
RLJ | RLC 2024

Learning Rate-Free Reinforcement Learning: A Case
for Model Selection with Non-Stationary Objectives

Aida Afshar
Boston University
aafshar@bu.edu

Aldo Pacchiano
Boston University
Broad Institute of MIT and Harvard
pacchian@bu.edu

Abstract

The performance of reinforcement learning (RL) algorithms is sensitive to the
choice of hyperparameters, with the learning rate being particularly influential. RL
algorithms fail to reach convergence or demand an extensive number of samples when
the learning rate is not optimally set. In this work, we show that model selection
can help to improve the failure modes of RL that are due to suboptimal choices
of learning rate. We present a model selection framework for Learning Rate-Free
Reinforcement Learning that employs model selection methods to select the optimal
learning rate on the fly. This approach of adaptive learning rate tuning neither
depends on the underlying RL algorithm nor the optimizer and solely uses the
reward feedback to select the learning rate; hence, the framework can input any RL
algorithm and produce a learning rate-free version of it. We conduct experiments for
policy optimization methods and evaluate various model selection strategies within
our framework. Our results indicate that data-driven model selection algorithms
are better alternatives to standard bandit algorithms when the optimal choice of
hyperparameter is time-dependent and non-stationary.

1 Introduction

We focus on sequential decision-making problems such as reinforcement learning and bandits (Lat-
timore & Szepesvári, 2020; Sutton & Barto, 2018) where a learner interacts with the world in a
sequential manner and is tasked with finding a policy that maximizes the reward. It is a common
scenario in RL that the right choice of hyperparameters is not known in advance and the success of
RL algorithms demands the effort of hyperparameter tuning (Eimer et al., 2023) to reach convergence.
Among all the algorithm-specific hyperparameters, the learning rate is known to have a notable
impact on the convergence of RL agents. The learning rate determines the extent to which the model
parameters are adjusted at each optimization step, and prior literature on learning rate scheduling
(Mishchenko & Defazio, 2023; Defazio et al., 2023) suggests that optimal learning rate is dependent
on the distance to the solution. Central to RL, is the notion of reward that contains information
about the proximity of the current policy to the optimal one. Building on this intuition that the
reward feedback can be used as a proxy of the distance to the solution, we propose a framework
that utilizes the empirical reward to adjust the learning rate on the fly during RL training. Model
selection methods are inherently designed with the goal of detecting the right configuration of the
problem and are uniquely suitable for the task of hyperparameter selection in RL;

1. Model selection algorithms advance the state of each hyperparameter curve adaptively, thus
not requiring the same samples and compute for all hyperparameter choices. We show that
by regret balancing, model selection will not select an ill-performing learning rate for more
than

√
N episodes in a single run, where N is the total number of episodes.

RLJ | RLC 2024

2. Standard methods for hyperparameter tuning such as Bayesian Optimization (Wu et al.,
2019) or Random Search (Bergstra & Bengio, 2012) require multiple training runs to indicate
a good choice of hyperparameter, and are not adaptive to the non-stationarity of many RL
scenarios. Model Selection methods are designed to select the best-performing configuration
in a single run, and we show that data-driven model selection algorithms are able to adapt
to the non-stationarity of the objective hyperparameter throughout the training.

In this paper, we show that model selection methods can be simply integrated into RL algorithms
without heavily changing the original implementation. We evaluate six model selection strategies
for this task including Regret Balancing methods (Dann et al., 2024; Pacchiano et al., 2020a),
Corraling (Agarwal et al., 2017), and standard bandit strategies like UCB and EXP3 (Auer et al.,
2002; Bubeck et al., 2012). Our results suggest that data-driven regret balancing methods achieve
the best performance for the task of learning rate selection in RL. Additionally, we show that when
the optimal choice of learning rate is time-dependent and varies with the state of learning, bandit
strategies like UCB and EXP3 are not sufficient for the task of learning rate selection. 1

2 Method

We formalize the model selection framework for learning rate-free reinforcement learning as the tuple
⟨m, β, M, Ψ⟩ where m is the number of base agents, β = {β1, . . . , βm} denotes the set of base agents
where βi = ⟨αi, πi⟩ (1 ≤ i ≤ m) consists of learning rate αi, and policy πi. Lastly, M is the model
selection strategy and Ψ is an attribute of M that expresses some statistics over the base agents. For
instance, Ψ can either be a distribution Ψ : β → P (β) over base agents or represent the estimated
empirical regret of the base agents.

Algorithm 1: Model Selection Interface for Hyperparameter Tuning
Input: m, β, Ψ, M

1 Function sample():
// Select base index according to Ψ

2 i ∼ Ψ
3 πi, αi ← βi

4 return i, πi, αi

5 Function update(index, R[1 : T]):
// Calculate and normalize the episodic return

6 Rnorm ← normalize(R[1 : T])
// Update base statistics according to the meta learning algorithm M

7 Ψ←M(Ψ, index, Rnorm)

At the beginning of each episode, the meta learner M selects base agent βj according to Ψ. We
abbreviate this as j ∼ Ψ. The base agent interacts with the environment in a typical reinforcement
learning manner for one episode. At state st ∈ S, the base agent takes action at ∼ πj , receives reward
rt ∈ (0, 1), and move to the next state st+1 ∈ S following the environment transition dynamics. At
the end of each episode, the base agent passes the realized rewards (r1, . . . , rT) to the meta learner,
so that it updates Ψ based on the model selection strategy M .

The goal of the base agents is to interact with the environment and learn an optimal policy for the
reinforcement learning problem. The goal of the meta learner is to learn a strategy to iteratively
select base agents, so that agents with better learning rates are played more frequently. It’s unique to
model selection that neither the base agents with good learning rates nor the optimal reinforcement
strategy are known in advance, and the framework learns both of them during a single run. The
model selection interface, represented in Algorithm 1, consists of two procedures sample, and update
that the meta learner uses to select the base agent at the beginning of each episode, and update Ψ at

1Codes are available at https://github.com/AidaAfshar/Learning-Rate-Free-Reinforcement-Learning.

https://github.com/AidaAfshar/Learning-Rate-Free-Reinforcement-Learning

RLJ | RLC 2024

the end of it. The protocol to integrate the model selection interface with the reinforcement learning
loop is represented in Algorithm 2 of Appendix A.

3 Experiments and Results

Figure 1: Learning Rate-Free PPO on Humanoid Environment. Each curve shows the mean and
standard deviation of normalized reward per step over three seeds.

We begin our experiments with learning rate-free PPO. We initiate ten PPO base agents learning rates
α = [1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6, 5e−7]. We run the experiment for six model
selection strategies introduced in Section 2. Figure 1 represents the reward plot of six meta learners
on the Mujoco Humanoid environment (Tassa et al., 2012). By comparing the meta learners, we can
see that D3RB and ED2RB strategies achieved the lowest regret and had the most advancement in
the reward curve. The meta learners with Corral and Classic Balancing strategies, in addition to
MAB meta learners, are showing sub-optimal performance in this task.

(a) D3RB (b) ED2RB (c) Classic Balancing

(d) Corral (e) EXP3 (f) UCB

Figure 2: Selection frequency of each base learner for Learning Rate-Free PPO on Humanoid
environment. The y-axis indicates the base learner’s index, and the x-axis indicates the timestep.
Each (x,y) point shows that base learner y was selected and played by meta learner at time x.

To better understand the Model Selection strategies, we plotted the selection frequency of each base
learner for all of the model selection strategies. Figure 2 represents our main findings. Each (x, y)
point in the plot shows that at time x meta learner has selected base learner y. We can see that
D3RB and ED2RB meta learners have learned to detect the best-performing base learners and played
them more often, resulting in more advancement in the reward curve. Figure 2 (c, d, e) show that

RLJ | RLC 2024

meta learners with Classic Balancing, Corral, and EXP3 Strategies are selecting all the base learners
quite often and therefore have an average performance in the task. Figure 2 (d) also explains the
slightly better performance of Corral, as this meta learner has learned to detect one of the optimal
base learners at the end.

One major drawback of applying standard MAB algorithms such as UCB in non-stationary domains
like RL can be seen in these plots. A specific choice of learning rate might achieve high rewards in
the early stages of learning and not perform well later on. As seen in Figure 2 (f) the base learner
with index 1 was selected by UCB meta learner, since it was the best choice of learning rate in the
early stages of learning. Figure 1 shows that this learning rate was performing well in the early stages
of learning. Later on, this base learner was no longer an optimal learning rate but UCB couldn’t
adapt and continued to select that base learner. Algorithms like UCB are not able to distinguish
these non-stationary changes and therefore are not suitable strategies for learning rate selection in
reinforcement learning. The same challenge casts to common hyperparameter tuning techniques such
as Bayesian Optimization, where the objective function is assumed to be stationary.

Additionally, we initiate ten independent PPO agents with the same set of learning rates that we
input to the model selection counterparts and run each agent for ∼ 1

10 fraction of total episodes
in model selection experiments. Figure 3 demonstrates the results of this comparison. Figure 3(a)
shows the number of episodes that the meta learner with D3RB strategy has selected each base agent
throughout the training. Figure 3(b) shows the maximum episodic return achieved by PPO agents
initiated with the same learning rates. We can see that D3RB strategy for learning rate-free PPO
has learned to select the agents with higher reward (and lower regret) more frequently, and dedicate
less sample and compute to suboptimal bases. In fact, through regret balancing a linearly suboptimal
base will not be selected for more than

√
N rounds, where N is the total number of episodes. Check

Appendix A for more theoretical details.

Figure 3: (Left) Number of times D3RB has played each learning rate. (Right) Maximum reward
of PPO agents initiated with the same set of learning rates. We can see that D3RB is playing base
learners with higher rewards more frequently than base learners with suboptimal performance.

4 Conclusion and Future Work

We proposed a model selection framework for learning rate-free reinforcement learning and demon-
strated its effectiveness using six model selection strategies. Our experiments showed that the
data-driven regret balancing method, D3RB, and ED2RB generally serve as good model selection
strategies for learning rate-free reinforcement learning, consistently performing well across our tests.
In contrast, bandit strategies appeared to be insufficient as meta-learners for PPO base agents.

There are several possible extensions to this work. The span of hyperparameter optimization with
model selection techniques is not limited to the learning rate. Applying model selection methods for
tuning a set of different hyperparameters is an interesting direction that requires sample-efficient
algorithms that can be deployed in RL. Studying the effect of sharing data across the base agents
is another interesting direction that can further improve the efficiency and generalizability of the
framework.

RLJ | RLC 2024

References
Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of

bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Chris Dann, Claudio Gentile, and Aldo Pacchiano. Data-driven online model selection with regret
guarantees. In International Conference on Artificial Intelligence and Statistics, pp. 1531–1539.
PMLR, 2024.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how
much? adaptive learning rate scheduling by refinement. arXiv preprint arXiv:2310.07831, 2023.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. In International Conference on Machine Learning, pp. 9104–9149. PMLR,
2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Ahmed Khaled and Chi Jin. Tuning-free stochastic optimization. arXiv preprint arXiv:2402.07793,
2024.

Ron Kohavi and George H John. Automatic parameter selection by minimizing estimated error. In
Machine Learning Proceedings 1995, pp. 304–312. Elsevier, 1995.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Aldo Pacchiano, Christoph Dann, Claudio Gentile, and Peter Bartlett. Regret bound balancing and
elimination for model selection in bandits and rl. arXiv preprint arXiv:2012.13045, 2020a.

http://jmlr.org/papers/v23/21-1342.html

RLJ | RLC 2024

Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore, and
Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in Neural
Information Processing Systems, 33:10328–10337, 2020b.

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. Advances in neural information processing systems,
33:17200–17211, 2020.

Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts. Bayesian optimisation
over multiple continuous and categorical inputs. In International Conference on Machine Learning,
pp. 8276–8285. PMLR, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4906–4913, 2012. doi: 10.1109/IROS.2012.6386025.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal of Electronic
Science and Technology, 17(1):26–40, 2019.

Appendix

A1. Theoretical Remarks on Regret Balancing

Regret balancing strategies strive to maintain the regret of the different algorithms. Typically
it is assumed the optimal algorithm’s regret scales as d⋆

√
t. In contrast, the regret of a linearly

sub-optimal algorithm scales as ∆t for some constant ∆. Without loss of generality let’s call these
two algorithms, Algorithm 1 and Algorithm 2. A regret balancing strategy ensures that at time N
the number of times Algorithm 1 and Algorithm 2 were played, N1, and N2 satisfy d⋆

√
N1 ≈ ∆N2

thus implying that N2 ≈ d⋆

√
N1

∆ = O
(

d⋆

√
N

∆

)
.

A 2.1 Preliminaries of Model Selection

In many machine learning domains, including reinforcement learning the true configuration of the
problem is not known in advance. The goal of model selection is to consider several configurations
and add a strategy on top that learns to pick up the best configuration adaptively. We call each
configuration a base and refer to the model selection strategy as the meta-learner. The meta-learner
has access to a set of m bases, in this case, different copies of the same reinforcement learning
algorithm instantiated with different learning rates. In each round, n = 1, 2, . . . , N , of the interaction
between the meta-learner with the environment, the meta-learner selects a base in ∈ [m] to play and
follows its policy. Base in’s internal state is then updated with the data collected from its interaction
with the environment.

We review a few definitions from bandits to better explain these methods. The regret of a policy π is
defined as

reg(π) = v⋆ − vπ, (1)

where v⋆ is the value of the optimal policy π⋆ ∈ arg maxπ vπ. In stochastic settings, it’s most common
to assume that the total regret of base i after being played for k rounds is bounded by

√
k rate,

k∑
l=1

reg(πi
(l)) ≤ di

(k)
√

k, (2)

RLJ | RLC 2024

where di
(k) is called the regret coefficient of base i. The subscripts (k) denote the number of times

that a base has been played up to this round.

Regret balancing methods aim to equate the regret bounds across all the bases. In this approach,
the base agent is selected for two reasons. It is either a well-performing base by achieving low regret,
or it has not been played enough and the meta-learner hasn’t collected adequate information on the
performance of this base. Here, we investigate Doubling Data Driven Regret Balancing (D3RB),
and Estimating Data-Driven Regret Balancing (ED2RB) (Dann et al., 2024). D3RB maintains an
estimate of the regret coefficient of base i and performs a miss-specification test to see whether this
estimate is compatible with data that has been collected so far. When base i is selected for the k’th
time, if the estimate is too small to correctly represent the regret of base i, it doubles the estimated
regret coefficient di

(k). On the other hand, ED2RB directly estimates di
(k) as the maximum difference

of average reward between base i and other bases, scales by
√

k. Both methods, update the regret
bound for the selected base and then choose the base with the lowest regret for the next round.
These methods are designed to work with the realized regret as opposed to the expected regret which
is used in other model selection methods like Regret Bound Balancing (Pacchiano et al., 2020a), and
Corral (Agarwal et al., 2017; Pacchiano et al., 2020b).

The Regret Bound Balancing algorithm which we will refer to as "Classic Balancing" takes as input
fixed regret coefficients that it uses to perform a miss-specification test. When a base learner fails
this test the Classic Balancing algorithm eliminates it. This makes it crucial to strike an appropriate
balance when deciding what putative regret coefficients are used to initialize the meta learner. When
these input coefficients underestimate the real ones, Classic Balancing may eliminate the optimal
base learner. If instead, the input coefficients overestimate the true regret coefficients, Classic
Balancing may over-exploit sub-optimal base learners. Corral (Agarwal et al., 2017) is a model
selection meta-learning algorithm based on a carefully designed adversarial bandit strategy that uses
log barrier regularization. Unfortunately, the regret guarantees the Corral algorithm satisfies are only
known to hold in expectation, and not in high probability. We also investigate the Upper Confidence
Bound (UCB) (Auer et al., 2002), the Exponential-weight algorithm for Exploration and Exploitation
(EXP3) (Bubeck et al., 2012) which has been recommended by the previous literature (Li et al.,
2018) for hyperparameter tuning. The theoretical details and pseudo-code of all six algorithms are
included in Appendix C.

A 2.2 Preliminaries of Reinforcement Learning

Reinforcement learning is formalized as Markov Decision Process (MDP) ⟨S, A, R, P, γ⟩; where S
denotes the set of states, A is the set of actions, R : S×A→ R is the reward function, P : S×A→ [0, 1]
is the dynamic transition probabilities, and lastly γ ∈ [0, 1] is the discount factor. Here we consider
episodic reinforcement learning with maximum horizon T where the goal of the agent is to learn
the (near) optimal policy π : S → A. The state-value function V : S → R and action-value function
Q : S ×A→ R with respect to policy π are defined as

V π(s) = E
[T∑

t=0
γtR(st, at)|s0 = s, st, at

]
(3)

Qπ(s, a) = R(s, a) + γ Es′∼P (s,a)

[
V π(s′)

]
(4)

The policy π is commonly parameterized by the set of parameters θ, and is denoted as πθ. Two of
the predominant approaches for learning the (near) optimal policy in reinforcement learning are
policy optimization and Q-learning. Policy optimization starts with an initial policy and in each
episode updates the parameters by taking gradient steps toward maximizing the episodic return.

RLJ | RLC 2024

Denote learning rate as α ∈ R, a common update rule in policy optimization methods is

θ ← θ + α E
[T∑

t=0
∇θ log πθ(st, at)(Qπθ (st, at)− V πθ (st))

]
(5)

Q-learning uses the temporal differences method to update the parameters of Qπθ . A common update
rule is

θ ← θ + α Es,a,s′,r∼D

[
∇θ(r + γ max

a′∈A
Qπθ̄ (s′, a′)−Qπθ (s, a))2

]
(6)

where D is the experience replay buffer and θ̄ is a frozen parameter set named target parameter.
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Deep Q-Networks (DQN) (Mnih
et al., 2015) follow the first and second approaches, respectively.

A3. Learning Rate-Free Reinforcement Learning

Algorithm 2: Learning Rate-Free Reinforcement Learning with Model Selection
Input: MDP ⟨S, A, R, P, γ⟩, Model Selection Interface M

1
// Reinforcement learning loop over episode

2 for n = 1, 2, ..., N do
// Select the base agent

3 i, πi
θ, αi = M.sample()

// Collect trajectories with selected base agent
4 for t = 1, 2, ..., T do
5 a ∼ πi

θ

6 r, s′ P,R←−− s, a
7 R[t]← r

// Update parameters with selected learning rate
8 if Policy Optimization then

9 θ ← θ + αi E
[∑T

t=0∇θ log πi
θ(st, at)(Qπi

θ (st, at)− V πi
θ (st))

]
10 if Q-Learning then

11 θ ← θ + αi Es,a,s′,r∼D

[
∇θ(r + γ maxa′∈A Qπi

θ̄ (s′, a′)−Qπi
θ (s, a))2

]
// Update the meta learner

12 M.update(i, R[1 : T])

A4. Related Work

Hyperparameter tuning rises as a crucial step in machine learning problems and various works have
proposed methods for hyperparameter tuning since the early days of machine learning (Kohavi &
John, 1995; Bergstra et al., 2011). Random Search (Bergstra & Bengio, 2012) aimed to improve
the naive grid search by considering a random subset of all possible hyperparameters, instead of
the full grid. Bayesian optimization (BO)(Brochu et al., 2010; Wu et al., 2019; Ru et al., 2020) is a
black-box optimization method that advanced the sample efficiency of naive approaches drastically.
Despite being effective, BO requires multiple training runs to detect a good configuration of the
problem, which can be deficient when combined with RL. This motivates the studying of dynamic
scheduling that can be achieved in a single run. Several papers have studied learning rate scheduling,
and learning rate-free learning (Defazio et al., 2023; Khaled & Jin, 2024; Mishchenko & Defazio,
2023), where they analyze the problem through the lens of convex optimization.

RLJ | RLC 2024

Deploying Bandit algorithms for hyperparameter tuning is not a new idea. Hyperband (Li et al., 2018)
formulates hyperparameter optimization as an infinite-arm bandit problem that tends to adaptively
dedicate resources to the better-performing configurations and stop the ones with poor performance.
In a sequential domain like RL, if one configuration is performing poorly at the early stages of learning
but is optimal at the later stages, hyperband will not be able to detect it. Among the available
literature, the closest to our work is (Parker-Holder et al., 2020) which uses a population-based
bandit method for online hyperparameter optimization, where they fit a Gaussian Process model to
select the hyperparameter at each step. Replacing the latter with methods that enjoy model selection
guarantees is an interesting future direction.

B. Codes

All codes and implementations of the learning rate-free RL algorithms are available at github.com/
AidaAfshar/Learning-Rate-Free-Reinforcement-Learning. We use cleanRL library (Huang
et al., 2022) for the implementation of RL algorithms. The model selection strategies were originally
implemented at https://github.com/pacchiano/modelselection.

C. Model Selection Algorithms Pseudocodes

We provide the Model Selection Algorithms in hyperparparemeter tuning interface in this section. To
avoid including all the theoretical details, there might be a slight abuse of notation in the pseudocodes.
We encourage the reader to check the details with the original paper.

Denote the number of times that the base agent i was played up to this time as ni. Denote the regret
coefficient of base learner i as di, and the total reward accumulated by base learner i up to this time
by ui.

D3RB

Doubling Data Driven Regret Balancing (D3RB) (Dann et al., 2024) tries to maintain and equal
empirical regret for all the base agents. Denote the balancing potential of base agent i as Ψi = di

√
ni.

The D3RB algorithm for learning rate-free RL works as follows,

Algorithm 3: D3RB
Input: m, β, Ψ, δ

1 Function sample():
// Sample base index

2 i = arg minj Ψj

3 πi, αi ← βi

4 return i, πi, αi

5 Function update(i, R[1 : T]):
6 Rnorm ← normalize(R[1 : T])

// Update Statistics
7 ui = ui + Rnorm

8 ni = ni + 1
// Perform miss-specification test

9 ui

ni + di
√

ni

ni + c

√
ln

mlnni

δ

ni ≤ maxj
uj

nj − c

√
ln

Mlnnj

δ

nj

// If test triggered double regret coefficient for base i
10 di ← 2di

// Update balancing potential

11 Ψi = di
√

ni

github.com/AidaAfshar/Learning-Rate-Free-Reinforcement-Learning
github.com/AidaAfshar/Learning-Rate-Free-Reinforcement-Learning
https://github.com/pacchiano/modelselection

RLJ | RLC 2024

ED2RB

Estimating Data Driven Regret Balancing (ED2RB) (Dann et al., 2024) is similar to D3RB, though
it tries to directly estimate the regret coefficients.

Algorithm 4: ED2RB
Input: m, β, Ψ, δ

1 Function sample():
// Sample base index

2 i = arg minj Ψj

3 πi, αi ← βi

4 return i, πi, αi

5 Function update(i, R[1 : T]):
6 Rnorm ← normalize(R[1 : T])

// Update Statistics
7 ui = ui + Rnorm

8 ni = ni + 1
// Estimate active regret coefficient

9 di = maxdmin,
√

nit
t (maxj

uj

nj − c

√
ln

Mlnnj

δ

nj − c

√
ln

mlnni

δ

ni − ui

ni)
// Update balancing potential

10 Ψi = clip(di
√

ni, Ψi, 2Ψi)

Classic Balancing

The Classic Regret Balancing Algorithm (Pacchiano et al., 2020a) starts with the full set of base
agents β = [β1, ..., βm], at each round the algorithm performs miss-specification on each of the base
agents and eliminates the miss-specified one. Denote Ψj as empirical regret upper bound of base
agent j.

Algorithm 5: Classic Balancing
Input: m, β, Ψ, δ

1 Function sample():
// Sample Base index

2 i = arg minj Ψj

3 πi, αi ← βi

4 return i, πi, αi

5 Function update(i, R[1 : T]):
6 Rnorm ← normalize(R[1 : T])

// Update statistics
7 ui = ui + Rnorm

8 ni = ni + 1
// Perform miss-specification test for all the remaining base agents

9 for βk ∈ β do

10 uk

nk + dk
√

nk

ni + c

√
ln

mlnnk

δ

nk ≤ maxj
uj

nj − c

√
ln

Mlnnj

δ

nj

11 if miss-specified then
12 β ← β/{βk}
13

RLJ | RLC 2024

EXP3

Exponential-weight algorithm for exploration and exploitation (EXP3) learns a probability distribution
Ψi = exp(Si)∑m

j=1
exp(Sj)

over base learners, where Si is a total estimated reward of base agent i up to this

round.

Algorithm 6: EXP3
Input: m, β, Ψ, δ

1
2 Function sample():

// Sample Base index
3 i = arg maxj Ψj

4 πi, αi ← βi

5
6 return i, πi, αi

7 Function update(i, R[1 : T]):
8
9 Rnorm ← normalize(R[1 : T])

// Update statistics
10 for j ∈ 1, ..., m do
11 Sj = Sj + 1− I{j=i}(1−Rnorm)

Ψi

12
// Update Distribution

13 Ψi = exp(Si)∑m

j=1
exp(Sj)

Corral

Corral (Agarwal et al., 2017) learns a distribution Ψ over base agents and update it according to
LOG-BARRIER-OMD algorithm. We skip the algorithmic details and refer to the updating rule
mentioned in the original paper as Corral-Update.

Algorithm 7: Corral
Input: m, β, Ψ

1
2 Function sample():

// Sample base index
3 i ∼ Ψ
4 πi, αi ← βi

5
6 return i, πi, αi

7 Function update(i, R[1 : T]):
8
9 Rnorm ← normalize(R[1 : T])

// Update according to Corral
10 Ψj ← Corral-Update(Rnorm)

UCB

The Upper Confidence Bound algorithm (UCB) maintains an optimistic estimate of the mean for
each arm (Lattimore & Szepesvári, 2020). Denote Ψi as the upper confidence bound of arm i. The
UCB algorithm for learning rate-free RL works as follows,

RLJ | RLC 2024

Algorithm 8: UCB
Input: m, β, Ψ, δ

1 Function sample():
2

// Sample base index
3 i = arg maxj Ψj

4 πi, αi ← βi

5
6 return i, πi, αi

7 Function update(i, R[1 : T]):
8
9 Rnorm ← normalize(R[1 : T])

// Update statistics
10 ui = ui + Rnorm

11 ni = ni + 1
12 µi = ui

ni

// Update Upper Confidence Bounds

13 Ψi = UCBi(δ) = µi +
√

2log(1/δ)
ni

