Under review as a conference paper at ICLR 2026

OUTCOME-AWARE SPECTRAL FEATURE LEARNING
FOR INSTRUMENTAL VARIABLE REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of causal effect estimation in the presence of hidden con-
founders using nonparametric instrumental variable (IV) regression. An estab-
lished approach is to use estimators based on learned spectral features, that is,
features spanning the top singular subspaces of the operator linking treatments
to instruments. While powerful, such features are agnostic to the outcome vari-
able. Consequently, the method can fail when the true causal function is poorly
represented by these dominant singular functions. To mitigate, we introduce Aug-
mented Spectral Feature Learning, a framework that makes the feature learning
process outcome-aware. Our method learns features by minimizing a novel con-
trastive loss derived from an augmented operator that incorporates information
from the outcome. By learning these task-specific features, our approach remains
effective even under spectral misalignment. We provide a theoretical analysis of
this framework and validate our approach on challenging benchmarks.

1 INTRODUCTION

We study the nonparametric instrumental variable (NPIV) model, a cornerstone of causal inference
in the presence of unobserved confounding (Newey & Powell, 2003), which assumes a relationship

where the confounder U is conditionally mean zero with respect to the instrument Z. The goal is
to recover the causal effect from treatment X to outcome Y by estimating the structural function hg
from i.i.d. samples of (Y, X, Z). An example is the economic problem of estimating the effect of
education on earnings (Card, 1993). X represents years of schooling and Y an individual’s wage. A
direct regression is likely biased because unobserved factors like innate ability or family background
(U) can influence both educational attainment and earning potential. To disentangle this effect, one
could use an individual’s proximity to a college as an instrument (), as living closer may increase
years of schooling (X)) but is unlikely to be directly correlated with innate ability (U).

The NPIV model can be reformulated as a linear inverse problem (Darolles et al., 2011). Taking the
conditional expectation with respect to Z on both sides of Eq. (1) yields the integral equation

7-h027'()7 TOZE[Y|Z], (2)

where T: Lo(X) — Lo(Z) is a bounded linear operator that maps every function h € Lo(X) to
its conditional expectation E[h(X)|Z] € La(Z). Here both the function ro and the operator 7 are
unknown, and we only have access to the set of i.i.d. observations. Throughout this work, we assume
that there exists a solution to the NPIV problem, that is rg is in the range of 7.

State-of-the-art techniques for NPIV estimation rely on learning adaptive features and integrating
them into classic algorithms like two-stage least squares (2SLS) (Xu et al., 2021; Petrulionyte et al.,
2024) or primal-dual strategies (Dikkala et al., 2020; Liao et al., 2020; Bennett et al., 2023). One
successful technique is SpecIV (Sun et al., 2025), which learns neural net features by approximating
a low-rank decomposition of the operator 7. Meunier et al. (2025) showed SpecIV to be optimal
when the structural function hq is well-aligned with the top singular functions of 7, but degrades
otherwise. The issue is that the feature learning process is agnostic to the outcome Y; it only captures
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the main aspects of the relationship between the treatment X and the instrument Z. If hg lies outside
of this dominant subspace, the resulting features are uninformative for the final task, leading to
failure. In this paper, we address this limitation by proposing a framework for outcome-aware feature
learning in NPIV estimation. We introduce a new spectral objective that incorporates information
from the outcome Y, guiding the feature learning to identify components of X that are predictable
from Z and predictive of Y. This is equivalent to learning a low-rank decomposition of a perturbed
version of 7. Our approach ensures good performance even in cases of spectral misalignment, where
target-agnostic methods fail. While our work focuses on IV regression for causal effect estimation,
our method may also be useful in settings where learning spectral decompositions of conditional
operators is relevant. For instance, in off-policy evaluation in reinforcement learning, where value
function estimation can be framed as an IV problem (Hu et al., 2024), or when learning evolution
operators in fields like molecular dynamics and climate science (Turri et al., 2025).

Contributions. Our contributions are as follows:

1. We identify a fundamental limitation of existing spectral methods for NPIV: the learned features
are outcome-agnostic, degrading performance in cases of spectral misalignment. To address
this, we propose Augmented Spectral Feature Learning and introduce an augmented operator,
Ts, which incorporates information on the outcome into the feature learning problem. This
leads to a new, principled contrastive loss function for learning task-specific spectral features.

2. We provide a comprehensive theoretical analysis of our method. This includes a full gener-
alization error bound for the resulting 2SLS estimator, characterizing the settings where the
augmented approach remains robust to the spectral misalignment issues of previous methods.

3. We validate our theory on challenging synthetic and semi-synthetic examples, including a new
and more challenging version of a dSprites IV benchmark (Xu et al., 2021). The results demon-
strate the practical benefits of outcome-aware feature learning in the challenging regimes where
standard SpeclV fails. In addition, we include an Off-Policy Evaluation (OPE) experiment in
the context of reinforcement learning (Chen et al., 2022), showing that our approach remains
robust and competitive in challenging, dynamically changing environments.

Paper Organization. The remainder of the paper is structured as follows. Sec. 2 introduces the
notation, reviews the 2SLS estimator, and the SpecIV method (Sun et al., 2025). In Sec. 3, we
introduce our outcome-aware framework. Sec. 4 presents our main theoretical results. We situate
our contribution within the broader literature in Sec. 5. In Sec. 6 we present numerical experiments
that validate our theory and demonstrate the effectiveness of our approach. All proofs are deferred
to the appendix.

2 PRELIMINARIES

Function Spaces. Y is defined on R, while X and Z take values in measurable spaces X" and Z,
respectively. For R € {X, Z}, Lay(R) is the space of square-integrable functions (E[f(R)?] < 00).

Operators on Hilbert Spaces. Let H be a Hilbert space. For a bounded linear operator A acting on
H, we denote by || A|| its operator norm, ||Al|,, its Hilbert-Schmidt norm, A" its Moore—Penrose
inverse, and A* its adjoint. For finite-dimensional operators, the Hilbert—Schmidt norm coincides
with the Frobenius norm. We denote R(A) and N'(A) the range and null spaces of A, respectively.
Given a closed subspace M C H, we write M L its orthogonal complement, M its closure, and II,;
the orthogonal projection onto M. Denote the orthogonal projection onto M+ by (I1x7) 1 = Iz —
IIps. For f,h € Ly(X), g € La(Z), the rank-one operator g ® f is defined as (¢ ® f)(h) = (h, f)g,
generalizing the standard outer product. For z € R?, we write |||, for the Euclidean norm.

Data Splitting and Empirical Expectations. We consider two independent datasets: D,, =
{(Zi, Zi, i) } 1, to learn features for X and Z, and D,,={(z;, z;, ¥:)}"_;, to estimate the struc-

tural function. E,, and E,, denote empirical expectations with respect to D,,, and D,,, respectively.

Feature Maps, Covariance Operators and Projections. Let d € N*, p®: X —R? be a fea-

ture map with linearly independent components ©\”, ..., ¢’ €La(X), and @@ =[p{", ... "] be

the operator defined as ®@ : R¥—Ly(X), o = 3%, a; 0!, Tts adjoint is given by ®@*: h
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(R, @5 ) Ly (x)) 1. Let Cpiay =@ @* @O =E[p(® (X )p'® (X )] be the (uncentered) covariance op-
erator, 64,(@ =K, [0 (X ) (X)7] its empirical counterpart, and I, = ®W(Cpa) ' ®@* be
the corresponding orthogonal projection operator. Analogous definitions apply for a feature map
Y@ Z — RY, yielding W@, Cya), Cyay and I 0. The (uncentered) cross-covariance operator

between ' and ¢(* is defined as Cya) ) = PO*OD = B[ (Z2)p(X)T] = Colw -

Denote éw) .o its empirical counterpart. We drop the superscript d when it is clear from context.

2SLS in feature space. Given feature maps ¢ : X — R? and 4(): Z — RP, a prominent
estimator for NPIV is the 2SLS estimator (see, e.g., Blundell et al., 2007), given by

~ ~ ~ ~ ~ ~ —1. ~ ~
hasvs(z)=¢'(x)" BasLs, with 52SLSZ{CV,<d>,¢<p>C@;(i)Cw(pW(d)} Cw(dw(p)C;é,)En[Yiﬁ(p)(Z)]

When d=p and the cross-covariance matrix is invertible, it simplifies to B\QSLS :q}}) SD(d)IEn[Ylb(d)(Z)].

2SLS with spectral features. Features plugged into the 2SLS estimator can be either fixed or
learned adaptively from data (see Section 5 for a discussion on related work). In the SpeclV ap-
proach (Sun et al., 2025), features are learned to approximate the top eigenstructure of 7. Through-
out the paper, we make the following mild assumption (Darolles et al., 2011; Meunier et al., 2025).

Assumption 1. 7 : Lyo(X) — Lo(Z) is a compact operator.

This allows us to write a countable singular value decomposition (SVD) for 7,
T:ZZZl)\iui@)’UZ‘, U; ELQ(Z), Vi ELQ(X), A1 > Ao > .- >0,

where u;’s and v;’s are orthonormal basis for R(7) C Ly(Z) and N (T)+ C Lo(X), respectively.

The operator 7 = Zle Ai; ® v; is the best (in terms of operator or Hilbert—Schmidt norm)
rank-d approximation to 7. To avoid ambiguity, we assume that Ay > A4y1. We do not assume that
T is injective, since we can always target the minimum-norm solution (Florens et al., 2011)

ho = T'rg = Ei21%<TO7ui>L2(Z)Ui~

When T is injective, hg = ho. In what follows, we denote hg as hg and do not distinguish between
the structural function and the minimal solution to the NPIV problem.

Given feature maps <p(0d) : X = R?and wéd) : Z — RY, parametrized by neural networks, Sun et al.

(2025) proposed to learn the features by minimizing the empirical counterpart to the following loss

L5"(0) = ExEz[(¢g” (X)"v5"(2))°] - 2Elpg” (X) 45" (2)], 3)
where the first expectation is over the product of the marginals of X and Z, and the second is over
the joint distribution. It is shown by Meunier et al. (2025, Theorem 2) that £§” > — || T2, , and

that the minimum is achieved if and only if \Il(ed)fb(ed)* = 7T4. Therefore, by minimizing the empirical
counterpart to Eq. (3), one learns features that approximate the best low-rank approximation to 7.

3 OUTCOME-AWARE SPECTRAL FEATURE LEARNING

As discussed in Section 1, standard SpeclV learns features that are agnostic to the outcome Y.
This can lead to poor performance when the structural function hq is not well-aligned with the top
singular functions of 7~ (Meunier et al., 2025). To mitigate this, we augment the SpeclV loss with
a regularization term that incorporates information from the outcome Y by projecting it onto the
orthonormal basis of the Z-features. The resulting loss is defined as

L£57(0) = L57(0) = *E[Y 4" (2)]"C o B[V 47 (2)]. @)

We propose to learn features by minimizing the empirical counterpart of Eq. (4) over the training set

Dy The regularization term, controlled by the hyperparameter d, encourages the learned instrument
features to be predictive of Y. As backpropagation through the inverse covariance matrix can be
numerically unstable, we instead minimize the following equivalent loss jointly over # and w € R¢:

L5 (0,w) = L57(0) = 20E[YV " (2)]'w + ' C . (5)
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Figure 1: In case~0f severe misalignment of hg and 7 (left), an ideal solution would aim to find
another operator 7~ whose top singular functions v; capture the signal in hq (right).

For any fixed 6, this loss is convex in w and its minimum is attained at wy” = 5C;<1(1>E[Ywéd’ (2)).

Substituting this solution back into Eq. (5) recovers the profile loss in Eq. (4).

Operator learning perspective. We now show this modification is equivalent to learning a low-rank
approximation of an augmented version of the operator 7. For § € R, we define the operator

%LQ(X) XR—)LQ(Z),(h,CL) ’—>Th+a'5'7“0.

Ts augments 7 with an additional “column” aligned with r, as captured by the compact notation
Ts = [T | dro] = T, (x) | Shol. As T is compact, s is also compact and admits an SVD

Ts =2 i10%,i%i @ (PxyisWai)s  Yui € L2(Z),  (puiywai) € La(X) xR, (6)

with 0,1 > 042 > --- > 0. The following proposition formalizes the connection: minimizing
the augmented loss Eg‘“ is equivalent to finding the best rank-d approximation of the augmented

operator Ts. We denote this best approximation by 7:;((” = Zle O, iVs,i @ (Puis Waeyi)-

Proposition 1. Given § € R, for all parameters 6 and w it holds that L§" (0, w) > — H77;||is, The
lower bound is achieved if and only if the learned operator U [®y"* | w] is equal to T{®.

Intuitively, augmenting the operator with outcome information amplifies the components of g that
would otherwise lie in the low singular value region of 7, thereby improving their alignment with
the top spectral features of the augmented operator, as illustrated in Figure 1. Section 4 formalizes
this effect by bounding the distance between the learned subspaces and the signal subspaces of 7.
One can also encourage the learned features to retain predictive information about additional aspects
of the outcome by extending the augmentation to multiple functions of Y, such as higher conditional
moments E[Y* | Z]. We discuss this higher rank extension in Appendix E. The learning objective
and optimality characterization via truncated SVD remain unchanged. A complete theoretical anal-
ysis of general rank K perturbations requires further development of the perturbation framework
and is left for future work.

4 ANALYSIS

We now present the statistical guarantees for our estimator of hg. Our first result is a non-asymptotic,
high-probability error bound for the 2SLS estimator that is agnostic to the choice of representation
(" 15"). This improves upon prior results, such as Chen & Christensen (2018), which typically
provide guarantees in expectation. To this end, we introduce three standard assumptions. The first

requires the whitened features to be uniformly bounded.

Assumption 2 (Representation Boundedness). Denoting the covariances of the instrument and fea-
ture representations by Cz g = E[pg” (Z)py” (Z)™] and Cx g = Elpy” (X)ps” (X)T], respectively,
there exists p > 1 such that representations satisfy
—-1/2 (a) —1/2 ;(d)
esssupmax{ C vy (x } esssupmax{ C z ~}§p.
sssupma { (O %" ()} V/ esssupmac (€704 ()
Assumption 3 (Measure of ill-posedness). Denoting the cross-covariance between the instru-

ment and feature representations by Cyzx ¢g=E[15"(Z)ps" (X )'], the measure of ill-posedness

C ol () :zod(Cg’le/QCZX,gC;(’le/z), where o4(+) denotes the d-th singular value, is positive.

4
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The measure of ill-posedness c ) is equal to od(H\P(d)TH(D(d)) and captures the
0 0

stability of the inverse problem when restricted to the learned feature spaces. Its
positiveness implies non-singularity of Czx g, which guarantees that there exists a
vector Bp€R? such that hg(z)=p," (x)"By satisfies the instrumental moment condition:
Czx.,0B80=E[Y V3" (Z)|=E[ro(2)ys" (Z)]=E[ho(X)vy" (Z)]. Assumption 3 is reasonable pro-
vided that some conditions on the eigenvalues of T are satisfied and our features capture an accurate
representation of the singular spaces of 7, (see Proposition 8 in the appendix).

Our final assumption concerns the tail behavior of the model’s error terms. For the precise definition
of sub-Gaussian random variables, we refer to Definition 1 in Appendix C.2.

Assumption 4 (Sub-Gaussian distributions). The model noise U=Y —hy(X) and the function ap-
proximation error (ho—hg)(X) are sub-Gaussian random variables.

With these conditions we can state our main result for the 2SLS estimator, which is given by

ho(x)=p5" (@) Enlto§” (2)05” (X)TEnlY 95" (2)).

Theorem 1. Let Assumptions 2-4 be satisfied. Given T€(0,1), let n>16 d p? log®(4d/T)c” 2, e
Yo Vo

Then there exists an absolute constant C > 0 s.t. with probability at least 1—7:

- L [d 2 4
1ho—hol| L, (x) < C(llho—h0I|L2(x> TV n o+ — log — )

where G?J is the noise variance.

This theorem provides a non-asymptotic excess-risk bound that separates the error into a determin-
istic approximation error (||hg — hg||) and a statistical error. The latter depends on the dimension d,
sample size n, and the feature-dependent ill-posedness. It improves on existing guarantees (Theorem
B.1. Chen & Christensen, 2018) by holding in high probability under a sub-Gaussian assumption.

Controlling the approximation error with learned representations. We now specialize the gen-
eral bound from Theorem 1 to the features learned by our outcome-aware method. In light of
Proposition 1, recalling that the leading left and right singular subspaces of 7 are the ranges of
U=[hu 1| ... [thsa] and [ DL | w. ]*, where DL =[p. 1| ... a], see Eq. (6), the feature learn-

(d) (d)

ing stage of our approach produces 1/) and @5 , where the parametrization 6, is learned from

dataset D,y,. To quantify their quality, as proposed in Kostic et al. (2024) and Meunier et al. (2025),
we use the optimality gap

Ea(0,w,0)=|T{" =V [@p"" |w]|| L2(2) xR L2(x) @)

noting that bounding it requires architecture-specific generalization bounds for DNN training with
the spectral contrastive loss, an open problem in its own right.

With this setup, our analysis hinges on relating the singular subspaces of the augmented operator 75
back to the original singular subspaces of 7. To do this, we first partition the singular components of
T into a d-dimensional “signal” subspace and an infinite-dimensional “noise” subspace. Namely,
let NUN = N be the partition, where we take | N'|=d spectral features for the signal. We define the
signal components sd:VdVZhO: > e @iv; and noise components qz=V ;Viho=>" seN Q4Vis

where the partition of the SVD of T is T=U A4V yj+U A,V with Ag=diag();) ;en- The aug-
mented operator T can be viewed as a perturbation of 7 relative to the positioning of the signal:

Ts = [T |6Tho) = Ughg [Vy|6a] + Uy Ay [V510]+[0]6 U, A al.

This decomposition shows that if the noise ||qq|| = ||a||¢2 is small, 75 is well-approximated by the
first two terms (the noiseless part) that expose how the left and right singular subspaces of T, relative
to the partition, align with those of 75. If the singular value gap between first and the second term

Ya@)=l[Ra(f +6%aa’) /2|7t — Al (®)

is positive, the dominant singular subspace of the noiseless perturbation of 7 is exactly R(Uyg).

Therefore, by carefully applying perturbation results, we are able to control the differences in or-

thogonal projections ||l — 11, || < [[Tlg, — @ || + 1L — @ || to align the appropriate
Om * * 2

Om
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left subspaces. The first term depends on the interplay between the parameter 6, the positioning,
and the size of the signal, and is bounded by 61|qq 72 (x) / 74(0). The second term is the error from
learning the features of 75 from dataset D,,, with our representation learning method, quantified
by the optimality gap £4(6,, Wm, d) given in Eq. (7). A similar decomposition holds for the right
subspaces. By bounding these components, we can control the total approximation error. A detailed
proof is provided in Theorem 4 in Appendix B.3; in the following, we present the consequences for
the “good” and “bad” scenarios from Meunier et al. (2025).

Learning in the “good” scenario. When the signal s is spanned by the top-d singular functions of
T (i.e., N = {1,...,d}), our method works efficiently even with § = 0. In this case, the spectral
gap 74(0) = Ag — Ag41 is positive by assumption. A direct corollary of Theorems 1, and 4 yields

~ EgOpm,@m,0) 1 [d
lho—holl Loy S ldallzzxy + d(Tj) + )\d\/;log ' wpal 1.

This result is the high probability version of Meunier et al. (2025, Theorem 3).

Learning in the “bad’ scenario. Our outcome-aware method is designed to succeed even when the
structural function Ay is highly aligned with a “bad” singular function v (for large k). Meunier
et al. (2025) showed that standard SpecIV would require learning a high-dimensional feature space
of dimension d > k (out of which k—1 are spurious). In contrast, our method can isolate the relevant
signal by setting d = 1 with the signal concentrating mostly on space defined by vy (N={k}). As
shown in Appendix B.3, choosing a § large enough guarantees that the one-dimensional spectral gap
~1(0) becomes positive. Applying Theorem 4 of Appendix B.3 in this setting shows:

1l | EaOm,Om,6) | logr!

A Isillz2(x) Ak A/
indicating that whenever signal-to-noise ratio dominates the decay ||s1||z2(x)/llq1llz2( )AL

our method can recover the structural function with one feature, while for the standard SpecIV one
would need to learn k of them, as illustrated in Figure 1.

lho—hellL,(x) S

w.p.al 1—7,

5 RELATED WORK

This section provides an overview of the research areas that are most relevant to our study.

2SLS methods. The classical approach to IV regression is the 2SLS method. In its nonparamet-
ric form, the first stage involves estimating the conditional expectation of the treatment given the
instrument, and the second stage uses these predictions to estimate the structural function. Early
influential works used sieve or series estimators, approximating unknown functions with basis func-
tions like polynomials or splines (Newey & Powell, 2003; Hall & Horowitz, 2005; Blundell et al.,
2007; Chen & Pouzo, 2012; Chen & Christensen, 2018). Other approaches include Tikhonov regu-
larization to stabilize the inverse problem (Darolles et al., 2011) or frame the problem in reproducing
kernel Hilbert spaces (Singh et al., 2019; Meunier et al., 2024). More recently, deep learning has
been used to handle the nonparametric components of the 2SLS procedure. DeeplV (Hartford et al.,
2017) uses a mixture density network to estimate the conditional distribution of the treatment given
the instruments in the first stage, and then a second network for the structural function in the second
stage. Deep Feature IV (DFIV; Xu et al., 2021) uses neural networks to learn optimal features of the
instruments, which are then used as inputs for the first-stage regression.

Saddle-point methods. An alternative to 2SLS is to frame NPIV as a minimax optimization prob-
lem. These methods, often rooted in a generalized method of moments (GMM) framework, seek an
equilibrium between a player that minimizes a loss function and an adversary that maximizes the
violation of the moment conditions. This approach can bypass the direct estimation of conditional
expectations. Different formulations exist, such as those based on the Lagrangian of a constrained
least-norm problem (Bennett et al., 2023; Liao et al., 2020) or on maximizing the moment deviation
directly (Lewis & Syrgkanis, 2018; Dikkala et al., 2020; Wang et al., 2022). These methods are
particularly well-suited for high-dimensional settings and integration with deep learning models.

Spectral features learning. When the instrument-treatment relationship is complex, learning good
features is crucial. Spectral methods use techniques like SVD to find a low-dimensional repre-
sentation of the conditional expectation operator 7. Such an SVD can typically be estimated via
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minimizing a contrastive loss that has been used in various contexts (Sun et al., 2025; Hu et al.,
2024; Kostic et al., 2024; Turri et al., 2025). While these methods are powerful, the learned features
are agnostic to the outcome; they only capture the dominant modes of the instrument-treatment
relationship, which may not be enough for predicting the outcome.

Outcome-aware and adaptive methods. Our work is part of a growing literature on adaptive meth-
ods for NPIV. While spectral methods like SpecIV (Sun et al., 2025) are powerful, their outcome-
agnostic nature can be a significant drawback, as we demonstrated. The features are learned based
only on the instrument-treatment relationship and may not be informative for predicting the out-
come. Our approach addresses this by making the feature learning process outcome-aware and
ensures that the learned representations are not just predictive of the treatment, but are also relevant
for the causal relationship of interest.

6 EXPERIMENTS

We first illustrate the utility of our method on a synthetic example in which all parameters of 7 are
controlled. To further support our claims, we benchmark outcome-aware spectral learning on two
challenging benchmarks based on the dSprites dataset (Matthey et al., 2017). Finally, we include
an Off-Policy Evaluation (OPE) experiment in the context of reinforcement learning, which demon-
strates that the method remains robust and competitive in demanding environments. We find that
a small positive § always leads to improved performance. In most challenging cases, the resulting
method outperforms standard SpecIV (6 = 0) by a wide margin.

6.1 SYNTHETIC DATA

Following Meunier et al. (2025), we generate a (Z, X,Y) dataset from a conditional expectation
operator T =1, ®1x + Z?;ll ou; ® v; with explicit o;, v;, u;. We take o; to decay linearly from
a fixed o1 to 041 = c,01, with ¢, € [0,1]. u;,v; are random orthonormal bases of the span of
(sin(£ - x))4=} on [, w]. By setting the structural function hy = Zf;ll a;v; with the constraint
ler]|e, = 1, and having the coefficients «; change linearly in 4, we are able to control the alignment
of hg with the spectrum of 7. We parametrise the rate at which «; change with ¢, = ag—1/a;.

Synthetic data results. Figure 2 shows the distribution ||Eg — ho||? for different values of &, nor-
malised so that for each c,, the mean loss for § = 0 equals 1. The reported figures show how the
losses change relative to the baseline performance of SpeclV. In cases of very poor spectral align-
ment, corresponding to ¢, = 5.0, increasing § leads to improvement in the IV regression loss even
when the singular values decay quickly. Moreover, when c,, is sufficiently large, that is more singu-
lar functions can be learned easily, we observe improvement even on a very well-aligned case when
co = 0.2. A more extensive evaluation of how the benefit of using § change with the rate of decay
of singular values can be found in Appendix D.3.

15 B e, =0.2
Oc, =10
o Cq = 5.0 125

125 = Median
-~ Mean

79

00 05 10 30 50 00 05 10 30 50

Figure 2: Distributions of relative IV regression MSEs (”H@ — hg||?) for the synthetic example with
5 € {0,0.5,1.0,3.0,5.0} and ¢, € {0.2,0.8}
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6.2 DSPRITES DATA

The original dSprites dataset of Matthey et al. (2017) consists of 64 x 64 noisy images (sprites) of
hearts, squares, and ellipses with varying position, size, and orientation. In the standard IV bench-
marking setting, as described in, e.g., Sun et al. (2025), only the heart images are used. The structural
function takes the form hg(z) = (|[A o X ||* —3000)/500, where A;;j=|32—|/32 measures the dis-
tance from the central vertical bar in the image and o denotes the pointwise (Hadamard) product.
The instrumental variable is defined as Z=(sprite orientation, sprite z-position, sprite scale), and the
outcome is Y =h(X)+32((sprite y-position)—32)+e, ¢ ~ N (0,0.5). For reasons discussed below,
we shall refer to this hg as hgqg.

New structural function. As first argued in Meunier et al. (2025) and further discussed in Ap-
pendix D.1, the standard dSprites benchmark is an instance of the “good” case where h is well-
aligned with the leading singular functions of 7. Hence, we propose an alternative, more challeng-
ing structural function. We refer to the new function as hpey. It is based on sprite images of ellipses,
as opposed to the hearts in the original case, and approximates the ellipse’s orientation, which we
expect to be a property that is only recovered from singular functions associated to small singular
values of 7. The details of our argument and construction can be found in Appendix D.1.

sop @ d-SpeclV 1200 MSEiry = 1163
O DFIV Median MSE;_s o = 61.16
® Mean
Median

=

§=0.00 §=0.10 5030 6= 050 5= 1.00 5= 3.00 DFIV 5= 0.00 §=0.10 5=10.30 § =050 5= 1.00 DFIV

Figure 3: Distribution of ||hg — ho||? on A (Ieft) and hyey, (right) evaluated for a range of § values,
compared to those attained by DFIV and KIV (Singh et al., 2019). Our method is evaluated on 9
independently fitted models with identical hyperparameters for each z-axis value. 16 DFIV models
were fitted in both settings.

Experiment results. We compare to DFIV (Xu et al., 2021), which is currently the most competitive
method to benchmark against. In the setting of hoq we observe an average 20% improvement
from selecting a small positive & over using standard SpecIV. The standard benchmark is well-
aligned but there is still some benefit in this setting. By comparison, for Ay, we see that vanilla
spectral learning (0=0) severely underperforms DFIV. This is in line with the fact that the top of
the eigenspectrum of 7 is not an optimal set of features for the downstream problem. Increasing ¢§
allows the model to tune the learned features, increasing the projection of hye,, onto their span, and
hence match or slightly exceed the performance of DFIV. Since good performance is contingent on
the choice of , we next investigate strategies for ¢ selection.

6.3 OFF-PoLICY EVALUATION

To further illustrate the applicability of our augmented method, we showcase its performance in
Off-Policy Evaluation (OPE). OPE is a fundamental problem in reinforcement learning that can be
approached via NPIV (Chen et al., 2022), but poses a significant challenge for standard SpecIV be-
cause it involves a noncompact operator that cannot be learned through the usual contrastive frame-
work. Instead, one has to learn a simpler compact operator while iteratively updating the outcome
Y, which SpeclV is agnostic to. Following the experimental pipeline of Chen et al. (2022), we
showcase scenarios where our proposed modification significantly improves SpeclV and performs
comparably well to state-of-the-art methods for NPIV applied to OPE (Xu et al., 2021; Chen et al.,
2022; Petrulionyte et al., 2024), suggesting that our method broadens the applicability of spectral
feature-based NPIV for OPE.
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OPE context. The goal of OPE is to estimate the value of a known target policy, m(a|s), where
a denotes an action and s denotes a state. The challenge is that we only have access to a fixed,
“offline” dataset of transitions, D = {(s;, a;, r4, ;) }i, Where r denotes a reward, and s’ a next state
transition. The dataset could have been collected by one or a mixture of potentially unknown policies
of potentially unknown analytical form, denoted by 7, (als). This problem is central to offline
reinforcement learning, as it allows one to select the best-performing policy among a collection of
candidate policies without having to directly interact with the environment, which can be costly or
unethical, as is often the case, e.g., in healthcare (Gottesman et al., 2018). For a detailed overview
of OPE, see the work of Levine et al. (2020).

OPE via NPIV. The standard objective in OPE is to estimate the Q-function @), of a policy 7
(uniformly well or in a suitable Ly norm). Xu et al. (2021) showed that Q-function estimation can
be framed as a NPIV problem (see Appendix D.7.2). However, their formulation is not amenable to
spectral feature learning as the conditional expectation operator 7 they obtain is noncompact (Chen
et al., 2022, Eq. (19)). To overcome this, we instead recover (). through a modified NPIV problem
where X = (¢',a') and Z = (s,a) are such that ' ~ 7(- | §') and a ~ m(- | s). Q is then
identified as the solution to 7Q, = E[Y(Qx) | Z], where Y (Q,) = —y (R — Q(X)), where
R | Z is the random reward associated to Z, and + is the discount factor. As the outcome Y (Q))
depends on (), which is the very function we are estimating, we introduce an iterative procedure
to estimate ). We start with a random guess (g (e.g. Qo = 0) and build Yy = Y (Qo). We then
estimate (); with Augmented Spec I'V. We repeat this process for K steps. We defer the details of
the iterative procedure and the derivation of the new NPIV problem for OPE to Appendix D.7.2.
The key point is that the iterative process introduces a potential for dynamic spectral misalignment,
as the target Y}, changes at every iteration. If the spectral features required to estimate Y}, are not the
same as the dominant spectral features of T, or if this direction shifts as ()} converges, an outcome-
agnostic method will fail. This is precisely the scenario where Augmented SpecIV can help.
Experiment results. We follow the experimental setting of Chen et al. (2022). In particular, we
evaluate the performance of DFIV, SpecIV (§ = 0), and Augmented SpecIV (AugSpecIV; § > 0)
on estimating the value of policies learned by Deep Q-Networks (Mnih et al., 2015) across random-
ized versions of the BSuite Cartpole (Barto et al., 1983), Mountain Car (Moore, 1990), and Catch
environments. The OPE datasets are the pure offline versions from Chen et al. (2022), containing
approximately n = 700k/150k/20k (Cartpole/Mountain Car/Catch) transition tuples (s, a,r,s’)
The results are shown in Appendix D.7, Figures 9 to 11. Compared with Chen et al. (2022),
DFIV performed slightly worse, likely due to randomness in hyperparameter sampling. SpeclV
and AugSpeclV both achieved strong performance on Catch but struggled on Mountain Car. Con-
sistent with prior findings (Chen et al., 2022), no OPE method performed uniformly well across all
tasks. In our experiments, DFIV performed poorly on Cartpole but well on Mountain Car, whereas
AugSpeclV showed the opposite trend. SpeclV also underperformed on Cartpole, likely due to
spectral misalignment. Since § was automatically tuned as a hyperparameter and took the values of
1/1073 /1072 for Cartpole/Mountain Car/Catch, these results suggest that our approach can adapt
to the underlying spectral alignment structure.

6.4 SELECTING §

Balancing the terms in the loss. Let 6 denote the trainable parameters of the feature-learning net-
works. Recall the definition of the augmented loss (Eq. (4))

L3(0) = £5°(0) + R5"(0),  R5P(0) = =BV yg” (2)]"C B[V (2)).

Given that our ability to learn the actual truncated SVD of 75 hinges on the convergence of the fea-
ture neural networks to the population-level optimum, the optimal choice of ¢ is in part an empirical
challenge. In particular, consider what happens if ¢ is sufficiently large that Rgd) dominates the joint
loss value. The features ¢)(?) minimising Rgd) are non-unique. Any choice such that r lies in their
span is equally good. Therefore, the rest of the Z-features should be used to learn an approxima-
tion of the conditional expectation. However, if the gradients with respect to Rs are too large, they
effectively drown out the signal needed to learn 7 and cause a significant decrease in Eg”.

A useful heuristic for selecting J is to treat Rf;d) as an additional regularisation on the learned fea-
tures, and tune its strength so that it influences the learned features without leading the models to
neglect the original /.Zéd) (6) term. A heuristic, which we find leads to good results, is to increase § as
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long as doing so leads to big drops in R§" (#) with minor changes in £{” (#). Small values of § are
always observed to lead to improved spectral alignment. As long as increasing J remains “free” in
that our ability to approximate 7, as measured by [IB”” (9), does not change by much, we continue
to increase it. As seen in Figure 4, the R§" term eventually becomes dominant and £} increases
by a lot. Those settings, in our experiments, correspond to parameters which lead to bad results in
IV regression. We also note that the performance of the method is not sensitive to minor changes to
the value of . We see in Figures 2 and 3 that all sufficiently small values of § lead to improvement.

e —_— =57 0
3191 35 N
" 4 i " 1 = % ......... + ......................
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8 )
Figure 4: Left: Evolution of Eéd’ and Rg’” for models learning hpe,,. Models with non-zero § and a

small [,8“ (close to the value attained at 6 = 0) demonstrate the best results. Each bar’s mean value
is noted above it. Right: Estimation of ||H¢(d) hnew]|? for a range of § values.

Estimating alignment with hy. By Proposition 1, our strategy targets the features ¢\ from the
SVD of 75 as a basis in which to learn hq (see Eq. (6)). The next result shows that we can estimate
the length of the projection of hg onto the span of these features.

~1
Proposition 2. For a,=E[Y), ;(Z)]o; ) €RY, it holds that ||H¢(d)h0||2L2(X):04T(Id—w*w1) a.

Now, we can construct an estimator of this projection length that utilises a fitted 7AZ; instead of the
true operator. Having learned the operator, we can approximate its SVD using a (Z, X) dataset.
We do so by decomposing the operator into features that are orthonormal with respect to the

L?(fix) x R and L?(jiz) inner products, were 7i denote empirical distributions based on the sam-

ples. This procedure yields ’?:5: 2?21 b\i{b\i ® (p;, ;) where (122')?:1 and (;)%_, are orthonormal

systems with respect to the aforementioned empirical inner products. For the plug-in estimator

T T ~ . .
HH(P@ hOH%Q( x) ® (Id — Ww ) a, which shows how well our features approximate the true

underlying function and can be used to select ¢, in Figure 4, we observe that the estimated spectral
alignment increases very rapidly with small § and stays roughly constant for all the choices of §
that lead to good results in IV regression. The exception is = 1.0 where our IV performance has
already somewhat degraded but the estimated alignment remains high.

Minimisation of second stage loss. A natural approach to selecting an optimal IV model is to
pick one which yields the smallest 2SLS error (Xu et al., 2021; Chen et al., 2022). We find that it
works relatively well in experiments on dSprites and off-policy evaluation (where it is the default
model selection strategy employed in standard I'V-based benchmarks). However, as we discuss in
Appendix D.8, the theoretical justification of this method’s consistency remains elusive.

Recommended procedure. In light of these results, we believe that the first approach should be
more robust. Both are informative about very poor choices of ¢ but the method based on balancing
the loss terms provided more conclusive information about 6 = 1.0 being beyond the “optimal”
regime. Further investigation on selection of this parameter is an important topic for future work.

7 CONCLUSION

We have proposed Augmented Spectral Feature Learning, a new framework for outcome-aware
feature learning in nonparametric instrumental variable regression. By introducing an augmented
operator and a contrastive loss, our method addresses the fundamental limitation of outcome-
agnostic spectral features, and achieves robustness in regimes with spectral misalignment to the
targeted structural function. Our current approach relies on a rank-one augmentation; extending the
framework to richer, higher-rank perturbations remains a promising direction for future research.

10
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A TECHNICAL TOOLS

Notation. Throughout the appendix, for a compact operator A, o4(A) denotes the d-th largest
singular value of A and if A is self-adjoint, A;(A) denotes the d-th largest eigenvalue of A.

Proposition 3 (Weyl’s inequality). For any two compact operators A and B, the singular values
are stable under perturbation: |o;(A) — 0;(B)| < (A),rank(B)}.

Theorem 2 (Wedin sin-© Theorem). Let A and B be compact operators. Let Py and Pg be the
orthogonal projections onto the subspaces spanned by the top-d left singular vectors of A and B
respectively (the same property holds with the right singular vectors). If v := 04(A)—04+1(B) > 0,
then,

A—-B
|[Pa — Ppll < 4= 5]l

Additionally, if ya := 04(A) — 0q41(A) > 0 and ||A — B|| < y4/2, then

A—-B
fuaﬂgzﬁ'yw

Proof. The first inequality is the original theorem (Wedin, 1972). We prove the second inequality.
By Weyl’s inequality, Proposition 3,

|0a41(A) = 041 (B)| < [|A - BJ.

Hence,
Y2 04(A) —0ar1(A) = [[A= Bl =va — [|A = B > va/2.

Therefore,
|A- B

|Pa— Ppl <2-
YA

O

Theorem 3 (Eckart-Young-Mirsky Theorem). Let A : Hi1 — Ho be a compact operator between
Hilbert spaces with Singular Value Decomposition

A = ZUZU? ®U¢,

i>1

where {v;} C H;y and {u;} C Ho are orthonormal sets, and (o;); are the singular values of A,
which satisfy o1 > 09 > --- > 0. Foralld > 1, Ag = Zdﬂ ou; ® v; satisfies

A=A = | min 4~ B
)<d

Moreover, if 04 > 0441, Aq is the unique minimizer.

B OMITTED PROOFS
We provide the proofs omitted from the main text below.

B.1 PROOF OF PROPOSITION 1

Givend > 1,0 > 0, parameter # and w € R4, define the operator
Tow = Uy (@5 | ZW) ® (pg),wi) : Lay(X) x R = Ly(Z).

‘We show that ) )
Ls(0,w0) =Ts — To,wllas — 1 Tsl5s -

14
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To simplify the notations in this proof, we drop the (d) subscript on the features. Let us define
®g ., : RT — Ly(X) x R the operator whose adjoint is 5, =[P |w]: Lo(X) xR — R? such
that we have 7y ., = \I/9<i>j57w. (i)gw is such that

B = Bilpoiwi),  Dj(ha)=Ph+a-w.
i=1
Therefore,
~ ~ T T
(I)gw(l)gw = E[(pg (X)(pg (X)T] +ww = Cs&e + ww (9)
Using the definition of the Hilbert-Schmidt norm and the cyclic property of the trace, we have
175 = Towllie =1 Tsll 2 = 1Tow o =2 Tr (T3, T5) = Tr (W05 B0 ) —2Tr (W5 T, )
For the first term, exploiting Eq. (9) and the linearity of the trace, we have
Tr (05200, B0 ) = T (Cy, Coy + Cpp)
= Tr<Cw9 Cips) + WTCIDSW
= ExEz[(00(X)"%0(2))*] +w Cy,w

where E xIEz denotes the expectation where X and Z are treated as independent random variables
drawn from their respective marginal distributions.

For the second term, recall that 7:; = [T | dro]. Forall 8 € R%, we have

[ 97:3(1)9 w/B Zﬂz \1197:5 ©o, Lawt)]

=1

d
- Zﬁi[\p; (wi 610+ Tepei)l;

—Zﬁz -6 - E[Y9,(2)] + Elpg,i(X)10,5(2))) -

Therefore W} 750,83 = 6 - E[Y¢g( )w" + E[te(Z)pe(X)T], and
Tr (5 Ts%0. ) = Elpo(X)0(2)] + 6 - 0"ELY o (2)].

Putting it together, we obtain

175 = Towllas = 1 T5 15 = ExEzl(00(X) %0(2))%] + w'Cyyw — 2E[00(X) "0(Z)] — 26 - "E[Y ¢ (2)]
= [:0(9) + wTC¢9w —26 - wTE[YwQ(Z)]
= E5(97w).

We conclude the proof with Theorem 3.

B.2 PROOF OF PROPOSITION 2

Recall the SVD of 75 (Eq. (6))
= Z U*,ilb*,i ® (ﬁﬂ*,ia W*,i)~
i>1
The key relationships it satisfies are o, ;0. = T sy, and o, ;we; = 6(ro,Yui) = 0 -
04.i(ho, px.i). In Eq. (14), we show that ®{"* &L = [, — w*wT. Thus
o = 0 (B D) 1B = B(1, — ] ).
Next, observe that
(@wisho) = 05 i (T i, ho) = 07 (Yui, Tho) = 0, JE[Y 1 i(2)] = .

Therefore, « is such that & = ® hy. Alignment of hg to the true spectral features (of 7s) then
satisfies:

T -1 -1
I ool = (o, TT_cw o) = (BL* ho) (Id - w*w1> R —— (Id - w*wl) a.
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B.3 APPROXIMATION ERROR ANALYSIS

Recall that for d > 1, we fixed a partition N UN = N, such that [N|=d, T=U 4AqV ;+U A,V
We introduce the projection operators

Hﬁd = Udﬁz Hvd = Vdvz Hgd = QdQZl =] — Hﬁd sz — KdK:l =] — Hvd
We then decompose h as
ho = EO +ﬁ0 = Hvdho + szho = Z@-vi + Zgzvl
iEN iEN
Let us define A\, as the smallest positive entries of Ay
Proposition 4. i, is such that
||Hth’HL2(X) _ Xfl
nzo |T g hllpyzy ™™
Proof. Since the quantity is homogeneous in &, we may restrict the supremum to
1557, Pl Ly x) = 1.
Write [Ty, h = Y7, oy ajvi so that Y-, v |o;|?> = 1. Using Tv; = \ju; fori € N we get
1T Ty, 27,00 = D Al
iEN
Hence, for such A,
”HthHLz(X) 1 1

= S p—
||THth||L2(Z) (Zieﬁ)\?‘ai‘Q)l/Q )‘min

Equality is attained by taking h proportional to the singular vector v with A\j+ = Apn, which
conclude the proof. O

)

The following proposition states a general approximation error bound when the span of the learned
features is close to the singular spaces of 7 associated to N.

Proposition 5. Let A, B be constants such that |l — Ty, || < A,

Uy, — 1Tyl < B, and

-s- 2 2o

Then,

-1
o — ol < (1 _B- ) (Bllholl o + 1My, hollacx))

)\min

Proof. Recall that under Assumption 3, hg(x) = @g(x)" By satisfies Czx 0080 = E[ro(Z)ve(Z)].
Observing that E[ro(Z)ye(Z)] = Uhro = U3Tho and using that Czx 9 = V5T Py, we have
Czx,0B0 = \I/ZT hg. Therefore 0 = \I/zT(hg — hyp), which implies

Iy, T (he — ho) =0 (10)
We then have the following chain of inequalities,
lho — hollL,(x) < U5z, (he — ho) [|L,(x) + [Ty, (he — ho) [, (x)
< AinlI T g7, (ho — ho) Lo (x) + [1v kel L, (x) + TIv, holl2.(x)
winl T, T (6 — o) |2 x) + 1| (T, = TI5,) Rl ) + [Ty ol 1. )

=\
< Aminl Mg, = Ty, [ TH1Re = holl Lo(x) + M7, = Ty, [l Roll Lo cx) + 1Ty, ol £y x)
A

IN

IN
A >

lho — holl 2o (x) + Bllhe — ho + hollz,(x) + Iy, holl £, (x)

maui

|

n B) 1o — holl oy + Bllholl s + My, roll oo,

>\min
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where in the second inequality we used Proposition 4 and the triangular inequality, in the equality
weused T Ily; =1l T and Hje hg = 0, in the third inequality we used Eq. (10) and in the fourth
inequality we used || 7| < 1. Re-arranging, we obtain

A
(1 —=+ B) lhe — hollL,(x) < BllhollLo(x) + My, holl L, (x)»

min

and the result follows. O

Then next step is to obtain A and B. Recall the SVD of 75 Eq. (6)
Ts = ZU*,ﬂ/)*,i ® (PayisWayi)y  Vai € La(Z),  (Pwiswai) € La(X) X R,

i>1
We denote by II e and Hwi‘” and orthogonal projection onto the span of (¢, ;)%_; and (. )%,
respectively. It is important to note that ¢, ; is not a singular function of 75 but the first component

of the singular function (¢, ;,w. ;). Therefore the family {. ;}; is not orthonormal. From the
SVD, we deduce the following relationships for all ¢ > 1

Or,i®usi = T5(Pyir Wieyi),s
OwiPrri = T i, (11)
Oy ,iWs,i = 0 (Vui,70) Lo(2),5
where we use the fact that 757 = T*r 4 (r,r0) 1, (z), € La2(Z).
By the triangular inequality,
Mg, = My, || < W, =yl + 1T @ — Ty, || (Z — features)
My, = Mg, || < M, = I @ || + [T — Ty, || (X — features)

Proposition 6 (Control of the X -features).

1L, — g, ||
I — Ty, || < = b : : (12)
X Amin (1 — HHwid) — HﬁdH)
Assume in addition that A, — |11 P~ Iz, || > 0. Then,
175" = Toll
I =Ty | < 5—— (13)

min — Hle)id) - HﬁdH .

Proof. We start with Eq. (13). Let 7w : Lo(X) x R — Lo(X) be the canonical projection such that
m(h,a) = h. Recall that

d
OB =" Bipui-
=1

Let us define .,
&)id)ﬁ = Z ﬁi(gp*,zﬁ w*,i)v
i=1
that is such that 7®{” = &{”. We then have the following decomposition
BIBOU = x(BOTOUO) = (T3 = W0~ o) 4 7T
— 71'(7?5(“!) — %w)* + ey
We will apply Wedin Sin-© Theorem, Theorem 2, to A = &S W{"* and B = 4 ¥}. Note that
A= B| = [[ @20 W — 0w
= | (T3) (0 @) = Ty,) + 7(T3" = Tow) Ty, |
< on(Ty)IM @) = Ty, || + 1757 = Toul

Pl

Wi
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AS (px.i,ws ;)% forms an orthonormal family, we have ®{"*®{” = I,. On the other hand, simi-
larly to Eq. (9), we have

I;= 3 dW = 3O + wow, (14)
Therefore,
Ud(A)2 _ Ud(‘bid)zi@‘l’id)*) = gg(UORO GO PO O P D)

Ud(q;(dl)z(d)(fd — Wy, )E(d)\l/(d)*)

= 0a(T{(T{9)" = (WP rg) @ (WU rg))

= 0a(IL (T5(T5)" = 6*ro @ ro)IL, ()

O'd( w d)TT Hw(d))
=oq(I1 e T)?%,

where in the third equality, we used that fact that w, = 6(3%”) = W{”*r; by Eq. (11) and in the fifth
equality we used 75(75)* = TT* + §%rg @ r9. Next, by Weyl’s inequality, Proposition 3,

lo0a(I 0 T) = Amin| = loa(Il @ T) — oa(llg, T)| < (I @ — Tz )T < |1 @ — I,

Hence 04(A) > i — |11 Iz, |l and 0441 (B) = 0. We obtain Eq. (13) applying Theorem 2.

Wi T
We now prove Eq. (12). We use
PR = T = Vo Ra U + VA, Ug Wi,

We will apply Wedin Sin-© Theorem, Theorem 2, to A’ = VA, U, and B’ = &%, Note
that

14" = B[ = [VaAa Ug¥i” — 2080 = |V A, US| < U, — ol

where for the last inequality, we use

U0y = Uglly, W = Uylly W0 = Uglls; — Hiid)]\y@ = Uyllly, — 110 ] W50,
By the inequality for singular values of product of matrices, we have
oa(A) = 0a(VaRhaUg¥®) > 04(Vaka) o0a(U,9)
= 0a(Aa) 0a(T,01")
= Amin (U 04")
> Amin(1 = I @ — T, |)-
We conclude with Theorem 2, using that o411 (B’) = 0. O

Proposition 7 (Control of the Z-features). Assume that £4(0,w, ) < c4(Ts)/2. Then,
€d(9, w, 5)
aq(Ts)
Assume that v4(8) = [|[Ra(I + %@ /2] 71| =1 — Ayl > 0 and [|Ayllllaglle, < 7a(8)/2. Then,

Il Aglllaolle,
’Yd(5)

[T My, [ <2-

Wi

Mg, T < 2-

Proof. The first inequality follows from Theorem 2 and the definition of €,4(6, w, 9).

For the second inequality, using 7 = Uy Ay V; + U, A, V5, we get the following decomposition
Ts = [T | 6ro] = [T | §Tho] = [T | 6UaKa Vgho] +(0 | 6U4 Ay Viiho]
Q
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Note that ~
175 = QI = 0U4 Mg ollrz) < dllAglllao |, (x)

To analyze the spectrum of Q, we look at
A A% * 7T N T 7T AN T 77 M 0 *
QQ* =TT+ 6*(UahaV zho) @ (UaAgV gho) = [Ua|Uy) B AQ} UalUg4] .
Ay

where M = Ko+ 62R4V o (ho ® ho)V ahq. When Amin(3) > ||A2| then Il is associated to the
top spectrum of @ and we can apply Wedin Sin-© Theorem, Theorem 2, to A = Q and B = T5. As
M = Ay(I + 8%aa YAy,

we have . . _ .
min(Aa(1 +6%aa )'/?) = [[Aa(1 + 6%aa )12 71|72,
Therefore Apin (M) > ||A3]| is equivalent to

0u(A) = gas1(B) = [|Ba(l + %@ )27 |7 = [ Agl] = 7a(8) > 0.

)\min(ﬁ) = 0'2

Proposition 8 (Control of ill-posedness). Under the assumptions of Proposition 5, it holds that

T A
Cog,po = Amin (1 — B — = )

)\min

Proof. Start by decomposing projections as
H\IIGTHSOG = HUdT(HSW) —+ Hgd) + (H\ys — Hﬁd)mﬁae'
Now, using inequalities of sums and products of singular values we have that
Ud(H‘I’e mwe) > Ud(HﬁdT)o-min(Htpe + HQd) - 01((H‘I’9 - Hﬁd)msae)'
But, since
min(Mgy +T0y,) = |1 = (Mg, = Ty, )] HI7H > 1= [T, = T, |,
whenever [[II;, — IL,, || < 1, the proof is completed. O

We combine the previous proposition in the following general approximation error bound.

Theorem 4. Given any §>0 and partition NUN =N, denoting Amin= min \; and A, = max \;,
i€[N] i€[N]
if
6d A

—max

Xmin Yd (6)

2)\d + Xmin

£4(0,8) <k <1/2 15
Ad)\min d( )_K/_ / ( )

llgall 2 (x) +

then Cop g > (1 - H))\min: and

46 Apax 1ol 22 (x) ||QdHL2(X)+(2/\d+Xmin) llhollz2(x) Ea(8,0)
Xmin 'yd((s) 1-k Xmin)\d 1-x

[ho—haoll L,(x)< (1 + . (16)

Proof. First, observe that 04(75) > Aq and 01(7s) < (1 + d||ro||z2(z)). Now, recalling Proposi-
tion 5, due to Proposition 7 we can take

_ 26Amax‘|qd||L2(X) Ed(9,5)
Ya(6) Ad

But, since Eq. (15) ensures that A/ i, < 1/2, from Proposition 6 we can set

45 A, 2 1 2
B = —Eldx”qd”L (X) +Sd(975) < _ >

)\min’yd((s)
and obtain that A/, + B < k < 1/2. To complete the proof we apply Proposition 8. [

min
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Good scenario. Setting N = {1,...,d} and § = 0 we obtain the control of the approximation
error for the SpeclV learning method. That is, equation 16 becomes
3lhollz2(x)
lho=hellzacx) < T— <Qd||L2(X) e, .9 ). (17)

whenever £4(0,9) < kAq/3. Here we see that the representation learning error needs to scale as
£a(0,0) =< Aallaallz2(x)/llhollL2(x), as d — oc.

Bad scenario. Let N = {k} and assume that |[[s1]|z2(x)=|(ho,vk)| >
|ho—arvrllz2(x)=llq1ll2(x). From Eq. (8), we have that for large enough 6 > 0 the gap

7 (8)=Aiy /1 + 52”‘91”%2(1)_1 is positive. So, taking 0 = 7(1 — Ax)/(Axl[s1llz2(x)), we have

that 71 (0) > Ard|[s1]|£2(2)—(1—Ax)=6(1—Ag), and, hence applying Theorem 4 of Appendix B.3),
we conclude that

1 (5llhollz2(x) + A% Istllz2x) 2|hollL2(x)
ho—h < ————2&4(0,6) ], (18
l[ho 9||L2(X)1_ﬁ< NS lqull L2+ " a(6,0) |, (18)

whenever 7(|q1][2(0) /|51 2y +3E1(0,w,8) \e < kAL, Therefore, whenever |[sq||r2(x) >
llg1|lz2(x), we are able to learn the most dominant part of the structural function with just one
feature.

C STATISTICAL ANALYSIS

We recall our estimation procedure.

Estimator: Given i.i.d. data (Y;, X;, Z;)_,, we estimate hg via the two-stage procedure:

. 1 — 1l
Czxo= - giﬁe(zi)@e(Xi)T eRMI g = - ;Yﬂ/fe(zi) eR%. (19)
By = 6'2)1(,957, ho(x) = @o(x)" By. (20)

C.1 PROOF OF THEOREM 1

We decompose the excess risk as

lho — hollzacx) < 1he — hellL,cx) + I1he — holl Ly(x)-

Proposition 9 provides the control on the estimation error, that is, w.p.al. 1 — 7

- c d 2 4
1o = ol oy € ———/ =1/ 0%+ 2 log =, @
C (d) w(d) n n T
)

Py

where 0% := [|ho — hol|72(x) + 07 and ¢ > 0 is an absolute constant.

C.2 PROOF OF AUXILIARY RESULTS

We also recall the definition of sub-Gaussian random variables.

Definition 1 (Sub-Gaussian random vector). We define the proxy variance o of a real-valued ran-
dom variable x, which controls the tail behavior of x via P(|x — E[x]| > t) < 2exp ( — t?/7%). A

random vector X € R® will be called sub-Gaussian iff, there exists an absolute constant such that,
forall u € R?, Tixuy < cll{X,u) = E(X, )| L, @)-
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Proposition 9 (Concentration for Sub-Gaussian Random Variables). Let Assumptions 2-4 be sat-
isfied. Given T7€(0,1), let n>16d p? log(4d/T)c 2, e Then there exists an absolute constant
Yo Vo

c > 0 such that, with probability at least 1 — T,
R c d 2 4
lho — hollL,(x) < \/7\/Ufjgc+p log —, (22)
C (d) ,(d) n n T
Po awg
where 0 = ||ho — th%z(X) + 0.

Proof of Proposition 9. Let us denote

§=EY¢'(2)  and g =E[Yy’(2)]. (23)

We have
oo = ol oy = ||C55 (Ba = o)

o = |Gl oz (5 - Caxoni)|,
2

A Ag

(24)

Lemma 1 below guarantees that P(A; < 2/ €@ w(d,)) > 1—17/2. Lemma 2 below guarantees with
6 176

probability at least 1 — 7/2 that
c 5 . dp? 4
AQS% dUeff""TlOg;'

where oy == [lho — hol|72(x) + 07
An union gives the result with an absolute constant ¢ > 0 possibly different from the previous.

O

Lemma 1 (Matrix Perturbation Control). Let Assumptions 2 and 3 be satisfied. Assume in addition
that
dp? log(4d/T)

16—
(d) ., (d
Yo Vo

(25)

Then with probability at least 1 — /2,

1/2 A-1 1/2 2
HCX,QCZX 9 H <
& <d>’¢(d>

Proof of Lemma 1. Define the centered random matrix
= O > (o(Z)pe(X:)" — Czx0)Cxy -
We have
C4 2 (Caxo — Cax0)Cxy" = Zm

Operator norm bound: By Assumption 2, we have ||;|| < dp? + 1 almost surely. Indeed
—1/2 -1/2 1/2 -1/2
il = 1€ b0 (Zi)oo(Xi) Cx [ = € *Cax o Cx
12 —1/2 —1/2 1/2
< 10 2O on (Xl + 1€ Coxa O]
gfp-\fp—l—lgdp +1 a.s.
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Covariance bounds: For the left covariance,
1/2 T —1 T * — 1/2
(Vo(Z)po(X)" — Czx,0)Cx 4(Vo(Z)po(X)" — Czx,0)"Cy 4

E[ 0
fc;zm Elo(2)00(X)" O oo(X)0s(2)" — Czx aCxyCh gl O
= C i "B (2)p0(X)"Cx!

Efo(2)

E[nini] =
V' Oxp0 (X)0(2)1C 4
= O "Elo(2)40(2) o (X)'C esoa(X)]cZ}f
< dp? - Cy*CreCry? = dpla.
Similarly, E[n;n;] < dp*1,.
Thus 0? = 0% < ndp?®. Applying Theorem 5 gives w.p.a.l. 1 — 7/2

_ ~ _ 2dp? log(4dr—1 1+ dp? log(4dr—1!
IC7Y2(Caxo — Cox )O3Ry < o) 2201 08UATT) | 1t dplogdT™) _ o (o)

n 3 n
(26)

Using Weyl’s inequality (Proposition 3) and Assumption 3, we deduce that the smallest singular of
Cpi?CrxaCy Yy satishi
79 Czx,0Cx " satisfies

—-1/2 &5 —1/2
O’min(CZﬁ/ CZX’QCX’Q/ ) > ctﬂé‘Z)vwéd) — An(T) > ngd),wé<i) /2 > 0,

where the last inequality follows from sample complexity condition Eq. (25). Since ||A| =

oL (A™1), we get the result. O

min

Lemma 2 (Vector Concentration with Sub-Gaussian variables). Let the assumptions of Theorem 1
be satisfied. Define

€= (Y — ho(X))Cpy *vo(2).

Then there exists an absolute constant ¢ > 0 such that, with probability at least 1 — 7/2,

1 — d 2 4
=N e - c\f\/aff,-ﬁlog,
nizl n . n T

where 0y == ||ho — th%Z(X) + 0.

Proof. We need to check the moment condition of Proposition 10 with A = £. This condition
is obviously satisfied for p = 2 with 02 = E||A||7 . Next for any p > 3, the Cauchy-Schwarz
inequality and the equivalence of moment property give

m— m— /
Ellellz < (Blelt) " (Bl )" < e (Enem>)

For the second order moment, using Cauchy-Schwarz and the equivalence of moments for sub-
Gaussian random variables:

E{I¢]13,) = El(ho(X) — ho(X) + UIC2 *0e(2) 3,
< B2 [(ho(X) — ho(X) + U)*| B2 [ C i/ *bo( )11,

<32Ez {HCE;NW(Z)HZ} e = 32d gy 27

For higher order moments, we apply Lemma 3 withv =Y — hg(X) and V = 0210/ *1h9(Z). Hence
we get, for any p > 3,

B2l < V2Fy ) (oY (= 2)! (28)

22



Under review as a conference paper at ICLR 2026

By Definition 1 of sub-Gaussian distributions, there exists an absolute constant ¢ > 0 such that

Ty _no(x) < 2¢(Var(ho(X) — ho(X)) 4 Var(U)) < 2cog.

We apply Proposition 10 to get w.p.a.l. 1 — 7/2

EZ&—E{& Sc\/gx/ofﬁ+pzlog4- (29)
n n n T

1€[n] I

where ¢ > 0 is absolute constant possibly different from the previous display.

O

Lemma 3 (Moment Bound for Sub-Gaussian Product). Let Z = vV where v is a real-valued sub-
Gaussian random variable with proxy variance G, and V is a d-dimensional random vector with

IV le, < pV/d almost surely. Then for any integer p > 3, we have

EV2[[oPe=2 |V (2P Y] < V25872 (pv/d)P 2/ (p — 2)! (30)

Proof. Since ||V ||¢, < pv/d almost surely, we have
_ 2(p—2 - _
EHU‘Q(p 2) ”V”eip )] < (p\/;l)2(p 2)EHU|2(10 2)].
We will use the tail characterization of sub-Gaussian random variables and the integral representa-
tion of moments to bound E[|v|2(P~2)].

Since v is sub-Gaussian with proxy variance 7, there exists an absolute constant ¢ > 0 such that
forall t > 0:

2
P(jo] > 1) < 2exp (—22) G1)

v

Set m = 2(p — 2). Using the integral representation of moments:

e} oo t2
E[|v|>P=2)] :/0 mt™ 1 P(jv] > t)dt < 2/0 mt™ ! exp <—02> dt. (32)

v

Integration by parts gives

° t2 m m
fm=1 Sl a="5mr (—)
fomrten (-5 ) a=garr (s

where I is the Gamma function.

Since m = 2(p — 2), we have I' (%) = (p — 3)! and consequently
> m—1 t2
mt exp| ——=5 | dt = (p—2)!
0 Oy

EV2[[oP2|VI[A"] < V23,0V d) PP/ (p - 2)! (33)

Thus we get:
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C.3 CONCENTRATION INEQUALITIES

We present here some well-known concentration inequalities for operators that we use in our analy-
sis.

We recall first a version of Bernstein inequality, due to Pinelis and Sakhanenko, for random variables
in a separable Hilbert space, see (Caponnetto & De Vito, 2007, Proposition 2).

Proposition 10. Let A;, i € [n] be i.i.d copies of a random variable A in a separable Hilbert
space with norm || - ||. If there exist constants A > 0 and o > 0 such that for every m > 2,
E[|A|™ < im!IA™~2062, then with probability at least 1 — 6,

1 44/2 2 A2
=3 A —EA| < —SlogSy/o2+ —. 4
n ¢ - Vn 0g5 7 +n (34

1€[n]

The following result is call the noncommutative Bernstein inequality. It was first derived by
Ahlswede & Winter (2002). The following version can be found in Tropp (2015).

Theorem 5 (Matrix Bernstein Inequality, Tropp (2015)). Let {Ay}}_, be independent random
matrices of size dy x dg with E[Ay] = 0. Assume that || A;|| < R almost surely for all k. Define the
matrix variance parameters

n n
of =Y _E[AA;]|l,  oh= > E[A; Al (35)
k=1 k=1
Then for any t > 0,
P iA >tp < (dy +dy) /2 (36)
ex .
Pt Bl =t =T oo max{o?,0%} + Rt/3
A more convenient and equivalent of Eq. (36) is, for any 7 € (0,1), wp.al. 1 — 7
n 92 2 521] ditdo 1 di+do
Ly 4, g\/ max{op, ok }log (T57) | Rlog (B57) (37)
n = n 3 n

D EXPERIMENTAL DETAILS

The code needed to reproduce all figures in this work can be found at
https://anonymous.4open.science/r/[V-55DE/README.md.

D.1 STRUCTURAL FUNCTIONS AND ALIGNMENT IN DSPRITES

The dSprites structural function hg = hgg, as used in, e.g., Xu et al. (2024) is not a new idea.
However, it differs from an alternative on which SpecIV(Sun et al., 2025) and DFIV(Xu et al.,
2021) were originally evaluated. That one takes the form,
ho(z) = (| BX||* — 5000),/1000

with B € R10%4096 congisting of i.i.d. Uniform([0, 1]) entries. This function evaluates the squared
norm of 10 random linear measurements of the image and returns a linear transformation of it.
Since the entries of B are i.i.d., this hy has no clear dependence on the values of Z. To see that
it should be extremely difficult to recover hg from the relation 7hg = ¢, note that moving the
sprite vertically, while keeping the orientation, scale and x-position constant (i.e. not changing
the instrumental variable) can lead to different values of hg. This does not quite imply that hg
has a non-trivial projection onto the kernel of X because the distribution of the images X is not
vertical-shift-invariant. But it does suggest that the instrument Z is essentially uninformative about
an important property of the image needed to recover hg. One can reliably learn part of hg due its
monotonicity in the sprite’s scale but beyond this, any dependence on z-position and orientation is
likely to be extremely irregular and not representative of real-life applications of IV regression. For
these reasons we choose not to utilise this benchmark.
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D.2 SPECTRAL ALIGNMENT IN DSPRITES

Cumulative Alignment Distribution

PR
P
’
17
—— hold, 6 = 0.0, estimate
howa, 8 = 0.0, true
=* hnew, 8 = 0.0, estimate

-
0 === = =

=* hpew,d = 0.0, true
o 2 4 6 8 0 2 e

Singular Value Index

Figure 5: Distributions of cumulative alignment estimates and true values ||IL; ;) hol|? for increasing
i, evaluated on separately fitted models (with identical parameters) for hg = hgld, Anew at 6 = 0.

Standard dSprites is well-aligned. Intuitively, most of the variability in the image should be
explained by the heart’s position and scale since these quantities determine where the non-zero
pixels are and how many of them there are in total. By contrast, the rotation angle only explains the
location of non-zero pixels on the boundary of the broad region where the sprite is located (since
most of the sprite’s area is preserved by rotations around its centre). Therefore, structural functions
that mostly depend on scale and z-position should intuitively be easier to learn than those that are
sensitive to rotation. Since A in the dSprites structural function “measures” distance of the non-zero
pixels from the vertical central bar in the image, it should be mostly sensitive to z-positions and the
number of non-zero points to sum over.

Moreover, following Meunier et al. (2025), we can compute the empirical-distribution-based sin-
gular value decomposition of a fitted 7y for 6 = 0 (which we just treat as an operator L?(X) —
L2(Z )). That is, we compute features ;, 0; and positive real numbers &; such that,

d
Ta=) it @ 0;.
i=1
The feature functions (u1.4), (v1.4) are orthonormal systems with respect to the empirical distribu-

tions of Z, X based on the samples used for the SVD estimation. If ||7; — 73| is sufficiently small,
we are guaranteed (Meunier et al., 2025) that the projections onto singular features v; are close to
the projections onto the singular features of the true truncated conditional mean operator 7.

We compute the individual-feature projection lengths |(9;, ho)| to conclude that most of Ay is sup-
ported on the leading singular functions whose singular values are close to 1. Moreover, we compare
these true alignment values to their estimates that are not based on hg (Meunier et al., 2025). This is
to ensure that spectral (mis-)alignment in the dSprites setting can also be detected in a real-life set-
ting where the structural function is not available. Denote the projection onto the leading ¢ singular
X -features of 73 with Il As seen in Figure 5, both the estimates of the squared projection length

onto the leading 7 features of 75 and the true values ||TL;: hol||? are in agreement with one another
and indicate that hgyg lies in the top of the spectrum 7.

A more difficult structural function. Inspired by the discussion above, we would like to evaluate
our methods in a more challenging setting. An intuitive method of obtaining such a benchmark is
constructing a structural function which is most sensitive to the rotation of the sprite as opposed to its
position or scale. In order to work with shapes whose orientation is easier to estimate from the image,
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we replace hearts with ellipses in our benchmark. For an image X of an ellipse, let X be the result
of convolving it with a smoothing gaussian kernel with a small bandwidth of around 4 pixels. This is
done in order to decrease our method’s sensitivity to noise. Then let Timax,; = max;cqi,... 643 Xji

be the maximum of X along its vertical bars, and Ymax,; = max;cq1,... 64} Xi; be the correspond-
ing maximum over horizontal bars. Then, one expects the norms of xy,,x and yyax to be roughly
proportional to the length of the ellipses projection onto the horizontal and vertical axes of the image.
Hence, taking

Pnew = a - (|| Zmax|le, / |Ymax|le, — ),

one should obtain a function which depends on the ellipse’s orientation and is insensitive to its scale
or position. The scalars a,b are chosen in order to match the first two moments of the original
structural function hog. This is done in order to not artificially change the downstream problem’s
difficulty by making the norm of the signal relative to noise different.

H scale h old h new

rotation
20 T position

- 4 8 B

———
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Figure 6: Comparison of how the distributions of hqq and hyey vary with each component of the
instrument Z (scale, orientation or = position). The values of each component of Z in dSprites
are quantised. The z-axis positions in the figure correspond to those values. For each value of a
component of Z, we display the distribution of the values of hg = hgg, hnew €valuated on images
where the component takes that value. The marked values are the means of each bin.

As seen in Figure 6, while hoq has a clear dependence on the sprite position and orientation, Agey
is only visibly sinusoidal in its orientation and insensitive to the latter two. Figure 5 confirms that
data generated using hpey should be considerably more challenging for spectral-feature-based IV
regression, since its projection onto the leading singular functions is close to zero for all models
with 6 = 0 that we have fitted. It is supported further in the spectrum, and in fact |11, hnew||2 is
far from || hyey]||?. This means that not even all of the learned features span Ayey .

D.3 SYNTHETIC DATA MODELS

We train our models using the same architecture as (Meunier et al., 2025), which is described in
Table 1. Notably, the first layer of this network utilises the sin(x)? + z activation proposed by
Ziyin et al. (2020), which enables it to learn the oscillatory basis functions more reliably. To make
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Figure 7: Examples of sprite images on which hq (left) and hpe,, (right) are evaluated.

the improvements in the alignment of leading features with § clearer, we learn 10 Z, X features on
synthetic datasets with d = 11. The models are trained on 50000 (Z, X, Y") samples using the Adam
algorithm.

Layer Configuration

1 Input: 1

2 FC(1,50), z — x + sin® x
3 FC(50, 50), GeLU

4 FC(50, 10)

Table 1: Z, X feature networks for synthetic data

Evaluation of the benefits of using a positive ¢ on a bigger range of ¢, values than in the main body
of the work can be found in Figure 8

D.4 SPECTRAL LEARNING MODELS FOR DSPRITES

For learning spectral features we utilise nearly the same models as Sun et al. (2025). The only dif-
ference is replacing ReLU activations with GeLU which we found to lead to slightly easier training.
“BN” in Table 2 refers to Batch Normalisation (Ioffe & Szegedy, 2015). The models are trained on
25000 (Z, X,Y’) samples and optimised with the Adam algorithm.

We observed that feature models utilising 32 features, as originally proposed in Sun et al. (2025),
were very prone to overfitting, often before this became apparent in the observed loss, making early
stopping difficult to implement. Hence, we trained the models with 16 features instead. This led
to better performance across the board for hgyq. In hyew, vanilla SpeclV, trained with 32 features
attained a smaller loss than it did for 16. However, the performance was still significantly below that
of DFIV or spectral learning with a non-zero 4. For all the “optimal” values of & (between 0.1 and
1.0) we observed benefits from using 16 features over 32.

D.5 DFIV MODELS

For the comparison to DFIV, which is the only viable competitor to SpeclV, we utilise the same
architecture as proposed in the orignal work Xu et al. (2021). “SN” in Table 3 refers to spectral
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Figure 8: Distributions of relative IV regression MSEs for the synthetic example with § €
{0,0.5,1.0,3.0,5.0}.

Layer Configuration Layer Configuration
1 Input: 4096 1 Input: 3
2 FC(4096,1024), BN, GeLU 2 FC(3,256), BN, GeLU
3 FC(1024,512), BN, GeLU 3 FC(256,128), BN, GeLU
4 FC(512,128), BN, GeLU 4 FC(128,128), BN, GeLU
5 FC(128,16) 5 FC(128,16)

X - features Z - features

Table 2: Architectures of spectral learning networks for dSprites datasets

normalisation proposed by Miyato et al. (2018) and “BN” is Batch Normalisation. The models are
trained on 25000 (Z, X,Y") samples and optimised with the Adam algorithm.

Since we decided to decrease the number of features employed by spectral learning, relative to the
standard architecture used in the literature, we also investigated whether doing so leads to better
performance in DFIV. The opposite was observed and hence we retain the original models.

D.6 COMPARISON TO KIV

Since Kernel IV (KIV) proposed by Singh et al. (2019) is a very popular and easily applicable
method, we also include it in our benchmarks. We evaluated it using the Gaussian kernel with a

bandwidth proportional to m+/d where m is the median distance between pairs samples on which
the kernel is evaluated, and d is the dimension of the samples (i.e. 3 for Z and 4096 for X).
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Layer Configuration Layer Configuration

1 Input: 4096 1 Input: 3

2 FC(4096,1024), SN, ReLU 2 FC(3,256), SpectralNorm, ReLU
3 FC(1024,512), SN, ReLU, BN 3 FC(256,128), SN, ReLU, BN

4 FC(512,128), SN, ReLU 4 FC(128,128), SN, ReLU, BN

5 FC(128,32), SN, BN, Tanh 5 FC(128,32), BN, ReLU

X - features

7 - features

Table 3: Architectures of DFIV networks for dSprites datasets
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Figure 9: Scatter plot of estimated policy values vs. ground truth.

D.7 OPE EXPERIMENT PROTOCOL AND RESULTS

0.8 1.0

Hyperparameter optimization. For each method and task, we randomly sample 100 hyperpa-
rameter combinations from the grids in Tables 4 and 5, and select the configuration achieving the
lowest stage-2 mean squared error on the corresponding task with p = 0.2. Orthonormal regular-
ization is applied to both spectral methods, while the § parameter is specific to AugSpeclV, i.e.,
0 = 0 for SpeclV and is tuned as any other hyperparameter for AugSpecIV. With the chosen hyper-
parameters, we run each method five times across all tasks and noise levels and report the mean and

standard deviation of the estimated policy values.

Hyperparameter Values

Training Steps 10°

Batch Size 2048

Stage-1 reg. {1078,1076,10%,1072}
Stage-2 reg. {1078,1075,107%,1072}
Value reg. {1078,1076,10%,1072}
Instrumental reg. {10-8,1076,1074,1072}
Value learning rate {1075,3-107,1074,3-1074, 1073}
Instrumental learning rate  {107°,3-107°,107%,3-1074, 1073}
X net layer sizes (50,50)

Z net layer sizes {(50,50), (100, 100), (150, 150) }

Table 4: DFIV hyperparameters.

D.7.1 OPE CONTEXT: POLICIES AND DATA

In OPE, the “offline” constraint is critical:

e We cannot interact with the environment. We cannot take a state s and an action a ~ 7 to

observe a new transition (s, a,r, s’).
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Figure 10: Box plot of mean absolute error (MAE) between policy value and ground-truth.
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Figure 11: Distribution of MAE across NPIV methods.

e We can compute with 7. Since 7 is a known policy (e.g., a function in our code), we can
sample actions a’ ~ 7(a’|s’) for any state s’ that we observe in our dataset.

D.7.2 NPIV FORMULATION OF OPE AND THE COMPACTNESS PROBLEM

In OPE, to estimate the expected return of a policy 7, a common and effective approach consists
of first estimating the Q-function @), and then averaging over the initial state distribution. While
early methods like Least Squares Temporal Difference (LSTD; Bradtke & Barto, 1996) pioneered
this direction using linear function approximation, modern approaches increasingly leverage NPIV
regression to handle general function approximation.

Related work on OPE. We briefly discuss existing methods for OPE and refer to Jiang & Xie
(2025) and references therein for additional details. Early approaches such as LSTD were restricted

30



Under review as a conference paper at ICLR 2026

S

o 4
Y
0s
s
. _

(a) CartPole (b) Catch (c) Mountain Car
Figure 12: Depiction of the considered environments.

Hyperparameter Values

Training Steps 10*

Batch Size 2048

Stage-1 reg. {1078,1076,107%, 1072}
Stage-2 reg. {1078,1076,107%,1072}
Orthonormal reg. {1078,1076,107%,1072}
Learning rate {1075,3-107°,1074,3-1074,1073}
X net layer sizes (50, 50)

Z net layer sizes {(50, 50), (100, 100), (150, 150) }
5 {1073,1072,107 %, 1}

Table 5: SpecIV and AugSpecIV hyperparameters. The neural architectures are the same as those
of DFIV described in (Chen et al., 2022), except for the usage of GELU activations.
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to linear function approximation. For general function approximation, the dominant approach has
historically been Fitted-Q Evaluation (FQE), which iteratively solves a regression problem to mini-
mize the Bellman residual. Recent advances have highlighted that such an approach requires strong
assumptions to succeed, namely: having access to a sufficiently expressive function class (e.g., that
is realizable and Bellman complete) and using data with good coverage. NPIV formulations offer an
alternative perspective to these regression-based methods. Rather than minimizing a squared error
directly, NPIV approaches Hu et al. (2024) frame the Bellman equation as a conditional moment
restriction as shown below.

Q function and NPIV. Let (S, A, P, R, 119) be a Markov Decision Process (MDP) with state space
S, action space A, transition kernel P(s" | s,a), reward distribution Py, (r | s,a), and initial
distribution po. We denote by R the random reward variable such that its distribution given any
action-pair (s, a) is Prew (- | 8,a).

Given a target policy 7 and discount factor v € (0, 1), its value is defined as:

o0

S om

t=0

p(r) =E = Esympio, Ag~r(50) (@ (S0, Ao)], (38)

where Ry ~ Prew (- | St, At), (Si, Ay) follows 7 and P, and @ is the state-action value function
(i.e. Q-function), given by

Qr(s,a) =E [Z’tht | So =s,40=a]. (39)

t=0

The Q-function, @, is the unique fixed point of the Bellman equation:

Qr(s,a) =Epup,, ., (|s.a) [R] + YEs~p(|s,a),armr(-|5)[Qr (S, AT)] (40)

We first show that we can rewrite this Bellman Equation as an NPIV problem of the form Eq. (2).
A given policy 7 induces an occupancy measure fi,; on the state-action space S x A. We then take
X = (5,4,5', A’) equipped with the measure such that (S, A) ~ pr,S" ~ P(- | S;A), A" ~
m(S"), Z = (S, A) equipped with the measure such that (S, A) ~ u, and finally Y = R. We take
T as defined in the main body so that Eq. (40) can be re-written as

The(S,A) =E[R|S,A]  ie.  Th.(Z)=E[Y|Z],

where h, (X) = hr(S, 4,5, A") = Q(S, A) —vQ~ (S, A’). Note that solving NPIV with respect
to T allows us to retrieve (). on the support of 1. However instead of using p. for which we don’t
have samples, we can use the logging policy. Recall the logging policy 7, and denote by i, the
induced state-action distribution. We introduce 7, as the standard conditional expectation operator
but we now equip X with (S, A) ~ pp, S" ~ P(- | S, A), A’ ~ w(S’) and Z with (S, A) ~ . The
following equation

allows to identify h,(X) = h,(S, A, 5", A") = Q. (S, A) — vQ~(S’, A") on the support . Cru-
cially, this identification relies on a coverage assumption (Jiang & Xie, 2025) that states that the
support of the distribution 1, covers the support of the target policy. Consider Q a function class to
approximate (). We can retrieve ), by solving for an empirical version of the following loss

arg rginE(S,A)NHMRNR,EW(-\S,A) [(Y - ﬁ(hq)(sa A))Q] hq(S, a, S/a a/) = q(s, a) - 'yq(sla a/)'
qe
We can then plug our estimate into Eq. (38) to get an estimate of p(7). Different methods have been

employed with this loss where methods differ by their choice of Q and their approximation of 7y,
see Chen et al. (2022).

However, this formulation is not amenable to spectral feature methods since 7, is non-compact as

X contains Z, and thus cannot be learned using the usual contrastive loss. To overcome this, we
instead recover @, through a modified NPIV problem. This time consider X = (5, A’) equipped
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with the measure such that given (s, a), S’ ~ P(- | s,a), A’ ~ W(SI) = (5, A) equipped with
the measure such that (S, A) ~ pp and finally Y (Q,) = —v (R — Q. (S, A)). We take T as

defined in the main body so that Eq. (40) be re-written as
E[Y (Qn)|Z) = T(Qx)(2) (41)

T is now compact, but this modified formulation introduces a new challenge: the target outcome
Y (Qr) depends on @, which is the very function we are trying to estimate.

This necessitates an iterative procedure for £k = 0,1,..., K — 1, similar to Fitted Q-Evaluation

(FQE):

1. Start with an initial guess, Qg (e.g., Qo = 0).
2. Atiteration k + 1, we solve the NPIV problem defined by Q:

e We construct the target outcome Y}, using our previous estimate () and the observed
reward (.S, A) from the data:

Yi(S, 4) = —%ms, A) — Qu(S, A))

* We solve the spectral NPIV problem E[Y}, | Z] = T Qp11 to find the new estimate
Qr+1-

3. Repeat until convergence.

This iterative process introduces a potential for dynamic spectral misalignment. The target Y}
changes at every iteration k. If the spectral features required to estimate Y}, (the “outcome-aware”

direction) are not the same as the dominant spectral features of 7', or if this direction shifts as Q)
converges, an outcome-agnostic method will fail. This is precisely the scenario where our Aug-
mented Spectral Feature Learning could help.

D.8 VALIDITY OF HYPERPARAMETER TUNING BY CROSS-VALIDATION ON THE 2SLS LOSS

The population level optimal estimator of 7 based on a fixed set of (9 (@ features is
) TTL ) where 1), I1,ca) denote the orthogonal projections onto the spans of the learned
X, Z features. By minimizing the contrastive loss we can ensure that our estimator is indeed close
to having this structure, with whatever features are obtained in the process.

Given 7 an estimation of 7, consider the so-called stage-2 loss, £ (h) = E[(’f'h(Z ) —Y)2 over h
spanned by the learned X —features. For simplicity assume it is performed with this population-level

optimal estimate of the conditional mean ’7A‘ = Hsa(d>THw<d)’ and let the resulting estimate of the

structural function be /. We have,

((h) =E [(ThO(Z) - nw(d>7“ﬂ¢<d>/2(2))2} FE[(Tho(Z) — V)2

The second term is a model-independent constant so we can disregard it. If we wanted to evaluate
the quality of our model based on this loss, then we should be able to decompose it into a monotone

function of ||hg — EH or (to make the task easier) of || 7 (ho — E) || and a term that will not vary across
different learned feature sets (or is sufficiently small to be negligible). However, there seems to be
no clear way of achieving this. Consider the most natural approach below.

Note IT ) THLP(d) h= Hw(d)Th/ since 7 is spanned by the X —features. Let IT+
onto the orthogonal complement of the span of the v features. Then

e be the projection

E [(Tho ~ My Tﬁ)ﬂ —E [(T(ho - ﬁ))ﬂ _E [(H;@ Tﬁ)ﬂ _9E [T(ho —h) I, Tﬂ .
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If we could argue that the latter two terms are negligible, then stage 2 error should reflect E[(7 (ho —

71))2} and we would indeed be done. This condition would be satisfied if one could for instance argue
that ”pr_( o T () || is always small. But there is no clear reason why this should hold. We note that
this indicates that minimisation of the 2SLS loss is a generally unprincipled methodology, not only
for tuning 0 in our setting, but for IV model selection more broadly.

Practical performance. Regardless of the aforementioned obstacles, we find that selecting the
model, and, in particular, tuning § based on £(h), the stage-2 loss, yields good results. On the
dSprites benchmarks these are consistent with the values selected by the procedure based on maxi-
mizing the estimated projection length of hg onto the learned X —features, as shown in Figure 13.
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Figure 13: Comparison of the estimators of ||H¢(d) ho||? proposed in Section 6.4 and negative stage-

2 errors, for a range of § values on the dSprites benchmark with hg = hpey. Despite the lack of
theoretical backing for the latter, both methods attain their maxima near the same values of 4.

E HIGHER RANK PERTURBATIONS

The rank one augmentation we propose extends directly to higher rank perturbations. This setting
includes vector—valued outcomes and also the case where one wishes to encourage the learned Z
features to retain predictive information about multiple functions of Y.

Let f1,..., fx be functions of Y that we would like to be well approximated from Z. For § € RX
we define:

£90) = £a0)- 38 |1, 0Bl | 2
k=1
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As in the rank one case, to avoid differentiating through matrix inverses, this can be rewritten with
auxiliary variables wy, € R? as:

K
L5 0,01, wn) = Lo(0) + Y wi Cpmwn — 28E[fi(Y)e” (2)] Twr.
k=1

The optimal features correspond to the truncated SVD of the following rank K perturbed operator:

K
To: L*(X) xRS 5 L2(2),  (ha) = Th+ > ard; fi
k=1

A complete theoretical analysis of the rank K setting is beyond the present scope and we regard
it as an important direction for future work. We report preliminary results for K = 2 using f =
IE[Y’“ | Z] in Figure 14. In the dSprites setting with hg = hpey, including fo alonde yields similar
improvements as fi alone. Using both functions gives slightly lower error, but the differences are
small and do not allow strong conclusions at this stage.
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Figure 14: IV MSE for rank two perturbations with f, = E[Y*|Z], K = 1,2, on dSprites with
ho = hpew. For example, § = (0.2, 0.0) reduces to the rank one case.
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