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Abstract

While modern machine learning models rely on increasingly large training datasets, data
is often limited in privacy-sensitive domains. Generative models trained with differential
privacy (DP) on sensitive data can sidestep this challenge, providing access to synthetic
data instead. We build on the recent success of diffusion models (DMs) and introduce
Differentially Private Diffusion Models (DPDMs), which enforce privacy using differentially
private stochastic gradient descent (DP-SGD). We investigate the DM parameterization and
the sampling algorithm, which turn out to be crucial ingredients in DPDMs, and propose
noise multiplicity, a powerful modification of DP-SGD tailored to the training of DMs. We
validate our novel DPDMs on image generation benchmarks and achieve state-of-the-art
performance in all experiments. Moreover, on standard benchmarks, classifiers trained
on DPDM-generated synthetic data perform on par with task-specific DP-SGD-trained
classifiers, which has not been demonstrated before for DP generative models. Project page
and code: https://nv-tlabs.github.io/DPDM.

1 Introduction

Modern deep learning usually requires significant amounts of training data. However, sourcing large datasets in
privacy-sensitive domains is often difficult. To circumvent this challenge, generative models trained on sensitive
data can provide access to large synthetic data instead, which can be used flexibly to train downstream models.
Unfortunately, typical overparameterized neural networks have been shown to provide little to no privacy to
the data they have been trained on. For example, an adversary may be able to recover training images of deep
classifiers using gradients of the networks (Yin et al., 2021) or reproduce training text sequences from large
transformers (Carlini et al., 2021). Generative models may even overfit directly, generating data indistinguish-
able from the data they have been trained on. In fact, overfitting and privacy-leakage of generative models are
more relevant than ever, considering recent works that train powerful photo-realistic image generators on large-
scale Internet-scraped data (Rombach et al., 2021; Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022).

To protect the privacy of training data, one may train their model using differential privacy (DP). DP is
a rigorous privacy framework that applies to statistical queries (Dwork et al., 2006; 2014). In our case, this
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Figure 1: Information flow during training in our Differentially Private Diffusion Model (DPDM) for a
single training sample in green (i.e. batchsize B=1, another sample shown in blue). We rely on DP-SGD
to guarantee privacy and use noise multiplicity; here, K=3. The diffusion is visualized for a one-dim. toy
distribution (marginal probabilities in purple); our main experiments use high-dim. images. Note that for
brevity in the visualization we dropped the index i, which indicates the minibatch element in Eqs. (6) and (7).

query corresponds to the training of a neural network using sensitive data. Differentially private stochastic
gradient descent (DP-SGD) (Abadi et al., 2016) is the workhorse of DP training of neural networks. It
preserves privacy by clipping and noising the parameter gradients during training. This leads to an inevitable
trade-off between privacy and utility; for instance, small clipping constants and large noise injection result
in very private models that may be of little practical use.

DP-SGD has, for example, been employed to train generative adversarial networks (GANs) (Frigerio
et al., 2019; Torkzadehmahani et al., 2019; Xie et al., 2018), which are particularly susceptible to
privacy-leakage (Webster et al., 2021). However, while GANs in the non-private setting can synthesize
photo-realistic images (Brock et al., 2019; Karras et al., 2020b;a; 2021), their application in the private
setting is challenging. GANs are difficult to optimize (Arjovsky & Bottou, 2017; Mescheder et al., 2018)
and prone to mode collapse; both phenomena may be amplified during DP-SGD training.

Recently, Diffusion Models (DMs) have emerged as a powerful class of generative models (Song et al., 2021c;
Ho et al., 2020; Sohl-Dickstein et al., 2015), demonstrating outstanding performance in image synthesis (Ho
et al., 2021; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach et al., 2021; Ramesh et al., 2022;
Saharia et al., 2022). In DMs, a diffusion process gradually perturbs the data towards random noise, while
a deep neural network learns to denoise. DMs stand out not only by high synthesis quality, but also sample
diversity, and a simple and robust training objective. This makes them arguably well suited for training under
DP perturbations. Moreover, generation in DMs corresponds to an iterative denoising process, breaking
the difficult generation task into many small denoising steps that are individually simpler than the one-shot
synthesis task performed by GANs and other traditional methods. In particular, the denoising neural network
that is learnt in DMs and applied repeatedly at each synthesis step is less complex and smoother than the
generator networks of one-shot methods, as we validate in experiments on toy data (synthetically generated
mixture of 2D Gaussians). Therefore, training of the denoising neural network is arguably less sensitive
to gradient clipping and noise injection required for DP.
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Based on these observations, we propose Differentially Private Diffusion Models (DPDMs), DMs trained with
rigorous DP guarantees based on DP-SGD. We thoroughly study the DM parameterization and sampling
algorithm, and tailor them to the DP setting. We find that the stochasticity in DM sampling, which is
empirically known to be error-correcting (Karras et al., 2022), can be particularly helpful in DP-SGD training
to obtain satisfactory perceptual quality. We also propose noise multiplicity, where a single training data
sample is re-used for training at multiple perturbation levels along the diffusion process (see Fig. 1). This
simple yet powerful modification of the DM training objective improves learning at no additional privacy cost.
We validate DPDMs on standard DP image generation tasks, and achieve state-of-the-art performance by large
margins, both in terms of perceptual quality and performance of downstream classifiers trained on synthetically
generated data from our models. For example, on MNIST we improve the state-of-the-art FID from 56.2 to
23.4 and downstream classification accuracy from 81.5% to 95.3% for the privacy setting DP-(ε=1, δ=10−5).
We also find that classifiers trained on DPDM-generated synthetic data perform on par with task-specific
DP-classifiers trained on real data, which has not been demonstrated before for DP generative models.

We make the following contributions: (i) We carefully motivate training DMs with DP-SGD and introduce
DPDMs, the first DMs trained under DP guarantees. (ii) We study DPDM parameterization, training setting
and sampling in detail, and optimize it for the DP setup. (iii) We propose noise multiplicity to efficiently
boost DPDM performance. (iv) Experimentally, we significantly surpass the state-of-the-art in DP synthesis
on widely-studied image modeling benchmarks. (v) We demonstrate for the first time that classifiers trained
on DPDM-generated data perform on par with task-specific DP-trained discriminative models. This implies
a very high utility of the synthetic data generated by DPDMs, delivering on the promise of DP generative
models as an effective data sharing medium. Finally, we hope that our work has implications for the
literature on DMs, which are now routinely trained on ultra large-scale datasets of diverse origins.

2 Background

2.1 Diffusion Models

We consider continuous-time DMs (Song et al., 2021c) and follow the presentation of Karras et al. (2022).
Let pdata(x) denote the data distribution and p(x; σ) the distribution obtained by adding i.i.d. σ2-variance
Gaussian noise to the data distribution. For sufficiently large σmax, p(x; σ2

max) is almost indistinguishable
from σ2

max-variance Gaussian noise. Capitalizing on this observation, DMs sample (high variance) Gaussian
noise x0 ∼ N

(
0, σ2

max
)

and sequentially denoise x0 into xi ∼ p(xi; σi), i ∈ [0, ..., M ], with σi < σi−1
(σ0 = σmax). If σM = 0, then x0 is distributed according to the data.

Sampling. In practice, the sequential denoising is often implemented through the simulation of the
Probability Flow ordinary differential equation (ODE) (Song et al., 2021c)

dx = −σ̇(t)σ(t)∇x log p(x; σ(t)) dt, (1)

where ∇x log p(x; σ) is the score function (Hyvärinen, 2005). The schedule σ(t) : [0, 1]→ R+ is user-specified
and σ̇(t) denotes the time derivative of σ(t). Alternatively, we may also sample from a stochastic differential
equation (SDE) (Song et al., 2021c; Karras et al., 2022):

dx = −σ̇(t)σ(t)∇x log p(x; σ(t)) dt︸ ︷︷ ︸
Probability Flow ODE; see Eq. (1)

−β(t)σ2(t)∇x log p(x; σ(t)) dt +
√

2β(t)σ(t) dωt︸ ︷︷ ︸
Langevin diffusion component

, (2)

where dωt is the standard Wiener process. In principle, given initial samples x0 ∼ N
(
0, σ2

max
)
, simulating

either Probability Flow ODE or SDE produces samples from the same distribution. In practice, though, neither
ODE nor SDE can be simulated exactly: Firstly, any numerical solver inevitably introduces discretization
errors. Secondly, the score function is only accessible through a model sθ(x; σ) that needs to be learned;
replacing the score function with an imperfect model also introduces an error. Empirically, the ODE
formulation has been used frequently to develop fast solvers (Song et al., 2021a; Zhang & Chen, 2022; Lu et al.,
2022; Liu et al., 2022; Dockhorn et al., 2022a), whereas the SDE formulation often leads to higher quality
samples (while requiring more steps) (Karras et al., 2022). One possible explanation for the latter observation is
that the Langevin diffusion component in the SDE at any time during the synthesis process actively drives the
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process towards the desired marginal distribution p(x; σ), whereas errors accumulate in the ODE formulation,
even when using many synthesis steps. In fact, it has been shown that as the score model sθ improves, the
performance boost that can be obtained by an SDE solver diminishes (Karras et al., 2022). Finally, note that
we are using classifier-free guidance (Ho & Salimans, 2021) to perform class-conditional sampling in this work.
For details on classifier-free guidance and the numerical solvers for Eq. (1) and Eq. (2), we refer to App. C.3.

Training. DM training reduces to learning the score model sθ. The model can, for example, be parameterized
as ∇x log p(x; σ) ≈ sθ = (Dθ(x; σ) − x)/σ2 (Karras et al., 2022), where Dθ is a learnable denoiser that,
given a noisy data point x + n, x ∼ pdata(x), n ∼ N

(
0, σ2) and conditioned on the noise level σ, tries to

predict the clean x. The denoiser Dθ can be trained by minimizing an L2-loss

Ex∼pdata(x),(σ,n)∼p(σ,n)
[
λσ∥Dθ(x + n, σ)− x∥2

2
]

, (3)

where p(σ, n) = p(σ)N
(
n; 0, σ2) and λσ : R+ → R+ is a weighting function. Previous works proposed

various denoiser models Dθ, noise distributions p(σ), and weightings λσ. We refer to the triplet (Dθ, p, λ) as
the DM config. Here, we consider four such configs: variance preserving (VP) (Song et al., 2021c), variance
exploding (VE) (Song et al., 2021c), v-prediction (Salimans & Ho, 2022), and EDM Karras et al. (2022);
App. C.1 for details.

2.2 Differential Privacy
DP is a rigorous mathematical definition of privacy applied to statistical queries; in our work the queries
correspond to the training of a neural network using sensitive training data. Informally, training is said to
be DP, if, given the trained weights θ of the network, an adversary cannot tell with certainty whether a
particular data point was part of the training data. This degree of certainty is controlled by two positive
parameters ε and δ: training becomes more private as ε and δ decrease. Note, however, that there is an
inherent trade-off between utility and privacy: very private models may be of little to no practical use. To
guarantee a sufficient amount of privacy, as a rule of thumb, δ should not be larger than 1/N , where N is
number of training points {xi}N

i=1, and ε should be a small constant. More formally, we refer to (ε, δ)-DP
defined as follows (Dwork et al., 2006):
Definition 2.1. (Differential Privacy) A randomized mechanism M : D → R with domain D and range
R satisfies (ε, δ)-DP if for any two datasets d, d′ ∈ D differing by at most one entry, and for any subset of
outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ. (4)

DP-SGD. We require a DP algorithm that trains a neural network using sensitive data. The workhorse
for this particular task is differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016).
DP-SGD is a modification of SGD for which per-sample-gradients are clipped and noise is added to the
clipped gradients; the DP-SGD parameter updates are defined as follows

θ ← θ − η

B

(∑
i∈B

clipC (∇θli(θ)) + Cz
)

, (5)

where z ∼ N (0, σ2
DPI), B is a B-sized subset of {1, . . . , N} drawn uniformly at random, li is the loss function

for data point xi, η is the learning rate, and the clipping function is clipC(g) = min {1, C/∥g∥2}g. DP-SGD
can be adapted to other first-order optimizers, such as Adam (McMahan et al., 2018).

Privacy Accounting. According to the Gaussian mechanism (Dwork et al., 2014), a single DP-SGD update
(Eq. (5)) satisfies (ε, δ)-DP if σ2

DP > 2 log(1.25/δ)C2/ε2. Privacy accounting methods can be used to compose
the privacy cost of multiple DP-SGD training updates and to determine the variance σ2

DP needed to satisfy
(ε, δ)-DP for a particular number of DP-SGD updates with clipping constant C and subsampling rate B/N .
Also see App. A.

3 Differentially Private Diffusion Models

We propose DPDMs, DMs trained with rigorous DP guarantees based on DP-SGD (Abadi et al., 2016). DP-
SGD is a well-established method to train DP neural networks and our intention is not to re-invent DP-SGD;
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Figure 2: Frobenius norm of the Jacobian JF (σ) of the denoiser D(·, σ) and constant Frobenius norms of the
Jacobians JF of the sampling functions defined by the DM and a GAN. App. E for experiment details.

instead, the novelty in this work lies in the combination of DMs with DP-SGD, modifications of DP-SGD
specifically tailored to the DP training of DMs, as well as the study of design choices and training recipes
that greatly influence the performance of DPDMs. Combinations of DP-SGD with GANs have been widely
studied (Frigerio et al., 2019; Torkzadehmahani et al., 2019; Xie et al., 2018; Bie et al., 2022), motivating a
similar line of research for DMs. To the best of our knowledge, we are the first to explore DP training of DMs.
In Sec. 3.1, we discuss the motivation for using DMs for DP generative modeling. In Sec. 3.2, we then discuss
training and methodological details as well as DM design choices, and we prove that DPDMs satisfy DP.

3.1 Motivation

(i) Objective function. GANs have so far been the workhorse of DP generative modeling (see Sec. 4), even
though they are generally difficult to optimize (Arjovsky & Bottou, 2017; Mescheder et al., 2018) due to their
adversarial training and propensity to mode collapse. Both phenomena may be amplified during DP-SGD
training. DMs, in contrast, have been shown to produce outputs as good or even better than GANs’ (Dhariwal
& Nichol, 2021), while being trained with a very simple regression-like L2-loss (Eq. (3)), which makes them
robust and scalable in practice. DMs are therefore arguably also well-suited for DP-SGD-based training and
offer better stability under gradient clipping and noising than adversarial training frameworks.

(ii) Sequential denoising. In GANs and most other traditional generative modeling approaches, the
generator directly learns the sampling function, i.e., the mapping of latents to synthesized samples, end-to-end.
In contrast, the sampling function in DMs is defined through a sequential denoising process, breaking the
difficult generation task into many small denoising steps which are individually less complex than the one-shot
synthesis task performed by, for instance, a GAN generator. The denoiser neural network, the learnable
component in DMs that is evaluated once per denoising step, is therefore simpler and smoother than the one-
shot generator networks of other methods. We fit both a DM and a GAN to a two-dimensional toy distribution
(mixture of Gaussians, see App. E) and empirically verify that the denoiser D is indeed significantly less complex
(quantified by the Frobenius norm of the Jacobian) than the generator learnt by the GAN and also than the end-
to-end multi-step synthesis process (Probability Flow ODE) of the DM (see Fig. 2; we calculate denoiser JF (σ)
at varying noise levels σ). Generally, more complex functions require larger neural networks and are more
difficult to learn. In DP-SGD training we only have a limited number of training iterations available until the
privacy budget is depleted. Consequently, the fact that DMs require less complexity out of their neural networks
than typical one-shot generation methods, while still being able to represent expressive generative models due
to the iterative synthesis process, makes them likely well-suited for DP generative modeling with DP-SGD.

(iii) Stochastic diffusion model sampling. As discussed in Sec. 2.1, generating samples from DMs with
stochastic sampling can perform better than deterministic sampling when the score model is not learned
well. Since we replace gradient estimates in DP-SGD training with biased large variance estimators, we
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cannot expect a perfectly accurate score model. In Sec. 5.2, we empirically show that stochastic sampling
can in fact boost perceptual synthesis quality in DPDMs as measured by FID.

3.2 Training Details, Design Choices, Privacy
The clipping and noising of the gradient estimates in DP-SGD (Eq. (5)) pose a major challenge for efficient op-
timization. Blindly reducing the added noise could be fatal, as it decreases the number of training iterations al-
lowed within a certain (ε, δ)-DP budget. Furthermore, as discussed the L2-norm of the noise added in DP-SGD
scales linearly to the number of parameters. Consequently, settings that work well for non-private DMs, such as
relatively small batch sizes, a large number of training iterations, and heavily overparameterized models, may
not work well for DPDMs. Below, we discuss how we propose to adjust DPDMs for successful DP-SGD training.

Noise multiplicity. Recall that the DM objective in Eq. (3) involves three expectations. As usual, the
expectation with respect to the data distribution pdata(x) is approximated using mini-batching. For non-
private DMs, the expectations over σ and n are generally approximated using a single Monte Carlo sample
(σi, ni) ∼ p(σ)N

(
0, σ2) per data point xi, resulting in the loss for training sample i

li = λ(σi)∥Dθ(xi + ni, σi)− xi∥2
2. (6)

The estimator li is very noisy in practice. Non-private DMs counteract this by training for a large number of iter-
ations in combination with an exponential moving average (EMA) of the trainable parameters θ (Song & Ermon,
2020). When training DMs with DP-SGD, we incur a privacy cost for each iteration, and therefore prefer a small
number of iterations. Furthermore, since the per-example gradient clipping as well as the noise injection induce
additional variance, we would like our objective function to be less noisy than in the non-DP case. We achieve
this by estimating the expectation over σ and n using an average over K noise samples, {(σik, nik)}K

k=1 ∼
p(σ)N

(
0, σ2) for each data point xi, replacing the non-private DM objective li in Eq. (6) with

l̃i = 1
K

∑K

k=1
λ(σik)∥Dθ(xi + nik, σik)− xi∥2

2. (7)

Importantly, we show that this modification comes at no additional privacy cost (also see App. A). We call this
simple yet powerful modification of the DM objective, which is tailored to the DP setup, noise multiplicity.
Theorem 1. The variance of the DM objective (Eq. (7)) decreases with increased noise multiplicity K as
1/K.

Proof in App. D. Intuitively, the key is that we first create a relatively accurate low-variance gradient estimate
by averaging over multiple noise samples before performing gradient sanitization in the backward pass via
clipping and noising. This averaging process increases computational cost, but provides better utility at
the same privacy budget, which is the main bottleneck in DP generative modeling; see App. D.3 for further
discussion. We empirically showcase in Sec. 5.2 that the variance reduction induced by noise multiplicity is
a key factor in training strong DPDMs. In Fig. 3, we show that the reduction of variance in the DM objective
also empirically leads to lower variance gradient estimates (see App. D for experiment details). The noise
multiplicity mechanism is also highlighted in Fig. 1: the figure describes the information flow during training for
a single training sample (i.e., batch size B = 1). Note that noise multiplicity is loosely inspired by augmentation
multiplicity (De et al., 2022), a technique where multiple augmentations per image are used to train classifiers
with DP-SGD. In contrast to augmentation multiplicity, our novel noise multiplicity is carefully designed
specifically for DPDMs and comes with theoretical proofs on its variance reduction. The reader may find a more
detailed discussion on the difference between noise multiplicity and data multiplicity (for DPDMs) in App. D.4.

Neural networks sizes. Current DMs are heavily overparameterized: For example, the current state-of-the-
art image generation model (in terms of perceptual quality) on CIFAR-10 uses more than 100M parameters,
despite the dataset consisting of only 50k training points (Karras et al., 2022). The per-example clipping
operation of DP-SGD requires the computation of the loss gradient on each training example ∇θ l̃i, rather than
the minibatch gradient. In theory, this increases the memory footprint by at least O(B); however, in common
DP frameworks, such as Opacus (Yousefpour et al., 2021), which we use, the peak memory requirement is
O(B2) compared to non-private training (recent methods such as ghost clipping (Bu et al., 2022) require less
memory, but are not widely implemented) On top of that, DP-SGD generally already relies on a significantly
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Figure 3: Increasing K in noise multiplicity leads to significant variance reduction of parameter gradient
estimates during training (note logarithmic axis in inset). Enlarged version in Fig. 6.

increased batch size, when compared to non-private training, to improve the privacy-utility trade-off. As a
result, we train very small neural networks for DPDMs, when compared to their non-DP counterparts: our
models on MNIST/Fashion-MNIST and CelebA have 1.75M and 1.80M parameters, respectively. Furthermore,
we found smaller models to perform better across our experiments which may be due to the L2-norm of the
noise added in our DP-SGD update scaling linearly with the number of parameters. This is in contrast to
recent works in supervised DP learning, which show that larger models may perform better than smaller
models (De et al., 2022; Li et al., 2022b; Anil et al., 2021; Li et al., 2022a).
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Figure 4: Noise level sampling for differ-
ent DM configs; see App. C.1.

Diffusion model config. In addition to network size, we found the
choice of DM config, i.e., denoiser parameterization Dθ, weighting
function λ(σ), and noise distribution p(σ), to be important. In
particular the latter is crucial to obtain strong results with DPDMs.
In Fig. 4, we visualize the noise distributions of the four configs
under consideration. We follow Karras et al. (2022) and plot the
distribution p(log σ) over the log-noise level. Especially for high
privacy settings (small ε), we found it important to use distributions
that give sufficiently much weight to larger σ, such as the distribution
of v-prediction (Salimans & Ho, 2022). It is known that at large
σ the DM learns the global, coarse structure of the data, i.e., the
low frequency content in the data (images, in our case). Learning
global structure reasonably well is crucial to form visually coherent
images that can also be used to train downstream models. This is
relatively easy to achieve in the non-DP setting, due to the heavily smoothed diffused distribution at these
high noise level. At high privacy levels, however, even training at such high noise levels can be challenging
due to DP-SGD’s gradient clipping and noising. We hypothesize that this is why it is beneficial to give
relatively more weight to high noise levels when training in the DP setting. In Sec. 5.2, we empirically
demonstrate the importance of the right choice of the DM config.

DP-SGD settings. Following De et al. (2022) we use very large batch sizes: 4096 on MNIST/Fashion-MNIST
and 2048 on CelebA. Similar to previous works (De et al., 2022; Kurakin et al., 2022; Li et al., 2022b), we
found that small clipping constants C work better than larger clipping norms; in particular, we found C = 1
to work well across our experiments. Decreasing C even further had little effect; in contrast, increasing C
significantly worsened performance. Similar to non-private DMs, we use an EMA of the learnable parameters
θ. Incidentally, this has recently been reported to also have a positive effect on DP-SGD training of classifiers
by De et al. (2022).
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Algorithm 1 DPDM Training
Input: Private data set d = {xj}N

j=1, subsampling rate B/N , DP noise scale σDP, clipping constant C, sampling
function Poisson Sample (Alg. 2), denoiser Dθ with initial parameters θ, noise distribution p(σ), learning rate η,
total steps T , noise multiplicity K, Adam (Kingma & Ba, 2015) optimizer
Output: Trained parameters θ
for t = 1 to T do

B ∼ Poisson Sample(N, B/N)
for i ∈ B do

{(σik, nik)}K
k=1 ∼ p(σ)N (0, σ2)

l̃i = 1
K

∑K

k=1 λ(σik)∥Dθ(xi+nik, σik)−xi∥2
2

end for
Gbatch = 1

B

∑
i∈B clipC

(
∇θ l̃i

)
G̃batch = Gbatch + (C/B)z, z ∼ N (0, σ2

DP)
θ = θ − η ∗ Adam(G̃batch)

end for

Privacy. We formulate privacy protection under the Rényi Differential Privacy (RDP) (Mironov, 2017)
framework (see Definition A.1), which can be converted to (ϵ, δ)-DP. For an algorithm for DPDM training
with noise multiplicity see Alg. 1. For the sake of completeness we also formally prove the DP of DPDMs
(DP of releasing sanitized training gradients G̃batch):
Theorem 2. For noise magnitude σDP, releasing G̃batch in Alg. 1 satisfies

(
α, α/2σ2

DP
)
-RDP.

The proof can be found in App. A. Note that the strength of DP protection is independent of the noise
multiplicity, as discussed above. In practice, we construct mini-batches by Poisson Sampling (See Alg. 2)
the training dataset for privacy amplification via sub-sampling (Mironov et al., 2019), and compute the
overall privacy cost of training DPDM via RDP composition (Mironov, 2017). Tighter privacy bounds, such
as the one developed in Gopi et al. (2021), may lead to better results but are not widely implemented (not
in Opacus (Yousefpour et al., 2021), the DP-SGD library we use).

4 Related Work

In the DP generative learning literature, several works (Xie et al., 2018; Frigerio et al., 2019; Torkzadehmahani
et al., 2019; Chen et al., 2020) have explored applying DP-SGD (Abadi et al., 2016) to GANs, while
others (Yoon et al., 2019; Long et al., 2019; Wang et al., 2021) train GANs under the PATE (Papernot et al.,
2018) framework, which distills private teacher models (discriminators) into a public student (generator)
model. Apart from GANs, Acs et al. (2018) train variational autoencoders on DP-sanitized data clusters,
and Cao et al. (2021) use the Sinkhorn divergence and DP-SGD.

DP-MERF (Harder et al., 2021) was the first work to perform one-shot privatization on the data, followed
by non-private learning. It uses differentially private random Fourier features to construct a Maximum
Mean Discrepancy loss, which is then minimized by a generative model. PEARL (Liew et al., 2022) instead
minimizes an empirical characteristic function, also based on Fourier features. DP-MEPF (Harder et al.,
2022) extends DP-MERF to the mixed public-private setting with pre-trained feature extractors. While
these approaches are efficient in the high-privacy/small dataset regime, they are limited in expressivity by
the data statistics that can be extracted during one-shot privatization. As a result, the performance of these
methods does not scale well in the low-privacy/large dataset regime.

In our experimental comparisons, we excluded Takagi et al. (2021) and Chen et al. (2022) due to concerns
regarding their privacy guarantees. The privacy analysis of Takagi et al. (2021) relies on the Wishart
mechanism, which has been retracted due to privacy leakage (Sarwate, 2017). Chen et al. (2022) attempt
to train a score-based model while guaranteeing differential privacy through a data-dependent randomized
response mechanism. In App. B, we prove why their proposed mechanism leaks privacy, and further discuss
other sources of privacy leakage.

Our DPDM relies on DP-SGD (Abadi et al., 2016) to enforce DP guarantees. DP-SGD has also been used to
train DP classifiers (Dörmann et al., 2021; Tramer & Boneh, 2021; Kurakin et al., 2022). Recently, De et al.
(2022) demonstrated how to train very large discriminative models with DP-SGD and proposed augmentation
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Table 1: Class-conditional DP image generation performance (MNIST & Fashion-MNIST). For PEARL (Liew
et al., 2022), we train models and compute metrics ourselves (App. F.1). All other results taken from the literature.
DP-MEPF (†) uses additional public data for training (only included for completeness).

Method DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)
Log Reg MLP CNN Log Reg MLP CNN

DPDM (FID) (ours) 0.2 61.9 65.3 65.8 71.9 78.4 53.6 55.3 57.0
DPDM (Acc) (ours) 0.2 104 81.0 81.7 86.3 128 70.4 71.3 72.3
PEARL (Liew et al., 2022) 0.2 133 76.2 77.1 77.6 160 70.0 70.8 68.0
DPDM (FID) (ours) 1 23.4 83.8 87.0 93.4 37.8 71.5 71.7 73.6
DPDM (Acc) (ours) 1 35.5 86.7 91.6 95.3 51.4 76.3 76.9 79.4
PEARL (Liew et al., 2022) 1 121 76.0 79.6 78.2 109 74.4 74.0 68.3
DPGANr (Bie et al., 2022) 1 56.2 - - 80.1 121.8 - - 68.0
DP-HP (Vinaroz et al., 2022) 1 - - - 81.5 - - - 72.3
DPDM (FID) (ours) 10 5.01 90.5 94.6 97.3 18.6 80.4 81.1 84.9
DPDM (Acc) (ours) 10 6.65 90.8 94.8 98.1 19.1 81.1 83.0 86.2
PEARL (Liew et al., 2022) 10 116 76.5 78.3 78.8 102 72.6 73.2 64.9
DPGANr (Bie et al., 2022) 10 13.0 - - 95.0 56.8 - - 74.8
DP-Sinkhorn (Cao et al., 2021) 10 48.4 82.8 82.7 83.2 128.3 75.1 74.6 71.1
G-PATE (Long et al., 2019) 10 150.62 - - 80.92 171.90 - - 69.34
DP-CGAN (Torkzadehmahani et al., 2019) 10 179.2 60 60 63 243.8 51 50 46
DataLens (Wang et al., 2021) 10 173.5 - - 80.66 167.7 - - 70.61
DP-MERF (Harder et al., 2021) 10 116.3 79.4 78.3 82.1 132.6 75.5 74.5 75.4
GS-WGAN (Chen et al., 2020) 10 61.3 79 79 80 131.3 68 65 65

DP-MEPF (ϕ1) (Harder et al., 2022) (†) 0.2 - 72.1 77.1 - - 71.7 69.0 -
DP-MEPF (ϕ1, ϕ2) (Harder et al., 2022) (†) 0.2 - 75.8 79.9 - - 72.5 70.4 -
DP-MEPF (ϕ1) (Harder et al., 2022) (†) 1 - 79.0 87.5 - - 76.2 75.0 -
DP-MEPF (ϕ1, ϕ2) (Harder et al., 2022) (†) 1 - 82.5 89.3 - - 75.4 74.7 -
DP-MEPF (ϕ1) (Harder et al., 2022) (†) 10 - 80.8 88.8 - - 75.5 75.5 -
DP-MEPF (ϕ1, ϕ2) (Harder et al., 2022) (†) 10 - 83.4 89.8 - - 75.7 76.0 -

multiplicity, which is related to our noise multiplicity, as discussed in Sec. 3.2. Furthrmore, DP-SGD has
been utilized to train and fine-tune large language models (Anil et al., 2021; Li et al., 2022b; Yu et al., 2022),
to protect sensitive training data in the medical domain (Ziller et al., 2021a;b; Balelli et al., 2022), and to
obscure geo-spatial location information (Zeighami et al., 2022).

Our work builds on DMs and score-based generative models (Sohl-Dickstein et al., 2015; Song et al., 2021c;
Ho et al., 2020). DMs have been used prominently for image synthesis (Ho et al., 2021; Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021; Rombach et al., 2021; Ramesh et al., 2022; Saharia et al., 2022; Balaji et al.,
2022) and other image modeling tasks (Meng et al., 2021; Saharia et al., 2021a;b; Li et al., 2021; Sasaki et al.,
2021; Kawar et al., 2022). They have also found applications in other areas, for instance in audio and speech
generation (Chen et al., 2021; Kong et al., 2021; Jeong et al., 2021), video generation (Ho et al., 2022b;a; Singer
et al., 2023; Blattmann et al., 2023) and 3D synthesis (Luo & Hu, 2021; Zhou et al., 2021; Zeng et al., 2022; Kim
et al., 2023). Methodologically, DMs have been adapted, for example, for fast sampling (Jolicoeur-Martineau
et al., 2021; Song et al., 2021a; Salimans & Ho, 2022; Dockhorn et al., 2022b; Xiao et al., 2022; Watson et al.,
2022; Dockhorn et al., 2022a) and maximum likelihood training (Song et al., 2021b; Kingma et al., 2021; Vahdat
et al., 2021). To the best of our knowledge, we are the first to train DMs under differential privacy guarantees.

5 Experiments

In this section, we present results of DPDM on standard image synthesis benchmarks. Importantly, note that
all models are private by construction through training with DP-SGD. The privacy guarantee is given by the
(ε, δ) parameters of DP-SGD, clearly stated for each experiment below.
Datasets. We focus on image synthesis and use MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao
et al., 2017) (28x28), and CelebA (Liu et al., 2015) (downsampled to 32x32). These datasets are standard
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Figure 5: Fashion-MNIST images generated by, from top to bottom, DP-CGAN (Torkzadehmahani et al., 2019),
DP-MERF (Harder et al., 2022), Datalens (Wang et al., 2021), G-PATE (Long et al., 2019), GS-WGAN (Chen
et al., 2020), DP-Sinkhorn (Cao et al., 2021), PEARL (Liew et al., 2022), DPGANr (Bie et al., 2022) (all
above bar), and our DPDM (below bar) using the privacy budget ε=10. See App. F.5 for more samples.

benchmarks in the DP generative modeling literature. In App. G, we consider more challenging datasets
and provide initial results.

Architectures. We implement the neural networks of DPDMs using the DDPM++ architecture (Song
et al., 2021c). See App. C.2 for details.

Evaluation. We measure sample quality via Fréchet Inception Distance (FID) (Heusel et al., 2017). On
MNIST and Fashion-MNIST, we also assess utility of class-labeled generated data by training classifiers
on synthesized samples and compute class prediction accuracy on real data. As is standard practice, we
consider logistic regression (Log Reg), MLP, and CNN classifiers; see App. F.1 for details.

Sampling. We sample from DPDM using (stochastic) DDIM (Song et al., 2021c) and the Churn sampler
introduced in (Karras et al., 2022). See App. C.3 for details.

Privacy implementation: We implement DPDMs in PyTorch (Paszke et al., 2019) and use Opacus (Yousef-
pour et al., 2021), a DP-SGD library in PyTorch, for training and privacy accounting. We use δ=10−5

for MNIST and Fashion-MNIST, and δ=10−6 for CelebA. These values are standard (Cao et al., 2021)
and chosen such that δ is smaller than the reciprocal of the number of training images. Similar to existing
DP generative modeling work, we do not account for the (small) privacy cost of hyperparameter tuning.
However, training and sampling is very robust with regards to hyperparameters, which makes DPDMs an
ideal candidate for real privacy-critical situations; see App. C.4.

5.1 Main Results

Class-conditional gray scale image generation. For MNIST and Fashion-MNIST, we train models
for three privacy settings: ε={0.2, 1, 10} (Tab. 1). Informally, the three settings provide high, moderate,
and low amounts of privacy, respectively. The DPDMs use the v-prediction DM config (Salimans & Ho,
2022) for ε=0.2 and the EDM config (Karras et al., 2022) for ε={1, 10}; see Sec. 5.2. We use the Churn
sampler (Karras et al., 2022): the two settings (FID) and (Acc) are based on the same DM, differing only
in sampler setting; see Tab. 14 and Tab. 15 for all sampler settings.
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Table 2: Class prediction accuracy on real test data. DP-SGD: Classifiers trained directly with DP-SGD
and real training data. DPDM: Classifiers trained non-privately on synthesized data from DP-SGD-trained
DPDMs (using 60,000 samples, following Cao et al. (2021)).

DP-ε
MNIST Fashion-MNIST

Log Reg MLP CNN Log Reg MLP CNN
DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM

0.2 83.8 81.0 82.0 81.7 69.9 86.3 74.8 70.4 73.9 71.3 59.5 72.3
1 89.1 86.7 89.6 91.6 88.2 95.3 79.6 76.3 79.6 76.9 70.5 79.4
10 91.6 90.8 92.9 94.8 96.4 98.1 83.3 81.1 83.9 83.0 77.1 86.2

Table 3: DM config ablation on MNIST for ε=0.2. See Tab. 12 for extended results.

DM config FID CNN-Acc (%)
VP (Song et al., 2021c) 197 24.2
VE (Song et al., 2021c) 171 13.9
v-prediction (Salimans & Ho, 2022) 97.8 84.4
EDM (Karras et al., 2022) 119 49.2

DPDMs outperform all other existing models for all privacy settings and all metrics by large margins
(see Tab. 1). Interestingly, DPDM also outperforms DP-MEPF (Harder et al., 2022), a method which is
trained on additional public data, in 22 out of 24 setups. Generated samples for ε=10 are shown in Fig. 5.
Visually, DPDM’s samples appear to be of significantly higher quality than the baselines’.

Comparison to DP-SGD-trained classifiers. Is it better to train a task-specific private classifier with
DP-SGD directly, or can a non-private classifier trained on DPDM’s synthethized data perform as well on
downstream tasks? To answer this question, we train private classifiers with DP-SGD on real (training) data
and compare them to our classifiers learnt using DPDM-synthesized data (details in App. F.3). For a fair
comparison, we are using the same architectures that we have already been using in our main experiments
to quantify downstream classification accuracy (results in Tab. 2; we test on real (test) data). While direct
DP-SGD training on real data outperforms the DPDM downstream classifier for logistic regression in all
six setups (in line with empirical findings that it is easier to train classifiers with few parameters than
large ones with DP-SGD (Tramer & Boneh, 2021)), CNN classifiers trained on DPDM’s synthetic data
generally outperform DP-SGD-trained classifiers. These results imply a very high utility of the synthetic data
generated by DPDMs, demonstrating that DPDMs can potentially be used as an effective, privacy-preserving
data sharing medium in practice. In fact, this approach is beneficial over training task-specific models with
DP-SGD, because a user can generate as much data from DPDMs as they desire for various downstream
applications without further privacy implications. To the best of our knowledge, it has not been demonstrated
before in the DP generative modeling literature that image data generated by DP generative models can
be used to train discriminative models on-par with directly DP-SGD-trained task-specific models.

Table 4: Unconditional CelebA generative performance. G-PATE and DataLens (†) use δ = 10−5 (less
privacy) and model images at 64x64 resolution.

Method DP-ε FID
DPDM (ours) 1 71.8
DPDM (ours) 10 21.1
DP-Sinkhorn (Cao et al., 2021) 10 189.5
DP-MERF (Harder et al., 2021) 10 274.0

G-PATE (Long et al., 2019) (†) 10 305.92
DataLens (Wang et al., 2021) (†) 10 320.8

11



Published in Transactions on Machine Learning Research (08/2023)

Table 6: Sampler comparison on MNIST (see Tab. 13 for results on Fashion-MNIST). We compare the Churn
sampler (Karras et al., 2022) to DDIM (Song et al., 2021a).

Sampler DP-ε FID Acc (%)
Log Reg MLP CNN

Churn (FID) 0.2 61.9 65.3 65.8 71.9
Churn (Acc) 0.2 104 81.0 81.7 86.3
Stochastic DDIM 0.2 97.8 80.2 81.3 84.4
Deterministic DDIM 0.2 120 81.3 82.1 84.8
Churn (FID) 1 23.4 83.8 87.0 93.4
Churn (Acc) 1 35.5 86.7 91.6 95.3
Stochastic DDIM 1 34.2 86.2 90.1 94.9
Deterministic DDIM 1 50.4 85.7 91.8 94.9
Churn (FID) 10 5.01 90.5 94.6 97.3
Churn (Acc) 10 6.65 90.8 94.8 98.1
Stochastic DDIM 10 6.13 90.4 94.6 97.5
Deterministic DDIM 10 10.9 90.5 95.2 97.7

Table 5: Noise multiplicity
ablation on MNIST for ε=1.
See Tab. 11 for extended results.

K FID CNN-Acc (%)
1 76.9 91.7
2 60.1 93.1
4 57.1 92.8
8 44.8 94.1
16 36.9 94.2
32 34.8 94.4

Unconditional color image generation. On CelebA, we train models
for ε={1, 10} (Tab. 4). The two DPDMs use the EDM config (Karras
et al., 2022) as well as the Churn sampler; see Tab. 14. For ε=10, DPDM
again outperforms existing methods by a significant margin. DPDM’s
synthesized images (see Fig. 16) appear much more diverse and vivid than
the baselines’ samples.

5.2 Ablation Studies

Noise multiplicity. Tab. 5 shows results for DPDMs trained with differ-
ent noise multiplicity K (using the v-prediction DM config) (Salimans &
Ho, 2022). As expected, increasing K leads to a general trend of improving
performance; however, the metrics start to plateau at around K=32.

Diffusion model config. We train DPDMs with different DM configs (see App. C.1). VP- and VE-based
models (Song et al., 2021c) perform poorly for all settings, while for ε=0.2 v-prediction significantly
outperforms the EDM config on MNIST (Tab. 3). On Fashion-MNIST, the advantage is less significant
(extended Tab. 12). For ε={1, 10}, the EDM config performs better than v-prediction. Note that the denoiser
parameterization for these configs is almost identical and their main difference is the noise distribution p(σ)
(Fig. 4). As discussed in Sec. 3.2, oversampling large noise levels σ is expected to be especially important
for the large privacy setting (small ε), which is validated by our ablation.

Sampling. Tab. 6 shows results for different samplers: deterministic and stochastic DDIM (Song et al., 2021a)
as well as the Churn sampler (tuned for high FID scores and downstream accuracy); see App. C.3 for details
on the samplers. Stochastic sampling is crucial to obtain good perceptual quality, as measured by FID (see
poor performance of deterministic DDIM), while it is less important for downstream accuracy. We hypothesize
that FID better captures image details that require a sufficiently accurate synthesis process. As discussed
in Secs. 2.1 and 3.1, stochastic sampling can help with that and therefore is particularly important in DP-
SGD-trained DMs. We also observe that the advantage of the Churn sampler compared to stochastic DDIM
becomes less significant as ε increases. Moreover, in particular for ε=0.2 the FID-adjusted Churn sampler
performs poorly on downstream accuracy. This is arguably because its settings sacrifice sample diversity,
which downstream accuracy usually benefits from, in favor of synthesis quality (also see samples in App. F.5).
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6 Conclusions
We propose Differentially Private Diffusion Models (DPDMs), which use DP-SGD to enforce DP guarantees.
DMs are strong candidates for DP generative learning due to their robust training objective and intrinsically
less complex denoising neural networks. To reduce the gradient variance during training, we introduce noise
multiplicity and find that DPDMs achieve state-of-the-art performance in common DP image generation
benchmarks. Furthermore, downstream classifiers trained with DPDM-generated synthetic data perform
on-par with task-specific discriminative models trained with DP-SGD directly. Note that despite their
state-of-the-art results, DPDMs are based on a straightforward idea, this is, to carefully combine DMs with
DP-SGD (leveraging the novel noise multiplicity). This “simplicity” is a crucial advantage, as it makes
DPDMs a potentially powerful tool that can be easily adopted by DP practitioners. Based on our promising
results, we conclude that DMs are an ideal generative modeling framework for DP generative learning.
Moreover, we believe that advancing DM-based DP generative modeling is a pressing topic, considering the
extremely fast progress of DM-based large-scale photo-realistic image generation systems (Rombach et al.,
2021; Saharia et al., 2022; Ramesh et al., 2022; Balaji et al., 2022). As future directions we envision applying
our DPDM approach during training of such large image generation DMs, as well as applying DPDMs to
other types of data. Furthermore, it may be interesting to pre-train our DPDMs with public data that is
not subject to privacy constraints, similar to Harder et al. (2022), which may boost performance. Also see
App. H for further discussion on ethics, reproducibility, limitations and more future work.
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A Differential Privacy and Proof of Theorem 2

In this section, we provide a short proof that the gradients released by the Gaussian mechanism in DPDM
are DP. By DP, we are specifically refering to the (ε, δ)-DP as defined in Definition 2.1, which approximates
(ε)-DP. For completeness, we state the definition of Rényi Differential Privacy (RDP) (Mironov, 2017):
Definition A.1. (Rényi Differential Privacy) A randomized mechanism M : D → R with domain D and
range R satisfies (α, ϵ)-RDP if for any adjacent d, d′ ∈ D:

Dα(M(d)|M(d′)) ≤ ϵ, (8)

where Dα is the Rényi divergence of order α.

Gaussian mechanism can provide RDP according to the following theorem:
Theorem 3. (RDP Gaussian mechanism (Mironov, 2017)) For query function f with Sensitivity S =
maxd,d ||f(d)− f(d′)||2, the mechanism that releases f(d) +N (0, σ2

DP) satisfies
(
α, αS2/(2σ2)

)
-RDP.

Note that any M that satisfies (α, ϵ)-RDP also satisfies (ϵ + log 1/δ
α−1 , δ)-DP.

We slightly deviate from the notation used in the main text to make the dependency of variables on input
data explicit. Recall from the main text that the per-data point loss is computed as an average over K noise
samples:

l̃i = 1
K

K∑
k=1

λ(σik)∥Dθ(xi + nik, σik)− xi∥2
2, where {(σik, nik)}K

k=1 ∼ p(σ)N
(
0, σ2) . (9)

In each iteration of Alg. 1, we are given a (random) set of indices B of expected size B with no repeated
indices, from which we construct a mini-batch {xi}i∈B. In our implementation (which is based on Yousefpour
et al. (2021)) of the Gaussian mechanism for gradient sanitization, we compute the gradient of li and apply
clipping with norm C, and then divide the clipped gradients by the expected batch size B to obtain the
batched gradient Gbatch:

Gbatch({xi}i∈B) = 1
B

∑
i∈B

clipC (∇θl(xi)) . (10)
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Finally, Gaussian noise z ∼ N (0, σ2
DP) is added to Gbatch and released as the response G̃batch:

G̃batch({xi}i∈B) = Gbatch({xi}i∈B) + C

B
z, z ∼ N (0, σ2

DPI) (11)

Now, we can restate Theorem 2 as follows with our modified notation:
Theorem 4. For noise magnitude σDP, dataset d = {xi}N

i=1, and set of (non-repeating) indices B, releasing
G̃batch({xi}i∈B) satisfies

(
α, α/2σ2

DP
)
-RDP.

Proof. Without loss of generality, consider two neighboring datasets d = {xi}N
i=1 and d′ = d ∪ x′, x′ /∈ d, and

mini-batches {xi}i∈B and x′ ∪ {xi}i∈B, where the counter-factual set/batch has one additional entry x′. We
can bound the difference of their gradients in L2-norm as:

∥Gbatch({xi}i∈B)−Gbatch(x′ ∪ {xi}i∈B)∥2

=
∥∥∥∥∥ 1

B

∑
i∈B

clipC (∇θl(xi))−
(

1
B

clipC (∇θl(x′)) + 1
B

∑
i∈B

clipC (∇θl(xi))
)∥∥∥∥∥

2

=
∥∥∥∥− 1

B
clipC (∇θl(x′))

∥∥∥∥
2

= 1
B
∥clipC (∇θl(x′))∥2 ≤

C

B
.

We thus have sensitivity S(Gbatch) = C
B . Furthermore, since z ∼ N (0, σ2

DP), (C/B)z ∼ N (0, (C/B)2σ2
DP).

Following standard arguments, releasing G̃batch({xi}i∈B) = Gbatch({xi}i∈B) + (C/B)z satisfies
(
α, α/2σ2

DP
)
-

RDP (Mironov, 2017).

In practice, we construct mini-batches by sampling the training dataset for privacy amplification via
Poisson Sampling (Mironov et al., 2019), and compute the overall privacy cost of training DPDM via RDP
composition (Mironov, 2017). We use these processes as implemented in Opacus (Yousefpour et al., 2021).

For completeness, we also include the Poisson Sampling algorithm in Alg. 2.

Algorithm 2 Poisson Sampling
Input : Index range N , subsampling rate q
Output: Random batch of indices B (of expected size B)
c = {ci}N

i=1∼Bernoulli(q)
B = {j : j ∈ {1, . . . , N}, cj = 1}

B DPGEN Analysis

In this section, we provide a detailed analysis of the privacy guarantees provided in DPGEN (Chen et al.,
2022).

As a brief overview, Chen et al. (2022) proposes to learn an energy function qϑ(x) by optimizing the following
objective (Chen et al. (2022), Eq. 7):

l(θ; σ) = 1
2Ep(x)Ex̃∼N (x,σ2)

[∣∣∣∣∣∣∣∣ x̃− x
σ2 −∇x log qϑ(x)

∣∣∣∣∣∣∣∣2
]

.

In practice, the first expectation is replaced by averaging over examples in a private training set d = {xi :
xi ∈ Y, i ∈ 1, . . . , m}, and x̃−x

σ2 is replaced by dr
i = (x̃i− xr

i )/σ2
i for each i in [1, m] (not to be confused with d

which denotes the dataset in the DP context), where xr
i is the query response produced by a data-dependent

randomized response mechanism.
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We believe that there are three errors in DPGEN that renders the privacy gurantee in DPGEN false. We
formally prove the first error in the following section, and state the other two errors which are factual but not
mathematical. The three errors are:

• The randomized response mechanism employed in DPGEN has a output space that is only supported
(has non-zero probability) on combinations of its input private dataset. ϵ-differential privacy cannot
be achieved as outcomes with non-zero probability1 can have zero probability when the input dataset
is changed by one element. Furthermore, adversaries observing the output can immediately deduce
elements of the private dataset.

• The k-nearest neighbor filtering used by DPGEN to reduce the number of candidates for the
randomized response mechanism is a function of the private data. The likelihood of the k-selected
set varies with the noisy image x̃ (line 20 of algorithm 1 in DPGEN), and is not correctly accounted
for in DPGEN.

• The objective function used to train the denoising network in DPGEN depends on both the ground-
truth denoising direction and a noisy image provided to the denoising network. The noisy image is
dependent on the training data, and hence leaks privacy. The privacy cost incurred by using this
noisy image is not accounted for in DPGEN.

To prove the first error, we begin with re-iterating the formal definition of differential privacy (DP):
Definition B.1. (ϵ-Differential Privacy) A randomized mechanism M : D → I with domain D and image I
satisfies (ε)-DP if for any two adjacent inputs d, d′ ∈ D differing by at most one entry, and for any subset of
outputs S ⊆ I it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] . (12)

The randomized response (RR) mechanism is a fundamental privacy mechanism in differential privacy. A
key assumption required in the RR mechanism is that the choices of random response are not dependent on
private information, such that when a respondent draws their response randomly from the possible choices,
no private information is given. More formally, we give the following definition for randomized response over
multiple choices2:
Definition B.2. Given a fixed response set Y of size k. Let d = {xi : xi ∈ Y, i ∈ 1, . . . , m} be an input
dataset. Define “randomized response" mechanism RR as:

RR(d) = {G(xi)}i∈[1,m] (13)

where,

G(xi) =
{

xi, with probability eϵ

eϵ+k−1
x′

i ∈ Y \ xi, with probability 1
eϵ+k−1

. (14)

A classical result is that the mechanism RR satisfies ϵ-DP (Dwork et al., 2014).

DPGEN considers datasets of the form d = {xi : xi ∈ Rn, i ∈ 1, . . . , m}. It claims to guarantee differential
privacy by applying a stochastic function H to each element of the dataset defined as follows (Eq. 8 of Chen
et al. (2022)):

Pr[H(x̃i) = w] =
{

eϵ

eϵ+k−1 , w = xi

1
eϵ+k−1 , w = x′

i ∈ X \ xi

,

where X = {xj : max(x̃i − xj)/σj ≤ β, xj ∈ d} (max is over the dimensions of x̃i − xj), |X| = k ≥ 2, and
x̃i = xi + zi, zi ∼ N (0, σ2I). We first note that H is not only a function of x̃i but also X∪ xi, since its image

1probability over randomness in the privacy mechanism
2This mechanism is analogous to the coin flipping mechanism, where the participant first flip a biased coin to determine

whether they’ll answer truthfully or lie with probability of lying k
eϵ+k−1 , and if they were to lie, they then roll a fair k dice to

determine the response.
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is determined by X ∪ xi. That is, changes in X will alter the possible outputs of H, independently from the
value of x̃i. We make this dependency explicit in our formulation here-forth. This distinction is important as
it determines the set of possible outcomes that we need to consider for in the privacy analysis. The authors
also noted that zi is added for training with the denoising objective, not for privacy, so this added Gaussian
noise is not essential to the privacy analysis. Furthermore, since k (or equivalently β) is a hyperparameter
that can be tuned, we consider the simpler case where k = m, i.e. X = d, as done in the appendix (Eq. 9) by
the authors. Thereby we define the privacy mechanism utilized in DPGEN as follows:
Definition B.3. Let d = {xi : xi ∈ Rn, i ∈ 1, . . . , m} be an input dataset. Define “data dependent
randomized response" M as:

M(d) = {H(xi, d)}i∈[1,m] (15)

where,

H(xi, d) =
{

xi, with probability eϵ

eϵ+m−1
x′

i ∈ d \ xi, with probability 1
eϵ+m−1

. (16)

Since the image of H(xi, d) is d, M(d) is only supported on dm.3 In other words, the image of M is data
dependent, and any outcome O (which are sets of Rn tensors, of cardinality m) that include elements which
are not in d would have a probability of zero to be the outcome of M(d), i.e. if there exists z ∈ O and z /∈ d,
then Pr[M(d) = O] = 0.

To construct our counter-example, we start with considering two neighboring datasets: the training data
d = {xi : xi ∈ Rn, i ∈ 1, . . . , m}, and a counter-factual dataset d′ = {x′

1 : x′
1 ∈ Rn, xi : xi ∈ Rn, i ∈ 2, . . . , m},

differing in their first element (x1 ≠ x′
1). Importantly, since differential privacy requires that the likelihoods

of outputs to be similar for all valid pairs of neighboring datasets, we are free to assume that elements of d
are unique, i.e. no two rows of d are identical.

Another requirement of differential privacy is that the likelihood of any subsets of outputs must be similar,
hence we are free to choose any valid response for the counter-example. Thus, letting O denote the outcome
of M(d), we choose O = d = {x1, . . . , xm}. Clearly, by Definition 0.3, this is a plausible outcome of M(d)
as it is in the support dm. However, O is not in the support of M(d′) since the first element x1 is not in
the image of H(· , d′); that is Pr[H(x, d′) = x1] = 0 for all x ∈ d′. Privacy protection is violated since any
adversary observing O can immediately deduce the participation of x1 in the data release as opposed to any
counterfactual data x′

1.

More formally, consider response set T = {O} ⊂ dm, and dm is the image of M(d), we have

Pr[M(d) ∈ T ] = Pr[M(d) = O] (17)

= Pr[H(x1) = x1]
m∏

i=2
Pr[H(xi) = xi] (independent dice rolls) (18)

= eϵ

eϵ + m− 1

m∏
i=2

Pr[H(xi) = xi] (apply Definition B.3) (19)

> 0
m∏

i=2
Pr[H(xi) = xi] (20)

= Pr[H(x′
1) = x1]

m∏
i=2

Pr[H(xi) = xi] (21)

= Pr[M(d′) = O] = Pr[M(d′) ∈ T ]. (22)

We can observe that Pr[M(d′) ∈ T ] = 0, as shown in line 9. Clearly, this result violates ϵ-DP for all ϵ, which
requires Pr[M(d) ∈ T ] ≤ eϵ Pr[M(d′) ∈ T ].

3We mean dataset-exponentiation in the sense of repeated cartesian products between sets, i.e. d2 = d ⊗ d
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In essence, by using private data to form the response set, we make the image of the privacy mechanism
data-dependent. This in turn leaks privacy, since an adversary can immediately rule-out all counter-factual
datasets that do not include every element of the response O, as these counter-factuals now have likelihood
0. To fix this privacy leak, one could determine a response set a-priori, and use the RR mechanism in
Definition B.2 to privately release data. This modification may not be feasible in practice, since constructing
a response set of finite size (k) suitable for images is non-trivial. Hence, we believe that it would require
fundamental modifications to DPGEN to achieve differential privacy.

Regarding error 2, we point out that in the paragraph following Eq. 8 in DPGEN, X is defined as the set of
k points in d that are closest to x̃i when weighted by σj . This means that the membership of X is dependent
on the value of x̃i. Thus, any counter-factual input x′

i and x̃′
i with a different set of k nearest neighbors could

have many possible outcomes with 0 likelihood under the true input. In essence, this is a more extreme form
of data-dependent randomized response where the response set is dependent on both d and xi.

Regarding error 3, the loss objective in DPGEN (Eq. 7 of DPGEN, l =
1
2 Ep(x)Ex̃∼N(x,σ2)

[
|| x̃−x

σ2 −∇x log qθ(x̃)||2
]
) includes the term ∇x log qθ(x̃), and x̃ is also a function

of the private data that is yet to be accounted for at all in the privacy analysis of DPGEN. Hence, one would
need to further modify the learning algorithm in DPGEN, such that the inputs to the score model are either
processed through an additional privacy mechanism, or sampled randomly without dependence on private
data.

Regarding justifying the premise that DPGEN implements the data-dependent randomized response
mechanism, we have verified that the privacy mechanism implemented in the repository of DPGEN
(https://github.com/chiamuyu/DPGEN4) is indeed data-dependent:

In line 30 of losses/dsm.py:

sample_ix = random.choices(range(k), weights=weight)[0]

randomly selects an index in the range of [0, k − 1], which is then used in line 46,

sample_buff.append(samples[sample_ix]),

to index the private training data and assigned to the output of

sample_buff.

Values of this variable are then accessed on line 85 to calculate the x̃−xr

σ2 (as xr) term in the objective function
(Chen et al. (2022), Eq. 7).

C Model and Implementation Details

C.1 Diffusion Model Configs

As discussed in Sec. 2, previous works proposed various denoiser models Dθ, noise distributions p(σ), and
weighting functions λ(σ). We refer to the triplet (Dθ, p, λ) as DM config. In this work, we consider four
such configs: variance preserving (VP) (Song et al., 2021c), variance exploding (VE) (Song et al., 2021c),
v-prediction (Salimans & Ho, 2022), and EDM Karras et al. (2022). The triplet for each of these configs can
be found in Tab. 7. Note, that we use the parameterization of the denoiser model Dθ from (Karras et al.,
2022)

Dθ(x; σ) = cskip(σ)x + cout(σ)Fθ(cin(σ)x; cnoise(σ)), (23)

where Fθ is the raw neural network. To accommodate for our particular sampler setting (we require to
learn the denoiser model for σ ∈ [0.002, 80]; see App. C.3) we slightly modified the parameters of VE and
v-prediction. For VE, we changed σmin and σmax from 0.02 to 0.002 and from 100 to 80, respectively. For

4In particular, we refer to the code at commit: 1f684b9b8898bef010838c6a29c030c07d4a5f87.
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Table 7: Four popular DM configs from the literature.

VP (Song et al., 2021c) VE (Song et al., 2021c) v-prediction (Salimans & Ho, 2022) EDM (Karras et al., 2022)
Network and preconditioning
Skip scaling cskip(σ) 1 1 1/

(
σ2 + 1

)
σ2

data/
(
σ2 + σ2

data
)

Output scaling cout(σ) −σ σ σ/
√

1 + σ2 σ · σdata/
√

σ2
data + σ2

Input scaling cin(σ) 1/
√

σ2 + 1 1 1/
√

σ2 + 12 1/
√

σ2 + σ2
data

Noise cond. cnoise(σ) (M − 1) t ln( 1
2 σ) t 1

4 ln(σ)
Training
Noise distribution t ∼ U(ϵt, 1) ln(σ)∼U(ln(σmin), t ∼ U(ϵmin, ϵmax) ln(σ) ∼ N (Pmean, P 2

std)
ln(σmax))

Loss weighting λ(σ) 1/σ2 1/σ2 (
σ2+1

)
/σ2 (“SNR+1” weighting)

(
σ2+σ2

data
)

/(σ · σdata)2

Parameters βd = 19.9, βmin = 0.1 σmin = 0.002 ϵmin = 2
π

arccos 1√
1+e−13

Pmean= −1.2, Pstd = 1.2

ϵt = 10−5, M = 1000 σmax = 80 ϵmax = 2
π

arccos 1√
1+e9

σdata=
√

1
3

σ(t) =
√

e
1
2 βdt2+βmint−1 σ(t) =

√
cos−2(πt/2) − 1

v-prediction, we changed ϵmin and ϵmax from 2
π arccos 1√

1+e−20
to 2

π arccos 1√
1+e−13

and 2
π arccos 1√

1+e20 to
2
π arccos 1√

1+e9 , respectively. Furthermore, we cannot base our EDM models on the true (training) data
standard deviation σdata as releasing this information would result in a privacy cost. Instead, we set σdata to
the standard deviation of a uniform distribution between −1 and 1, assuming no prior information on the
modeled image data.

C.1.1 Noise Level Visualization

In the following, we provide details on how exactly the noise distributions of the four configs are visualized
in Fig. 4. The reason we want to plot these noise distributions is to understand how the different configs
assign weight to different noise levels σ during training through sampling some σ’s more and others less.
However, to be able to make a meaningful conclusion, we also need to take into account the loss weighting
λ(σ).

Therefore, we consider the effective “importance-weighted” distributions p(σ) λ(σ)
λEDM(σ) , where we use the loss

weighting from the EDM config as reference weighting.

The λ(σ)
λEDM(σ) weightings for VP, VE, v-prediction, and EDM are then, σ2

data/(σ2 + σ2
data), σ2

data/(σ2 + σ2
data),

σ2
data(σ2 + 1)/(σ2 + σ2

data), and 1, respectively. Fig. 4 then visualizes the “importance-weighted” distributions
in log-σ space, following Karras et al. (2022) (that way, the final visualized log-σ distribution of EDM remains
a normal distribution N (Pmean, P 2

std)).

C.2 Model Architecture

We focus on image synthesis and implement the neural network backbone of DPDMs using the DDPM++
architecture (Song et al., 2021c). For class-conditional generation, we add a learned class-embedding to the
σ-embedding as is common practice (Dhariwal & Nichol, 2021). All model hyperparameters and training
details can be found in Tab. 8.

C.3 Sampling from Diffusion Models

Let us recall the differential equations we can use to generate samples from DMs:

ODE: dx = −σ̇(t)σ(t)∇x log p(x; σ(t)) dt, (24)
SDE: dx = −σ̇(t)σ(t)∇x log p(x; σ(t)) dt− β(t)σ2(t)∇x log p(x; σ(t)) dt +

√
2β(t)σ(t) dωt. (25)

Before choosing a numerical sampler, we first need to define a sampling schedule. In this work, we follow Karras
et al. (2022) and use the schedule

σi =
(

σ1/ρ
max + i

M − 1(σ1/ρ
min − σ1/ρ

max)
)ρ

, i ∈ {0, . . . , M − 1}, (26)
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Table 8: Model hyperparameters and training details.

Hyperparameter MNIST & Fashion-MNIST CelebA
Model
Data dimensionality (in pixels) 28 32
Residual blocks per resolution 2 2
Attention resolution(s) 7 8,16
Base channels 32 32
Channel multipliers 1,2,2 1,2,2
EMA rate 0.999 0.999
# of parameters 1.75M 1.80M
Base architecture DDPM++ (Song et al., 2021c) DDPM++ (Song et al., 2021c)
Training
# of epochs 300 300
Optimizer Adam (Kingma & Ba, 2015) Adam (Kingma & Ba, 2015)
Learning rate 3 · 10−4 3 · 10−4

Batch size 4096 2048
Dropout 0 0
Clipping constant C 1 1
DP-δ 10−5 10−6

with ρ=7.0, σmax=80 and σmin=0.002. We consider two solvers: the (stochastic (η = 1)/deterministic (η = 0))
DDIM solver (Song et al., 2021a) as well as the stochastic Churn solver introduced in (Karras et al., 2022),
for pseudocode see Alg. 3 and Alg. 4, respectively. Both implementations can readily be combined with
classifier-free guidance, which is described in App. C.3.1, in which case the denoiser Dθ(x; σ) may be replaced
by Dw

θ (x; σ, y), where the guidance scale w is a hyperparameter. Note that the Churn sampler has four
additional hyperparameters which should be tuned empirically (Karras et al., 2022). If not stated otherwise,
we set M=1000 for the Churn sampler and the stochastic DDIM sampler, and M=50 for the deterministic
DDIM sampler.

Algorithm 3 DDIM sampler (Song et al., 2021a)
Input: Denoiser Dθ(x; σ), Schedule {σi}i∈{0,...,M−1}
Output: Sample xM

Sample x0 ∼ N
(
0, σ2

0I
)

for n = 0 to M − 2 do
Evaluate denoiser dn = Dθ(xi, σi)
if Stochastic DDIM then

xn+1 = xn + 2 σn+1−σn

σn
(xn − dn) +

√
2(σn − σn+1)σnzn, zn ∼ N (0, I)

else if Deterministic DDIM then
xn+1 = xn + σn+1−σn

σn
(xn − dn)

end if
end for
Return xM = D(xN−1, σM−1)
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Algorithm 4 Churn sampler (Karras et al., 2022)
Input: Denoiser Dθ(x; σ), Schedule {σi}i∈{0,...,M−1}, Snoise, Schurn, Smin, Smax
Output: Sample xM

Set σM = 0
Sample x0 ∼ N

(
0, σ2

0I
)

for n = 0 to M − 1 do
if σi ∈ [Smin, Smax] then

γi = min( Schurn
M

,
√

2 − 1)
else

γi = 0
end if
Increase noise level σ̃n = (1 + γn)σn

Sample zn ∼ N
(
0, S2

noiseI
)

and set x̃n = xn +
√

σ̃2
n − σ2

nzn

Evaluate denoiser dn = Dθ(x̃n, σ̃n) and set fn = x̃n−dn

σ̃n

xn+1 = x̃M + (σn+1 − σ̃n)fn

if σn+1 ̸= 0 then
Evaluate denoiser d′

n = Dθ(xn+1, σn+1) and set f ′
n = xn+1−d′

n
σn+1

Apply second order correction: xn+1 = x̃n + 1
2 (σn+1 − σ̃n)(fn + f ′

n)
end if

end for
Return xM

C.3.1 Guidance

Classifier guidance (Song et al., 2021c; Dhariwal & Nichol, 2021) is a technique to guide the diffusion sampling
process towards a particular conditioning signal y using gradients, with respect to x, of a pre-trained,
noise-conditional classifier p(y|x, σ). Classifier-free guidance (Ho & Salimans, 2021), in contrast, avoids
training additional classifiers by mixing denoising predictions of an unconditional and a conditional model,
according to a guidance scale w, by replacing Dθ(x; σ) in the score parameterization sθ = (Dθ(x; σ)− x)/σ2

with

Dw
θ (x; σ, y) = (1− w)Dθ(x; σ) + wDθ(x; σ, y). (27)

Dθ(x; σ) and Dθ(x; σ, y) can be trained jointly; to train Dθ(x; σ) the conditioning signal y is discarded at
random and replaced by a null token (Ho & Salimans, 2021). Increased guidance scales w tend to drive
samples deeper into the model’s modes defined by y at the cost of sample diversity.

C.4 Hyperparameters of Differentially Private Diffusion Models

Tuning hyperparameters for DP models generally induces a privacy cost which should be accounted for (Paper-
not & Steinke, 2022). Similar to existing works (De et al., 2022), we neglect the (small) privacy cost associated
with hyperparameter tuning. Nonetheless, in this section we want to point out that our hyperparameters show
consistent trends across different settings. As a result, we believe our models need little to no hyperparameter
tuning in similar settings to the ones considered in this work.

Model. We use the DDPM++ (Song et al., 2021c) architecture for all models in this work. Across all
three datasets (MNIST, Fashion-MNIST, and CelebA) we found the EDM (Karras et al., 2022) config to
perform best for ε={1, 10}. On MNIST and Fashion-MNIST, we use the v-prediction config for ε = 0.2 (not
applicable to CelebA).

DP-SGD training. In all settings, we use 300 epochs and clipping constant C=1. We use batch size
B=4096 for MNIST and Fashion-MNIST and decrease the batch size of CelebA to B=2048 for the sole
purpose of fitting the entire batch into GPU memory. The DP noise σDP values for each setup can be found
in Tab. 9
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Table 9: DP noise σDP used for all our experiments.

ε MNIST Fashion-MNIST CelebA
0.2 82.5 82.5 N/A
1 18.28125 18.28125 8.82812
10 2.48779 2.48779 1.30371

DM Sampling. We experiment with different DM solvers in this work. We found the DDIM sampler (Song
et al., 2021a) (in particular the stochastic version), which does not have any hyperparameters (without
guidance), to perform well across all settings. Using the Churn sampler (Karras et al., 2022), we could improve
perceptual quality (measured in FID), however, out of the five (four without guidance) hyperparameters,
we only found two (one without guidance) to improve results significantly. We show results for all samplers
in App. F.5.

D Variance Reduction via Noise Multiplicity

As discussed in Sec. 3.2, we introduce noise multiplicity to reduce gradient variance.

D.1 Proof of Theorem 1

Theorem. The variance of the DM objective (Eq. (7)) decreases with increased noise multiplicity K as 1/K.

Proof. The DM objective in Eq. (7) is a Monte Carlo estimator of the true intractable L2-loss in Eq. (3),
using one data sample xi ∼ pdata and K noise-level-noise tuples {(σik, nik)}K

k=1 ∼ p(σ)N
(
0, σ2). Replacing

expectations with Monte Carlo estimates is a common practice to ensure numerical tractability. For a generic
function r over distribution p(k), we have Ep(k)[r(k)] ≈ 1

K

∑K
i=1 r(ki), where {ki}K

i=1 ∼ p(k) (Monte Carlo
estimator for expectation of function r with respect to distribution p). The Monte Carlo estimate is a noisy
unbiased estimator of the expectation Ep(k)[r(k)] with variance 1

K Varp[r], where Varp[r] is the variance of r
itself. This is a well-known fact; see for example Chapter 2 of the excellent book by Owen (2013). This proves
that the variance of the DM objective in Eq. (7) decreases with increased noise multiplicity K as 1/K.

D.2 Variance Reduction Experiment

In this section, we empirically show how the reduced variance of the DM objective from noise multiplicity
leads to reduced gradient variance during training. In particular, we set xi to a randomly sampled MNIST
image and set the denoiser Dθ to our trained model on MNIST. We then compute gradients for different
noise multiplicities K. We resample the noise values 1k times (for each K) to estimate the variance of the
gradient for each parameter. In Fig. 6, we show the histogram over gradient variance as well as the average
gradient variance (averaged over all parameters in the model). Note that the variance of each gradient is a
random variable itself (which is estimated using 1k Monte Carlo samples). We find that an increased K leads
to significantly reduced training parameter gradient variance.

D.3 Computational Cost of Noise Multiplicity

In terms of computational cost, noise multiplicity is expensive and likely not useful for non-DP DMs. The
computational cost increases linearly with K, as the denoiser needs to run K times. Furthermore, in theory,
noise multiplicity increases the memory footprint by at least O(K); however, in common DP frameworks,
such as Opacus (Yousefpour et al., 2021), which we use, the peak memory requirement is O(K2) compared
to non-private training. Recent methods such as ghost clipping (Bu et al., 2022) require less memory, but are
currently not widely implemented.

That being said, in DP generative modeling, and DP machine learning more generally, computational cost is
hardly ever the bottleneck; the main bottleneck is the privacy restriction. The privacy restriction implies
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Figure 6: Variance reduction via noise multiplicity. Increasing K in noise multiplicity leads to significant
variance reduction of parameter gradient estimates during training (note logarithmic axis in inset). This is
an enlarged version of Fig. 3.

only a finite number of training iterations and we need to use that budget of training iterations in the most
efficient way (this is, using training gradients that suffer from as little noise as possible). Our numerical
experiments clearly show that noise multiplicity is a technique to shift the privacy-utility trade-off, effectively
getting better utility at the same privacy budget, using additional computational cost.

D.4 On the Difference between Noise Multiplicity and Augmentation Multiplicity

Augmentation multiplicity (De et al., 2022) is a technique where multiple augmentations per image are used
to train classifiers with DP-SGD. Image augmentations have also been shown to be potentially helpful in
data-limited (image) generative modeling, for example, for autoregressive models (Jun et al., 2020) and
DMs (Karras et al., 2022). In stark contrast to discriminative modeling where the data distribution pdata
can simply be replaced by the augmented data distribution and the neural backbone can be left as is, in
generative modeling both the loss function and the neural backbone need to be adapted. For example, for
DMs (Karras et al., 2022), the standard DM loss (Eq. (3)) is formally replaced by

Ex̃∼pdata(x̃),c∼paug(c),x∼paugdata(x|x̃,c),(σ,n)∼p(σ,n)
[
λσ∥Dθ(x + n, σ, c)− x∥2

2
]

, (28)

where paug(c) is the distribution over augmentation choices c (for example, cropping at certain coordinates
or other image transformations or perturbations), and paugdata(x | x̃, c) is the distribution over augmented
images x given the original dataset images x̃ and the augmentation c. Importantly, note that the neural
backbone Dθ also needs to be conditioned on the augmentation choice c as, at inference time, we generally
only want to generate “clean images” with c(x) = x (no augmentation).

While noise multiplicity provably reduces the variance of the standard diffusion loss (see Theorem 1), augmen-
tation multiplicity, that is, averaging over multiple augmentations for a given clean image x, only provably
reduces the variance of the augmented diffusion loss, which is by definition more noisy due to the additional
expectations. Furthermore, it is not obvious how minimizing the augmented diffusion loss relates to minimizing
the true diffusion loss. In contrast to noise multiplicity, augmentation multiplicity does not provably reduce
the variance of the original diffusion loss; rather, it is a data augmentation technique for enriching training data.
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(a) Data pdata (b) Samples from DM. (c) Samples from GAN.

Figure 7: Mixture of Gaussians: data distribution and (1M) samples from a DM as well as a GAN. Our
visualization is based on the log-histogram, which shows single data points as black dots.

Pointing out the orthogonality of the two ideas again, note that noise multiplicity is still applica-
ble for the above modified augmented diffusion loss objective. Furthermore, we would like to point out that
noise multiplicity is applicable for DPDMs in any domain, beyond images; in contrast, data augmentations
need to be handcrafted and may not readily available in all fields.

E Toy Experiments

In this section, we describe the details of the toy experiment from paragraph (ii) Sequential denoising
in Sec. 3.1. For this experiment, we consider a two-dimensional simple Gaussian mixture model of the form

pdata(x) =
9∑

k=1

1
9p(k)(x), (29)

where p(k)(x) = N (x; µk; σ2
0) and

µ1 =
(
−a
0

)
, µ2 =

(
−a/2
a/2

)
, µ3 =

(
0
a

)
,

µ4 =
(
−a/2
−a/2

)
, µ5 =

(
0
0

)
, µ6 =

(
a/2
a/2

)
,

µ7 =
(

0
−a

)
, µ8 =

(
a/2
−a/2

)
, µ9 =

(
a
0

)
,

where σ0 = 1/25 and a = 1/
√

2. The data distribution is visualized in Fig. 7a.

Fitting. Initially, we fitted a DM as well as a GAN to the mixture of Gaussians. The neural networks of the
DM and the GAN generator use similar ResNet architectures with 267k and 264k (1.1% smaller) parameters,
respectively (see App. E.1 for training details). The fitted distributions are visualized in Fig. 7. In this
experiment, we use deterministic DDIM (Alg. 3) (Song et al., 2021a), a numerical solver for the Probability
Flow ODE (Eq. (1)) (Song et al., 2021c), with 100 neural function evaluations (DDIM-100) as the end-to-end
multi-step synthesis process for the DM. Even though our visualization shows that the DM clearly fits the
distribution better (Fig. 7), the GAN does not do bad either. Note that our visualization is based on the
log-histogram of the sampling distributions, and therefore puts significant emphasis on single data point
outliers.

We provide a second method to assess the fitting: In particular, we measure the percentage of points (out of
1M samples) that are within a h-standard deviation vicinity of any of the nine modes. A point x is said to be
within a h-standard deviation vicinity of the mode µk if ∥x− µk∥ < hσ0. We present results for this metric
in Tab. 10 for h={1, 2, 3, 4, 5, 6}. Note that any mode is at least 12.5 standard deviations separated to the
next mode, and therefore no point can be in the h-standard deviation vicinity of more than two modes for
h ≤ 6.

The results in Tab. 10 indicate that the GAN is slightly too sharp, that is, it puts too many points within the
1- and 2-standard deviation vicinity of modes. Moreover, for larger h, the result in Tab. 10 suggests that the
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Table 10: h-standard deviation vicinity metric as defined in the paragraph Fitting of App. E.

h Data DM GAN
1 39.4 37.2 56.8
2 86.5 83.3 95.3
3 98.9 97.7 98.9
4 100 99.8 99.3
5 100 100 99.6
6 100 100 99.9

samples in Fig. 7c that appear to “connect” the GAN’s modes are heavily overemphasized—these samples
actually represent less than 1% of the total samples; 99.3% of samples are within a 4-standard deviation
vicinity of a mode while modes are at least 12.5 standard deviations separated.

Complexity. Now that we have ensured that both the GAN as well as the DM fit the target distribution
reasonably well, we can measure the complexity of the DM denoiser D, the generator defined by the GAN,
as well as the end-to-end multi-step synthesis process (DDIM-100) of the DM. In particular, we measure
the complexity of these functions using the Frobenius norm of the Jacobian (Dockhorn et al., 2022b). In
particular, we define

JF (σ) = Ex∼p(x,σ)∥∇xDθ(x, σ)∥2
F . (30)

Note that the convolution of a mixture of Gaussian with i.i.d. Gaussian noise is simply the sum of the
convolution of the mixture components, i.e.,

p(x; σ) =
(
pdata ∗ N

(
0, σ2)) (x) (31)

=
9∑

k=1

1
9N (x; µk; σ2

0 + σ2). (32)

We then compare JF (σ) with the complexity of the GAN generator (S1) and the end-to-end synthesis process
of the DM (S2). In particular, we define

JF = Ex∼N (0,I)∥∇xSi(x)∥2
F , i ∈ {1, 2}. (33)

We want to clarify that for S2 we do not have to backpropagate through an ODE but rather through its
discretization, i.e., deterministic DDIM with 100 function evaluations (Alg. 3), since that is how we define
the end-to-end multi-step synthesis process of the DM in this experiment. Furthermore, we chose the latent
space of the GAN to be two-dimensional such that ∇xSi(x) ∈ R2×2 for both the GAN and the DM; this
ensures a fair comparison. The final complexities are visualized in Fig. 2.

E.1 Training Details

DM training. Training the diffusion model is very simple. We use the EDM config and train for 50k
iterations (with batch size B=256) using Adam with learning rate 3 · 10−4. We use an EMA rate of 0.999.

GAN training. Training GANs on two-dimensional mixture of Gaussians is notoriously difficult (see, for
example, Sec. 5.1 in (Yazıcı et al., 2019)). We experimented with several setups and found the following to
perform well: We train for 50k iterations (with batch size B=256) using Adam with learning rate 3 · 10−4

and (β1=0.0, β2 = 0.9) for both the generator and the discriminator. Following Yazıcı et al. (2019), we use
EMA (rate of 0.999 as in the DM). We found it crucial to make the discriminator bigger than the generator;
in particular, we use twice as many hidden layers in the discriminator’s ResNet. Furthermore, we use ReLU
and LeakyReLU for the generator and the discriminator, respectively.
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F Image Experiments

F.1 Evaluation Metrics, Baselines, and Datasets

Metrics. We measure sample quality via Fréchet Inception Distance (FID) (Heusel et al., 2017). We follow
the DP generation literature and use 60k generated samples. The particular Inception-v3 model used for FID
computation is taken from Karras et al. (2021)5. On MNIST and Fashion-MNIST, we follow the standard
procedure of repeating the channel dimension three times before feeding images into the Inception-v3 model.

On MNIST and Fashion-MNIST, we additionally assess the utility of generated data by training classifiers
on synthesized samples and compute class prediction accuracy on real data. Similar to previous works, we
consider three classifiers: logistic regression (Log Reg), MLP, and CNN classifiers. The model architectures
are taken from the DP-Sinkhorn repository (Cao et al., 2021).

For downstream classifier training, we follow the DP generation literature and use 60k synthesized samples.
We follow Cao et al. (2021) and split the 60k samples into a training set (90%) and a validation set (remaining
10%). We train all models for 50 epochs, using Adam with learning rate 3 · 10−4. We regularly save
checkpoints during training and use the checkpoint that achieves the best accuracy on the validation split for
final evaluation. Final evaluation is performed on real, non-synthetic data. We train all models for 50 epochs,
using Adam with learning rate 3 · 10−4.

Note that we chose to only use 60k synthesized samples to follow prior work and therefore be able to compare
to baselines in a fair manner. That being said, during this project we did explore training classifiers with
more samples but did not find any significant improvements in downstream accuracy. We hypothesize that
60k samples are enough to accurately represent the underlying learned distribution by the DPDM and to
train good classifiers on MNIST/FashionMNIST. We believe that a more detailed study on how many samples
are needed to get a certain accuracy is an interesting avenue for future work.

Baselines. We run baseline experiments for PEARL (Liew et al., 2022). In particular, we train models
for ε={0.2, 1, 10} on MNIST and Fashion-MNIST. We confirmed that our models match the performance
reported in their paper. In fact, our models perform slightly better (in terms of the LeNet-FID metric Liew
et al. (2022) uses). We then follow the same evaluation setup (see Metrics above) as for our DPDMs. Most
importantly, we use the standard Inception network-based FID calculation, similarly as most works in the
(DP) image generative modeling literature.

Datasets. We use three datasets in our main experiments: MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao
et al., 2017) and CelebA (Liu et al., 2015). Furthermore, we provide initial results on CIFAR-10 (Krizhevsky,
2009) and ImageNet (Deng et al., 2009) (as well as CelebA on a higher resolution); see App. G.

We would like to point out that these dataset may contain multiple images per identity (e.g. person, animal,
etc.), whereas our method, as well as all other baselines in this work, considers the per-image privacy guarantee.
For an identity with k images in the dataset, a model with (ε, δ) per-image DP affords (kε, ke(k−1)εδ)-DP to
the individual according to the Group Privacy theorem (Dwork et al., 2014). We leave a more rigorous study
of DPDMs with Group Privacy to future research and note that these datasets currently simply serve as
benchmarks in the community. Nonetheless, we believe that it is important to point out that these datasets do
not necessarily serve as a realistic test bed for per-image DP generative models in privacy critical applications.

F.2 Computational Resources

For all experiments, we use an in-house GPU cluster of V100 NVIDIA GPUs. On eight GPUs, models on
MNIST and Fashion-MNIST trained for roughly one day and models on CelebA for roughly four days. We
tried to maximize performance by using a large number of epochs, which results in a good privacy-utility
trade-off, as well as high noise multiplicity; this results in relatively high training time (when compared
to existing DP generative models). Using a smaller noise multiplicity K decreases computation, although
generally at the cost of model performance; see also App. D.3.

5https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl
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Table 11: Noise multiplicity ablation on MNIST and Fashion-MNIST.

K
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)
Log Reg MLP CNN Log Reg MLP CNN

1 76.9 84.2 87.5 91.7 72.5 76.0 76.3 75.9
2 60.1 84.8 88.3 93.1 61.4 76.7 77.0 77.4
4 57.1 85.2 88.0 92.8 61.1 76.7 77.2 77.0
8 44.8 86.2 89.2 94.1 58.2 75.2 76.3 77.4
16 36.9 86.0 89.8 94.2 58.5 77.0 77.4 78.8
32 34.8 86.8 90.1 94.4 57.7 76.4 77.0 77.1

Table 12: DM config ablation.

Method DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)
Log Reg MLP CNN Log Reg MLP CNN

VP (Song et al., 2021c) 0.2 197 23.1 25.5 24.2 146 49.7 51.6 51.7
VE (Song et al., 2021c) 0.2 171 17.9 15.4 13.9 178 22.2 27.9 49.4
V-prediction (Salimans & Ho, 2022) 0.2 97.8 80.2 81.3 84.4 115 71.3 70.9 71.8
EDM (Karras et al., 2022) 0.2 119 62.4 67.3 49.2 93.5 64.7 65.9 66.6
VP (Song et al., 2021c) 1 82.2 59.4 69.3 72.6 73.4 68.3 70.4 72.7
VE (Song et al., 2021c) 1 165 17.9 20.5 26.0 156 30.7 36.0 49.8
V-prediction (Salimans & Ho, 2022) 1 34.8 86.8 90.1 94.4 57.7 76.4 77.0 77.1
EDM (Karras et al., 2022) 1 34.2 86.2 90.1 94.9 47.1 77.4 78.0 79.4
VP (Song et al., 2021c) 10 12.3 88.8 94.1 97.0 22.3 81.2 81.6 84.5
VE (Song et al., 2021c) 10 88.6 48.0 56.9 63.8 83.2 69.0 70.4 75.4
V-prediction (Salimans & Ho, 2022) 10 7.65 90.4 94.4 97.7 23.1 82.0 83.7 85.5
EDM (Karras et al., 2022) 10 6.13 90.4 94.6 97.5 17.4 82.6 84.1 86.2

F.3 Training DP-SGD Classifiers

We train classifiers on MNIST and Fashion-MNIST using DP-SGD directly. We follow the setup used for
training DPDMs, in particular, batchsize B = 4096, 300 epochs and clipping constant C = 1. Recently, De
et al. (2022) found EMA to be helpful in training image classifiers: we follow this suggestion and use an EMA
rate of 0.999 (same rate as used for training DPDMs).

F.4 Extended Quantitative Results

In this section, we show additional quantitative results not presented in the main paper. In particular, we
present extended results for all ablation experiments.

F.4.1 Noise Multiplicity

In the main paper, we present noise multiplicity ablation results on MNIST with ε=1 (Tab. 5). All results
for MNIST and Fashion-MNIST on all three privacy settings (ε={0.2, 1, 10}) can be found in Tab. 11.

F.4.2 Diffusion Model Config

In the main paper, we present DM config ablation results on MNIST with ε=0.2 (Tab. 5). All results for
MNIST and Fashion-MNIST on all three privacy settings (ε={0.2, 1, 10}) can be found in Tab. 12.
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Table 13: Diffusion sampler comparison. We compare the Churn sampler (Karras et al., 2022) to stochastic
and determistic DDIM (Song et al., 2021a).

Sampler DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)
Log Reg MLP CNN Log Reg MLP CNN

Churn (FID) 0.2 61.9 65.3 65.8 71.9 78.4 53.6 55.3 57.0
Churn (Acc) 0.2 104 81.0 81.7 86.3 128 70.4 71.3 72.3
Stochastic DDIM 0.2 97.8 80.2 81.3 84.4 115 71.3 70.9 71.8
Deterministic DDIM 0.2 120 81.3 82.1 84.8 132 71.5 71.6 71.8
Churn (FID) 1 23.4 83.8 87.0 93.4 37.8 71.5 71.7 73.6
Churn (Acc) 1 35.5 86.7 91.6 95.3 51.4 76.3 76.9 79.4
Stochastic DDIM 1 34.2 86.2 90.1 94.9 47.1 77.4 78.0 79.4
Deterministic DDIM 1 50.4 85.7 91.8 94.9 60.6 77.5 78.2 78.9
Churn (FID) 10 5.01 90.5 94.6 97.3 18.6 80.4 81.1 84.9
Churn (Acc) 10 6.65 90.8 94.8 98.1 19.1 81.1 83.0 86.2
Stochastic DDIM 10 6.13 90.4 94.6 97.5 17.4 82.6 84.1 86.2
Deterministic DDIM 10 10.9 90.5 95.2 97.7 19.7 81.9 83.9 86.2

Table 14: Best Churn sampler settings for FID metric.

Parameter MNIST Fashion-MNIST CelebA
ε=0.2 ε=1 ε=10 ε=0.2 ε=1 ε=10 ε=1 ε=10

w 1 0 0.25 2 1 0.25 N/A N/A
Schurn 200 100 50 150 50 25 200 50
Smin 0.01 0.05 0.05 0.02 0.025 0.2 0.005 0.005
Smax 50 50 50 10 50 50 50 50
Snoise 1 1 1 1 1 1 1 1

F.4.3 Diffusion Sampler Grid Search and Ablation

Churn sampler grid search. We run a small grid search for the hyperparameters of the Churn
sampler (together with the guidance weight w for classifier-free guidance). For MNIST and Fashion-
MNIST on ε=0.2 we run a two-stage grid search. Using Smin=0.05, Smax=50, and Snoise=1, which we
found to be sensible starting values, we ran an initial grid search over w={0, 0.125, 0.25, 0.5, 1.0, 2.0} and
Schurn={0, 5, 10, 25, 50, 100, 150, 200}, which we found to be the two most critical hyperparameters of the Churn
sampler. Afterwards, we ran a second grid search over Snoise={1, 1.005}, Smin={0.01, 0.02, 0.05, 0.1, 0.2}, and
Smax={10, 50, 80} using the best (w, Schurn) setting for each of the two models. For MNIST and Fashion-
MNIST on ε={1, 10}, we ran a single full grid search over w={0, 0.25, 0.5, 1.0, 2.0}, Schurn={10, 25, 50, 100},
and Smin={0.025, 0.05, 0.1, 0.2} while setting Snoise=1. For CelebA, on both ε=1 and ε=10, we also ran a
single full grid search over Schurn={50, 100, 150, 200}, and Smin={0.005, 0.05} while setting Snoise=1. The
best settings for FID metric and downstream CNN accuracy can be found in Tab. 14 and Tab. 15, respectively.

Throughout all experiments we found two consistent trends that are listed in the following:

• If optimizing for FID, set Schurn relatively high and Smin relatively small. Increase Schurn and decrease
Smin as ε is decreased.

• If optimizing for downstream accuracy, set Schurn relatively small and Smin relatively high.

Sampling ablation. In the main paper, we present a sampler ablation for MNIST (Tab. 6). Results for
Fashion-MNIST (as well as) MNIST can be found in Tab. 13.
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Table 15: Best Churn sampler settings for downstream CNN accuracy.

Parameter MNIST Fashion-MNIST
ε=0.2 ε=1 ε=10 ε=0.2 ε=1 ε=10

w 0.125 0 0 0.125 0 0
Schurn 10 10 10 5 10 10
Smin 0.2 0.1 0.025 0.02 0.025 0.1
Smax 10 50 50 80 50 50
Snoise 1.005 1 1 1.005 1 1

Table 16: Distribution matching analysis for MNIST using downstream CNN accuracy.

Class 0 1 2 3 4 5 6 7 8 9
ε=10 98.5 98.7 98.7 98.4 99.1 99.0 98.2 97.7 98.1 96.1
ε=1 95.4 98.9 96.7 96.1 96.1 97.3 96.6 91.3 92.3 93.2
ε=0.2 81.9 96.0 80.2 82.3 87.3 85.2 90.7 86.9 83.2 83.5

F.4.4 Distribution Matching Analysis

We perform a distribution matching analysis on MNIST using the CNN classifier, that is, computing per-class
downstream accuracies at different privacy levels. In Tab. 16, we can see that with increased privacy (lower
ε) classification performance degrades roughly similar for most digits, implying that our DPDMs learn a
well-balanced distribution and cover all modes of the data distribution faithfully even under strong privacy.
The only result that stands out to us is that class 1 appears significantly easier than all other classes for
ε=0.2. However, that may potentially be due to the class 1 in MNIST being a “line” which may be easy to
classify by a CNN even if training data is noisy.

F.5 Extended Qualitative Results

In this section, we show additional generated samples by our DPDMs. On MNIST, see Fig. 8, Fig. 9, and
Fig. 10 for ε=10, ε=1, and ε=0.2, respectively. On Fashion-MNIST, see Fig. 11, Fig. 12, and Fig. 13 for
ε=10, ε=1, and ε=0.2, respectively. On CelebA, see Fig. 14 and Fig. 15 for ε=10 and ε=1, respectively. For
a visual comparison of our CelebA samples to other works in the literature, see Fig. 16.

G Additional Experiments on More Challenging Problems

G.1 Diverse Datasets

We provide results for additional experiments on challenging diverse datasets, namely, CIFAR-10 (Krizhevsky,
2009) and ImageNet (Deng et al., 2009) (resolution 32x32), both in the class-conditional setting similar to
our other experiments on MNIST and Fashion-MNIST. To the best of our knowledge, we are the first to
attempt pure DP image generation on ImagenNet.

For both experiments, we use the same neural network architecture as for CelebA (32x32) in the main paper;
see model hyperparameters in Tab. 8. On CIFAR-10, we train for 500 epochs using noise multiplicity K = 32
under the privacy setting (ε = 10, δ = 10−5). In ImageNet, we train for 100 epochs using noise multiplicity
K = 8 under the privacy setting (ε = 10, δ = 7 · 10−7); training for longer (or using larger K) was not possible
on ImageNet due to its sheer size. We achieve FIDs of 97.7 and 61.3 for CIFAR-10 and ImageNet, respectively.
No previous works reported FID scores on these datasets and for these privacy settings, but we hope that our
scores can serve as reference points for future work. In Fig. 17, we show samples for both datasets from our
DPDMs and visually compare to an existing DP generative modeling work on CIFAR-10, DP-MERF (Harder
et al., 2021). Our DPDMs cannot learn clear objects; however, overall image/pixel statistics seem to be
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Figure 8: Additional images generated by DPDM on MNIST for ε=10 using Churn (FID) (top left), Churn
(Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).

Figure 9: Additional images generated by DPDM on MNIST for ε=1 using Churn (FID) (top left), Churn
(Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).
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Figure 10: Additional images generated by DPDM on MNIST for ε=0.2 using Churn (FID) (top left), Churn
(Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).

Figure 11: Additional images generated by DPDM on Fashion-MNIST for ε=10 using Churn (FID) (top left),
Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).
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Figure 12: Additional images generated by DPDM on Fashion-MNIST for ε=1 using Churn (FID) (top left),
Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).

Figure 13: Additional images generated by DPDM on Fashion-MNIST for ε=0.2 using Churn (FID) (top
left), Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM (bottom right).
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Figure 14: Additional images generated by DPDM on CelebA for ε=10 using Churn (top), stochastic DDIM
(middle), and deterministic DDIM (bottom).
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Figure 15: Additional images generated by DPDM on CelebA for ε=1 using Churn (top), stochastic DDIM
(middle), and deterministic DDIM (bottom).
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Figure 16: CelebA images generated by DataLens (1st row), DP-MEPF (2nd row), DP-Sinkhorn (3rd
row), and our DPDM (4th row) for DP-ε=10.

(a) DPDM (ours) (ImageNet) (b) DPDM (ours) (CIFAR-10) (c)

Figure 17: Additional experiments on challenging diverse datasets. Samples from our DPDM on ImageNet
and CIFAR-10, as well as CIFAR-10 samples from DP-MERF (Harder et al., 2021) in (c).

captured correctly. In contrast, the DP-MERF baseline collapses entirely. We are not aware of any other
works tackling these tasks. Hence, we believe that DPDMs represent a major step forward.

G.2 Higher Resolution

We provide results for additional experiments on CelebA at higher resolution (64x64). To accommodate
the higher resolution, we added an additional upsampling/downsampling layer to the U-Net, which results
in roughly a 11% increase in the number of parameters, from 1.80M to 2.00M parameters. The only row
that changed in the CelebA model hyperparameter table (Tab. 8) is the one about the channel multipliers.
It is adapted from (1,2,2) to (1,2,2,2). We train for 300 epochs using K = 8 under the privacy setting
(ε = 10, δ = 10−6). We achieve an FID of 78.3 (again, for reference; no previous works reported quantitative
results on this task). In Fig. 18, we show samples and visually compare to existing DP generative modeling
work on CelebA at 64x64 resolution. Although the faces generated by our DPDM are somewhat distorted,
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(a) DPDM (ours)

(b) DataLens (Wang et al., 2021)

Figure 18: Additional experiments on CelebA at higher resolution (64x64). Samples from our method and
DataLens (Wang et al., 2021).

the model overall is able to clearly generate face-like structures. In contrast, DataLens generates incoherent
very low quality outputs. No other existing works tried generating 64x64 CelebA images with rigorous DP
guarantees, to the best of our knowledge. Also this experiment implies that DPDMs can be considered a
major step forward for DP generative modeling.

H Ethics, Reproducibility, Limitations and Future Work

Our work improves the state-of-the-art in differentially private generative modeling and we validate our
proposed DPDMs on image synthesis benchmarks. Generative modeling of images has promising applications,
for example for digital content creation and artistic expression (Bailey, 2020), but it can in principle also be
used for malicious purposes (Vaccari & Chadwick, 2020; Mirsky & Lee, 2021; Nguyen et al., 2021). However,
differentially private image generation methods, including our DPDM, are currently not able to produce
photo-realistic content, which makes such abuse unlikely.

As discussed in Sec. 1, a severe issue in modern generative models is that they can easily overfit to the data
distribution, thereby closely reproducing training samples and leaking privacy of the training data. Our
DPDMs aim to rigorously address such problems via the well-established DP framework and fundamentally
protect the privacy of the training data and prevent overfitting to individual data samples. This is especially
important when training generative models on diverse and privacy-sensitive data. Therefore, DPDMs can
potentially act as an effective medium for data sharing without needing to worry about data privacy, which
we hope will benefit the broader machine learning community. Note, however, that although DPDM provides
privacy protection in generative learning, information about individuals cannot be eliminated entirely, as
no useful model can be learned under DP-(ε=0, δ=0). This should be communicated clearly to dataset
participants.

An important question for future work is scaling DPDMs to (a) larger datasets and (b) more complicated,
potentially higher-resolution image datasets. Regarding (a), recall that an increased number of data points
leads to less noise injection during DP-SGD training (while keeping all other parameters fixed). Therefore,
we believe that DPDMs should scale well with respect to larger datasets; see, for example, our results on
ImageNet, a large dataset, which are to some degree better than the results on CIFAR-10, a relatively
small dataset (App. G). Regarding (b), however, scaling to more complicated, potentially higher-resolution
datasets is challenging if the number of data points is kept fixed. Higher-resolution data requires larger neural
networks, but this comes with more parameters, which can be problematic during DP training (see Sec. 3.2).
Using parameter-efficient architectures for diffusion models may be promising; for instance, see concurrent
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work by Jabri et al. (2023). Generally, we believe that scaling both (a) and (b) are interesting avenues for
future work.

To aid reproducibility of the results and methods presented in our paper, we made source code to reproduce all
quantitative and qualitative results of the paper publicly available, including detailed instructions. Moreover,
all training details and hyperparameters are already described in detail in this appendix, in particular
in App. C.
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