denote

$$1091 \quad \hat{g} \doteq \hat{\mathbb{E}}_n[Y\psi^\theta(Z)] \quad \text{and} \quad g \doteq \mathbb{E}[Y\psi^\theta(Z)]. \quad (23)$$

1094 We have

$$1095 \quad \|\hat{h}_\theta - h_\theta\|_{L_2(X)} = \left\| C_{X,\theta}^{1/2} (\hat{h}_\theta - h_\theta) \right\|_{\ell_2} \leq \underbrace{\left\| C_{X,\theta}^{1/2} \hat{C}_{ZX,\theta}^{-1} C_{Z,\theta}^{1/2} \right\|}_{A_1} \underbrace{\left\| C_{Z,\theta}^{-1/2} (\hat{g} - \hat{C}_{ZX,\theta} \beta_\theta) \right\|_{\ell_2}}_{A_2}. \quad (24)$$

1100 Lemma 1 below guarantees that  $\mathbb{P}(A_1 \leq 2/c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}) \geq 1 - \tau/2$ . Lemma 2 below guarantees with  
1101 probability at least  $1 - \tau/2$  that

$$1103 \quad A_2 \leq \frac{c}{\sqrt{n}} \sqrt{d\sigma_{\text{eff}}^2 + \frac{d\rho^2}{n}} \log \frac{4}{\tau}.$$

1105 where  $\sigma_{\text{eff}}^2 := \|h_0 - h_\theta\|_{L^2(X)}^2 + \sigma_U^2$ .

1107 An union gives the result with an absolute constant  $c > 0$  possibly different from the previous.

1109  $\square$

1110 **Lemma 1** (Matrix Perturbation Control). *Let Assumptions 2 and 3 be satisfied. Assume in addition  
1112 that*

$$1113 \quad n \geq 16 \frac{d\rho^2 \log(4d/\tau)}{c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}^2}. \quad (25)$$

1115 Then with probability at least  $1 - \tau/2$ ,

$$1117 \quad \left\| C_{X,\theta}^{1/2} \hat{C}_{ZX,\theta}^{-1} C_{Z,\theta}^{1/2} \right\| \leq \frac{2}{c_{\varphi_\theta^{(d)}, \psi_\theta^{(d)}}}.$$

1120 *Proof of Lemma 1.* Define the centered random matrix

$$1122 \quad \eta_i \doteq C_{Z,\theta}^{-1/2} (\psi_\theta(Z_i) \varphi_\theta(X_i)^\top - C_{ZX,\theta} C_{X,\theta}^{-1/2}).$$

1124 We have

$$1125 \quad C_{Z,\theta}^{-1/2} (\hat{C}_{ZX,\theta} - C_{ZX,\theta}) C_{X,\theta}^{-1/2} = \frac{1}{n} \sum_{i=1}^n \eta_i.$$

1128 **Operator norm bound:** By Assumption 2, we have  $\|\eta_i\| \leq d\rho^2 + 1$  almost surely. Indeed

$$1130 \quad \begin{aligned} \|\eta_i\| &= \|C_{Z,\theta}^{-1/2} \psi_\theta(Z_i) \varphi_\theta(X_i)^\top C_{X,\theta}^{-1/2} - C_{Z,\theta}^{-1/2} C_{ZX,\theta} C_{X,\theta}^{-1/2}\| \\ 1131 &\leq \|C_{Z,\theta}^{-1/2} \psi_\theta(Z_i)\|_{\ell_2} \|C_{X,\theta}^{-1/2} \varphi_\theta(X_i)\|_{\ell_2} + \|C_{Z,\theta}^{-1/2} C_{ZX,\theta} C_{X,\theta}^{-1/2}\| \\ 1132 &\leq \sqrt{d\rho} \cdot \sqrt{d\rho} + 1 \leq d\rho^2 + 1 \quad a.s. \end{aligned}$$

1134

**Covariance bounds:** For the left covariance,

1135

1136

1137

$$\begin{aligned}
 \mathbb{E}[\eta_i \eta_i^*] &= C_{Z,\theta}^{-1/2} \mathbb{E}[(\psi_\theta(Z) \varphi_\theta(X)^\top - C_{ZX,\theta}) C_{X,\theta}^{-1} (\psi_\theta(Z) \varphi_\theta(X)^\top - C_{ZX,\theta})^*] C_{Z,\theta}^{-1/2} \\
 &= C_{Z,\theta}^{-1/2} \mathbb{E}[\psi_\theta(Z) \varphi_\theta(X)^\top C_{X,\theta}^{-1} \varphi_\theta(X) \psi_\theta(Z)^\top - C_{ZX,\theta} C_{X,\theta}^{-1} C_{ZX,\theta}^*] C_{Z,\theta}^{-1/2} \\
 &\leq C_{Z,\theta}^{-1/2} \mathbb{E}[\psi_\theta(Z) \varphi_\theta(X)^\top C_{X,\theta}^{-1} \varphi_\theta(X) \psi_\theta(Z)^\top] C_{Z,\theta}^{-1/2} \\
 &= C_{Z,\theta}^{-1/2} \mathbb{E}[\psi_\theta(Z) \psi_\theta(Z)^\top \varphi_\theta(X)^\top C_{X,\theta}^{-1} \varphi_\theta(X)] C_{Z,\theta}^{-1/2} \\
 &\leq d\rho^2 \cdot C_{Z,\theta}^{-1/2} C_{Z,\theta} C_{Z,\theta}^{-1/2} = d\rho^2 I_d.
 \end{aligned}$$

1144

Similarly,  $\mathbb{E}[\eta_i^* \eta_i] \leq d\rho^2 I_d$ .

1145

Thus  $\sigma_L^2 = \sigma_R^2 \leq nd\rho^2$ . Applying Theorem 5 gives w.p.a.l.  $1 - \tau/2$

1146

1147

$$\|C_{Z,\theta}^{-1/2} (\widehat{C}_{ZX,\theta} - C_{ZX,\theta}) C_{X,\theta}^{-1/2}\| \leq \sqrt{\frac{2d\rho^2 \log(4d\tau^{-1})}{n}} + \frac{1 + d\rho^2 \log(4d\tau^{-1})}{3} =: \Delta_n(\tau). \quad (26)$$

1148

1149

1150

1151

Using Weyl's inequality (Proposition 3) and Assumption 3, we deduce that the smallest singular of  $C_{Z,\theta}^{-1/2} \widehat{C}_{ZX,\theta} C_{X,\theta}^{-1/2}$  satisfies

1152

1153

1154

$$\sigma_{\min}(C_{Z,\theta}^{-1/2} \widehat{C}_{ZX,\theta} C_{X,\theta}^{-1/2}) \geq c_{\varphi_\theta^{(a)}, \psi_\theta^{(a)}} - \Delta_n(\tau) \geq c_{\varphi_\theta^{(a)}, \psi_\theta^{(a)}}/2 > 0,$$

1155

1156

where the last inequality follows from sample complexity condition Eq. (25). Since  $\|A\| =$

1157

1158

$\sigma_{\min}^{-1}(A^{-1})$ , we get the result.  $\square$

1159

1160

**Lemma 2** (Vector Concentration with Sub-Gaussian variables). *Let the assumptions of Theorem 1 be satisfied. Define*

1161

1162

$$\xi := (Y - h_\theta(X)) C_{Z,\theta}^{-1/2} \psi_\theta(Z).$$

1163

Then there exists an absolute constant  $c > 0$  such that, with probability at least  $1 - \tau/2$ ,

1164

1165

1166

$$\left\| \frac{1}{n} \sum_{i=1}^n \xi_i - \mathbb{E}[\xi] \right\|_{\ell_2} \leq c \sqrt{\frac{d}{n}} \sqrt{\sigma_{\text{eff}}^2 + \frac{\rho^2}{n}} \log \frac{4}{\tau},$$

1167

1168

where  $\sigma_{\text{eff}}^2 := \|h_0 - h_\theta\|_{L^2(X)}^2 + \sigma_U^2$ .

1169

1170

1171

1172

*Proof.* We need to check the moment condition of Proposition 10 with  $A = \xi$ . This condition is obviously satisfied for  $p = 2$  with  $\sigma^2 = \mathbb{E}\|A\|_{\ell_2}^2$ . Next for any  $p \geq 3$ , the Cauchy-Schwarz inequality and the equivalence of moment property give

1173

1174

1175

$$\mathbb{E}\|\xi\|_{\ell_2}^m \leq (\mathbb{E}\|\xi\|_{\ell_2}^4)^{1/2} \left( \mathbb{E}\|\xi\|_{\ell_2}^{2(m-2)} \right)^{1/2} \lesssim \mathbb{E}[\|\xi\|_{\ell_2}^2] \left( \mathbb{E}\|\xi\|_{\ell_2}^{2(m-2)} \right)^{1/2}.$$

1176

1177

For the second order moment, using Cauchy-Schwarz and the equivalence of moments for sub-Gaussian random variables:

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

$$\begin{aligned}
 \mathbb{E}[\|\xi\|_{\ell_2}^2] &= \mathbb{E}[(h_0(X) - h_\theta(X) + U)^2 \|C_{Z,\theta}^{-1/2} \psi_\theta(Z)\|_{\ell_2}^2] \\
 &\leq \mathbb{E}^{1/2} [(h_0(X) - h_\theta(X) + U)^4] \mathbb{E}^{1/2} [\|C_{Z,\theta}^{-1/2} \psi_\theta(Z)\|_{\ell_2}^4] \\
 &\leq 32 \mathbb{E}_Z [\|C_{Z,\theta}^{-1/2} \psi_\theta(Z)\|_{\ell_2}^2] \sigma_{\text{eff}}^2 = 32d \sigma_{\text{eff}}^2.
 \end{aligned} \quad (27)$$

For higher order moments, we apply Lemma 3 with  $v = Y - h_\theta(X)$  and  $V = C_{Z,\theta}^{-1/2} \psi_\theta(Z)$ . Hence we get, for any  $p \geq 3$ ,

$$\mathbb{E}^{1/2} [\|\xi\|_{\ell_2}^{2(p-2)}] \leq \sqrt{2} \bar{\sigma}_{Y-h_\theta(X)}^{p-2} (\rho\sqrt{d})^{p-2} \sqrt{(p-2)!} \quad (28)$$

1188 By Definition 1 of sub-Gaussian distributions, there exists an absolute constant  $c > 0$  such that  
 1189

$$1190 \bar{\sigma}_{Y-h_\theta(X)}^2 \leq 2c (\text{Var}(h_0(X) - h_\theta(X)) + \text{Var}(U)) \leq 2c \sigma_{\text{eff}}^2.$$

1192 We apply Proposition 10 to get w.p.a.l.  $1 - \tau/2$   
 1193

$$1194 \left\| \frac{1}{n} \sum_{i \in [n]} \xi_i - \mathbb{E}[\xi] \right\|_{\ell_2} \leq c \sqrt{\frac{d}{n}} \sqrt{\sigma_{\text{eff}}^2 + \frac{\rho^2}{n}} \log \frac{4}{\tau}. \quad (29)$$

1198 where  $c > 0$  is absolute constant possibly different from the previous display.  
 1199

□

1200 **Lemma 3** (Moment Bound for Sub-Gaussian Product). *Let  $Z = vV$  where  $v$  is a real-valued sub-Gaussian random variable with proxy variance  $\bar{\sigma}_v$ , and  $V$  is a  $d$ -dimensional random vector with  $\|V\|_{\ell_2} \leq \rho\sqrt{d}$  almost surely. Then for any integer  $p \geq 3$ , we have*

$$1206 \mathbb{E}^{1/2}[|v|^{2(p-2)} \|V\|_{\ell_2}^{2(p-2)}] \leq \sqrt{2} \bar{\sigma}_v^{p-2} (\rho\sqrt{d})^{p-2} \sqrt{(p-2)!} \quad (30)$$

1209 *Proof.* Since  $\|V\|_{\ell_2} \leq \rho\sqrt{d}$  almost surely, we have

$$1211 \mathbb{E}[|v|^{2(p-2)} \|V\|_{\ell_2}^{2(p-2)}] \leq (\rho\sqrt{d})^{2(p-2)} \mathbb{E}[|v|^{2(p-2)}].$$

1213 We will use the tail characterization of sub-Gaussian random variables and the integral representation  
 1214 of moments to bound  $\mathbb{E}[|v|^{2(p-2)}]$ .  
 1215

1216 Since  $v$  is sub-Gaussian with proxy variance  $\bar{\sigma}_v$ , there exists an absolute constant  $c > 0$  such that  
 1217 for all  $t \geq 0$ :

$$1219 \mathbb{P}(|v| \geq t) \leq 2 \exp\left(-\frac{t^2}{\bar{\sigma}_v^2}\right). \quad (31)$$

1221 Set  $m = 2(p-2)$ . Using the integral representation of moments:

$$1224 \mathbb{E}[|v|^{2(p-2)}] = \int_0^\infty m t^{m-1} \mathbb{P}(|v| \geq t) dt \leq 2 \int_0^\infty m t^{m-1} \exp\left(-\frac{t^2}{\bar{\sigma}_v^2}\right) dt. \quad (32)$$

1226 Integration by parts gives

$$1229 \int_0^\infty m t^{m-1} \exp\left(-\frac{t^2}{\bar{\sigma}_v^2}\right) dt = \frac{m}{2} \bar{\sigma}_v^m \Gamma\left(\frac{m}{2}\right)$$

1231 where  $\Gamma$  is the Gamma function.  
 1232

1233 Since  $m = 2(p-2)$ , we have  $\Gamma\left(\frac{m}{2}\right) = (p-3)!$  and consequently  
 1234

$$1235 \int_0^\infty m t^{m-1} \exp\left(-\frac{t^2}{\bar{\sigma}_v^2}\right) dt = (p-2)!$$

1238 Thus we get:

$$1239 \mathbb{E}^{1/2}[|v|^{2(p-2)} \|V\|_{\ell_2}^{2(p-2)}] \leq \sqrt{2} (\bar{\sigma}_v \rho \sqrt{d})^{(p-2)} \sqrt{(p-2)!} \quad (33)$$

□

1242 C.3 CONCENTRATION INEQUALITIES  
12431244 We present here some well-known concentration inequalities for operators that we use in our analy-  
1245 sis.  
12461247 We recall first a version of Bernstein inequality, due to Pinelis and Sakhnenko, for random variables  
1248 in a separable Hilbert space, see (Caponnetto & De Vito, 2007, Proposition 2).  
12491250 **Proposition 10.** *Let  $A_i, i \in [n]$  be i.i.d copies of a random variable  $A$  in a separable Hilbert  
1251 space with norm  $\|\cdot\|$ . If there exist constants  $\Lambda > 0$  and  $\sigma > 0$  such that for every  $m \geq 2$ ,  
1252  $\mathbb{E}\|A\|^m \leq \frac{1}{2}m!\Lambda^{m-2}\sigma^2$ , then with probability at least  $1 - \delta$ ,*

1253 
$$\left\| \frac{1}{n} \sum_{i \in [n]} A_i - \mathbb{E}A \right\| \leq \frac{4\sqrt{2}}{\sqrt{n}} \log \frac{2}{\delta} \sqrt{\sigma^2 + \frac{\Lambda^2}{n}}. \quad (34)$$
  
1254  
1255

1256 The following result is call the noncommutative Bernstein inequality. It was first derived by  
1257 Ahlswede & Winter (2002). The following version can be found in Tropp (2015).  
12581259 **Theorem 5** (Matrix Bernstein Inequality, Tropp (2015)). *Let  $\{A_k\}_{k=1}^n$  be independent random  
1260 matrices of size  $d_1 \times d_2$  with  $\mathbb{E}[A_k] = 0$ . Assume that  $\|A_k\| \leq R$  almost surely for all  $k$ . Define the  
1261 matrix variance parameters*

1262 
$$\sigma_L^2 := \left\| \sum_{k=1}^n \mathbb{E}[A_k A_k^*] \right\|, \quad \sigma_R^2 := \left\| \sum_{k=1}^n \mathbb{E}[A_k^* A_k] \right\|. \quad (35)$$
  
1263  
1264

Then for any  $t \geq 0$ ,

1265 
$$\mathbb{P} \left\{ \left\| \sum_{k=1}^n A_k \right\| \geq t \right\} \leq (d_1 + d_2) \exp \left( \frac{-t^2/2}{\max\{\sigma_L^2, \sigma_R^2\} + Rt/3} \right). \quad (36)$$
  
1266  
1267

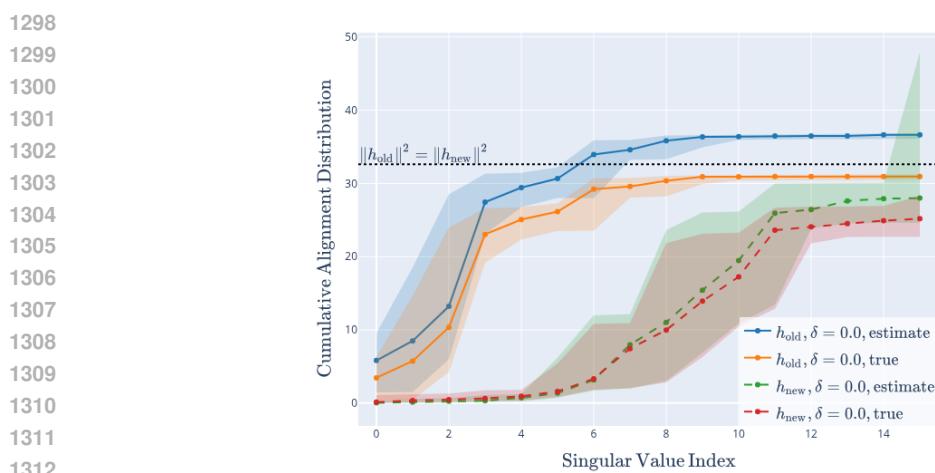
1268 A more convenient and equivalent of Eq. (36) is, for any  $\tau \in (0, 1)$ , w.p.a.l.  $1 - \tau$ 

1269 
$$\left\| \frac{1}{n} \sum_{k=1}^n A_k \right\| \leq \sqrt{\frac{2 \max\{\sigma_L^2, \sigma_R^2\} \log(\frac{d_1+d_2}{\tau})}{n^2}} + \frac{R \log(\frac{d_1+d_2}{\tau})}{3n}. \quad (37)$$
  
1270  
1271  
1272

1273 D EXPERIMENTAL DETAILS  
12741275 The code needed to reproduce all figures in this work can be found at  
1276 <https://anonymous.4open.science/r/IV-55DE/README.md>.  
12771278 D.1 STRUCTURAL FUNCTIONS AND ALIGNMENT IN DSPRITES  
12791280 The dSprites structural function  $h_0 = h_{\text{old}}$ , as used in, e.g., Xu et al. (2024) is not a new idea.  
1281 However, it differs from an alternative on which SpecIV(Sun et al., 2025) and DFIV(Xu et al.,  
1282 2021) were originally evaluated. That one takes the form,  
1283

1284 
$$h_0(x) = (\|BX\|^2 - 5000)/1000$$
  
1285

1286 with  $B \in \mathbb{R}^{10 \times 4096}$  consisting of i.i.d. Uniform([0, 1]) entries. This function evaluates the squared  
1287 norm of 10 random linear measurements of the image and returns a linear transformation of it.  
1288 Since the entries of  $B$  are i.i.d., this  $h_0$  has no clear dependence on the values of  $Z$ . To see that  
1289 it should be extremely difficult to recover  $h_0$  from the relation  $\mathcal{T}h_0 = r_0$ , note that moving the  
1290 sprite vertically, while keeping the orientation, scale and  $x$ -position constant (i.e. not changing  
1291 the instrumental variable) can lead to different values of  $h_0$ . This does not quite imply that  $h_0$   
1292 has a non-trivial projection onto the kernel of  $X$  because the distribution of the images  $X$  is not  
1293 vertical-shift-invariant. But it does suggest that the instrument  $Z$  is essentially uninformative about  
1294 an important property of the image needed to recover  $h_0$ . One can reliably learn part of  $h_0$  due its  
1295 monotonicity in the sprite's scale but beyond this, any dependence on  $x$ -position and orientation is  
1296 likely to be extremely irregular and not representative of real-life applications of IV regression. For  
1297 these reasons we choose not to utilise this benchmark.  
1298

1296 D.2 SPECTRAL ALIGNMENT IN DSPRITES  
12971314 Figure 5: Distributions of cumulative alignment estimates and true values  $\|\Pi_{\hat{v}^{(i)}} h_0\|^2$  for increasing  
1315  $i$ , evaluated on separately fitted models (with identical parameters) for  $h_0 = h_{\text{old}}, h_{\text{new}}$  at  $\delta = 0$ .

1317 **Standard dSprites is well-aligned.** Intuitively, most of the variability in the image should be  
1318 explained by the heart’s position and scale since these quantities determine where the non-zero  
1319 pixels are and how many of them there are in total. By contrast, the rotation angle only explains the  
1320 location of non-zero pixels on the boundary of the broad region where the sprite is located (since  
1321 most of the sprite’s area is preserved by rotations around its centre). Therefore, structural functions  
1322 that mostly depend on scale and  $x$ -position should intuitively be easier to learn than those that are  
1323 sensitive to rotation. Since  $A$  in the dSprites structural function “measures” distance of the non-zero  
1324 pixels from the vertical central bar in the image, it should be mostly sensitive to  $x$ -positions and the  
1325 number of non-zero points to sum over.

1326 Moreover, following [Meunier et al. \(2025\)](#), we can compute the empirical-distribution-based singular  
1327 value decomposition of a fitted  $\hat{\mathcal{T}}_d$  for  $\delta = 0$  (which we just treat as an operator  $L^2(X) \rightarrow$   
1328  $L^2(Z)$ ). That is, we compute features  $\hat{u}_i, \hat{v}_i$  and positive real numbers  $\hat{\sigma}_i$  such that,

$$1329 \hat{\mathcal{T}}_d = \sum_{i=1}^d \hat{\sigma}_i \hat{u}_i \otimes \hat{v}_i.$$

1333 The feature functions  $(u_{1:d}), (v_{1:d})$  are orthonormal systems with respect to the empirical distributions  
1334 of  $Z, X$  based on the samples used for the SVD estimation. If  $\|\hat{\mathcal{T}}_d - \mathcal{T}_d\|$  is sufficiently small,  
1335 we are guaranteed ([Meunier et al., 2025](#)) that the projections onto singular features  $\hat{v}_i$  are close to the  
1336 projections onto the singular features of the true truncated conditional mean operator  $\mathcal{T}_d$ .

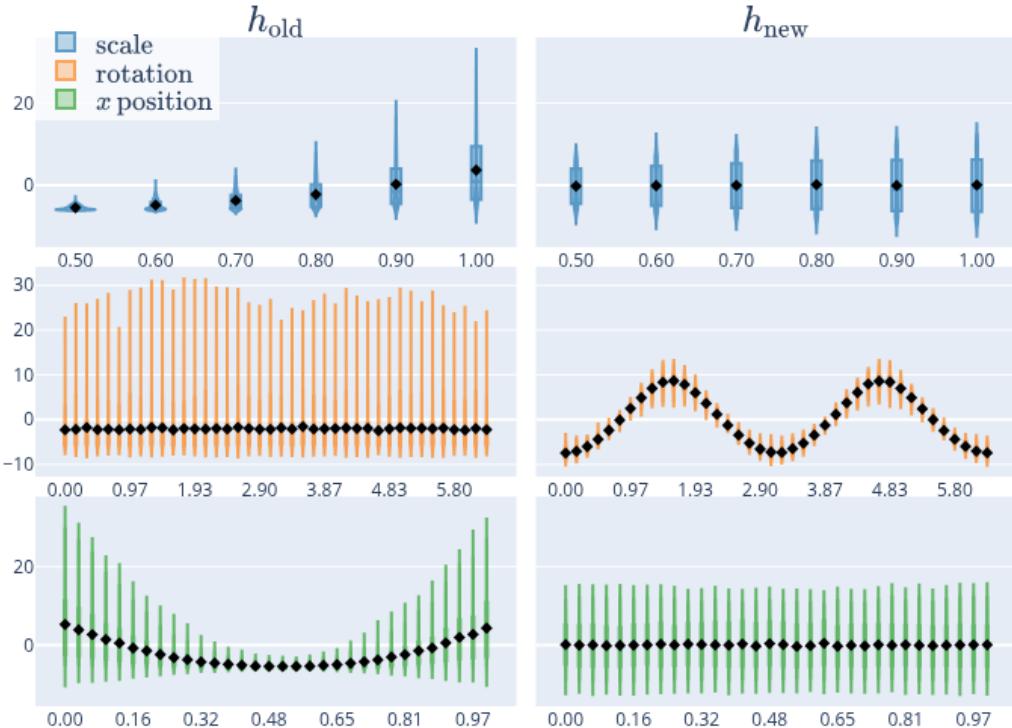
1337 We compute the individual-feature projection lengths  $|\langle \hat{v}_i, h_0 \rangle|$  to conclude that most of  $h_{\text{old}}$  is supported  
1338 on the leading singular functions whose singular values are close to 1. Moreover, we compare these true  
1339 alignment values to their estimates that are not based on  $h_0$  ([Meunier et al., 2025](#)). This is to ensure that spectral  
1340 (mis-)alignment in the dSprites setting can also be detected in a real-life setting where the structural function is not available. Denote the projection onto the leading  $i$  singular  
1341  $X$ -features of  $\hat{\mathcal{T}}_d$  with  $\Pi_{\hat{v}^{(i)}}$ . As seen in Figure 5, both the estimates of the squared projection length  
1342 onto the leading  $i$  features of  $\hat{\mathcal{T}}_d$  and the true values  $\|\Pi_{\hat{v}^{(i)}} h_0\|^2$  are in agreement with one another  
1343 and indicate that  $h_{\text{old}}$  lies in the top of the spectrum  $\mathcal{T}$ .

1346 **A more difficult structural function.** Inspired by the discussion above, we would like to evaluate  
1347 our methods in a more challenging setting. An intuitive method of obtaining such a benchmark is  
1348 constructing a structural function which is most sensitive to the rotation of the sprite as opposed to its  
1349 position or scale. In order to work with shapes whose orientation is easier to estimate from the image,

1350 we replace hearts with ellipses in our benchmark. For an image  $X$  of an ellipse, let  $\tilde{X}$  be the result  
 1351 of convolving it with a smoothing gaussian kernel with a small bandwidth of around 4 pixels. This is  
 1352 done in order to decrease our method's sensitivity to noise. Then let  $x_{\max,i} \doteq \max_{j \in \{1, \dots, 64\}} \tilde{X}_{ij}$   
 1353 be the maximum of  $\tilde{X}$  along its vertical bars, and  $y_{\max,i} \doteq \max_{j \in \{1, \dots, 64\}} \tilde{X}_{ij}$  be the correspond-  
 1354 ing maximum over horizontal bars. Then, one expects the norms of  $x_{\max}$  and  $y_{\max}$  to be roughly  
 1355 proportional to the length of the ellipses projection onto the horizontal and vertical axes of the image.  
 1356 Hence, taking

$$h_{\text{new}} \doteq a \cdot (\|x_{\max}\|_{\ell_2}/\|y_{\max}\|_{\ell_2} - b),$$

1357 one should obtain a function which depends on the ellipse's orientation and is insensitive to its scale  
 1358 or position. The scalars  $a, b$  are chosen in order to match the first two moments of the original  
 1359 structural function  $h_{\text{old}}$ . This is done in order to not artificially change the downstream problem's  
 1360 difficulty by making the norm of the signal relative to noise different.

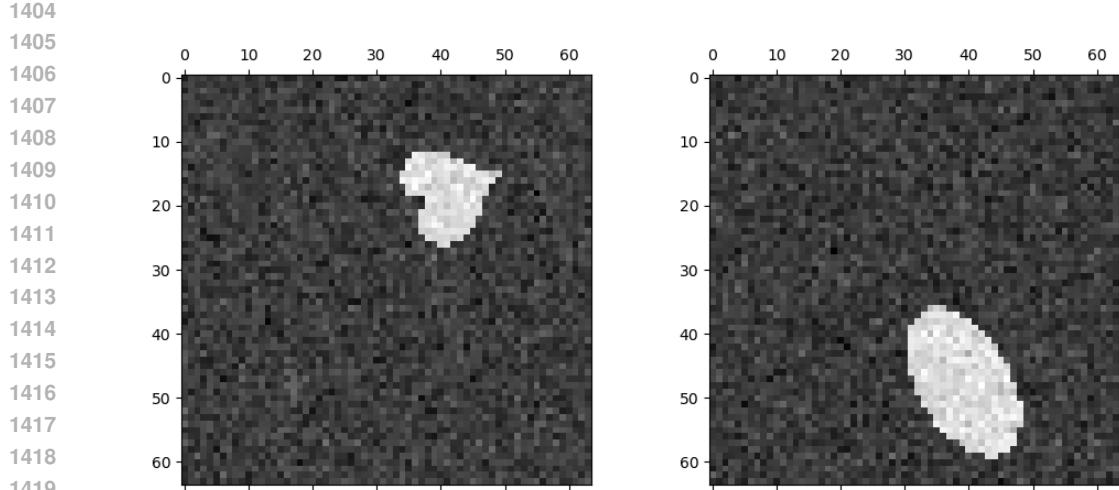


1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384  
 1385  
 1386  
 1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403  
 Figure 6: Comparison of how the distributions of  $h_{\text{old}}$  and  $h_{\text{new}}$  vary with each component of the  
 instrument  $Z$  (scale, orientation or  $x$  position). The values of each component of  $Z$  in dSprites  
 are quantised. The  $x$ -axis positions in the figure correspond to those values. For each value of a  
 component of  $Z$ , we display the distribution of the values of  $h_0 = h_{\text{old}}, h_{\text{new}}$  evaluated on images  
 where the component takes that value. The marked values are the means of each bin.

As seen in Figure 6, while  $h_{\text{old}}$  has a clear dependence on the sprite position and orientation,  $h_{\text{new}}$  is only visibly sinusoidal in its orientation and insensitive to the latter two. Figure 5 confirms that data generated using  $h_{\text{new}}$  should be considerably more challenging for spectral-feature-based IV regression, since its projection onto the leading singular functions is close to zero for all models with  $\delta = 0$  that we have fitted. It is supported further in the spectrum, and in fact  $\|\Pi_{\hat{v}(d)} h_{\text{new}}\|^2$  is far from  $\|h_{\text{new}}\|^2$ . This means that not even all of the learned features span  $h_{\text{new}}$ .

### D.3 SYNTHETIC DATA MODELS

We train our models using the same architecture as (Meunier et al., 2025), which is described in Table 1. Notably, the first layer of this network utilises the  $\sin(x)^2 + x$  activation proposed by Ziyin et al. (2020), which enables it to learn the oscillatory basis functions more reliably. To make

Figure 7: Examples of sprite images on which  $h_{\text{old}}$  (left) and  $h_{\text{new}}$  (right) are evaluated.

the improvements in the alignment of leading features with  $\delta$  clearer, we learn 10  $Z, X$  features on synthetic datasets with  $d = 11$ . The models are trained on 50000 ( $Z, X, Y$ ) samples using the Adam algorithm.

| Layer | Configuration                      |
|-------|------------------------------------|
| 1     | Input: 1                           |
| 2     | FC(1,50), $x \mapsto x + \sin^2 x$ |
| 3     | FC(50, 50), GeLU                   |
| 4     | FC(50, 10)                         |

Table 1:  $Z, X$  feature networks for synthetic data

Evaluation of the benefits of using a positive  $\delta$  on a bigger range of  $c_\sigma$  values than in the main body of the work can be found in Figure 8

#### D.4 SPECTRAL LEARNING MODELS FOR DSPRITES

For learning spectral features we utilise nearly the same models as Sun et al. (2025). The only difference is replacing ReLU activations with GeLU which we found to lead to slightly easier training. “BN” in Table 2 refers to Batch Normalisation (Ioffe & Szegedy, 2015). The models are trained on 25000 ( $Z, X, Y$ ) samples and optimised with the Adam algorithm.

We observed that feature models utilising 32 features, as originally proposed in Sun et al. (2025), were very prone to overfitting, often before this became apparent in the observed loss, making early stopping difficult to implement. Hence, we trained the models with 16 features instead. This led to better performance across the board for  $h_{\text{old}}$ . In  $h_{\text{new}}$ , vanilla SpecIV, trained with 32 features attained a smaller loss than it did for 16. However, the performance was still significantly below that of DFIV or spectral learning with a non-zero  $\delta$ . For all the “optimal” values of  $\delta$  (between 0.1 and 1.0) we observed benefits from using 16 features over 32.

#### D.5 DFIV MODELS

For the comparison to DFIV, which is the only viable competitor to SpecIV, we utilise the same architecture as proposed in the original work Xu et al. (2021). “SN” in Table 3 refers to spectral

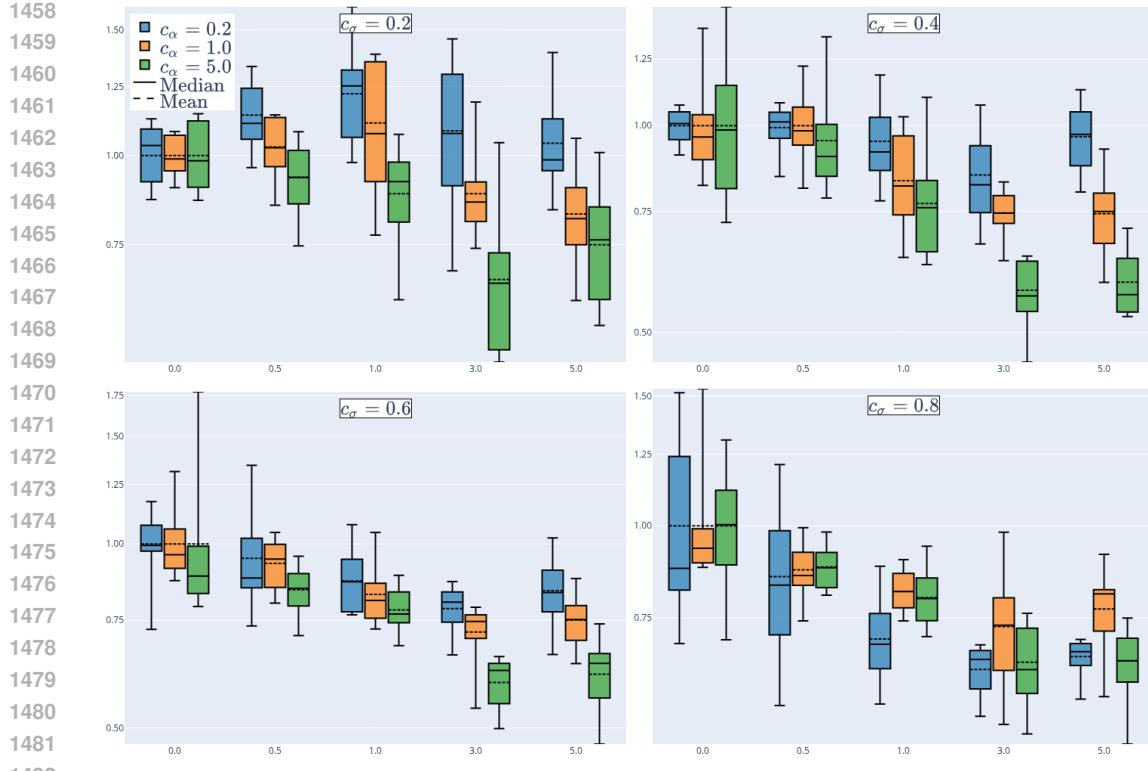


Figure 8: Distributions of relative IV regression MSEs for the synthetic example with  $\delta \in \{0, 0.5, 1.0, 3.0, 5.0\}$ .

| Layer | Configuration           | Layer | Configuration         |
|-------|-------------------------|-------|-----------------------|
| 1     | Input: 4096             | 1     | Input: 3              |
| 2     | FC(4096,1024), BN, GeLU | 2     | FC(3,256), BN, GeLU   |
| 3     | FC(1024,512), BN, GeLU  | 3     | FC(256,128), BN, GeLU |
| 4     | FC(512,128), BN, GeLU   | 4     | FC(128,128), BN, GeLU |
| 5     | FC(128,16)              | 5     | FC(128,16)            |

$X$  - features

$Z$  - features

Table 2: Architectures of spectral learning networks for dSprites datasets

normalisation proposed by Miyato et al. (2018) and ‘‘BN’’ is Batch Normalisation. The models are trained on 25000 ( $Z, X, Y$ ) samples and optimised with the Adam algorithm.

Since we decided to decrease the number of features employed by spectral learning, relative to the standard architecture used in the literature, we also investigated whether doing so leads to better performance in DFIV. The opposite was observed and hence we retain the original models.

## D.6 COMPARISON TO KIV

Since Kernel IV (KIV) proposed by Singh et al. (2019) is a very popular and easily applicable method, we also include it in our benchmarks. We evaluated it using the Gaussian kernel with a bandwidth proportional to  $m\sqrt{d}$  where  $m$  is the median distance between pairs samples on which the kernel is evaluated, and  $d$  is the dimension of the samples (i.e. 3 for  $Z$  and 4096 for  $X$ ).

| Layer | Configuration              | Layer | Configuration                 |
|-------|----------------------------|-------|-------------------------------|
| 1     | Input: 4096                | 1     | Input: 3                      |
| 2     | FC(4096,1024), SN, ReLU    | 2     | FC(3,256), SpectralNorm, ReLU |
| 3     | FC(1024,512), SN, ReLU, BN | 3     | FC(256,128), SN, ReLU, BN     |
| 4     | FC(512,128), SN, ReLU      | 4     | FC(128,128), SN, ReLU, BN     |
| 5     | FC(128,32), SN, BN, Tanh   | 5     | FC(128,32), BN, ReLU          |

Table 3: Architectures of DFIV networks for dSprites datasets

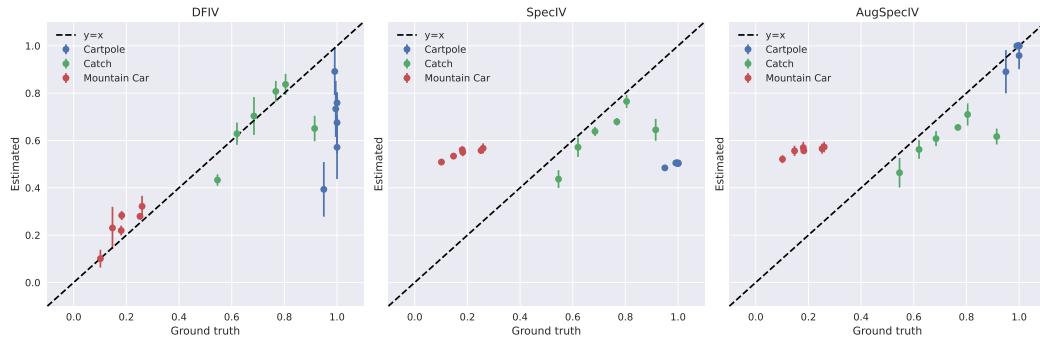


Figure 9: Scatter plot of estimated policy values vs. ground truth.

## D.7 OPE EXPERIMENT PROTOCOL AND RESULTS

**Hyperparameter optimization.** For each method and task, we randomly sample 100 hyperparameter combinations from the grids in Tables 4 and 5, and select the configuration achieving the lowest stage-2 mean squared error on the corresponding task with  $p = 0.2$ . Orthonormal regularization is applied to both spectral methods, while the  $\delta$  parameter is specific to AugSpecIV, i.e.,  $\delta = 0$  for SpecIV and is tuned as any other hyperparameter for AugSpecIV. With the chosen hyperparameters, we run each method five times across all tasks and noise levels and report the mean and standard deviation of the estimated policy values.

| Hyperparameter             | Values                                                            |
|----------------------------|-------------------------------------------------------------------|
| Training Steps             | $10^5$                                                            |
| Batch Size                 | 2048                                                              |
| Stage-1 reg.               | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Stage-2 reg.               | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Value reg.                 | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Instrumental reg.          | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Value learning rate        | $\{10^{-5}, 3 \cdot 10^{-5}, 10^{-4}, 3 \cdot 10^{-4}, 10^{-3}\}$ |
| Instrumental learning rate | $\{10^{-5}, 3 \cdot 10^{-5}, 10^{-4}, 3 \cdot 10^{-4}, 10^{-3}\}$ |
| $X$ net layer sizes        | (50, 50)                                                          |
| $Z$ net layer sizes        | $\{(50, 50), (100, 100), (150, 150)\}$                            |

Table 4: DFIV hyperparameters.

#### D.7.1 OPE CONTEXT: POLICIES AND DATA

In OPE, the “offline” constraint is critical:

- We cannot interact with the environment. We cannot take a state  $s$  and an action  $a \sim \pi$  to observe a new transition  $(s, a, r, s')$ .

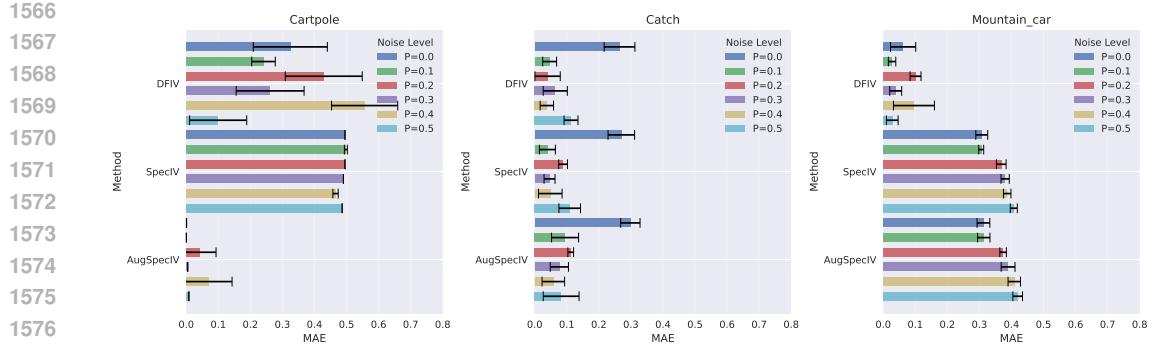


Figure 10: Box plot of mean absolute error (MAE) between policy value and ground-truth.

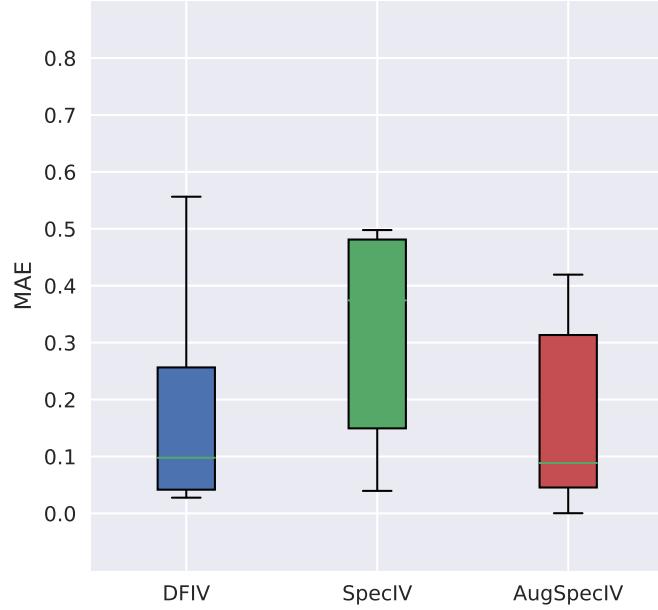


Figure 11: Distribution of MAE across NPIV methods.

- We can compute with  $\pi$ . Since  $\pi$  is a known policy (e.g., a function in our code), we can sample actions  $a' \sim \pi(a'|s')$  for any state  $s'$  that we observe in our dataset.

#### D.7.2 NPIV FORMULATION OF OPE AND THE COMPACTNESS PROBLEM

In OPE, to estimate the expected return of a policy  $\pi$ , a common and effective approach consists of first estimating the Q-function  $Q_\pi$ , and then averaging over the initial state distribution. While early methods like Least Squares Temporal Difference (LSTD; Bradtko & Barto, 1996) pioneered this direction using linear function approximation, modern approaches increasingly leverage NPIV regression to handle general function approximation.

**Related work on OPE.** We briefly discuss existing methods for OPE and refer to Jiang & Xie (2025) and references therein for additional details. Early approaches such as LSTD were restricted

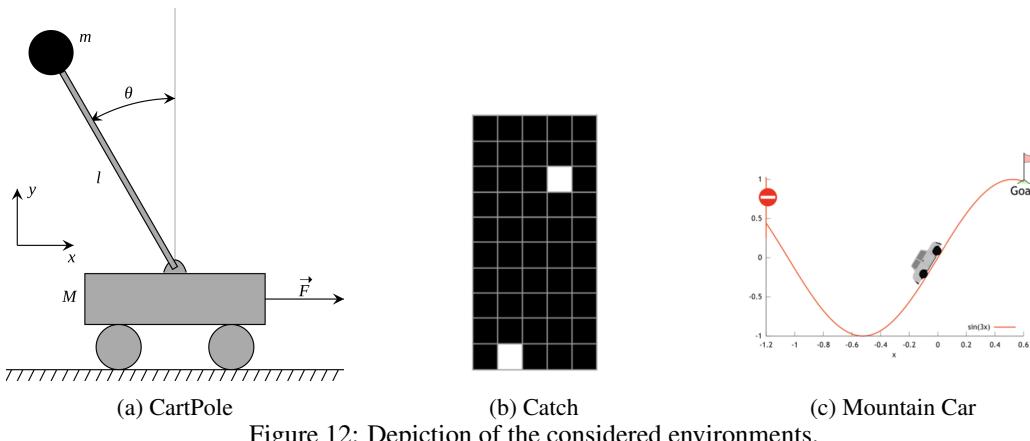


Figure 12: Depiction of the considered environments.

| Hyperparameter      | Values                                                            |
|---------------------|-------------------------------------------------------------------|
| Training Steps      | $10^4$                                                            |
| Batch Size          | 2048                                                              |
| Stage-1 reg.        | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Stage-2 reg.        | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Orthonormal reg.    | $\{10^{-8}, 10^{-6}, 10^{-4}, 10^{-2}\}$                          |
| Learning rate       | $\{10^{-5}, 3 \cdot 10^{-5}, 10^{-4}, 3 \cdot 10^{-4}, 10^{-3}\}$ |
| $X$ net layer sizes | (50, 50)                                                          |
| $Z$ net layer sizes | $\{(50, 50), (100, 100), (150, 150)\}$                            |
| $\delta$            | $\{10^{-3}, 10^{-2}, 10^{-1}, 1\}$                                |

Table 5: SpecIV and AugSpecIV hyperparameters. The neural architectures are the same as those of DFIV described in (Chen et al., 2022), except for the usage of GELU activations.

1674 to linear function approximation. For general function approximation, the dominant approach has  
 1675 historically been Fitted-Q Evaluation (FQE), which iteratively solves a regression problem to mini-  
 1676 mize the Bellman residual. Recent advances have highlighted that such an approach requires strong  
 1677 assumptions to succeed, namely: having access to a sufficiently expressive function class (e.g., that  
 1678 is realizable and Bellman complete) and using data with good coverage. NPIV formulations offer an  
 1679 alternative perspective to these regression-based methods. Rather than minimizing a squared error  
 1680 directly, NPIV approaches Hu et al. (2024) frame the Bellman equation as a conditional moment  
 1681 restriction as shown below.

1682

1683 **Q function and NPIV.** Let  $(\mathcal{S}, \mathcal{A}, P, R, \mu_0)$  be a Markov Decision Process (MDP) with state space  
 1684  $\mathcal{S}$ , action space  $\mathcal{A}$ , transition kernel  $P(s' | s, a)$ , reward distribution  $P_{rew}(r | s, a)$ , and initial  
 1685 distribution  $\mu_0$ . We denote by  $R$  the random reward variable such that its distribution given any  
 1686 action-pair  $(s, a)$  is  $P_{rew}(\cdot | s, a)$ .

1687

1688 Given a target policy  $\pi$  and discount factor  $\gamma \in (0, 1)$ , its value is defined as:

$$1689 \rho(\pi) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^t R_t \right] = \mathbb{E}_{S_0 \sim \mu_0, A_0 \sim \pi(S_0)} [Q_{\pi}(S_0, A_0)], \quad (38)$$

1692 where  $R_t \sim P_{rew}(\cdot | S_t, A_t)$ ,  $(S_t, A_t)$  follows  $\pi$  and  $P$ , and  $Q_{\pi}$  is the state-action value function  
 1693 (i.e. Q-function), given by

$$1694 Q_{\pi}(s, a) = \mathbb{E} \left[ \sum_{t=0}^{\infty} \gamma^t R_t | S_0 = s, A_0 = a \right]. \quad (39)$$

1695 The  $Q$ -function,  $Q_{\pi}$ , is the unique fixed point of the Bellman equation:

$$1696 Q_{\pi}(s, a) = \mathbb{E}_{R \sim P_{rew}(\cdot | s, a)} [R] + \gamma \mathbb{E}_{S \sim P(\cdot | s, a), A' \sim \pi(\cdot | S')} [Q_{\pi}(S', A')] \quad (40)$$

1697 We first show that we can rewrite this Bellman Equation as an NPIV problem of the form Eq. (2).  
 1698 A given policy  $\pi$  induces an occupancy measure  $\mu_{\pi}$  on the state-action space  $\mathcal{S} \times \mathcal{A}$ . We then take  
 1699  $X = (S, A, S', A')$  equipped with the measure such that  $(S, A) \sim \mu_{\pi}$ ,  $S' \sim P(\cdot | S, A)$ ,  $A' \sim$   
 1700  $\pi(S')$ ,  $Z = (S, A)$  equipped with the measure such that  $(S, A) \sim \mu_{\pi}$  and finally  $Y = R$ . We take  
 1701  $\mathcal{T}$  as defined in the main body so that Eq. (40) can be re-written as

$$1702 \mathcal{T}h_{\pi}(S, A) = \mathbb{E}[R|S, A] \quad \text{i.e.} \quad \mathcal{T}h_{\pi}(Z) = \mathbb{E}[Y|Z],$$

1703 where  $h_{\pi}(X) = h_{\pi}(S, A, S', A') = Q_{\pi}(S, A) - \gamma Q_{\pi}(S', A')$ . Note that solving NPIV with respect  
 1704 to  $\mathcal{T}$  allows us to retrieve  $Q_{\pi}$  on the support of  $\mu_{\pi}$ . However instead of using  $\mu_{\pi}$  for which we don't  
 1705 have samples, we can use the logging policy  $\pi_b$  and denote by  $\mu_b$  the induced state-action distribution.  
 1706 We introduce  $\mathcal{T}_b$  as the standard conditional expectation operator but we now equip  $X$  with  $(S, A) \sim \mu_b$ ,  $S' \sim P(\cdot | S, A)$ ,  $A' \sim \pi(S')$  and  $Z$  with  $(S, A) \sim \mu_b$ . The  
 1707 following equation

$$1708 \mathcal{T}_b h_{\pi}(S, A) = \mathbb{E}[R|S, A] \quad \text{i.e.} \quad \mathcal{T}_b h_{\pi}(Z) = \mathbb{E}[Y|Z],$$

1709 allows to identify  $h_{\pi}(X) = h_{\pi}(S, A, S', A') = Q_{\pi}(S, A) - \gamma Q_{\pi}(S', A')$  on the support  $\mu_b$ . Crucially,  
 1710 this identification relies on a coverage assumption (Jiang & Xie, 2025) that states that the  
 1711 support of the distribution  $\mu_b$  covers the support of the target policy. Consider  $\mathcal{Q}$  a function class to  
 1712 approximate  $Q_{\pi}$ . We can retrieve  $Q_{\pi}$  by solving for an empirical version of the following loss

$$1713 \arg \min_{q \in \mathcal{Q}} \mathbb{E}_{(S, A) \sim \mu_b, R \sim P_{new}(\cdot | S, A)} [(Y - \mathcal{T}_b(h_q)(S, A))^2] \quad h_q(s, a, s', a') = q(s, a) - \gamma q(s', a').$$

1714 We can then plug our estimate into Eq. (38) to get an estimate of  $\rho(\pi)$ . Different methods have been  
 1715 employed with this loss where methods differ by their choice of  $\mathcal{Q}$  and their approximation of  $\mathcal{T}_b$ ,  
 1716 see Chen et al. (2022).

1717

1718 However, this formulation is not amenable to spectral feature methods since  $\mathcal{T}_b$  is non-compact as  
 1719  $X$  contains  $Z$ , and thus cannot be learned using the usual contrastive loss. To overcome this, we  
 1720 instead recover  $Q_{\pi}$  through a modified NPIV problem. This time consider  $X = (S', A')$  equipped

1728 with the measure such that given  $(s, a)$ ,  $S' \sim P(\cdot | s, a)$ ,  $A' \sim \pi(S')$ ,  $Z = (S, A)$  equipped with  
 1729 the measure such that  $(S, A) \sim \mu_b$  and finally  $Y(Q_\pi) = -\gamma^{-1}(R - Q_\pi(S, A))$ . We take  $\tilde{\mathcal{T}}$  as  
 1730 defined in the main body so that Eq. (40) be re-written as  
 1731

$$1732 \mathbb{E}[Y(Q_\pi)|Z] = \tilde{\mathcal{T}}(Q_\pi)(Z) \quad (41)$$

1733  $\tilde{\mathcal{T}}$  is now compact, but this modified formulation introduces a new challenge: the target outcome  
 1734  $Y(Q_\pi)$  depends on  $Q_\pi$ , which is the very function we are trying to estimate.  
 1735

1736 This necessitates an iterative procedure for  $k = 0, 1, \dots, K - 1$ , similar to Fitted Q-Evaluation  
 1737 (FQE):  
 1738

- 1739 1. Start with an initial guess,  $Q_0$  (e.g.,  $Q_0 = 0$ ).
- 1740 2. At iteration  $k + 1$ , we solve the NPIV problem defined by  $Q_k$ :
  - 1741 • We construct the target outcome  $Y_k$  using our previous estimate  $Q_k$  and the observed  
 1742 reward  $r(S, A)$  from the data:

$$1744 Y_k(S, A) = -\frac{1}{\gamma}(r(S, A) - Q_k(S, A))$$

- 1745 • We solve the spectral NPIV problem  $\mathbb{E}[Y_k | Z] = \tilde{\mathcal{T}}Q_{k+1}$  to find the new estimate  
 1746  $Q_{k+1}$ .

- 1747 3. Repeat until convergence.

1750 This iterative process introduces a potential for dynamic spectral misalignment. The target  $Y_k$   
 1751 changes at every iteration  $k$ . If the spectral features required to estimate  $Y_k$  (the “outcome-aware”  
 1752 direction) are not the same as the dominant spectral features of  $\tilde{\mathcal{T}}$ , or if this direction shifts as  $Q_k$   
 1753 converges, an outcome-agnostic method will fail. This is precisely the scenario where our **Aug-**  
 1754 **mented Spectral Feature Learning** could help.  
 1755

## 1756 D.8 VALIDITY OF HYPERPARAMETER TUNING BY CROSS-VALIDATION ON THE 2SLS LOSS

1757 The population level optimal estimator of  $\mathcal{T}$  based on a fixed set of  $\psi^{(d)}, \varphi^{(d)}$  features is  
 1758  $\Pi_{\psi^{(d)}} \mathcal{T} \Pi_{\varphi^{(d)}}$  where  $\Pi_{\varphi^{(d)}}, \Pi_{\psi^{(d)}}$  denote the orthogonal projections onto the spans of the learned  
 1759  $X, Z$  features. By minimizing the contrastive loss we can ensure that our estimator is indeed close  
 1760 to having this structure, with whatever features are obtained in the process.

1761 Given  $\hat{\mathcal{T}}$  an estimation of  $\mathcal{T}$ , consider the so-called stage-2 loss,  $\ell(h) \doteq \mathbb{E}[(\hat{\mathcal{T}}h(Z) - Y)^2]$  over  $h$   
 1762 spanned by the learned  $X$ -features. For simplicity assume it is performed with this population-level  
 1763 optimal estimate of the conditional mean  $\hat{\mathcal{T}} = \Pi_{\varphi^{(d)}} \mathcal{T} \Pi_{\psi^{(d)}}$ , and let the resulting estimate of the  
 1764 structural function be  $\hat{h}$ . We have,

$$1765 \ell(\hat{h}) = \mathbb{E} \left[ (\mathcal{T}h_0(Z) - \Pi_{\psi^{(d)}} \mathcal{T} \Pi_{\varphi^{(d)}} \hat{h}(Z))^2 \right] + \mathbb{E}[(\mathcal{T}h_0(Z) - Y)^2].$$

1766 The second term is a model-independent constant so we can disregard it. If we wanted to evaluate  
 1767 the quality of our model based on this loss, then we should be able to decompose it into a monotone  
 1768 function of  $\|h_0 - \hat{h}\|$  or (to make the task easier) of  $\|\mathcal{T}(h_0 - \hat{h})\|$  and a term that will not vary across  
 1769 different learned feature sets (or is sufficiently small to be negligible). However, there seems to be  
 1770 no clear way of achieving this. Consider the most natural approach below.

1771 Note  $\Pi_{\psi^{(d)}} \mathcal{T} \Pi_{\varphi^{(d)}} \hat{h} = \Pi_{\psi^{(d)}} \mathcal{T} \hat{h}$  since  $\hat{h}$  is spanned by the  $X$ -features. Let  $\Pi_{\psi^{(d)}}^\perp$  be the projection  
 1772 onto the orthogonal complement of the span of the  $\psi$  features. Then  
 1773

$$1781 \mathbb{E}[(\mathcal{T}h_0 - \Pi_{\psi^{(d)}} \mathcal{T} \hat{h})^2] = \mathbb{E}[(\mathcal{T}(h_0 - \hat{h}))^2] - \mathbb{E}[(\Pi_{\psi^{(d)}}^\perp \mathcal{T} \hat{h})^2] - 2\mathbb{E}[\mathcal{T}(h_0 - \hat{h}) \cdot \Pi_{\psi^{(d)}}^\perp \mathcal{T} \hat{h}].$$

If we could argue that the latter two terms are negligible, then stage 2 error should reflect  $\mathbb{E}[(\mathcal{T}(h_0 - \hat{h}))^2]$  and we would indeed be done. This condition would be satisfied if one could for instance argue that  $\|\Pi_{\psi^{(d)}}^\perp \mathcal{T} \Pi_{\varphi^{(d)}}\|$  is always small. But there is no clear reason why this should hold. We note that this indicates that minimisation of the 2SLS loss is a generally unprincipled methodology, not only for tuning  $\delta$  in our setting, but for IV model selection more broadly.

**Practical performance.** Regardless of the aforementioned obstacles, we find that selecting the model, and, in particular, tuning  $\delta$  based on  $\ell(h)$ , the stage-2 loss, yields good results. On the dSprites benchmarks these are consistent with the values selected by the procedure based on maximizing the estimated projection length of  $h_0$  onto the learned  $X$ –features, as shown in Figure 13.

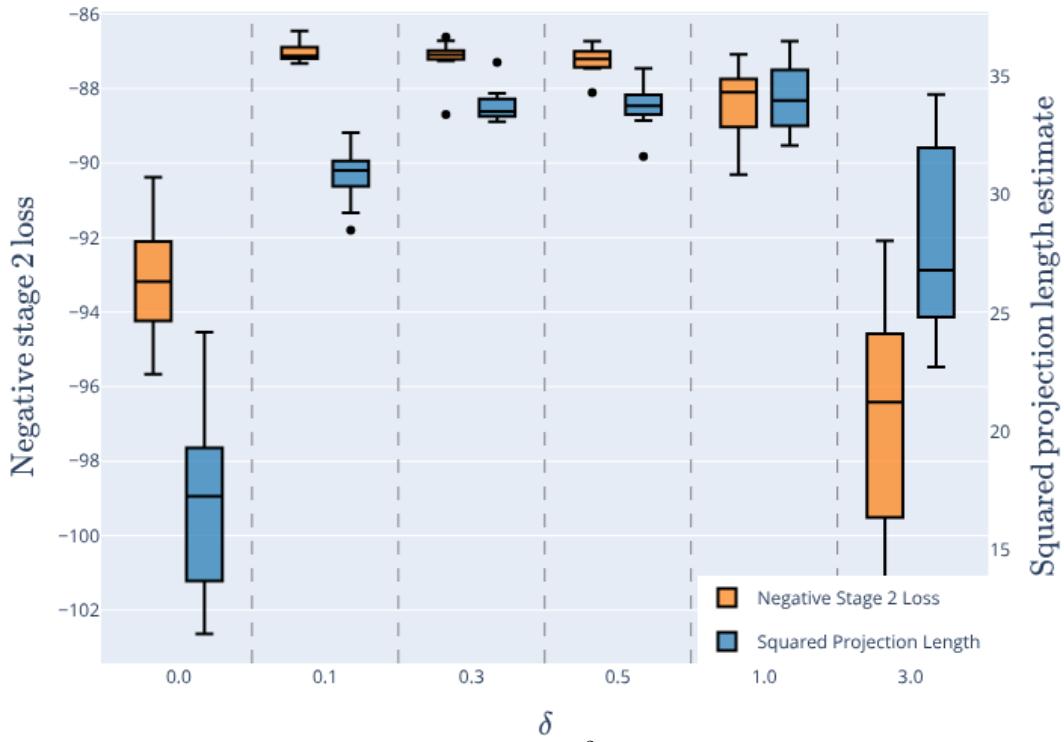


Figure 13: Comparison of the estimators of  $\|\Pi_{\varphi_*^{(d)}} h_0\|^2$  proposed in Section 6.4 and negative stage-2 errors, for a range of  $\delta$  values on the dSprites benchmark with  $h_0 = h_{\text{new}}$ . Despite the lack of theoretical backing for the latter, both methods attain their maxima near the same values of  $\delta$ .

## E HIGHER RANK PERTURBATIONS

The rank one augmentation we propose extends directly to higher rank perturbations. This setting includes vector–valued outcomes and also the case where one wishes to encourage the learned  $Z$  features to retain predictive information about multiple functions of  $Y$ .

Let  $f_1, \dots, f_K$  be functions of  $Y$  that we would like to be well approximated from  $Z$ . For  $\underline{\delta} \in \mathbb{R}^K$  we define:

$$\mathcal{L}_{\underline{\delta}}^{(d)}(\theta) \doteq \mathcal{L}_0(\theta) - \sum_{k=1}^K \underline{\delta}_k^2 \left\| \Pi_{\psi_\theta^{(d)}} \mathbb{E}[f_k(Y) | Z] \right\|^2.$$

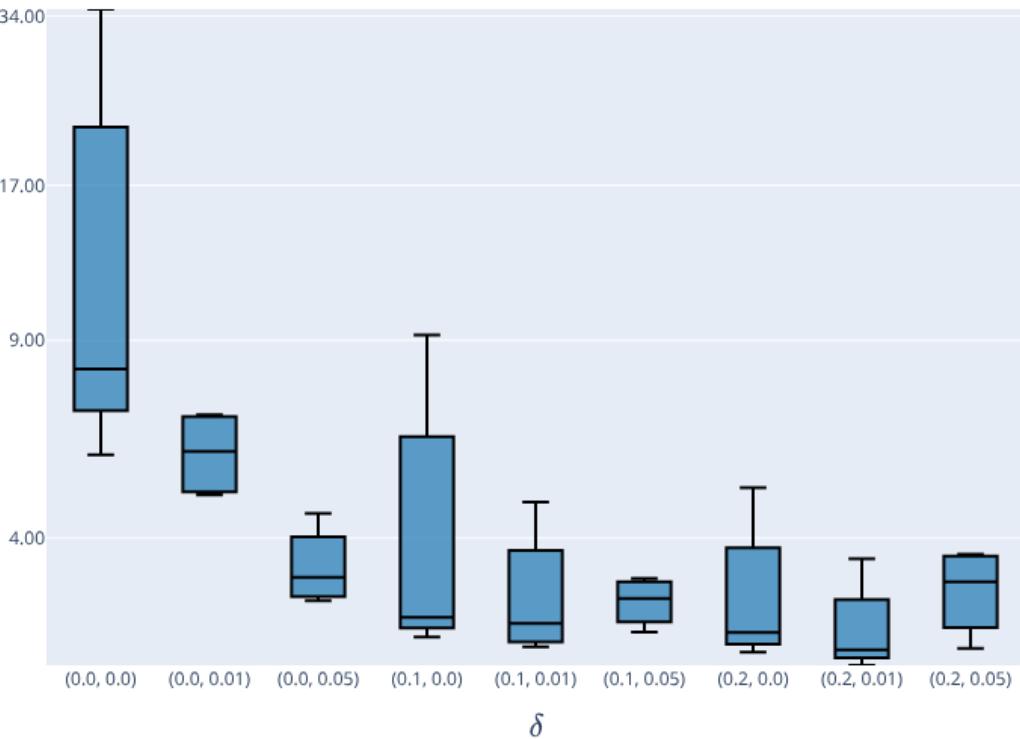
1836 As in the rank one case, to avoid differentiating through matrix inverses, this can be rewritten with  
 1837 auxiliary variables  $\omega_k \in \mathbb{R}^d$  as:  
 1838

$$1839 \quad \mathcal{L}_{\underline{\delta}}^{(d)}(\theta, \omega_1, \dots, \omega_k) \doteq \mathcal{L}_0(\theta) + \sum_{k=1}^K \omega_k^\top C_{\psi_\theta^{(a)}} \omega_k - 2 \underline{\delta}_k \mathbb{E}[f_k(Y) \psi_\theta^{(d)}(Z)]^\top \omega_k.$$

1842 The optimal features correspond to the truncated SVD of the following rank  $K$  perturbed operator:  
 1843

$$1844 \quad \mathcal{T}_{\underline{\delta}} : L^2(X) \times \mathbb{R}^K \rightarrow L^2(Z), \quad (h, a) \mapsto \mathcal{T}h + \sum_{k=1}^K a_k \underline{\delta}_k f_k.$$

1846 A complete theoretical analysis of the rank  $K$  setting is beyond the present scope and we regard  
 1847 it as an important direction for future work. We report preliminary results for  $K = 2$  using  $f_k =$   
 1848  $\mathbb{E}[Y^k \mid Z]$  in Figure 14. In the dSprites setting with  $h_0 = h_{\text{new}}$ , including  $f_2$  alone yields similar  
 1849 improvements as  $f_1$  alone. Using both functions gives slightly lower error, but the differences are  
 1850 small and do not allow strong conclusions at this stage.  
 1851



1876 Figure 14: IV MSE for rank two perturbations with  $f_k = \mathbb{E}[Y^k|Z]$ ,  $k = 1, 2$ , on dSprites with  
 1877  $h_0 = h_{\text{new}}$ . For example,  $\delta = (0.2, 0.0)$  reduces to the rank one case.  
 1878  
 1879  
 1880  
 1881  
 1882  
 1883  
 1884  
 1885  
 1886  
 1887  
 1888  
 1889