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Abstract

Learning disentangled representations is crucial for Time Series, offering benefits1

like feature derivation and improved interpretability, thereby enhancing task per-2

formance. We focus on disentangled representation learning for home appliance3

electricity usage, enabling users to understand and optimize their consumption for4

a reduced carbon footprint. Our approach frames the problem as disentangling each5

attribute’s role in total consumption (e.g., dishwashers, fridges, . . . ). Unlike existing6

methods assuming attribute independence, we acknowledge real-world time series7

attribute correlations, like the operating of dishwashers and washing machines8

during the winter season. To tackle this, we employ weakly supervised contrastive9

disentanglement, facilitating representation generalization across diverse corre-10

lated scenarios and new households. Our method utilizes innovative l-variational11

inference layers with self-attention, effectively addressing temporal dependencies12

across bottom-up and top-down networks. We find that DisCoV (Disentangling13

via Contrastive l-Variational) can enhance the task of reconstructing electricity14

consumption for individual appliances. We introduce TDS (Time Disentangling15

Score) to gauge disentanglement quality. TDS reliably reflects disentanglement16

performance, making it a valuable metric for evaluating time series representations.17

Code available at https://anonymous.4open.science/r/DisCo18

1 Introduction19
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Figure 1: Illustrative of Real-world data often
showcases attributes exhibit strong positive cor-
relation: seasonal changes.

Disentangled representation learning is crucial20

in various fields like computer vision, speech21

processing, and natural language processing [2].22

It aims to improve model performance by learn-23

ing latent disentangled representations and en-24

hancing generalizability, robustness, and ex-25

plainability. These representations have latent26

units that respond to single attribute changes27

while remaining invariant to others. Existing28

approaches assume independent attributes, but29

in real-world time series data, latent attributes30

are often causally related. This necessitates a31

new framework for causal disentanglement. For32

instance, in Fig 1, the consumption profile of33

"Dishwasher" and "Profile 2" cause variations34

in "Washing machine" and "Profile 1," showing35

the inadequacy of existing methods in capturing36

these non-independent attributes [31, 29]. One of the most common frameworks for disentangled37
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Figure 2: Latent attributes are causally [25] correlated, allows positive pairs x, T (x+) to decrease
their distance, while negative pairs increase it, and allows cases where unlikely combinations occur
((i) and (ii) lead to the existence of (iii)), although forcing statically independence does not prohibit
these cases. Our framework is based on contrastive disentanglement to relax z to have a support
factorization (allowing for some dependency).

representation learning is Variational Autoencoders (VAE) [11], a deep generative model trained to38

disentangle the underlying explanatory attributes. Disentanglement via VAE can be achieved by a39

regularization term of the Kullback-Leibler divergence between the posterior of the latent attributes40

and a standard Multivariate Gaussian prior [11], which enforces the learned latent attribute to be as41

independent as possible. It is expected to recover the latent variables if the observation in the real42

world is generated by countable independent attributes. To further enhance the independence, various43

extensions of VAE consider minimizing the mutual information among latent attributes [15]. [15]44

further encourage independence by reducing the total correlation among attributes. Our focus in45

this work is a more general case, where the data does not have specificity like domain frequency, or46

amplitude to analysis. Household energy consumption disaggregation, also known as Non-Intrusive47

Load Monitoring (NILM), is a key application. Given only the main consumption of a household,48

the energy disaggregation algorithm identifies which appliances are operating. Such a capability49

is extremely vital given the growing interest in reducing carbon footprints through user energy50

behavior, which poses a challenge to conventional algorithms. Many households rely on past bills to51

adjust future energy use, underscoring the importance of energy disaggregation algorithms. Recent52

work [3, 32, 23] hold promising results, yet persistent challenges in generalisability and robustness53

stem from the correlations occurring within time series a challenge that spans beyond the domain of54

time series in general. In this work, we tackle the energy disaggregation problem from the perspective55

of disentanglement.56

Our work is distinguished by instead of assuming independent factors we will only assume that57

the support of the distribution factorizes. We explore how to design an efficient and disentangling58

representation under correlated attributes using weak supervised contrastive learning. An ablation59

investigation to understand the impact of considering statical independence versus the case where60

we avoid it by giving the latent space a support factorization through weakly supervised contrastive61

learning. This addresses latent space misalignment between attributes, maintains generalizability, and62

preserves disentanglement through the Pairwise similarity over z setting it apart from methods relying63

on independence. More clearly, we break the concept of independence, allowing any combination64

of individual attributes, to be possible, even if some combinations are unlikely, our experiments on65

three datasets and increasingly difficult correlation settings, show that DisCoV improves robustness66

to attribute correlation and improves disentanglement (as measured by SAP, DCI, RMIG,TDS) by67

up to +21.7% over state of the art (c.f. §5.3). Furthermore, we introduce an in-depth l-variational-68

based self-attention for extracting high semantic representations from time series. An ablation study69

shows that l-VAE learns complex representations; added attention improves further (in-depth model70
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l = 4, 8, 16, 32 c.f. fig. 6). This approach retains dimension reduction while avoiding temporal71

locality. Additionally, our proposed Time Disentanglement Metric (TDS) aligns more effectively with72

decoder output compared to existing metrics. These findings establish it as a strongly recommended73

for time series representations.74

2 Related Work75

Recent work [3, 23] has produced promising results. However, they are confronted with problems of76

interpretability, generalization, and robustness. Various approaches have been proposed to solve these77

problems. For instance, [3] introduced Convolutional Neural Networks (CNNs) for feature extraction78

from power consumption data, showing promise on the UK-DALE dataset [13]. Generalization79

concerns persist despite leveraging Gated Recurrent Units (GRUs) and attention mechanisms. Other80

works attempt meaningful representation of time series, but disentangling remains challenging81

[29, 27, 22]. Recurrent VAE (RVAE) [7] for sequential data, D3VAE [20] improves prediction using82

a diffusion model after decoding the latent space. In representation learning, [34] employs contrastive83

learning, but in correlated data scenarios it is not explored. [21] based on specific propriety of84

time series like frequency and amplitude to disentangling Time series, but disentangling the latent85

space through data-driven methods poses a challenge. Nevertheless, recent approaches like Support86

Factorization as described in the works of [35, 24] show promise in addressing this challenge and87

have yielded encouraging results.88

3 Formulation89

We consider a c-variate time series observed at times t = 1, . . . , τ . We denote by x ∈ Rc×τ the90

c× τ resulting matrix with rows denoted by x1, . . . , xc. Each row can be seen as a univariate time91

series. In the electric load application, we have c = 3, and x1 is the sampled active power, x292

the sampled reactive power and x3 the sampled apparent power. The goal of non-intrusive load93

monitoring (NILM) is to use x in order to express x1 as94

x1 =

M∑
m=1

ym + ξ , (1)

where, for each m = 1, . . . ,M , ym ∈ Rτ represents the contribution of the m-th electric device95

among the M ones identified in the household, and ξ ∈ Rτ denotes a residual noise. We further96

denote by y the M × τ matrix with row-wise stacked devices’ contributions.97

The NILM mapping x 7→ {y1 . . .yk}, where x =
∑
i y is generally learnt from a training data set98

S = {(xn,yn)}Nn=1. VAEs rely on two main ingredients: 1) a generative model (pθ) based on a99

latent variable, and a decoder gθ; 2) a variational family (qϕ), which approximates the conditional100

density of the latent variable given the observed variable based on an encoder fϕ.101

In a VAE, both (unknown) parameters θ and ϕ are learnt from the training data set S = {xn}Nn=1. A102

key idea for defining the goodness of fit part of the learning criterion is to rely the Evidence Lower103

Bound (ELBO), which provides a lower bound on (and a proxy of) the log-likelihood104

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)]− KL(qϕ(z|x) ∥ p(z)) , (2)

where we denoted the latent variable by z, defined as a (M + K) × dz matrix and p denotes its105

distribution. The use of ELBO goes back to traditional variational Bayes inference. An additional106

feature of VAE’s is to define qϕ and pθ through an encoder/decoder pair of neural networks (fϕ, gθ).107

A standard choice in a VAE is to rely on Gaussian distributions and, for instance, to set qϕ(z|x) =108

N (z;µ(x, ϕ), σ2(x, ϕ)), where µ(x, ϕ) and σ2(x, ϕ) are the outputs of the encoder fϕ.109

As mentioned in Section 1, various additional features such as β/TC/Factor/DIP-VAE have been110

proposed, where a specific distribution p(z) is learned. The objective is to disentangle the latent vari-111

able z, and align it with the corresponding attribute. However, they assume statistical independence112

among attributes, leading to the assumption: p(z) = p(z1) . . . p(zM+K). As we explained in the113

introduction, appliances are not used independently. In [24], correlated attributes have been taken into114

account by replacing the factorization constraint with support factorization via Hausdorff Factorized115
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Support (HFS). In order to meet this criterion, they penalize the Hausdorff pairwise estimate Eq.3,116

based solely on the distance without any alignment on the input.117

d̂H(z) =

(M+K)−1∑
i=1

(M+K)∑
j=i+1

max
z∈{z:,i}×{z:,j}

[
min

z′∈{z:,(i,j)}
∥z − z′∥

]
. (3)

We are investigating an alternate way to achieve both alignment and disentanglement leading to a118

generalizable representation. To that end, we draw on support factorization, and we replace d̂H(z) by119

a Pairwise Similarity penalty. In the next section, we develop our proposed method based on weakly120

contrastive learning to have factorized support, and it provides an advantage in terms of computation121

and latent representation.122

4 Proposed Methods123

Our objective is to disentangle latent space by relaxing the independence, for this, we now define124

a concrete training criterion that encourages factorized support. Let us consider deterministic125

representations obtained by the encoder z = fϕ(x). We enforce the factorial support criterion on126

the aggregate distribution q̄ϕ(z) = Ex[fϕ(x)], where q̄ϕ(z) is conceptually similar to the aggregate127

posterior qϕ(z) in, e.g., TCVAE, though we consider points produced by a deterministic mapping fϕ128

rather than a stochastic one. To match our factorized support assumption on the ground truth, we129

want to encourage the support of q̄ϕ(z) to factorize, i.e., that Supp(q̄ϕ(z)) and the Cartesian product130

of each dimension support, Supp×(q̄ϕ(z)), are equal. In practical scenarios, we often deal with a131

finite sample of observations {xi}Ni=1 and can only estimate support on a finite set of representations132

{fϕ(xi)}Ni=1. To encourage such a pairwise factorized support, we can minimize sliced/pairwise133

contrastive with the additional benefit of keeping computation tractable when k is large. Specifically,134

we approximate the support as Supp ≈ z and the Cartesian product of each dimension’s support as135

Supp× ≈ z:,1 × z:,2 × . . .× z:,k = {(z1, . . . , zk) | z1 ∈ z:,1, . . . , zk ∈ z:,k}.136

4.1 Support factorization via Weakly supervised Constrastive137

Let us first formalize the contrastive learning setup. Each training triplet comprises a reference sample138

x along with a positive (similar) sample x+ and negative (dissimilar) samples x−
1 , . . . ,x

−
N against139

which it is to be contrasted. As introduced in the previous section, we assume that these samples140

generate corresponding latent: z, z+, z−1 , . . . , z
−
N . The positive sample, denoted as z+, is generated141

from a closely related dataset in which appliance m is activated. In contrast, the negative samples,142

z−1 , . . . , z
−
N , are drawn from a dataset where appliance m remains inactive. This formalization of143

contrastive learning ensures that positive samples are semantically similar and negatives are dissimilar.144

Self-supervised contrastive learning is widely used in computer vision, in [14], the loss is defined as:145

Lself = −
∑
i∈I

log
e(zi·zj(i)/τ)∑
a∈A(i) e

(zi·za/τ)
. (4)

where, zi ∈ Z,where, Z = fϕ(x), the · symbol denotes the inner (dot) product, τ ∈ R+ is a scalar146

temperature parameter, and A(i) ≡ I \ {i}. The index i is called the anchor zi, index j(i) is refer147

to the positive z+i , and the other 2(N − 1) indices ({k ∈ A(i) \ {j(i)}}) are called the negatives148

z−k ̸=i. We note that for each anchor i, there is 1 positive pair and 2N − 2 negative pairs. The149

denominator has a total of 2N − 1 terms (the positives and negatives). In a multiclass scenario,150

disentangling and aligning data encounters challenges when several samples belong to the same151

class, as we aim to match certain pairs of data points (e.g., zi,j to z+i,j) and drive others away (i.e.152

zi,j from zk ̸=i,j or z+k ̸=i,j). We link the learned latent representation to ground-truth attributes using153

a limited number of pair labels. This connection is facilitated by employing positive and negative154

samples, as demonstrated in [34]. We adapt this, by firstly, the loss should not rely on statically155

independent attributes, mirroring realistic data scenarios; secondly, it should prioritize attribute156

alignment to maintain sufficient information [35]. To achieve this, the proposed disentanglement157

loss combines two terms. The first term enforces axis alignment based on the correlation between158

z:,m and z+:,m (positive augmentation of z:,m). This ensures that only one latent variable learns this159

alignment for fixed attributes (invariant). The second term minimises information redundancy by160
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measuring the correlation between z:,m and z+:,p̸=m or (z:,m and z:,p̸=m), which are almost equivalent161

in a contrasting sense.162

LDIS =

r∑
m=1

(
1− d(z:,m, z+:,m)

)2
+

r∑
m=1

r−1∑
:,p̸=m

d(z:,m, z
+
:,p)

2 (5)

r =M +K, we define d(z:,m, z+:,m) as the cosine similarity between vectors z:,m and z+:,m in a mini-163

batch. Furthermore, this helps to support factorizing the latent space as it measures the correlation164

between z:,m and z+:,p̸=m or z:,p̸=m, and performs better than estimating Eq.3. Augmentation affects165

only one attribute, with others remaining fixed. We assume sufficient augmentation for each factor166

across the batch. Our results indicate both terms equally contribute to improved disentangling without167

weighted hyperparameters (c.f. ablation §6.1).168

4.2 Attentive l-Variational auto-encoders and Objective function169

To avoid time locality during dimension reduction, and keep long-range capability we refer to an in-170

depth Temporal Attention with l-Variational layers. NVAE [26, 1] proposed an in-depth autoencoder171

for which the latent space z is level-structured and attended locally [1], this shows an effective172

results for image reconstruction. In this work, we enable the model to establish strong couplings, as173

depicted. Our core idea aims to address construct T̂ l (Time context) that effectively captures the most174

informative features from a given sequence T<l = {T i}li=1 across bottom-up and top-down, where175

T<l is the output of the residual network. Both T̂ l and T l are features with the same dimensionality:176

T̂ l ∈ RT×C and T i ∈ RT×C . In our model, we employ Temporal Self-attention [28] to construct177

either the prior or posterior beliefs of variational layers, which enables us to handle long context178

sequences with large dimensions τ effectively. The construction of T̂ l relies on a query feature179

Ql ∈ RT×Q of dimensionality Q with Q≪ C, and the corresponding context T l is represented by180

a key feature Kl ∈ RT×Q. Importantly, T̂ l(t) of time step i in sequence τ depends solely on the181

time instances in T<l. For more consistency, using Multihead-attention [28] allows the model to182

focus on different aspects of the input sequence simultaneously, which can be useful for capturing183

various relationships and patterns. which allows the model to jointly attend to information from184

different representation subspaces at different scales. Instead of computing a single attention function,185

this method first projects Ql, K<l), T<l) into h different vectors, respectively. Attention is applied186

individually to these h projections. The output is a linear transformation of the concatenation of187

all attention outputs. An in-depth description of this mechanism is given in Appendix 8.2. For the188

remainder of this paper, we presume that DisCoV employs self-attention.189

We adopt the Gaussian residual parametrization between the prior and the posterior. The prior190

is given by p(zl|z<l) = N (µ(T lp, θ), σ(T
l
p, θ). The posterior is then given by q(zl|x, z<l) =191

N (µ(T lp, θ) +∆µ(T̂ lq, ϕ), σ(T
l
p, θ) ·∆σ(T̂ lq, ϕ)) where the sum (+) and product (·) are pointwise,192

and T lq is defined in Eq 14. µ(·), σ(·), ∆µ(·), and ∆σ(·) are transformations implemented as193

convolutions layers. Based on this, For LKL in Eq 2, the last term is approximated by: 0.5 ×194 (
∆µ2

l

σ2
l

+∆σ2
l − log∆σ2

l − 1
)

. Our DisCoV objective function combines the VAE loss (Eq.2),195

consisting of a reconstruction term Lrec (focused on minimizing Mean Squared Error), with the196

contrastive term on z (Eq.5). We introduce balancing factors β and λ (discussed in §6.2) to control197

their impact.198

LDisCo = Lrec + βLKL︸ ︷︷ ︸
β-VAE

+λLDIS (6)

4.3 How to evaluate disentanglement for Time Series?199

Evaluating disentanglement in series representation is more challenging than established computer200

vision metrics. Existing time series methods rely on qualitative observations and predictive perfor-201

mance, while metrics like Mutual Information Gap (MIG) [20] have limitations with continuous202

labels. To address this, we adapted RMIG [4] for continuous labels and used DCI metrics from [8].203
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Additionally, we employed SAP [17] to measure prediction error differences in the most informative204

latent dimensions for ground truth attributes. Our evaluation, including β-VAE and FactorVAE scores,205

can be found in Appendix 8.1. These metrics face challenges with sequential data and do not provide206

measures of attribute alignment.207

To overcome this limitation, we introduce the Time Disentanglement Score (TDS) from208

an information-gain perspective. TDS assesses how well the latent representation z =209

fϕ(x) maintains the invariance of an attribute m in x when this attribute changes.210

Metric Align-axis Unbiased General
β-VAE [12] No No No
FactorVAE [15] Yes No No
RMIG [4] Yes No Yes
SAP [18] Yes No Yes
DCI [8] Yes Yes No
TDS (Ours) Yes Yes Yes

Table 1: In comparison to prior metrics, our pro-
posed TDS detects axis alignment, is unbiased for
all hyperparameter settings and can be generally
applied to any latent distributions provided effi-
cient estimation exists.

TDS relies on the correlation matrix between z211

and z+, where z = fϕ(x) and z+ = fϕ(T (x)),212

with T denoting an augmentation function. This213

correlation matrix quantifies the consistency of214

attribute components. Additionally, TDS evalu-215

ates how well z contributes to the reconstruction216

of y and how z+ contributes to the reconstruc-217

tion of T (y). Specifically, it assesses whether218

each zm (or z+m) can effectively reconstruct the219

corresponding ym (or y+m). TDS aligns with220

qualitative observations of disentanglement (c.f.221

fig. 5).222

TDS =
1

2

[
(1−

∑
i

Corr(I)(z, z+)ii)
2 + (1−

∑
i

Corr(I)(y − ŷ,y+ − ŷ+)ii)

]2

(7)

where Corr(I)ij =
∑
b zb,iz

+
b,j divided by

√∑
b(zb,i)

2
√∑

b(z
+
b,j)

2, b indexes batch samples and223

i, j index the vector dimension of the networks’ fϕ outputs for Corr(I) (resp. dimension of the224

networks’ outputs of gθ for Corr(II)). Corr is a square matrix with the size of the dimensionality of225

the network’s output and with values comprised between -1 (i.e. perfect anti-correlation) and 1 (i.e.226

perfect correlation). In practice, the augmentation function T is effectively a sampling of appliance227

activation (i.e. from different sources, houses/datasets) for the positive case and sequences where the228

device is not activated for the negative case. We note that high TDS informativeness signifies strong229

disentanglement, while a significant distance implies reduced disentanglement and higher attribute230

correlation, aligning with [9]. More in-depth explanation can be found in the appendix 8.1.4.231

5 Experiments232

5.1 Experimental Setup233

Datasets. We conducted experiments on two publicly available datasets, namely UK-DALE [13]234

and REDD [16]. The dataset UK-DALE [13] consists of 5 dwellings with a varying number of235

sub-metered devices and includes aggregate and individual aggregate and individual equipment-level236

power measurements, sampled equipment, sampled at 1/6 Hz.237

Evaluation Metrics. We adopt RMSE to evaluate the accuracy of all compared methods. Details of238

these three metrics can be found in Appendix 11.1.1239

Baseline. We compare DisCoV with down task models in energy, Bert4NILM [33] and S2P [30],240

S2P [5], for those model we keep the same configuration as the original implémentation. We provide241

also a varieté de β-TC/Factor/-VAE implemented for time series, compared to D3VA [20] and242

NVAE [27], and RVAE [7]243

Experimental Platform. We conduct 5 rounds of experiments, reporting the averaged results and244

standard deviation. The experiments are performed on four NVIDIA A40 GPUs and 40 Intel(R)245

281 Xeon(R) Silver 4210 CPU @ 2.20GHz. The models are implemented in PyTorch. Detailed246

hyperparameter settings are available in Appendix 8.3.247
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5.2 Architecture Settings248

Our model uses a bi-directional encoder, which processes the input data in a hierarchical manner249

to produce a low-resolution latent code that is refined latent code that is refined by a series of250

oversampling layers. This code is then refined by a series of oversampling layers in Residual251

Decoders blocks, which progressively increases the resolution.

Figure 3: Residual Cell for Encodeur (In-
frence Model qϕ)

Figure 4: Residual Cell for DisCoV Decodeur
(Generative Model pθ).

252

Residual Blocs. Activation functions are pivotal for enabling models to learn nonlinear represen-253

tations, but vanishing and exploding gradients can hinder learning. The Temporal Convolutional254

Network (TCN) [19] tackles these issues using Rectified Linear Unit (ReLU), weight normaliza-255

tion, and dropout layers. In our Residual model, we simplify the residual block by replacing256

these components with the Sigmoid Linear Units, which offers advantages and immunity to gradi-257

ent problems. It reduces training time, efficiently learns robust features, and outperforms weight258

normalization. SiLU [10] is defined as SiLU(x) = x × σ(x) where σ(x) is the logistic sigmoid.259

DisCoV (L = 8) KL ↓ RMSE ↓ Time (s) ↓

ReLU 0.734 0.734 28800
SiLU 0.671 0.671 21600
ReLU+SE 0.721 0.721 32760
SiLU+SE 0.582 0.582 23040

Table 2: RMSE Scores for Different DisCoV Vari-
ants activation function and SE, as L Increases. (↓
the lower values are better).

Squeeze-and-Excitation on Spatial and Tem-260

poral. SE block enhances our neural networks261

by selectively emphasizing important features262

and suppressing less relevant ones. It does this263

through global information gathering (squeez-264

ing) and feature recalibration (excitation). We265

find that extending SE for time series data im-266

proves the capture of significant temporal pat-267

terns in sequence. Our Residual encoders (Infer-268

ence Model qϕ) in Fig 3 and Decodeur (Gener-269

ative Model pθ) in Fig 4.270

5.3 Performance and Informativity of271

Contrastive272

Finding: DisCoV retains its robustness in correlated scenarios and achieves comparable performance273

to baseline models.274

In evaluating the robustness of DisCoV regarding correlations in appliance signatures or consumption,275

we consider several pairs of appliances. Firstly, there’s the No Correlation scenario, where we276

examine the correlation between the refrigerator’s signature and the dishwasher’s signature. These277

appliances are typically active at different times, resulting in less correlated signatures. Moving on to278

specific pairs, Pair 1 involves analyzing the correlation between the washing machine’s signature279

and the dryer’s signature. Given that these appliances are often used sequentially, their signatures280

might exhibit some level of correlation. In Pair 2, the focus is on evaluating the correlation between281

the microwave’s signature and the oven’s signature. These appliances have distinct power profiles282

and usage patterns, potentially leading to lower correlation. Pair 3 explores the correlation between283

the lighting’s power consumption and the television’s power consumption. Since these appliances284

are often used independently, their signatures may exhibit a lower level of correlation. Lastly, the285

Random Pair approach involves selecting two random appliances from a dataset.286
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Table 3: Disentanglement by Contrastive on UK-DALE, Uk-Dale across various correlated appliances
(columns) and correlation increasing from left (no correlation) to right (every appliance correlated to
one confounder). Scores denote DCI metric computed on uncorrelated test data. Bold denotes the
best performance per correlation. [x, y] indicate 25/75th percentiles.

Method No Corr Pairs: 1 Pairs: 2 Pairs: 3 Random Pair. σ

REDD [16]
β-VAE 72.4 [68.1, 76.9] 70.3 [62.8, 73.5] 54.5 [49.3, 59.1] 39.8 [34.2, 42.7] 40.6 [37.8, 41.9] 3.10
HFS 79.8 [76.5, 84.6] 78.6 [75.2, 80.1] 57.8 [52.0, 59.7] 48.7 [43.4, 50.5] 47.1 [41.9, 48.7] 1.10
β-VAE + HFS 93.1 [78.2, 101.3] 81.9 [77.2, 82.4] 69.4 [64.3, 71.7] 49.2 [45.2, 52.2] 65.1 [62.5, 67.5] 2.12
β-TCVAE 78.0 [77.5, 79.2] 71.9 [67.1, 73.3] 64.7 [61.0, 66.0] 49.0 [38.3, 52.5] 51.6 [47.5, 57.6] 1.01
β-TCVAE + HFS 87.2 [84.0, 98.8] 76.5 [64.4, 77.9] 69.9 [62.6, 73.4] 52.1 [48.2, 53.3] 62.1 [54.4, 64.8] 1.01
FactorVAE 68.4 [53.5, 71.4] 73.2 [72.9, 73.6] 59.7 [58.4, 64.5] 48.4 [42.4, 50.6] 33.0 [29.3, 36.5] 3.12
DisCoV 63.5 [62.0, 64.5] 58.5 [50.8, 60.3] 32.9 [28.2, 35.4] 34.9 [32.3, 39.3] 24.3 [21.4, 27.2] 1.35

Uk-dale [13]
β-VAE 34.2 [27.3, 39.9] 11.5 [9.9, 12.3] 9.5 [8.7, 10.3] N/A 13.4 [11.9, 15.9] 0.48
HFS 37.9 [30.4, 39.0] 15.6 [9.6, 18.7] 13.9 [11.7, 15.8] N/A 17.2 [13.1, 18.0] 1.38
β-VAE + HFS 52.1 [32.2, 52.6] 21.9 [19.2, 23.3] 19.5 [8.2, 21.8] N/A 17.9 [14.3, 18.8] 0.22
β-TCVAE 32.1 [30.1, 36.4] 25.2 [24.8, 25.6] 12.4 [8.6, 14.6] N/A 21.9 [18.5, 24.6] 0.13
β-TCVAE + HFS 55.4 [44.1, 55.5] 27.9 [26.6, 28.6] 29.2 [17.5, 33.0] N/A 26.2 [25.2, 27.7] 0.11
FactorVAE 29.7 [24.9, 34.9] 19.1 [15.9, 20.3] 17.4 [16.4, 19.0] N/A 18.7 [17.5, 19.3] 0.23
DisCoV 42.4 [41.7, 43.0] 16.8 [16.3, 17.9] 10.5 [8.9, 12.3] N/A 16.3 [16.1, 16.5] 0.42

Table 4: RMSE in Watt2 on UK-DALE and REDD data.

Machine Dataset Test S2P S2S Bert4NILM RVAE β-TCVAE FactorVAE NVAE D3VAE DisCoV (Ours)

Fridge UK-DALE 25.70 25.68 25.69 25.74 27.36 26.70 27.36 28.36 19.55
REDD 25.49 25.47 25.48 26.56 30.68 26.56 30.68 21.18 19.48

Washing UK-DALE 25.78 25.76 25.77 25.63 28.92 24.72 28.92 21.12 18.33
Machine REDD 25.59 25.57 25.58 25.34 28.40 24.78 28.40 23.22 18.31

Oven UK-DALE 25.61 25.59 25.60 25.46 25.28 23.98 25.28 22.18 19.30
REDD 25.45 25.43 25.44 25.42 25.04 23.94 25.04 20.78 19.82

6 Ablation Studies287

In this section, we conduct ablation experiments to assess DisCo’s effectiveness and robustness in288

comparison to traditional variant VAEs. Our experiments utilize the Uk-Dale, REDD, and REFIT289

datasets with a fixed random seed. We include additional ablation results in Appendix ??.290

6.1 In-depth self-attention l-VAEs learn an effective representation.291

Finding: DisCoV with increasing depth, the representation becomes over 20% more separable (40%292

in terms of TDS), downtasking improves performance by 50%, and attention mechanisms contribute293

to a 10% enhancement in results.294

Table 6, we observe notable differences in performance as the depth (L) of the model architecture295

varies including Root Mean Square Error (RMSE), Relative Mutual Information Gain (RMIG),296

and Task Discriminative Score (TDS) for various methods, with a particular emphasis on DisCoV297

variants with and without attention as the depth (L) increases. Regarding RMSE, which measures the298

accuracy of the models, we find that the baseline methods VAE, β-TCVAE, and DIP-VAE exhibit299

consistently higher RMSE values compared to the DisCoV variants. Furthermore, introducing the300

’DIS’ significantly improves RMSE values across all methods, indicating the effectiveness of the301

DisCoV loss in enhancing model performance. Additionally, as depth (L) increases from 4 to 16, we302

observe that the DisCoV variants consistently outperform the baseline methods in terms of RMSE.303

Notably, when L reaches 16, both DisCoV and DisCoV attention achieve the lowest RMSE value of304

0.48, showcasing the superior performance of DisCo-based models with higher depth. It is also worth305

mentioning that RMIG and TDS metrics follow a similar trend, with DisCoV variants demonstrating306

superior performance, especially as L increases. These findings suggest that increasing the depth307

of the model architecture and incorporating DisCoV loss play pivotal roles in improving model308

accuracy and task discriminative capabilities, highlighting the significance of attention mechanisms309

in enhancing performance.310
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Figure 5: PCA visualization for M = 3,
K = 1: Rows represent latent represen-
tations of activated appliances (Washing
Machine, Oven, Fridge from top to bot-
tom), columns correspond to zm compo-
nents of structured latent variable z.

Method Depth (L) RMSE ↓ RMIG ↓ TDS ↓
VAE (baseline) - 0.928 0.921 0.935
VAE (baseline)+DIS - 0.929 0.924 0.931
FactorVAE - 0.942 0.931 0.973
β-TCVAE - 0.931 0.918 0.937
β-TCVAE+DIS - 0.930 0.922 0.933
DIP-VAE - 0.932 0.915 0.939
DIP-VAE+DIS - 0.928 0.926 0.930
DisCoV 8 0.50 0.73 0.71
DisCoV w/o Attention 8 0.54 0.71 0.72
DisCoV 16 0.49 0.74 0.70
DisCoV w/o Attention 16 0.52 0.72 0.73
DisCoV 32 0.48 0.75 0.69

Figure 6: RMSE, RMIG, and TDS Scores for Vari-
ants DisCoV w/,w/o Attention, as L Increases. (↓
lower values are better).

6.2 Robustness, Disentanglement, and Strong Generalization311
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Figure 7: Disentanglement metric comparison of
DisCoV with VAE baselines on UKDALE. Dis-
CoV λ is plotted on the lower axis, and VAE-based
method regularization strength β is plotted on the
upper axis. Dark lines average scores. Shaded ar-
eas one standard deviation.

Finding: DisCoV demonstrates robust disentan-312

glement performance across varying dimensions,313

while FactorVAE exhibits degradation as dimen-314

sionality increases M ↑.315

We report the disentanglement performance of316

DisCoV and FactorVAE on the Uk-dale dataset317

asM is increased. FactorVAE [11] is the closest318

TC-based method: it uses a single monolithic319

discriminator and the density-ratio trick to ex-320

plicitly approximate TC(z). Computing TC(z)321

is challenging to compute as M increases. The322

results for M = 10 (scalable ≈ ×3) are in-323

cluded for comparison. The average disentan-324

glement scores for DisCoVM = 7 andM = 10325

are very close, indicating that its performance326

is robust in M . This is not the case for Factor-327

VAE it performs worse on all metrics when m328

increases. Interestingly, FactorVAE M = 10329

seems to recover its performance on most met-330

rics with higher β than is beneficial for Fac-331

torVAE M = 10. Despite this, the difference332

suggests that FactorVAE is not robust to changes333

in M .334

7 Conclusion335

To address the limitation of assuming independence in traditional disentangling methods, which336

doesn’t align with real-world correlated data, we explore an approach focused on recovering correlated337

data. This method achieves untangling by enabling the model to encode diverse combinations of338

generative attributes in the latent space. Using DisCo, we demonstrate that promoting pairwise339

factorized support is adequate for traditional untangling techniques. Additionally, we find that340

DisCoV performs competitively with downstream tasks (i.e. NILM methods) and delivers significant341

relative improvements of over +60% on common benchmarks across various correlation shifts in342

datasets.343
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8 Extension and Implementation Details431

8.1 Implementation of Metrics432

All our metrics consider the expected representation of training samples (except total correlation for433

which we also consider the sampled representation as described bellow).434
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8.1.1 BetaVAE Metric435

[12] suggest fixing a random factor of variation in the underlying generative model and sampling436

two mini-batches of observations x. Disentanglement is then measured as the accuracy of a linear437

classifier that predicts the index of the fixed factor based on the coordinate-wise sum of absolute438

differences between the representation vectors in the two mini-batches. We sample two batches of439

64 points with a random factor fixed to a randomly sampled value across the two batches, and the440

others varying randomly. We compute the mean representations for these points and take the absolute441

difference between pairs from the two batches. We then average these 64 values to form the features442

of a training (or testing) point. We train a Scikit-learn logistic regression with default parameters on443

10,000 points and test on 5,000 points.444

8.1.2 FactorVAE Metric445

[15] address several issues with this metric by using a majority vote classifier that predicts the index446

of the fixed ground-truth factor based on the index of the representation vector with the least variance.447

First, we estimate the variance of each latent dimension by embedding 10,000 random samples from448

the data set, excluding collapsed dimensions with variance smaller than 0.05. Second, we generate449

the votes for the majority vote classifier by sampling a batch of 64 points, all with a factor fixed to the450

same random value. Third, we compute the variance of each dimension of their latent representation451

and divide it by the variance of that dimension computed on the data without interventions. The452

training point for the majority vote classifier consists of the index of the dimension with the smallest453

normalized variance. We train on 10,000 points and evaluate on 5,000 points.454

8.1.3 Mutual Information Gap Metric455

[6] argue that the BetaVAE metric and the FactorVAE metric are neither general nor unbiased as they456

depend on some hyperparameters. They compute the mutual information between each ground truth457

factor and each dimension in the computed representation r(x). For each ground-truth factor zk, they458

then consider the two dimensions in r(x) that have the highest and second highest mutual information459

with zk. The Mutual Information Gap (MIG) is then defined as the average, normalized difference460

between the highest and second highest mutual information of each factor with the dimensions of the461

representation. The original metric was proposed evaluating the sampled representation. Instead, we462

consider the mean representation, in order to be consistent with the other metrics. We estimate the463

discrete mutual information by binning each dimension of the representations obtained from 10,000464

points into 20 bins. Then, the score is computed as follows:465

1

K

K∑
k=1

[I(vjk, zk)−max I(vj , zk)]

Where zk is a factor of variation, vj is a dimension of the latent representation, and jk =466

argmaxj I(vj, zk).467

8.1.4 Foundation of Time Disentanglement Score (TDS)468

Figure 8: For disentangled presentation, the per-
turbation of factor m in Xt:t+τ affects Zm and
consequently the time domaine prediction ym.

Time series data often exhibit variations that469

may not always align with conventional metrics,470

especially when considering the presence or ab-471

sence of underlying attributes. To address this472

challenge, we introduce the Time Disentangle-473

ment Score (TDS), a metric designed to assess474

the disentanglement of attributes in time series475

data. The foundation of TDS lies in an Infor-476

mation Gain perspective, which measures the477

reduction in entropy when an attribute is present478

compared to when it’s absent.479

In the context of TDS, we augment factor m480

in a time series window Xt:t+τ with a specific481

objective: to maintain stable entropy when the482
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factor is present and reduce entropy when it’s483

absent. This augmentation aims to capture the essence of attribute-related information within the484

data.485

TDS relies on the correlation matrix between z and z+, where z = fϕ(x) and z+ = fϕ(T (x)), with486

T denoting an augmentation function. This correlation matrix quantifies the consistency of attribute487

components. Additionally, TDS evaluates how well z contributes to the reconstruction of y and how488

z+ contributes to the reconstruction of T (y). Specifically, it assesses whether each zm (or z+m) can489

effectively reconstruct the corresponding ym (or y+m). TDS aligns with qualitative observations of490

disentanglement.491

TDS =
1

2

[
(1−

∑
i

Corr(I)(z, z+)ii)
2 + (1−

∑
i

Corr(I)(y − ŷ,y+ − ŷ+)ii)

]2

(8)

where Corr(I)ij =
∑
b zb,iz

+
b,j divided by

√∑
b(zb,i)

2
√∑

b(z
+
b,j)

2, b indexes batch samples and492

i, j index the vector dimension of the networks’ fϕ outputs for Corr(I) (resp. dimension of the493

networks’ outputs of gθ for Corr(II)). Corr is a square matrix with the size of the dimensionality of494

the network’s output and with values comprised between -1 (i.e. perfect anti-correlation) and 1 (i.e.495

perfect correlation). High TDS informativeness signifies strong disentanglement, while a significant496

distance implies reduced disentanglement and higher attribute correlation, aligning with [9].497

8.2 Inference and Generative Procedure498

To avoid time locality during dimension reduction, and keep long-range capability we refer to an499

in-depth Temporal Attention with l-Variational layers. Unlike NVAE [26] for which the latent space Z500

is level-structured locally, in this work, we enable the model to establish strong couplings, as depicted.501

The core problem we aim to address is to construct a feature T̂ l (Time context) that effectively502

captures the most informative features from a given sequence T<l = {T i}li=1. Both T̂ l and T l are503

features with the same dimensionality: T̂ l ∈ RT×C and T i ∈ RT×C . In our model, we employ504

Temporal Attention to construct either the prior or posterior beliefs of variational layers, which505

enables us to handle long context sequences with large dimensions τ effectively. The construction of506

T̂ l relies on a query feature Ql ∈ RT×Q of dimensionality Q with Q≪ C, and the corresponding507

context T l is represented by a key feature Kl ∈ RT×Q. Importantly, T̂ l(t) of time step i in sequence508

τ depends solely on the time instances in T<l.509

T̂ l(t) =
∑
i<l

αi→l(t) · T l(t), αi→l(t) =
exp(Q⊺

l (t) ·Kl(t))∑
i<l exp(Q

⊺
l (t) ·Kl(t))

(9)

In words, feature Ql(t) ∈ RQ queries the Temporal significance of feature T l(t) ∈ RC , represented510

by Kl(t) ∈ RQ, to form T̂ l(t) ∈ RC . αi→l(t) ∈ R is the resulting relevance metric of the i-th term,511

with i < l, at time step t. The overall procedure is denoted as T̂ = A(T<l,Ql,K<l).512

A powerful extension to the above single attention mechanism is the multi-head attention introduced513

in [? ], which allows the model to jointly attend to information from different representation subspaces514

at different scales. Instead of computing a single attention function, this method first projects Q, K,515

V onto h different vectors, respectively. An attention function A(·) is applied individually to these h516

projections. The output is a linear transformation of the concatenation of all attention outputs:517

Multi-A(Q,K, V ) = ⊕{A(QWqi,KWki, V Wvi)}hi=1Wo, (10)

Where Wo, Wqi, Wki, Wvi are learnable parameters of some linear layers. QWqi ∈ Rnq×dhq ,518

KWki ∈ Rnv×dhk , VWvi ∈ Rnv×dhv are vectors projected from Q, K, V respectively. dhq =
dq
h519

and dhv = dv
h . Following the architecture of the transformer [? ], we define the following multi-head520

attention block:521

Q0 = LayerNorm(⊕{QWq1}hi=1 + MultiAtt(Q,K, V )), (11)
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522
MultiBloc-A(Q,K, V ) = LayerNorm(Q0 +Q0Wq0), (12)

where Wq0 ∈ Rdq×dq is a learnable linear layer.523

Decodeur (Generative Model pθ). The conditioning factor of the prior distribution at variational524

layer l is represented by context feature T lp ∈ RT×C . A convolution is applied on T lp to obtain525

parameters θ defining the prior. Reslp is a non-linear transformation of the immediately previous526

latent information Zl and prior context T lp containing latent information from distant layers zl<l,527

such that T lp = Reslp(Zl ⊕ T lp). Reslp(·) is a transformation operation, typically implemented as a528

cascade of residual cells and corresponds to the blue residual module in Fig 3. Zl and T lp are passed529

in from the previous layer. Because of the architecture’s locality, the influence of Zl could potentially530

overshadow the signal coming from T lp. To prevent this, we adopt direct connections between each531

pair of stochastic layers. That is, variational layer l has direct access to the prior temporal context of532

all previous layers T<lp accompanied by keys K<l
p . This means each variational layer can actively533

determine the most important latent contexts when evaluating its prior. During training, the temporal534

context Tp, Qp, and Kp are jointly learned:535

[T lp,Q
l
p,K

l
p]← Reslp(Zl ⊕ (T lp + ηlpA(T<lp ,Ql

p,K
<l
p ))) for l = L,L− 1, ..., 1. (13)

Where ηlp ∈ R is a learnable scalar parameter initialized by zero, T<lp = {T ip}li=1 with T ip ∈ RT×C ,536

Ql
p ∈ RT×Q, K<l

p = {Ki
p}li=1 with Ki

p ∈ R×Q, and Q ≪ C. We initially let variational layer l537

rely on nearby dependencies captured by T lp. During training, the prior is progressively updated with538

the holistic context T̂ lp via a residual connection.539

Encodeur (Infrence Model qϕ) As shown in Fig 2, the conditioning context T lq of the posterior
distribution results from combining deterministic factor hl and stochastic factor T lp provided by the
decoder: T lq = hl ⊕ T lp. To improve inference, we let layer l’s encoder use both its own hl and all
subsequent hidden representations h≥l, as shown in Fig 2. As in the generative model, the bottom-up
path is extended to emit low-dimensional key features Kl

q , which represent hidden features hl:

[hl,Kl
q]← Tl

q(hl+1 ⊕Kl+1
q ) for l = L,L− 1, ..., 1.

Prior works [26] have sought to mitigate against exploding Kullback-Leibler divergence (KL) in Eq 2540

by using parametric coordination between the prior and posterior distributions. Motivated by this541

insight, we seek to establish further communication between them. We accomplish this by allowing542

the generative model to choose the most explanatory features in h≥l by generating the query feature543

Ql
q . Finally, the holistic conditioning factor for the posterior is:544

T̂ lq ← A(h≥l,Ql
q,K

≥l
q ) for l = L,L− 1, ..., 1. (14)

We adopt the Gaussian residual parametrization between the prior and the posterior. The prior545

is given by p(zl|z<l) = N (µ(T lp, θ), σ(T
l
p, θ). The posterior is then given by q(zl|x, z<l) =546

N (µ(T lp, θ) +∆µ(T̂ lq, ϕ), σ(T
l
p, θ) ·∆σ(T̂ lq, ϕ)) where the sum (+) and product (·) are pointwise,547

and T lq is defined in Eq 14. µ(·), σ(·), ∆µ(·), and ∆σ(·) are transformations implemented as548

convolutions layers. Based on this, For LKL in Eq 2, the last term is approximated by: 0.5 ×549 (
∆µ2

l

σ2
l

+∆σ2
l − log∆σ2

l − 1
)

.550

8.3 Hyperparameter and Training551

Table 5 presents a comparison of the computational requirements for training different VAE models,552

including NVAE (Normal VAE), and DisCoV on the Uk-dale dataset.553

The table shows the batch size per GPU, the number of GPUs utilized for training, and the corre-554

sponding training time in hours for each model. The batch size for all models is set to 128, and four555

GPUs are used in parallel for training in each case.556

As observed from the table, the DisCoV model exhibits longer training times compared to NVAE.557

This indicates that the additional computational cost associated with computing attention scores in558
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Table 5: We compare the computational requirements for training DisCoV and NVAE models on the
Uk-dale dataset. The training is performed using Nvidia A100 GPUs, each equipped with 80GB of
memory.

Model Batch/GPU # GPUs Time (hour)
NVAE 128 4 68
DisCoV 128 4 84

the DisCoV model is offset by the benefits of having a smaller number of stochastic layers in the559

hierarchical architecture without compromising the generative capacity of the models.560

This information provides valuable insights into the computational efficiency and trade-offs among561

these state-of-the-art VAE models when applied to the Uk-dale dataset.562

8.4 Impact of window parameter τ563

To perform Non-Intrusive Load Monitoring (NILM) effectively, it is crucial to select an appropriate564

window time series. This involves determining a time interval for analyzing energy consumption data565

that allows for the detection and classification of individual appliance activities. The chosen window566

should strike a balance between being long enough to capture complete appliance activity cycles and567

short enough to avoid overlaps with other activities or periods of inactivity. The optimal window size568

depends on factors such as the energy meter’s sampling rate, the number and types of appliances569

being monitored, and the specific NILM algorithm employed. Experimentation and optimization570

may be necessary to identify the ideal window size for a specific NILM application. In our study, we571

tried to detect the consumption of the washing machine, which averages 3 to 4 hours of use per cycle.572

Therefore, we chose a window of 4h30, equivalent to 256-time steps of 60 seconds. In addition,573

we’ve noticed that a window of 128 and 300 steps doesn’t detect the washing machine.574

8.5 Optimization575

In all of our experiments, we used the Adam optimizer with an initial learning rate of 10−3 and a576

cosine decay of the learning rate. We also reduced the learning rate to 7 × 10−4 to increase the577

stability of the training and applied an early stop after 5 iterations. We set α = 0.5 and β = 2.5 after578

a grid search on the best convergence of the model on the validation data.579

9 Extended Ablation Studies580

9.1 Empirical Evidence of Enhanced Latent using self-attentive l-VAE581

Depth (L) bits/dim ↓ ∆()%

4 3.12 -8.7
8 2.96 -8.1

16 3.81 -10.1
32 5.12 -13.7

Table 6: Negative log-likelihood per dimension (bits/dim) for varying depth L for the attentive
DisCO.

10 Explicability underlying latent space structuring582

An interpretable representation of learning is obtained when the latent space is factorized and the583

multidimensional components are statistically independent, which is a complex task in the context of584

information theory for generative models. A variety of methods have been proposed to solve this585

problem, such as β-TCVAE [? ]. The most commonly used method is derived from the information586

theory known as Total Correlation, which introduces the TC penalty that is defined by the divergence587

KL(pϕ(Z)||
∏
j pϕ(zj)). Nevertheless, estimating this divergence is both expensive and difficult to588

perform.589
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Estimation of TC. To avoid costly TC estimation and guarantee time-series robustness, we try to590

apply this penalty using a discriminator across Z. It has been previously used as a disentangling591

metric for image generation [? ]. In our case, we use it as a loss function. For its training, the latent592

variables of half the batch are randomly permuted, creating positive zperm (i.e all components are593

independent), and the other half is left untouched, corresponding to negative case (i.e components594

are correlated). A Dψ discriminator is used to replace the penalty, denoted TC in the following, by595

optimizing the performance of a discriminator between the distribution of the latent variable and a596

permuted of it. The Dψ discriminator and the model are trained simultaneously.597

LTC = E[log(Dψ(Zpermuted))] + E[log(1−Dψ(Z))] (15)

The overarching training objective for the sequence-to-sequence model, incorporating residual KL598

in each layer l = L,L − 1, . . . 1 as discussed in our proposed method above (Section 6), can be599

summarized as follows:600

L(γ, β, δ; θ, ϕ, ψ) = Lrec + β LKL + γ LTC (16)

Here, we have a hyperparameter βKL to balance the reconstruction loss and KL losses and γ to601

balance the disentangling effect of TC.602

11 More Quantitative Comparison603

11.1 Case where M = 7 and K = 3604

11.1.1 Elaboration on Metrics for the Downstream Task (Reconstruction of Appliance605

Powers)606

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and607

Mean Absolute Percentage Error (MAPE) are adopted to evaluate the imputation accuracy of all608

compared methods. These four metrics are defined as:609

RMSE =

√∑
ij∈Ω(Xij − X̂ij)2

|Ω|
, (17)

MAE =

∑
ij∈Ω |Xij − X̂ij |

|Ω|
, (18)

MSE =

∑
ij∈Ω(Xij − X̂ij)

2

|Ω|
, (19)

MAPE =

∑
ij∈Ω |Xij − X̂ij |
|Ω| · |Xij |

, (20)

where Xij denotes the ground-truth values, X̂ij is the imputed values, and Ω is the index set of610

missing entries to be evaluated.611
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