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Abstract001

As neural language models achieve human-002
comparable performance on Machine Reading003
Comprehension (MRC) and see widespread004
adoption, ensuring their robustness in real-005
world scenarios has become increasingly im-006
portant. Current robustness evaluation research,007
though, primarily develops synthetic perturba-008
tion methods, leaving unclear how well they009
reflect real life scenarios. Considering this, we010
present a framework to automatically examine011
MRC models on naturally occurring textual012
perturbations, by replacing paragraph in MRC013
benchmarks with their counterparts based on014
available Wikipedia edit history. Such perturba-015
tion type is natural as its design does not stem016
from an arteficial generative process, inherently017
distinct from the previously investigated syn-018
thetic approaches. In a large-scale study encom-019
passing SQUAD datasets and various model020
architectures we observe that natural perturba-021
tions result in performance degradation in pre-022
trained encoder language models. More worry-023
ingly, these state-of-the-art Flan-T5 and Large024
Language Models (LLMs) inherit these errors,025
with the largest observed drop reaching 28.28%.026
Further experiments demonstrate that our find-027
ings generalise to natural perturbations found028
in other more challenging MRC benchmarks029
such as DROP and HOTPOTQA. In an effort030
to mitigate these errors, we show that robust-031
ness to natural perturbations can be improved032
through adversarial training for encoder-only033
models or through in-context demonstrations034
of perturbed instances for LLMs, although a035
more generalisable and effective defence strat-036
egy remains to be developed.037

1 Introduction038

Transformer-based pre-trained language models039

demonstrate remarkable efficacy in addressing040

questions based on a given passage of text, a task041

commonly referred to as Machine Reading Com-042

prehension (MRC) (Devlin et al., 2019; Brown043
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Figure 1: Given a reading paragraph, we extract and
use Wikipedia revision history to construct its naturally
perturbed version for a more realistic robustness evalua-
tion (Bottom), rather than relying on a set of synthetic
methods (Top). While Mistral-7B-Instruct-v0.2
generates the correct answer for both the original and
synthetically perturbed passages, it fails under natural
perturbation.

et al., 2020; He et al., 2021; Wei et al., 2022; Tou- 044

vron et al., 2023; OpenAI et al., 2024b). Despite 045

these advancements, high-performing MRC sys- 046

tems are known to succeed by exploiting shortcuts 047

in existing benchmark datasets rather than truly 048

demonstrating understanding of the passage and 049

question, thereby exhibiting a lack of robustness to 050

various types of test-time perturbations. Such phe- 051

nomenon is observed not only in encoder-only and 052

encoder-decoder models (Ho et al., 2023; Schlegel 053

et al., 2023), but also in state-of-the-art (SOTA) 054

Large Language Models (LLMs) (Levy et al., 2023; 055

Fang et al., 2023; Gupta et al., 2024). 056

Extensive textual perturbation methods have 057

been developed to reveal the vulnerabilities 058

of MRC models to various linguistic chal- 059

lenges (Ribeiro et al., 2018; Jiang and Bansal, 2019; 060

Welbl et al., 2020; Tan et al., 2020; Tan and Joty, 061

2021; Schlegel et al., 2021; Cao et al., 2022; Tran 062

et al., 2023). Despite the insights they provide, 063

all of them craft perturbations in a synthetic man- 064

ner—that is, based on hypothesised manipulation 065
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strategies (Figure 1 Top)—which may not accu-066

rately reflect the types of challenges encountered067

in real-world scenarios. As a result, there is a risk068

of overlooking the genuine weaknesses of reading069

comprehension systems when deployed in practical070

settings, potentially hindering efforts to improve071

their reliability in real applications.072

To counteract this issue, in this paper, we de-073

velop a framework to inject textual changes that074

arise in real-world conditions into MRC datasets075

and audit how well contemporary language mod-076

els perform under such perturbations. We deem077

them as natural because the perturbation process078

does not involve any artificial manipulation, in line079

with the definitions by Belinkov and Bisk (2018);080

Hendrycks et al. (2021); Pedraza et al. (2022);081

Agarwal et al. (2022); Le et al. (2022) (Figure082

1 Bottom). Results of robustness evaluation are083

therefore more representative of real-world appli-084

cations. Similar to Belinkov and Bisk (2018), our085

approach utilises Wikipedia revision histories as086

the source of natural perturbations, given that the087

differences between revisions authentically cap-088

ture the textual modifications made by human ed-089

itors in the real world. Despite this, significant090

differences exist in the perturbation construction091

methodology between us. Perturbation in (Be-092

linkov and Bisk, 2018) is restricted to single word093

replacements and applied on non-English source-094

side sentences in machine translation. In detail,095

they build a look-up table of possible lexical re-096

placements by harvesting naturally occurring errors097

(typos, misspellings, etc.) from available corpora098

of French/German Wikipedia edits (Max and Wis-099

niewski, 2010; Zesch, 2012). Afterwards, they re-100

place every word in the source-side sentences with101

an error if one exists in the look-up table. Differ-102

ent from (Belinkov and Bisk, 2018), our approach103

does not restrict the perturbation level and utilise104

English Wikipedia. By comparing the variances be-105

tween each adjacent revision, we identify perturbed106

versions for each Wikipedia reading passage in the107

original MRC benchmarks (if it exists). This en-108

ables us to capture more comprehensive and critical109

natural perturbation patterns (see Section 5.2) that110

can not be possible to capture in (Belinkov and111

Bisk, 2018). Our perturbation method only alter112

the reading context, while the questions and ground113

truth answers remain unchanged.114

With the established framework, we conduct115

extensive experiments on six datasets, evaluat-116

ing forty-two models, including recently proposed117

LLMs. Experimental results on Stanford Ques- 118

tion Answering Dataset (SQUAD) (Rajpurkar 119

et al., 2016, 2018) indicate that natural pertur- 120

bations encompass rich linguistic variations and 121

can lead to failures in the encoder-only mod- 122

els, while humans are almost undeterred by their 123

presence. Crucially, these errors also transfer to 124

larger and more powerful models, such as Flan-T5 125

and SOTA LLMs, with performance drops rang- 126

ing from 4.4% to 28.28%. These findings also 127

generalise to other and more challenging MRC 128

benchmarks (e.g., Mistral-7B-Instruct-v0.2’s 129

5.25% decrease on BOOLQ (Clark et al., 2019) 130

and Llama-3.2-1B-Instruct’s 9.98% decline 131

on DROP (Dua et al., 2019)), emphasising the 132

harmful effects of natural perturbations. Adversar- 133

ial re-training/in-context demonstration with either 134

naturally or synthetically perturbed MRC instances 135

can enhance the robustness against natural perturba- 136

tions, with the latter sometimes providing greater 137

benefits. However, there is still ample room for 138

improvement, calling for better defense strategies. 139

The contributions of this paper are as follows: 140

• A framework—based on Wikipedia revision 141

history—for studying model robustness un- 142

der real-world natural perturbations. This is 143

relevant, even in the LLM era, as our frame- 144

work can be applied to any other tasks with 145

input from Wikipedia and also to any types of 146

models. 147

• Perturbed datasets for six diverse MRC tasks. 148

Two SQUAD challenge sets derived from er- 149

ror analysis of encoder-only models, on which 150

SOTA LLMs struggle, even without being in- 151

volved in the creation in any capacity. 152

• Empirical demonstration of the validity of nat- 153

ural perturbations across both encoder-only 154

models and LLMs, their characterisation by 155

different linguistic phenomena and their harm- 156

ful effects on diverse model architectures 157

across benchmarks generated with the pro- 158

posed framework. 159

• Showcasing adversarial re-training with natu- 160

ral or, especially, synthetic perturbations, as 161

well as adversarial in-context demonstrations 162

as a way to enhance the robustness of encoder- 163

only models and LLMs, respectively, against 164

natural perturbations. 165
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Figure 2: Process of generating naturally perturbed MRC test sets.

2 Related Work166

Robustness Evaluation in MRC A typical ap-167

proach to evaluate the robustness of MRC models168

is via test-time perturbation. This line of research169

develops different perturbation methods as attacks,170

such as adversarial distracting sentence addition171

(Jia and Liang, 2017; Tran et al., 2023), low-level172

attacks (Eger and Benz, 2020), word substitution173

(Wu et al., 2021), character swap (Si et al., 2021),174

entity renaming (Yan et al., 2022) and paraphras-175

ing (Gan and Ng, 2019; Lai et al., 2021; Wu et al.,176

2023). Our work also fits within the category of177

test-time perturbation, but differs from previous178

works in that we introduce perturbations that natu-179

rally occur in real-world scenarios, therefore con-180

tributing to a more practical robustness test.181

Natural Perturbation for Robustness Assess-182

ment Compared with deliberately crafting the183

perturbed instances, the study of natural pertur-184

bation is quite under-explored. In the computer185

vision domain, researchers find that real-world186

clean images without intentional modifications can187

confuse deep learning models as well, terming188

them as natural adversarial examples (Hendrycks189

et al., 2021; Pedraza et al., 2022). Similarly, in190

the field of Natural Language Processing (NLP),191

naturally occurring perturbations extracted from192

human-written texts can also degrade model per-193

formance in tasks such as machine translation (Be-194

linkov and Bisk, 2018) and toxic comments de-195

tection (Le et al., 2022). Motivated by these, we196

attempt to harvest natural perturbations from avail-197

able Wikipedia revision histories and utilise them to198

modify the original MRC instances. To the best of 199

our knowledge, we are the first to investigate MRC 200

model robustness under real natural perturbations. 201

3 Natural Perturbation Pipeline 202

We design a pipeline to automatically construct 203

label-preserving stress MRC test sets with noises 204

that occur in real-world settings by leveraging 205

Wikipedia revision histories (Figure 2). Our ap- 206

proach comprises two modules: candidate passage 207

pairs curation and perturbed test set construction. 208

Candidate passage pairs curation. For each En- 209

glish Wikipedia article within the development set1 210

of MRC datasets, we systematically extract its en- 211

tire revision histories and preprocess them, includ- 212

ing the removal of markups and the segmentation 213

of content. Subsequently, we obtain the content 214

differences between each current revision and the 215

previous adjacent one, identifying three distinct 216

editing patterns: addition, deletion, and modifi- 217

cation. In the case of an edit falling within the 218

modification pattern, we retain the paragraph from 219

the prior version as the original and the correspond- 220

ing one from the current version as the perturbed, 221

provided both paragraphs exceed 500 characters2. 222

Perturbed test set construction. To generate the 223

naturally perturbed test set, we begin by acquir- 224

ing all reading passages from the development set 225

1Since not all test sets are public, we apply natural pertur-
bations to the development sets. For simplicity, we use the
term “test set” throughout.

2This threshold setting adheres to the methodology em-
ployed in the collection of SQuAD 1.1 (Rajpurkar et al., 2016).
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of each MRC dataset and identifying their entries226

in the collection of previously extracted candidate227

original passages, along with the corresponding per-228

turbed counterparts. Subsequently, for the matched229

original passages with a single occurrence, we keep230

them and the corresponding perturbed passages;231

whereas for those with multiple occurrences, we232

randomly select one instance for each and extract233

its perturbed version. After obtaining the perturbed234

reading passages, we retain only those with at least235

one question where all annotated ground truth an-236

swers (or all plausible answers for the unanswer-237

able question) can still be located within the per-238

turbed context, resulting in the Perturbed test set.239

For the sake of comparison, we also construct an240

Original version of the test set keeping only the241

original passages and questions corresponding to242

those that were included in the Perturbed version.243

4 Experiment Setup244

4.1 Datasets245

We use six English MRC datasets: SQUAD246

1.1 (Rajpurkar et al., 2016), SQUAD 2.0 (Ra-247

jpurkar et al., 2018), BOOLQ (Clark et al., 2019),248

DROP (Dua et al., 2019), HOTPOTQA (distrac-249

tor) (Yang et al., 2018) and TYDI QA (gold pas-250

sage task in English) (Clark et al., 2020). These251

are chosen as their reading passages are sourced252

from Wikipedia, thereby enabling the utilisation of253

Wikipedia editing histories to generate the naturally254

perturbed test set.255

4.2 Models256

Our evaluation study involves MRC models across257

three different types: encoder-only, encoder-258

decoder, and decoder-only. Under the encoder-259

decoder and decoder-only model evaluation set-260

tings, we reframe MRC as the text generation task261

based on the given context and question. Access to262

and experimentation with all models are possible263

via the use of the HuggingFace’s Transformers li-264

brary (Wolf et al., 2020), the vLLM library (Kwon265

et al., 2023), two 80GB Nvidia A100 GPUs and266

the OpenAI ChatGPT API.267

Encoder-only: We select BERT (Devlin et al.,268

2019) and its various variants for evaluation, in-269

cluding DistilBERT (Sanh et al., 2019), SpanBERT270

(Joshi et al., 2020), RoBERTa (Liu et al., 2019),271

ALBERT (Lan et al., 2020) and DeBERTa (He et al.,272

2021). Some of these model types also come with273

different variations, such as size (e.g., base and274

large for RoBERTa), versions (e.g., v1 and v2 for 275

ALBERT) and whether the input text is cased or not 276

(e.g., cased and uncased for BERT), all of which 277

are included in the evaluation. We fine-tune these 278

encoder-only pre-trained language models on the 279

training set of the two SQUAD datasets (Rajpurkar 280

et al., 2016, 2018) and evaluate them on the con- 281

structed original and perturbed test sets. Model 282

details and the hyperparameters used in model fine- 283

tuning are shown in Appendix A. 284

Encoder–Decoder: Instruction finetuning has 285

been demonstrated to be effective in enhancing 286

zero-shot performance of pretrained language mod- 287

els, resulting in the development of Finetuned Lan- 288

guage Net (FLAN) (Wei et al., 2022). In this 289

work, we use the instruction-finetuned version of 290

T5 model class, specifically the Flan-T5 (Chung 291

et al., 2022), available in sizes ranging from small 292

(80M), base (250M), large (780M) to xl (3B). Dur- 293

ing evaluation, we utilise the instruction templates 294

from MRC task collection in open-sourced FLAN 295

repository and report the model performance as the 296

average of those obtained across the employed tem- 297

plates. Refer to Appendix B for various instruction 298

templates used for the evaluation on the test sets 299

with the format as the two SQUAD datasets. 300

Decoder-only: There is an exponential increase 301

of pre-trained generative LLMs and their fine-tuned 302

chat versions, inspired by the remarkable success 303

of ChatGPT (Bang et al., 2023). Therefore, our 304

experiments incorporate a broad range of recently 305

proposed language model families, including GPT 306

3.5 Turbo, GPT-4o (OpenAI et al., 2024a), 307

Gemma (Mesnard et al., 2024), Gemma 2 (Riviere 308

et al., 2024), Llama 2 (Touvron et al., 2023), Llama 309

3 and Llama 3.1 (Dubey et al., 2024), Llama 3.2, 310

Mistral (Jiang et al., 2023), OLMo (Groeneveld 311

et al., 2024), Qwen2.5 (Qwen et al., 2025), Falcon 312

(Almazrouei et al., 2023), Falcon3 (Team, 2024), 313

and DeepSeek LLM (DeepSeek-AI et al., 2024). 314

The zero-shot prompts designed for soliciting their 315

responses are presented in Appendix C. 316

4.3 Evaluation Metrics 317

In line with existing literature, we choose the 318

(instance-averaged) Token-F1 score to assess the 319

performance of both encoder-only and encoder- 320

decoder models (Rajpurkar et al., 2016), as on 321

SQUAD-style test sets, they are optimised to out- 322

put the shortest continuous span from the context 323

as the answer (or predict the question as unanswer- 324
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able) during inference. However, the outputs of the325

decoder-only models do not consistently adhere to326

the instruction due to their conversational style, ren-327

dering F1 unsuitable for evaluation. Consequently,328

we employ a more lenient metric, namely Inclusion329

Match (IM), which measures whether the response330

of the model contains any of the ground truth an-331

swers (Bhuiya et al., 2024). Furthermore, if the332

model’s output includes phrases such as “I can-333

not answer this/the question” or “unanswerable”3,334

we deem that the model believes the question is335

not answerable. Model robustness is quantified by336

measuring the relative variation in performance (as337

reflected in the F1 or IM) under natural perturba-338

tions.339

5 MRC under Natural Perturbation340

In this section, we present and discuss the results341

of our experiments. We first evaluate encoder-only342

models on SQUAD to establish a baseline evalu-343

ation of model behaviour under natural perturba-344

tions. While neither represents the current SOTA,345

SQUAD’s simplicity, the stable, super-human per-346

formance of encoder-only models, and it’s advan-347

tage of being free from benchmark leakage impact348

enable a focused and controlled examination of per-349

turbation effects (Section 5.1), error sources (Sec-350

tion 5.2), and adversarial instance validity (Section351

5.3). Then, we investigate the transferability of352

errors from encoder-only models to other archi-353

tectures, showing both FLAN-T5 and LLMs carry354

these errors significantly (Section 5.4) 4. We finally355

generalise the findings from the baseline evaluation356

to SOTA LLMs and other more complex datasets357

(Section 5.5).358

5.1 Are Encoder-only Models Resilient to359

Natural Perturbation?360

Table 1 presents the relative F1 change for361

encoder-only MRC models on the naturally per-362

turbed SQUAD test set. It can be seen that overall,363

the performance of all the examined models de-364

creases, indicating that encoder-only MRC models365

suffer from natural perturbation. Nonetheless,366

the performance decline of all models is not at a367

significant level, with the biggest drop being only368

3We collate a collection of such phrases by manually ex-
amining the decoder-only models’ outputs (Check Appendix
D for the full set).

4To supplement, we further evaluate the full test set on
FLAN-T5 and several LLMs, and measure the transferability
of adversarial examples across all model architectures (Ap-
pendix E).

3.06%. This suggests that these models also exhibit 369

considerable robustness to natural perturbation. 370

Victim SQUAD 1.1 SQUAD 2.0

Overall (Ans./Unans.)

distilbert-base −0.6 −0.71 (−2.76/1.71)

bert-base-cased −0.21 −0.63 (−1.84/0.6)

bert-base-uncased −0.87 −0.49 (−1.88/0.94)

bert-large-cased −0.63 −0.53 (−1.61/0.55)

bert-large-uncased −0.35 −1.38 (−2.51/−0.24)

spanbert-base-cased −0.26 −1.24 (−2.66/0.15)

spanbert-large-cased −0.51 −1.20 (−1.9/−0.56)

roberta-base −0.61 −0.60 (−2.09/0.81)

roberta-large −0.29 −1.52 (−2.6/−0.54)

albert-base-v1 −1.0 −1.07 (−2.02/−0.22)

albert-base-v2 −0.34 −1.08 (−2.03/−0.22)

albert-large-v1 −0.42 −0.41 (−1.42/0.52)

albert-large-v2 −0.8 −0.69 (−1.66/0.22)

albert-xxlarge-v1 −0.75 −1.23 (−3.06/0.49)

albert-xxlarge-v2 −0.46 −1.28 (−3.02/0.36)

deberta-large −0.52 −1.05 (−2.2/0.0)

Table 1: Relative F1 change (%) for encoder-only
MRC systems subjecting to natural perturbations. For
SQUAD 2.0, the overall values are broken down to an-
swerable and unanswerable questions, respectively.

5.2 Which Categories of Natural Perturbation 371

Lead to Model Failure? 372

To investigate the sources of natural perturbation 373

and reveal the perturbation phenomena contributing 374

to encoder-only models’ error, we manually label 375

linguistic features between passages where models 376

succeed and fail, to identify how they differ. 377

Within the original and the naturally perturbed 378

test set pair generated based on SQUAD 2.0 devel- 379

opment set, we first identify 384 instances where at 380

least one encoder-only model succeeds on the orig- 381

inal but fails5 on the perturbed (i.e., being adver- 382

sarial), and then randomly select the same number 383

of instances on which all encoder-only models suc- 384

ceed on both the original and perturbed versions 385

(Naik et al., 2018). We refer to these two types 386

of instances as C2W (correct to wrong) and C2C 387

(correct to correct) instances, respectively. Among 388

the identified C2W and C2C instances, we further 389

remove duplicates, resulting in 210 and 244 unique 390

original and perturbed paragraph pairs, respectively. 391

Furthermore, as natural perturbation can occasion- 392

ally help the model to get the answer correct, we 393

also filter 85 unique W2C (wrong to correct) in- 394

5For answerable questions, a model’s prediction is consid-
ered correct if Exact Match (EM) score equals 1, and incorrect
if F1 score is 0 or it determines the question is unanswerable.
For unanswerable questions, a model’s prediction is correct
if it predicts the question is unanswerable, and wrong if it
provides an answer span.
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stances on which at least two encoder-only models395

fail on the original but succeed on the perturbed.396

Finally, utilising an 8-category taxonomy of the397

semantic edit intentions in Wikipedia revisions de-398

rived from Yang et al. (2017), the chosen 210 sam-399

ples of C2W and C2C, as well as the 85 W2C were400

annotated, with 20% of the annotated C2W and401

C2C examples presented to a second annotator for402

additional validation. See Appendix F for the in-403

struction provided to the annotators, along with404

detailed explanations of each edit intention. We405

calculate the (micro-averaged) F1 score to evalu-406

ate the inter-annotator agreement, which is 0.82.407

This suggests that the annotators’ annotations align408

closely. Figure 3 reports the annotation results.409

Figure 3: The percentage (%) of samples annotated
with each edit intention in the C2W, C2C and W2C cate-
gories. The percentages do not add up to 100% because
a single revision may fall into multiple intentions.

Distribution of perturbation types shown in Fig-410

ure 3 generally aligns with the edit intentions distri-411

bution annotated in (Yang et al., 2017), with Copy412

Editing and Elaboration appearing more frequently413

than others, such as Clarification, Fact Update,414

and Refactoring. This reflects the inherent char-415

acteristics of Wikipedia revisions. From Figure 3,416

we observe that there is no significant difference417

in the distribution of annotated edit intentions be-418

tween C2W and C2C examples, suggesting that419

though these types of natural perturbations con-420

fuse the encoder-only MRC models, there seems421

no correlation with human-perceivable features.422

A roughly similar distribution is also observed in423

the W2C examples, which indicates that these nat-424

ural perturbation types can also facilitate correct425

answers by the models, i.e., being beneficial. These426

demonstrate that on SQUAD 2.0, there might be no427

correlation between the quality of the naturally per-428

turbed passage and its potential for being adversar- 429

ial6. Certain text edits aimed at improving the pas- 430

sage quality, such as Copy Editing and Elaboration, 431

do render the perturbation adversarial, whereas ed- 432

its intended to damage the article may not consis- 433

tently result in adversarial instances; in fact, vandal- 434

ism can even assist models in providing correct an- 435

swers. Instead, we infer that whether an edit to the 436

passage can render the MRC instance adversarial or 437

not depends on the location of the edits in relation 438

to the question. Among the 384 C2W and C2C ex- 439

amples, we measure the proportion of answerable 440

questions with the answer sentence(s) in the origi- 441

nal passage remaining unmodified in the naturally 442

perturbed version, which is 34.5% and 71.5%, re- 443

spectively. This confirms our hypothesis that if the 444

edits affect the answer sentence(s), there is a higher 445

likelihood of the perturbed example becoming ad- 446

versarial; otherwise, it might not. Copy Editing 447

appears to alter the answer sentences in the read- 448

ing passage more frequently, making it the most 449

impactful category that confuses models (contribut- 450

ing to more than 40% of error cases), while other 451

types have a lesser effect. Appendix G presents 452

one perturbed example for each of the C2W, C2C, 453

and W2C categories, respectively, along with the 454

annotated natural perturbation type(s). 455

5.3 To What Extent Do Natural Adversarial 456

Examples Preserve Validity? 457

To accurately assess a model’s robustness under 458

perturbation, it is vital to examine the validity of 459

adversarial example, i.e., whether humans can still 460

find the correct answer under the perturbation (Dyr- 461

mishi et al., 2023). Two human annotators are 462

recruited to verify the validity of the 210 C2W 463

examples in Section 5.2 and the inter-annotator 464

agreement is measured by computing the Cohen’s 465

κ coefficient (Cohen, 1960). We then involve a 466

third human annotator to annotate the adversarial 467

examples on which the first two annotators disagree 468

and take the majority label as ground truth. This 469

validity verification process is detailed in Appendix 470

H. Out of 210 C2W examples, we find that 86% of 471

them are valid (0.77 Cohen’s κ), indicating that a 472

substantial proportion of natural adversarial ex- 473

amples for encoder-only MRC model(s) are valid. 474

6We also find little or no significant correlation between the
perturbation magnitude (measured as byte-level changes be-
tween the original and perturbed passages) and model failure,
with point biserial correlation coefficient close to 0.
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5.4 Can Errors from Encoder-only Models475

Affect Other Architectures?476

We further investigate whether the errors identified477

in encoder-only models carry over to other more478

recent models and architectures, as SOTA advance-479

ments in NLP would suggest otherwise. Therefore,480

we propose an exhaustive search algorithm (Ap-481

pendix I) to zoom in on the errors of encoder-only482

models as much as possible, curate the challenging483

natural perturbed test set, and finally examine the484

performance of Flan-T5 and LLMs. With the devel-485

opment set of SQUAD 1.1 and SQUAD 2.0 as the486

source, the algorithm results in two challenge per-487

turbed test sets: NAT_V1_CHALLENGE (184 con-488

texts, 234 questions) and NAT_V2_CHALLENGE489

(214 contexts, 442 questions (226 unanswerable)).490

Table 2 shows the evaluation results on the491

newly generated challenge test sets. From the492

table, we observe that the errors caused by493

natural perturbation in encoder-only MRC494

models transfer to both Flan-T5 and LLMs.495

On the NAT_V1_CHALLENGE, flan-t5-small496

demonstrates the greatest susceptibility to497

natural perturbations, experiencing a 14.27%498

decrease in F1; while among LLMs, Gemma-7B-IT499

emerges as the least robust, with a 16.66% IM500

drop, followed by Gemma-2B-IT (−15.83%)501

and Llama-3.1-8B-Instruct (−15.61%).502

Transitioning to the NAT_V2_CHALLENGE,503

the base version of flan-t5 exhibits the504

largest performance decline at 13.83% and505

Falcon-7B-Instruct stands out as the LLM506

with the lowest robustness (−28.28%). Other507

LLMs such as Qwen2.5-7B-Instruct and508

deepseek-llm-7b-chat also show severe robust-509

ness loss, with drops of 12.21% and 11.29%,510

respectively. Further, we observe that the ro-511

bustness of models under natural perturbations512

does not necessarily size-dependent. While513

larger models tend to exhibit greater robustness514

in some cases (e.g., Qwen2.5-14B-Instruct515

vs. Qwen2.5-3B-Instruct), exceptions within516

the Falcon and Llama model series suggest517

that factors beyond model size–such as training518

corpora, training and fine-tuning methodology, and519

architectural differences may also significantly520

affect susceptibility to natural perturbations.521

In Appendix J, we showcase two adversarial522

examples targeting LLMs sourced from our523

generated challenge sets.524

Model Performance
original vs. perturbed

NAT_V1_CHALLENGE NAT_V2_CHALLENGE

flan-t5-small 58.76/64.76 48.58/55.52−14.27 42.57/44.57 39.71/41.81−6.19

flan-t5-base 79.49/85.01 66.1/73.42−13.63 70.66/72.85 61.16/62.78−13.83

flan-t5-large 88.1/92.53 76.57/82.31−11.05 79.11/81.01 70.14/72.13−10.96

flan-t5-xl 86.25/91.57 75.0/81.45−11.05 83.71/85.84 73.19/74.86−12.79

GPT-3.5-turbo-0125 91.03 83.33−8.46 51.58 47.06−8.76

gpt-4o-2024-11-20 93.16 85.9−7.79 80.09 75.11−6.22

Gemma-2B-IT 51.28 43.16−15.83 55.66 50.23−9.76

Gemma-7B-IT 82.05 68.38−16.66 59.95 57.01−4.9

Gemma 2-2b-IT 85.47 78.21−8.49 48.87 43.44−11.11

Gemma 2-9b-IT 89.32 81.62−8.62 64.93 59.95−7.67

Llama 2-chat-7B 82.91 73.93−10.83 41.63 38.69−7.06

Llama 2-chat-13B 80.77 73.93−8.47 46.83 41.18−12.06

Llama-3-8B-Instruct 88.89 77.35−12.98 51.81 46.61−10.04

Llama-3.1-8B-Instruct 87.61 73.93−15.61 61.31 55.43−9.59

Llama-3.2-1B-Instruct 54.27 47.86−11.81 35.29 32.13−8.95

Llama-3.2-3B-Instruct 81.2 71.37−12.11 48.42 43.44−10.29

Mistral-7B-Instruct-v0.2 84.19 73.08−13.2 54.98 51.36−6.58

OLMo-7B-0724-Instruct 90.17 82.91−8.05 51.36 49.1−4.4

Qwen2.5-3B-Instruct 78.63 68.38−13.04 61.31 54.07−11.81

Qwen2.5-7B-Instruct 88.03 81.2−7.76 76.02 66.74−12.21

Qwen2.5-14B-Instruct 92.31 81.62−11.58 80.54 74.21−7.86

Falcon-7B-Instruct 53.42 50.00−6.4 32.81 23.53−28.28

Falcon-40B-Instruct 69.66 62.82−9.82 38.69 36.88−4.68

Falcon3-7B-Instruct 88.03 79.49−9.7 59.28 55.43−6.49

Falcon3-10B-Instruct 90.6 82.91−8.49 64.48 59.73−7.37

deepseek-llm-7b-chat 70.51 64.1−9.09 42.08 37.33−11.29

Table 2: Performance (%) of Flan-T5 and SOTA LLMs
on NAT_V1_CHALLENGE and NAT_V2_CHALLENGE.
Values in smaller font are changes (%) relative to the
original performance of the model.

5.5 Do Our Findings Generalise to Other 525

Challenging MRC Datasets? 526

The two SQUAD datasets investigated previously 527

are relatively simple, as they lack challenging 528

features (Schlegel et al., 2020), leading to super- 529

human performance of MRC models (Lan et al., 530

2020). To generalise our findings to more chal- 531

lenging MRC benchmarks, we apply the natural 532

perturbation methodology (Section 3) to the devel- 533

opment set of four more datasets and assess the 534

performance changes of multiple LLMs, as shown 535

in Table 3. For DROP (Dua et al., 2019), we first 536

use the GPT-4o mini to infer the likely Wikipedia 537

article title from which each passage is retrieved 7 538

and extract the revision histories for those arti- 539

cles. For HOTPOTQA (Yang et al., 2018), we only 540

perturb the paragraphs containing the supporting 541

facts, while the distracting passages remain un- 542

changed. Furthermore, using the validity verifica- 543

tion method described in Section 5.3, we manually 544

verify the validity percentage of all adversarial ex- 545

amples in DROP and TYDI QA, as well as 50 ran- 546

domly selected adversarial examples from BOOLQ 547

and HOTPOTQA, as reported in Table 3. 548

Overall, when natural perturbations are applied 549

to other more challenging benchmarks, SOTA 550

LLMs also exhibit a lack of robustness, with 551

the largest 9.98 performance decrease observed 552

7This is because the raw Wikipedia title information cannot
be found in the original development set of DROP. We use
the prompt: “Given a reading paragraph, return the Wikipedia
page title from which it is likely retrieved.”

7



LLM IM Relative Change (%)

BOOLQ DROP HOTPOTQA TYDI QA

adversarial validity (%) (Cohen’s κ) 72 (0.54) 85.7 (0.46) 88 (0.6) 87.5 (0.52)

Gemma 2-2b-IT −3.91 −2.22 − −1.61
Gemma 2-9b-IT −3.92 −1.69 −2.21 −1.51
Llama-3.1-8B-Instruct −3.05 −7.13 −0.91 3.17
Llama-3.2-1B-Instruct −3.81 −9.98 −1.73 −9.1
Llama-3.2-3B-Instruct −3.74 − −2.05 −
Mistral-7B-Instruct-v0.2 −5.25 −1.85 −1.16 −
OLMo-7B-0724-Instruct −4.49 −7.9 −2.36 2.94
Qwen2.5-7B-Instruct −4.24 −3.85 −1.18 −2.78
Qwen2.5-14B-Instruct −3.22 − −1.84 1.38
Falcon3-7B-Instruct −5.1 2.04 −0.06 −8.82
Falcon3-10B-Instruct −3.58 1.8 −1.81 −4.22

Table 3: IM changes (%) of SOTA LLMs on natu-
rally perturbed test set of other more challenging MRC
datasets.

for Llama-3.2-1B-Instruct on DROP. This fur-553

ther demonstrates the broad and severe impact of554

natural perturbations on diverse MRC tasks, es-555

pecially in light of on three out of four bench-556

marks, our human annotators are still able to cor-557

rectly answer over 85% of the adversarial examples.558

BOOLQ exhibits a lower adversarial validity rate559

(72%). However, in most cases, this is not due to560

the perturbation degrading the passage, but rather561

the poor quality of the original instance (Tedeschi562

et al., 2023), i.e., even with the corresponding orig-563

inal passage, humans are unable to assign the cor-564

rect label. For instance, from the annotators’ per-565

spective, the question itself may be ambiguous,566

such as “do you need a visa to visit oman”, or en-567

tirely unanswerable due to missing information in568

the original passage. Our human annotations also569

observe diverse error patterns in LLMs caused by570

natural perturbations (e.g., Copy Editing, Elabo-571

ration and Vandalism), as what are presented in572

Figure 3. Finally, we note that for a very small pro-573

portion of adversarial examples, the limitations of574

the IM metric mean that the model’s answer under575

perturbation does not necessarily indicate an error,576

emphasising the need for future efforts to address577

this concern.578

6 Dealing With Natural Perturbations579

In this section, we provide an initial exploration580

of methods to defend against natural perturbations.581

Due to page constraints, we present only the ap-582

proaches and general findings here; additional de-583

tails and results are provided in Appendix K.584

To enhance encoder-only model robustness, we585

conduct adversarial training by presenting them586

with both original training data and the generated587

naturally or synthetically perturbed training exam-588

ples. In general, we find that retraining with nat-589

ural perturbations enhances the performance on 590

naturally perturbed test sets and improves the ro- 591

bustness to such perturbations as well, though this 592

can lead to varying reductions in performance on 593

the clean test set. Encouragingly, adversarial train- 594

ing with synthetically perturbed examples benefits 595

the model’s capability to handle natural perturba- 596

tions as well, a phenomenon differs from what is 597

reported in machine translation task (Belinkov and 598

Bisk, 2018). In some cases, the improvement even 599

exceeds what achieved by retraining the model on 600

natural perturbations alone. 601

Similarly, for the LLMs, we adopt a few-shot 602

prompting approach by including both the original 603

MRC instance and its naturally or synthetically per- 604

turbed counterpart as demonstrations, and assess 605

how model performance and robustness change 606

compared to the zero-shot setting. Although 607

not widely observed, in certain cases, in-context 608

demonstrations can improve an LLM’s resilience 609

to natural perturbations, regardless of whether 610

natural or synthetic perturbed examples are demon- 611

strated. This phenomenon is particularly evident 612

in models such as Llama-3.2-3B-Instruct, 613

OLMo-7B-0724-Instruct and 614

Falcon3-10B-Instruct. However, it can 615

also have detrimental effects, further decreasing 616

LLM robustness and resulting in a performance 617

decline on both the clean and naturally perturbed 618

test sets. 619

7 Conclusion 620

In this paper, we first study the robustness of MRC 621

models to natural perturbations, which occur under 622

real-world conditions without intentional human 623

intervention. Using the proposed evaluation frame- 624

work, we show that certain naturally perturbed 625

examples can indeed be adversarial, i.e., lead to 626

model failure, even when the modifications aim to 627

improve the overall passage quality. Natural per- 628

turbations also appear to differ significantly from 629

synthetic ones, exhibiting a wide range of rich lin- 630

guistic phenomena and may be more effective in 631

generating valid adversarial instances. Adversarial 632

training via augmentation with either naturally or 633

synthetically perturbed samples is generally benefi- 634

cial for enhancing the model’s robustness to natural 635

perturbations; yet, it can decrease performance on 636

clean test set. Future work includes the exploration 637

of alternative natural perturbation approaches and 638

the design of more effective defensive strategies. 639
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Limitations640

We acknowledge several limitations in our work:641

(1) Our perturbation framework constructs natural642

perturbations from Wikipedia edit history and there-643

fore only works with Wikipedia-based benchmarks.644

Since the phenomenon of natural perturbations is645

by no means limited to Wikipedia and can occur646

in any kind of text that evolves over time, future647

work should explore alternative methods to gener-648

ate natural perturbations for non-Wikipedia MRC649

datasets. (2) As training data augmentation and650

in-context demonstration have a relatively limited651

impact, further research is needed to develop better652

techniques for improving the robustness of both653

encoder-only models and LLMs to natural pertur-654

bations, and to investigate the relationship between655

robustness to natural and synthetic perturbations.656

(3) Potential benchmark contamination may affect657

our findings on LLM evaluation. Investigating its658

extent and impact on LLM performance and ro-659

bustness evaluation will be a focus of our future660

research efforts.661

Ethical Considerations662

All datasets, extracted natural perturbations, and663

models used in this work are publicly available,664

used consistently with their intended purpose and665

under the permitted license. A very small propor-666

tion of natural perturbations may contain offensive667

content, as they come from reverted Wikipedia re-668

visions intended to damage the articles. We in-669

clude these to raise awareness within the commu-670

nity about their potential impact on MRC models671

and to call for methods to improve the safety of672

MRC models–especially those LLMs operating un-673

der such adversarial conditions. While our ultimate674

goal is to enhance model robustness, the findings675

from this work may carry the risk of being misused676

by malicious attackers to refine adversarial attack677

strategies and craft attacks against similar systems.678

Before starting the annotation task, we provide all679

annotators with clear instructions and inform the680

intended use of their annotations, obtaining their681

explicit consent. No private or sensitive informa-682

tion was collected, other than their annotations.683
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A Encoder-only Model Parameters and 1157

Hyperparameters for Fine-tuning 1158

Table 4 shows the hyperparameters used to fine- 1159

tune the pre-trained encoder-only MRC models 1160

in this work and their number of parameters con- 1161

tained. 1162

ModelParameters(M) d b lr ep

DistilBERT(66) 384 8 3e− 5 3

BERT(110/340) 384 8 3e− 5 2

SpanBERT(110/340) 512 4 2e− 5 4

RoBERTa(125/355) 384 8 3e− 5 2

ALBERT(11/17/223) 384 4 3e− 5 2

DeBERTa(350) 384 4 3e− 6 3

Table 4: Number of parameters in each type of pre-
trained encoder-only MRC model and the hyperpa-
rameters used to fine-tune them. For BERT, SpanBERT,
RoBERTa and ALBERT, we show the number of model
parameters in the order of base, large and xxlarge (if
applicable) version. d is the size of the token sequence
fed into the model, b is the training batch size, lr is the
learning rate, and ep is the number of training epochs.
We used stride = 128 for documents longer than d to-
kens.

B Instruction Templates for Flan-T5 1163

Evaluation 1164

In Table 5, we present the instruction templates 1165

employed in constructing the inputs to the Flan-T5 1166

model for the SQUAD 1.1 format and SQUAD 1167

2.0 format test sets, respectively. 1168

C MRC Prompts 1169

We use the following zero-shot prompts to instruct 1170

the decoder-only models to generate responses in 1171

the task of MRC. 1172

SQUAD 1.1 & TYDI QA: Use the provided 1173

article delimited by triple quotes to answer ques- 1174

tion. Provide only the shortest continuous span 1175

from the context without any additional expla- 1176

nation.\n\n“““{context}"""\n\nQuestion: {ques- 1177

tion} 1178
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SQUAD 1.1
1 “Read this and answer the ques-

tion\n\n{context}\n\n{question}”
2 “{context}\n{question}”
3 “Answer a question about this arti-

cle:\n{context}\n{question}”
4 “Here is a question about this article: {con-

text}\nWhat is the answer to this question:
{question}”

5 “Article: {context}\n\nQuestion: {ques-
tion}”

6 “Article: {context}\n\nNow answer this ques-
tion: {question}”

SQUAD 2.0
1 “Read this and answer the question. If the

question is unanswerable, say \“unanswer-
able\".\n\n{context}\n\n{question}”

2 “{context}\n{question} (If the question is
unanswerable, say \“unanswerable\")”

3 “{context}\nTry to answer this question if
possible (otherwise reply \“unanswerable\"):
{question}”

4 “{context}\nIf it is possible to answer this
question, answer it for me (else, reply \“unan-
swerable\"): {question}”

5 “{context}\n\nAnswer this question, if pos-
sible (if impossible, reply \“unanswerable\"):
{question}”

6 “Read this: {context}\nNow answer this ques-
tion, if there is an answer (If it cannot be an-
swered, return \“unanswerable\"): {question}”

Table 5: Various instruction templates for Flan-T5
model evaluation.

SQUAD 2.0: Use the provided article delim-1179

ited by triple quotes to answer question. Pro-1180

vide only the shortest continuous span from the1181

context without any additional explanation. If1182

the question is unanswerable, return “unanswer-1183

able".\n\n“““{context}"""\n\nQuestion: {ques-1184

tion}1185

DROP & HOTPOTQA: Use the provided arti-1186

cle delimited by triple quotes to answer question.1187

Provide only the answer without any additional1188

explanation.\n\n“““{context}"""\n\nQuestion:1189

{question}1190

BOOLQ: Use the provided arti-1191

cle delimited by triple quotes to an-1192

swer question. Return only TRUE or1193

FALSE.\n\n“““{context}"""\n\nQuestion:1194

{question} 1195

D Indicators of Unanswerable 1196

We manually identify a set of phrases contained 1197

in the output of LLMs that indicate the unanswer- 1198

ability of the question, including “I cannot answer 1199

this/the question”, “unanswerable”, “There is no 1200

indication in the provided article”, “The context 1201

provided does not provide enough information”, 1202

“There is no reference in the given article”, “The an- 1203

swer to the question is not provided in the given ar- 1204

ticle”, “it is not possible”, “question cannot be an- 1205

swered” and “context/question/article/text/article 1206

provided/passage does not”. 1207

E Impact of the Complete Set of 1208

Perturbed Instances on 1209

Encoder-Decoder and Decoder-Only 1210

Architectures 1211

We supplement Table 1 in Section 5.1 with addi- 1212

tional experiments on Flan-T5 and some SOTA 1213

LLMs such as Gemma 2 (Riviere et al., 2024) and 1214

Llama 3.2, to study the effect of all perturbed in- 1215

stances on these two architecture types (in addition 1216

to the encoder-only one). The results are presented 1217

in Table 6. From Table 6, we can see that simi- 1218

lar to encoder-only models, Flan-T5 and LLMs 1219

generally exhibit varying degrees of performance 1220

degradation under natural perturbations, but also 1221

exhibit considerable robustness. 1222

Victim SQUAD 1.1 SQUAD 2.0

flan-t5-small −0.69 −0.64
flan-t5-base −0.91 −1.32
flan-t5-large −0.77 −1.13
flan-t5-xl −0.98 −1.37
Gemma 2-2b-IT − −0.76
Gemma 2-9b-IT −0.89 −0.92
Llama-3.1-8B-Instruct −0.38 0.39
Llama-3.2-3B-Instruct −0.96 −0.37
Mistral-7B-Instruct-v0.2 0.39 −1.28
Falcon-7B-Instruct −0.88 −5.38
Falcon-40B-Instruct −0.80 −

Table 6: Performance change (%) for Flan-T5 and
LLMs subjecting to natural perturbations.

We then measure the transferability of adversar- 1223

ial examples across all the evaluated model archi- 1224

tectures and observe that these models share simi- 1225

lar error patterns, with LLMs (especially Falcon) 1226

showing moderate differences. However, the low- 1227

est transferability metric is still as high as 0.86. 1228
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F Human Annotation Instructions1229

In Figure 4, we show the instructions given to hu-1230

man annotators for error analysis (Section 5.2) and1231

adversarial validity checking (Section 5.3), respec-1232

tively. All our human annotators are university1233

students in the United Kingdom and China. Be-1234

fore commencing each task, we ask the annotators1235

to annotate some examples and report the average1236

time spent on each. As compensation, annotators1237

receive 40 pence for each annotated example.1238

G Demonstration of Perturbed MRC1239

Examples for Encoder-only Models1240

Figure 5 illustrates a naturally perturbed MRC in-1241

stance each for categories C2W, C2C, and W2C,1242

with the annotated perturbation type(s).1243

H Process of Adversarial Validity1244

Verification1245

We first present two human annotators with the1246

same collection of adversarial instances, which1247

includes only perturbed contexts and their corre-1248

sponding questions, and then ask them to answer1249

the question based on the perturbed context. The1250

annotators are required to select the shortest con-1251

tinuous span in the perturbed context that answers1252

the question and are allowed to leave the answer1253

blank if they are confident that the question is not1254

answerable. Full instructions given to the anno-1255

tators can be seen in Appendix F. Subsequently,1256

for both annotators, we measure the correctness1257

(1 or 0) of their provided answers by comparing1258

each of them with the corresponding ground truth1259

answers8. The inter-annotator agreement is then1260

measured by computing the Cohen’s κ coefficient1261

(Cohen, 1960). We then involve a third human1262

annotator to annotate the adversarial examples on1263

which the first two annotators disagree and then1264

take the majority label as ground truth.1265

I Exhaustive Search Algorithm for1266

Challenging Test Set Construction1267

We propose an exhaustive search algorithm that1268

leverages the predictions of all encoder-only mod-1269

els to create the challenging natural perturbed test1270

set. In detailed terms, for each matched reading pas-1271

sage from the prior version and its counterpart from1272

8Here, as long as one of the ground truth answers is in-
cluded in the human-provided answer span, we consider the
prediction to be correct.

Error Analysis
You will be presented with pairs of reading
contexts and their modified versions. The task
is to compare each context and its modified
version, observe the changes made and classify
them into one or more of the semantic edit
intention categories detailed below:

• Copy Editing: Rephrase; improve
grammar, spelling, tone, or punctuation

• Clarification: Specify or explain an
existing fact or meaning by example or
discussion without adding new
information

• Elaboration: Extend/add new content;
insert a fact or new meaningful assertion

• Fact Update: Update numbers, dates,
scores, episodes, status, etc. based on
newly available information

• Refactoring: Restructure the article; move
and rewrite content, without changing the
meaning of it

• Simplification: Reduce the complexity or
breadth of discussion; may remove
information

• Vandalism: Deliberately attempt to
damage the article

• Other: None of the above

We will use your annotation to calculate the
percentage of each edit category.
Adversarial Validity Checking
Please read each provided context carefully and
answer a corresponding question. Select the
shortest continuous span from the context as
your answer. If you believe a question cannot
be answered, leave the answer blank. Your
answer will be compared with the ground truth
answers, and the result will only be used to
decide the human answerability of the question.

Figure 4: Instructions for the two distinct human annota-
tion tasks. In the error analysis task, the eight semantic
edit intentions are adopted from (Yang et al., 2017).

the current version, we determine which should be 1273

designated as the original and which as the per- 1274
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Category: C2W
Original Paragraph: Jacksonville, like most large cities in the United States, suffered from negative
effects of rapid urban sprawl after World War II. The construction of highways led residents to move to
newer housing in the suburbs. After World War II, the government of the city of Jacksonville began to
increase spending to fund new public building projects in the boom that occurred after the war. [. . . ]
Perturbed Paragraph: Jacksonville, like most large cities in the United States, suffered from negative
effects of rapid urban sprawl after World War V. The construction of highways led residents to move to
newer housing in the suburbs. After World War II, the government of the city of Jacksonville began to
increase spending to fund new public building projects in the boom that occurred after the war. [. . . ]
Question: What did Jacksonville suffer from following World War I?
Prediction of distilbert-base and spanbert-large-cased: unanswerable→rapid urban sprawl
Annotated Natural Perturbation Type: Vandalism
Category: C2C
Original Paragraph: Construction projects can suffer from preventable financial problems.
Underbids happen when builders ask for too little money to complete the project. Cash flow problems
exist when the present amount of funding cannot cover the current costs for labour and materials, and
because they are a matter of having sufficient funds at a specific time, can arise even when the overall
total is enough. Fraud is a problem in many fields, but is notoriously prevalent in the construction field.
Financial planning for the project is intended to ensure that a solid plan with adequate safeguards and
contingency plans are in place before the project is started and is required to ensure that the plan is
properly executed over the life of the project.
Perturbed Paragraph: Financial planning ensures adequate safeguards and contingency plans are in
place before the project is started, and ensures that the plan is properly executed over the life of the
project. Construction projects can suffer from preventable financial problems. Underbids happen when
builders ask for too little money to complete the project. Cash flow problems exist when the present
amount of funding cannot cover the current costs for labour and materials; such problems may arise
even when the overall budget is adequate, presenting a temporary issue. Fraud is also an occasional
construction issue.
Question: What can construction projects suffer from?
Prediction of all encoder-only models: preventable financial problems→preventable financial
problems
Annotated Natural Perturbation Type: Copy Editing; Refactoring; Simplification
Category: W2C
Original Paragraph: [. . . ] The antigens expressed by tumors have several sources; some are derived
from oncogenic viruses like human papillomavirus, which causes cervical cancer, while others are the
organism’s own proteins that occur at low levels in normal cells but reach high levels in tumor cells.
[. . . ] A third possible source of tumor antigens are proteins normally important for regulating cell
growth and survival, that commonly mutate into cancer inducing molecules called oncogenes.
Perturbed Paragraph: [. . . ] The antigens expressed by tumors have several sources; some are
derived from oncogenic viruses like human papillomavirus, which causes cancer of the cervix, vulva,
vagina, penis, anus, mouth, and throat,while others are the organism’s own proteins that occur at low
levels in normal cells but reach high levels in tumor cells. [. . . ] A third possible source of tumor
antigens are proteins normally important for regulating cell growth and survival, that commonly
mutate into cancer inducing molecules called oncogenes.
Question: What is a fourth possible source for tumor antigens?
Prediction of bert-base-uncased: proteins normally important for regulating cell growth and
survival→unanswerable
Annotated Natural Perturbation Type: Elaboration

Figure 5: Natural perturbed MRC example in C2W, C2C and W2C categories.
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turbed based on which scenario can yield the ques-1275

tions on which the maximum sum of the number1276

of encoder-only models demonstrates the lack of1277

robustness phenomenon9. To be specific:1278

Given a matched reading passage ( P ) from the1279

prior version, its counterpart ( P’ ) from the current1280

version, and the associated questions:1281

First Scenario: We treat ( P ) as the original1282

passage and ( P’ ) as the perturbed one. We then1283

evaluate, for each associated question, how many1284

encoder-only models demonstrate the lack of ro-1285

bustness phenomenon, i.e., succeed on ( P ) but1286

fail on ( P’ ). We finally obtain the total number1287

of models that demonstrate the lack of robustness1288

phenomenon across all questions, denoted as ( N1289

). Questions on which none of the models demon-1290

strate the lack of robustness phenomenon are re-1291

moved, leaving ( Q ) questions.1292

Second Scenario: We treat ( P’ ) as the original1293

passage and ( P ) as the perturbed one. We then re-1294

peat the same evaluation process as described in the1295

first scenario and obtain the total number of models1296

demonstrating the lack of robustness phenomenon1297

across all questions, denoted as ( N’ ). Questions1298

on which none of the models demonstrate the lack1299

of robustness phenomenon are removed as well,1300

leaving ( Q’ ) questions.1301

If ( N > N ′ ), we consider ( P ) as the original1302

passage and ( P’ ) as the perturbed version.1303

If ( N < N ′ ), we consider ( P’ ) as the original1304

and ( P ) as the perturbed.1305

If ( N = N ′ ), we compare ( Q ) and ( Q’ ):1306

• If ( Q > Q′ ), we consider ( P ) as the original1307

passage and ( P’ ) as the perturbed version.1308

• If ( Q < Q′ ), we consider ( P’ ) as the original1309

and ( P ) as the perturbed.1310

• If ( Q = Q′ ), the order does not matter, and1311

we randomly decide which one should be the1312

original and which should be the perturbed.1313

We finally process the identified original and1314

perturbed passage pairs to ensure that the original1315

passages are within the original SQUAD 1.1 de-1316

velopment set. For those original passages with1317

multiple occurrences, we select the one with the1318

maximum number of questions reserved.1319

9We define A model as lacking robustness to the perturba-
tion if it achieves 1 EM on the original question but attains less
than 0.4 F1 on the perturbed one (for answerable questions).

J Natural Adversarial Samples for LLMs 1320

We demonstrate two naturally perturbed reading 1321

comprehension examples that pose challenges for 1322

LLMs in Figure 6. 1323

K Dealing With Natural Perturbations 1324

In this section, we provide an initial exploration 1325

of methods to defend against natural perturba- 1326

tions. To enhance encoder-only model robustness, 1327

we first conduct adversarial training by identify- 1328

ing six encoder-only model architectures that al- 1329

ready exhibit the highest robustness to natural per- 1330

turbations in their respective categories (except 1331

albert-xxlarge-v2 on NAT_V2_CHALLENGE), 1332

and presenting them with both original training 1333

data and the generated naturally perturbed train- 1334

ing examples. We extract the entire Wikipedia 1335

revision histories for the 392 articles in the orig- 1336

inal SQUAD training set, and then obtain 5, 262 1337

(with 22, 033 questions) and 5, 311 (with 32, 993 1338

questions) perturbed contexts to augment the orig- 1339

inal SQUAD 1.1 and SQUAD 2.0 training set, 1340

respectively, using the methodology described in 1341

Section 3. Table 7 compares the performance 1342

of these models on NAT_V1_CHALLENGE and 1343

NAT_V2_CHALLENGE, before and after retrain- 1344

ing. 1345

Model Performance
(EM/F1)

original vs. perturbed
NAT_V1_CHALLENGE NAT_V2_CHALLENGE

distilbert-base 64.53/70.45 41.03/47.6−32.43 56.56/59.08 41.18/43.3−26.71

57.26/63.44 43.59/51.87−18.24 53.17/55.4 43.89/45.51−17.85

bert-large-cased 79.06/83.66 63.68/70.23−16.05 66.29/68.35 53.17/55.04−19.47

74.79/80.14 59.83/67.5−15.77 67.87/69.31 58.37/59.53−14.11

spanbert-large-cased 84.19/88.2 67.95/74.77−15.23 78.73/80.68 62.44/64.99−19.45

82.48/86.6 69.66/76.05−12.18 78.28/80.0 65.61/67.12−16.1

roberta-large 86.75/90.21 73.93/79.47−11.91 82.13/84.27 66.29/68.52−18.69

83.33/87.15 70.94/76.53−12.19 81.22/82.67 70.59/71.84−13.1

albert-xxlarge-v2 84.62/89.64 73.93/78.77−12.13 84.62/86.07 68.1/69.61−19.12

86.32/90.93 75.64/81.07−10.84 82.58/84.08 70.59/72.78−13.44

deberta-large 88.46/92.5 73.5/78.48−15.16 85.07/86.65 71.49/73.0−15.75

88.03/91.84 76.92/81.53−11.23 83.03/85.1 72.62/74.48−12.48

Table 7: Comparison of the performance of several
encoder-only MRC systems on NAT_V1_CHALLENGE
and NAT_V2_CHALLENGE, before and after re-
training. The results shown in the shaded areas repre-
sent the performance of the model retrained on the aug-
mented training set with naturally perturbed instances.

Apart from re-training with the same type of 1346

noise, we also ask whether exposing models to 1347

synthetic perturbations can help them confront 1348

natural ones. Therefore, we incorporate thirteen 1349

synthetic perturbation techniques spanning char- 1350

acter and word levels (see Appendix L). After- 1351

wards, we first retrain deberta-large with per- 1352

turbed training samples generated by each syn- 1353
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NAT_V1_CHALLENGE
Original Paragraph: In business, notable alumni include Microsoft CEO Satya Nadella, Oracle
Corporation founder and the third richest man in America Larry Ellison, Goldman Sachs and MF
Global CEO as well as former Governor of New Jersey Jon Corzine, McKinsey & Company founder
and author of the first management accounting textbook James O. McKinsey, Arley D. Cathey,
Bloomberg L.P. CEO Daniel Doctoroff, Credit Suisse CEO Brady Dougan, Morningstar, Inc. founder
and CEO Joe Mansueto, Chicago Cubs owner and chairman Thomas S. Ricketts, and NBA
commissioner Adam Silver.
Perturbed Paragraph: In business, notable alumni include Microsoft CEO Satya Nadella, Oracle
Corporation founder and the third richest man in America Larry Ellison, Goldman Sachs and MF
Global CEO as well as former Governor of New Jersey Jon Corzine, McKinsey & Company founder
and author of the first management accounting textbook James O. McKinsey, co-founder of the
Blackstone Group Peter G. Peterson, co-founder of AQR Capital Management Cliff Asness, founder of
Dimensional Fund Advisors David Booth, founder of The Carlyle Group David Rubenstein, Lazard
CEO Ken Jacobs, entrepreneur David O. Sacks, CEO of TPG Group and former COO of Goldman
Sachs Jon Winkelreid, former COO of Goldman Sachs Andrew Alper, billionaire investor and founder
of Oaktree Capital Management Howard Marks, Bloomberg L.P. CEO Daniel Doctoroff, Credit Suisse
CEO Brady Dougan, Morningstar, Inc. founder and CEO Joe Mansueto, Chicago Cubs owner and
chairman Thomas S. Ricketts, and NBA commissioner Adam Silver.
Question: What Goldman Sachs CEO is also an alumni of the University of Chicago?
Prediction of GPT-3.5-turbo-0125 and Llama-3-8B-Instruct: Jon Corzine→Jon Winkelreid
Prediction of Falcon-40B-Instruct: Jon Corzine→David Rubenstein, co-founder of The Carlyle
Group, is also an alumnus of the University of Chicago.
NAT_V2_CHALLENGE
Original Paragraph: Each chapter has a number of authors who are responsible for writing and
editing the material. A chapter typically has two "coordinating lead authors", ten to fifteen "lead
authors", and a somewhat larger number of "contributing authors". The coordinating lead authors are
responsible for assembling the contributions of the other authors, ensuring that they meet stylistic and
formatting requirements, and reporting to the Working Group chairs. Lead authors are responsible for
writing sections of chapters. Contributing authors prepare text, graphs or data for inclusion by the
lead authors.
Perturbed Paragraph: Each chapter has a number of authors to write and edit the material. A typical
chapter has two coordinating lead authors, ten to fifteen lead authors and a larger number of
contributing authors. The coordinating lead authors assemble the contributions of the other authors.
They ensure that contributions meet stylistic and formatting requirements. They report to the Working
Group co-chairs. Lead authors write sections of chapters. They invite contributing authors to prepare
text, graphs or data for inclusion.
Question: Who has the responsibility for publishing materials?
Prediction of Mistral-7B-Instruct-v0.2: Unanswerable. The text does not mention any
responsibility related to publishing materials.→The coordinating lead authors are responsible for
publishing materials in the given context.

Figure 6: Natural perturbed MRC examples that confuse LLMs.

thetic perturbation method, respectively, and as-1354

sess the performance changes compared to the1355

vanilla version on both NAT_V1_CHALLENGE and1356

NAT_V2_CHALLENGE (Figure 8 in Appendix M).1357

As we observe that synthetic adversarial training1358

can assist deberta-large in handling natural per-1359

turbations, we further retrain five other models in1360

the same manner and quantify the performance dif- 1361

ference on NAT_V1_CHALLENGE compared to 1362

the vanilla version, as shown in Figure 7. 1363

In general, for encoder-only MRC models, re- 1364

training with natural perturbations enhances the 1365

performance on naturally perturbed test sets and 1366

improves the robustness to such perturbations as 1367

18



Figure 7: Absolute changes in original and perturbed
performance (F1), as well as the robustness of five
encoder-only models under natural perturbations (on
NAT_V1_CHALLENGE), following retraining with each
synthetic perturbation.

well, though this can lead to varying reductions1368

in performance on the clean test set. Encourag-1369

ingly, adversarial training with synthetically per-1370

turbed examples benefits the model’s capability1371

to handle natural perturbations as well, a phe-1372

nomenon differs from what is reported in machine1373

translation task (Belinkov and Bisk, 2018). In1374

some cases, the improvement even exceeds what1375

achieved by retraining the model on natural pertur-1376

bations alone. We also observe that the effective-1377

ness of adversarial training varies with model size1378

and architecture. Generally, adversarial training1379

brings the most significant benefits for the weakest1380

distilbert-base, with the benefits diminishing1381

in larger and more complex model architectures.1382

Similarly, for the LLMs, we adopt a few-shot1383

prompting approach by including both the original1384

MRC instance and its naturally or synthetically per-1385

turbed counterpart as demonstrations, and assess1386

how model performance and robustness change1387

compared to the zero-shot setting (see Table 81388

and Table 9). A total of two original–perturbed1389

instance pairs are used, with the original samples1390

taken from the SQUAD training set. Although1391

not widely observed, in certain cases, in-context1392

demonstrations can improve an LLM’s resilience1393

to natural perturbations, regardless of whether1394

natural or synthetic perturbed examples are demon-1395

strated. This phenomenon is particularly evident1396

in models such as Llama-3.2-3B-Instruct,1397

OLMo-7B-0724-Instruct and1398

Falcon3-10B-Instruct. However, it can1399

also have detrimental effects, further decreasing1400

LLM robustness and resulting in a performance1401

decline on both the clean and naturally perturbed1402

test sets.1403

L Synthetic Perturbation Methods1404

Table 10 presents the synthetic perturbation meth-1405

ods used in this study.1406

LLM NAT_V1_CHALLENGE NAT_V2_CHALLENGE

Orig./Pert. IM Drop zero-shot Orig./Pert. IM Drop zero-shot

Gemma 2-2b-IT 80.77/72.22 ↓ −10.59 −8.49 45.93/42.53 ↓ −7.4 −11.11
Gemma 2-9b-IT ↑ 91.88/79.91 ↓ −13.03 −8.62 62.9/57.24 ↓ −9.0 −7.67
Llama-3.1-8B-Instruct ↓ 85.04/74.79 ↑ −12.05 −15.61 45.25/41.86 ↓ −7.49 −9.59
Llama-3.2-3B-Instruct 70.09/62.82 ↓ −10.37 −12.11 43.67/43.44 ↓ −0.53 −10.29
Mistral-7B-Instruct-v0.2 ↓ 83.33/77.78 ↑ −6.66 −13.2 50.45/46.61 ↓ −7.61 −6.58
OLMo-7B-0724-Instruct 76.5/76.07 ↓ −0.56 −8.05 53.62/51.58 ↑ −3.8 −4.4
Qwen2.5-3B-Instruct 61.11/47.44 ↓ −22.37 −13.04 67.42/61.54 ↑ −8.72 −11.81
Qwen2.5-7B-Instruct 86.32/73.08 ↓ −15.34 −7.76 76.24/69.46 ↑ −8.89 −12.21
Qwen2.5-14B-Instruct 85.47/72.65 ↓ −15.0 −11.58 80.09/73.76 ↓ −7.9 −7.86
Falcon3-7B-Instruct 86.32/75.21 ↓ −12.87 −9.7 ↑ 60.86/54.98 ↓ −9.66 −6.49
Falcon3-10B-Instruct 85.9/79.06 ↓ −7.96 −8.49 61.54/59.5 ↓ −3.31 −7.37
deepseek-llm-7b-chat ↑ 70.94/55.98 ↓ −21.09 −9.09 59.73/51.58 ↑ −13.64 −11.29

Table 8: Performance and IM drop of LLMs in the few-
shot setting with both original and naturally perturbed
MRC instances demonstrated. zero-shot represents the
IM drop in the zero-shot setting, adopted from Table 2.
Results that evidence robustness improvement in the
few-shot setting are underlined.

LLM NAT_V1_CHALLENGE NAT_V2_CHALLENGE

Orig./Pert. IM Drop zero-shot Orig./Pert. IM Drop zero-shot

Gemma 2-2b-IT 82.48/72.22 ↓ −12.44 −8.49 47.29/42.53 ↓ −10.07 −11.11
Gemma 2-9b-IT ↑ 91.45/81.62 −10.75 −8.62 61.54/56.33 ↓ −8.47 −7.67
Llama-3.1-8B-Instruct 83.33/72.65↓ −12.82 −15.61 49.32/44.57 ↓ −9.63 −9.59
Llama-3.2-3B-Instruct 66.24/62.82 ↓ −5.16 −12.11 42.53/41.86 ↓ −1.58 −10.29
Mistral-7B-Instruct-v0.2 ↓ 81.62/76.92 ↑ −5.76 −13.2 50.68/46.61 ↓ −8.03 −6.58
OLMo-7B-0724-Instruct 73.84/75.53 ↓ 2.29 −8.05 54.98/53.39 ↑ −2.89 −4.4
Qwen2.5-3B-Instruct 59.4/51.71 ↓ −12.95 −13.04 66.52/61.09 ↑ −8.16 −11.81
Qwen2.5-7B-Instruct 85.04/73.5 ↓ −13.57 −7.76 76.47/69.0 ↑ −9.77 −12.21
Qwen2.5-14B-Instruct 84.19/73.5 ↓ −12.7 −11.58 ↑ 81.9/74.21 −9.39 −7.86
Falcon3-7B-Instruct 85.47/74.36 ↓ −13.0 −9.7 61.09/56.56 ↑ −7.42 −6.49
Falcon3-10B-Instruct 85.9/79.91 ↓ −6.97 −8.49 61.31/57.92 ↓ −5.53 −7.37
deepseek-llm-7b-chat ↑ 72.22/56.41 ↓ −21.89 −9.09 61.09/53.62 ↑ −12.23 −11.29

Table 9: Performance and IM drop of LLMs in the
few-shot setting with both original and synthetically
perturbed MRC instances demonstrated. zero-shot rep-
resents the IM drop in the zero-shot setting, adopted
from Table 2. Results that evidence robustness improve-
ment in the few-shot setting are underlined.

We employ methods including WSplit, WSyn- 1407

Sub and WInsert (WE) to each sentence in the 1408

original reading passage, and then recombine the 1409

modified sentences to generate the perturbed ver- 1410

sion. Conversely, other perturbation approaches 1411

are directly executed on the entire paragraph, as im- 1412

plementing them at the sentence-level might result 1413

in perturbed text that is even difficult for humans 1414

to read and comprehend (Si et al., 2021). The im- 1415

plementation of all character-level and word-level 1416

methods is carried out using the NLPAug library 1417

(Ma, 2019). Moreover, we set the perturbation rate 1418

to 30%, in line with the default settings within the 1419

NLPAug library. 1420

M Impact of Synthetic Adversarial 1421

Training 1422

Figure 8 describes the impact of synthetic adver- 1423

sarial training (for deberta-large) on handling 1424

natural and synthetic perturbations. 1425

19



Method Description
character-level

CharOCR Replace characters with Optical Character Recognition (OCR) errors.
CharInsert Inject new characters randomly.
CharSubstitute Substitute original characters randomly.
CharSwapMid Swap adjacent characters within words randomly, excluding the first and

last character.
CharSwapRand Swap characters randomly without constraint.

word-level
WInsert (CWE) Insert new words to random position according to contextual word embed-

dings calculation from RoBERTa-base (Liu et al., 2019).
WSubstitute (CWE) Substitute words according to contextual word embeddings calculation

from RoBERTa-base (Liu et al., 2019).
WSplit Split words to two tokens randomly.
WSwap Swap adjacent words randomly.
WDelete Delete words randomly.
WCrop Remove a set of continuous word randomly.
Word Synonym Sub-
stitution (WSynSub)

Substitute words with synonyms from large size English PPDB (Pavlick
et al., 2015).

WInsert (WE) Insert new words to random position according to GloVe (Pennington et al.,
2014) word embeddings calculation (we use glove.6B.300d.txt).

Table 10: Various synthetic perturbation approaches.

Figure 8: Absolute changes in original and perturbed performance (F1), as well as the robustness of deberta-large
under natural and various synthetic noises, following retraining with each synthetic perturbation. The upper row and
the bottom row illustrate the results on the SQUAD 1.1 and SQUAD 2.0 format test sets, respectively.
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