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Abstract
Developing models for protein-ligand interactions
holds substantial significance for drug discovery.
Supervised methods often failed due to the lack
of labeled data for predicting the protein-ligand
binding energy, like antibodies. Therefore, unsu-
pervised approaches are urged to make full use
of the unlabeled data. To tackle the problem, we
propose an efficient, unsupervised protein-ligand
binding energy prediction model via the conser-
vation of energy (CEBind), which follows the
physical laws. Specifically, given a protein-ligand
complex, we randomly sample forces for each
atom in the ligand. Then these forces are applied
rigidly to the ligand to perturb its position, fol-
lowing the law of rigid body dynamics. Finally,
CEBind predicts the energy of both the unper-
turbed complex and the perturbed complex. The
energy gap between two complexes equals the
work of the outer forces, following the law of
conservation of energy. Extensive experiments
are conducted on the unsupervised protein-ligand
binding energy prediction benchmarks, compar-
ing them with previous works. Empirical results
and theoretic analysis demonstrate that CEBind
is more efficient and outperforms previous unsu-
pervised models on benchmarks.

1. Introduction
Predicting protein-ligand binding is crucial to the discovery
of drugs (Zheng et al., 2020; Ballester & Mitchell, 2010;
de Freitas & Schapira, 2017). A protein is highly likely
to be bonded with a ligand if its conformation, i.e., qua-
ternary structure, holds a high affinity or low binding en-
ergy (Chothia & Janin, 1975). Therefore, the protein-ligand
binding prediction comes down to the affinity or energy
prediction of the protein complex. The ligands encompass
proteins, such as antibodies, and small molecules. In the
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case of small molecules, plenty of labeled samples exist;
thus, supervised methods are quite appropriate (Öztürk et al.,
2018; Monteiro et al., 2022; Pei et al., 2023; Lu et al., 2022).
However, for ligands like antibodies, few samples with an
affinity label are available, which causes the failure of su-
pervised approaches.

To address the problem of data scarcity, Feng et al. (2024)
constructed a self-supervised reconstruction task in their
BindNet to learn binding representations. BindNet does not
provide the binding affinity but requires subsequent fine-
tuning on downstream tasks. Furthermore, in DSMbind,
Jin et al. (2024) proposed the unsupervised protein-ligand
binding energy prediction problem. The problem can be
defined as given only the quaternary structure of protein-
ligand complexes without any affinity labels for training, the
model predicts the binding energy. Model performance is
evaluated in terms of the correlation between predicted bind-
ing energy and ground truth. DSMbind solves the problem
by considering the log-likelihood of SE(3) denoising score
matching as binding affinity. They train an energy model
by matching the forces, i.e., the gradient of the predicted
energy with respect to atom coordinates, with the likelihood.
Specifically, they perturbed the protein of the complex with
a randomly sampled rotation and translation. Then they
calculate the rotation caused by the predicted forces and
match the predicted force and rotation with the sampled
translation and rotation, respectively. However, DSMBind
made some approximations, and training a DSMBind model
is memory-intensive.

In this work, we propose a memory-efficient and physics-
aware training framework dubbed Conservation of Energy
based Binding (CEBind), which tackles the problem of un-
supervised protein-ligand binding energy prediction via the
law of conservation of energy. We focus on the unsupervised
protein-ligand binding prediction, including antibodies and
small molecules, following the settings of DSMBind (Jin
et al., 2024). Specifically, given a protein-ligand complex,
we randomly sample forces for each atom in the ligand,
which is then applied rigidly to the ligand following the
rigid dynamics. Then the energy model predicts the energy
of both the perturbed and unperturbed complexes. Accord-
ing to the energy conservation law, the difference between
the two energies is equal to the work of the outer forces. Be-
sides, we also match the gradient of the energy with respect
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Figure 1. Overview of CEBind framework: given a protein-ligand complex, CEBind first samples forces for each atom in the ligand. Then
the forces are applied to the ligand following rigid dynamics, to get a perturbed complex. Next, the energy of both the unperturbed and
perturbed complexes is predicted by the energy model. Finally, we match the gradient with respect to atom coordinates with inner forces
and follow the law of conservation of energy to match the work of outer forces and energy gap.

to atom coordinates with the inner forces. CEBind has the
following features:

1. Physics-aware. CEBind follows the law of conserva-
tion of energy and rigid dynamics.

2. Memory-efficient. The process of calculating the rigid
dynamic of the complex does not require a gradient.

3. Better performance. Extensive experiments are con-
ducted, and empirical results demonstrate that CEBind
outperforms previous models.

2. Related Works
2.1. Protein Molecule Binding Prediction

A lot of approaches have been proposed for protein-ligand
binding prediction (Lu et al., 2022; Jin et al., 2024; Somnath
et al., 2021; Zhang et al., 2023; Wang et al., 2022; Dittrich
et al., 2018). For supervised methods, graph neural networks
are often constructed to encode protein-ligand complexes
into a representation vector, and a subsequent neural net-
work is performed to predict the binding affinity (Lu et al.,
2022; Somnath et al., 2021; Zhang et al., 2023; Wang et al.,
2022). Unsupervised approaches based on physics often
require expensive computation (Miller III et al., 2012). The
most related works to our CEBind are DrugScore (Dittrich
et al., 2018) and DSMBind (Jin et al., 2024). DrugScore
predicts the energy of each atom pair independently, using
atom types and distances. DSMBind further includes infor-
mation on the protein-ligand complex context. Our CEBind
learns a more physics-aware and efficient energy model.

2.2. Antibody-antigen Binding Prediction

Data scarcity is extremely high in antibody-antigen binding
prediction. Only 566 samples exist in the largest binding
affinity dataset of antibodies, SAbDab (Schneider et al.,
2022). Few works focus on supervised antibody-antigen
binding prediction. Only Myung et al. (2022) predicted the
antibody-antigen binding affinity with expensive handcraft
feature engineering. Jin et al. (2024) compared their DSM-
Bind with Atom3d model (Townshend et al., 2021) and
Frame Average model (Puny et al., 2022) they implemented
for supervised antibody-antigen binding affinity prediction.
Antibody design models often include modules for model-
ing the antibody, antigen, and the interaction between them
(Viswanath et al., 2013; Alford et al., 2017). We also adapt
the antibody design model architecture and compare it with
these unsupervised approaches.

2.3. Unsupervised Binding Energy Prediction

Jin et al. (2024) introduced the task of unsupervised protein-
ligand binding energy prediction for both protein-small
molecules and antibody-antigens. Operating only with the
quaternary structures, namely, the prevailing protein-ligand
complexes, a model is trained to predict the complexes’
binding affinity. Due to the non-availability of binding affin-
ity labels for training, the model’s performance is evaluated
through the correlation between the predicted affinity and
ground truth affinity. Our work parallels the task setting
in DSMBind (Jin et al., 2024). However, we put forth a
physics-aware and more streamlined training framework.

3. Preliminaries and Notations
Protein-Ligand structures. A protein-ligand complex is
described as its atom features A = [AP,AL] and posi-
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tions X = [XP,XL], where AP and XP denote the pro-
tein and AL and XL denote the ligand, i.e., C = [A,X].
The atom features consist of individual atom types A =
[a1,a2, · · · ,an], where ai ∈ C95 denotes the atom type
and n denotes the number of atoms. X = [x1,x2, · · · ,xn],
where xn ∈ R3 denotes the 3D atom position. The proteins
in protein-ligand complexes can also be described with their
amino acids, i.e., P = [p1,p2, · · · ,p3], where each amino
acid consists of atoms pi = [ak,ak+1, · · · ,ak+m]. The
small molecules in the complexes can be described with
their molecule graphs, i.e., G = (AP, E,XP), where E
denotes the edges between atoms.

Problem formulation. Given only the structure of a
protein-ligand complex C = (A,X), an unsupervised
protein-ligand binding energy model is trained to predict
the pseudo-binding energy of the complex E(A,X). Since
the object of training does not involve the ground truth of
binding energy, the metrics for evaluation and testing only
include the correlation between predicted pseudo-binding
energy and the ground truth.

Rotation. Following Jin et al. (2024), we use the rotation
vector ω = [ωx,ωy,ωz] and the rotation matrix Rω for
rotating the atoms. The rotation matrix Rω is applied to the
atom coordinates xi through:

Rωxi = xi + c1ω × xi + c2ω × (ω × xi) , (Rotation)

where

c1 =
sin ∥ω∥
∥ω∥

, c2 =
1− cos ∥ω∥

∥ω∥2
. (1)

4. Methodology
In this section, we describe our binding energy prediction
method, which follows the law of conservation of energy
and rigid dynamics. The overview of our CEBind is shown
in Fig. 1. Given a protein-ligand complex, we sample forces
for each atom in the ligand, which are then applied to the
ligand following rigid dynamics. Finally, we calculate the
energy of the perturbed complex and the unperturbed com-
plex. The energy gap between them equals the work of the
outer forces, and the gradient of the perturbed complex with
respect to atom coordinates matches the inner forces.

4.1. Rigid Dynamics

Given a protein-ligand complex, C = (A,X), we randomly
sample forces f ∈ R3 as the combined forces for each
atom in the ligand.Then we apply these forces to the ligand,
following rigid dynamics to preserve the structure of ligands.
To remove the effect of kinetic energy, we perform the force
f during (0, 1

2∆t), and perform the force −f during ( 12∆t,

∆t), where ∆t is the total duration that the forces apply to
the ligand.

The translation of each atom in the ligand consists of three
parts: (1) the translation of the ligand caused by combined
forces; (2) the ligand rotation, which causes the translation
of all the atoms in the ligand; and (3) the rotation of bonds
that can rotate.

The translation of ligands caused by combined forces can
be easily calculated according to Newton’s laws of motion,
as follows:

∆XL1 =
1

2

∑N
i=0 f i

M
∆t2, (2)

where N and M indicate the number of atoms in the ligand
and the mass of the ligand, respectively.

The translation caused by the ligand rotation is obtained
through rigid dynamics. First of all, we calculate the inertia
matrix IN ∈ R3×3 and torque τ ∈ R3 of the ligand as
follows:

IN =

N∑
i=1

∥xi − µ∥2 − (xi − µ)(xi − µ)⊤, (3)

τ =

N∑
i=1

(xi − µ)× f i, (4)

where µ is the center of the ligand and calculated as follows:

µ =
1

N

xi∈XL∑
i

xi. (5)

Then we apply the torque to the ligand and get the atom
translation caused by the ligand rotation as follows:

∆XL2 = Rot(
1

2
I−1
N τ∆t2,XL − µ)−XL, (6)

where the operation Rot is described in Eq. Rotation. More
details can be found in the Appendix. A.1.

For the bonds that can rotate, we also model the rotation of
them by taking the fixed atoms as the origin and performing
rotating on it. Here we take the side chain for example. The
side chain consists of its atom types AS and atom positions
XS, i.e., CS = (AS,XS) without the backbone atoms, i.e.,
CS ⊂ C. The fixed position for the side chain rotation
is α-carbon, the positions of which are denoted as XSα.
Similarly, we have the inertia matrix and torque of the side
chains as follows:

IS =

J∑
i=1

∥xi−XSα∥2− (xi−XSα)(xi−XSα)
⊤, (7)

τ S =

J∑
i=1

(xi −XSα)× f i, (8)
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Figure 2. Model architecture: our energy model consists of a protein encoder, a ligand encoder, and an energy-based module. The
protein encoder and the ligand encoder learn representations for each pair of protein-ligand complexes. Energy-based module model the
interaction between ligand and protein and predict their binding energy.

The translation caused by the side chain rotation is obtained
as:

∆XS = Rot(
1

2
I−1
S τ S∆t2,XS −XSα)−XS. (9)

Finally, the translation of each atom is formulated through
combining all the translations in Eq. 2. Eq. 6, and Eq. 9 as
follows:

∆XL = ∆XL1 +∆XL2 + [0,∆XS], (10)

where [0, ∆XS] indicates the noise on the backbone
atoms is 0 and the noise on the side chain atoms is ∆XS.
The perturbed protein-ligand complex is C̃(A, X̃) =
C̃(A, [XP, X̃L]), where X̃L is perturbed with Eq. 10 as
follows:

X̃L = XL+∆XL = XL+∆XL1+∆XL2+[0,∆XS].
(11)

The details of the force-performing process are illustrated
in appendix. A.2.

4.2. Energy Conservation Law

According to the law of conservation of energy, the total
energy of an isolated system remains constant and the en-
ergy change in the system is equal to the work done on that
system from the outside. Taking the protein-ligand complex
as an isolated system, the binding energy of the complex re-
mains constant. After perturbing the ligand with the sampled
forces f , the changes in the binding energy of the complex
equal the work of the outer forces fouter. Here, we model
the inner force between the ligand and the protein to be
proportional to their distance, i.e. f inner ∝ (Xt − X0)
and f = f inner + fouter (Without loss of generalization,
any other force field modeling can be applied here with-
out changing our framework). With a scaler k, we have
f inner = k(Xt −X0).

According to Jammer (1999), work is the inner product of
force and displacement. The work of outer forces is obtained
through the inner product of force and displacement, as
follows:

W =

∫ X0+∆XL

X0

fouter dX =
1

2
k∆XL

2, (12)

where the translation XL is obtained through Eq. 10. The
derivation of Eq. 12 can be found in the Appendix. A.3.

The energy of the protein-ligand complex C(A,X) is esti-
mated by the energy model kEθ(A,X). For the perturbed
complex C(A, X̃), the energy is kEθ(A, X̃). Then we
match the change in energy with the work done by the outer
forces as follows:

Le = E[∥kEθ(A, X̃)− kEθ(A,X)−W ∥2] (13)

= kE[∥Eθ(A, X̃)− Eθ(A,X)− 1

2
∆XL

2∥2]. (14)

4.3. Force Score Matching

The gradients of an energy with respect to atom coordinates
are forces that move the ligand to a position with a lower
energy. Therefore, the predicted inner forces by the energy
model are calculated as follows:

f̃ inner =
∂kEθ(A, X̃)

∂X̃L

(15)

Following Jin et al. (2024), we also calculate the gradients
of the perturbed complex as the force to match the inner
forces via a denoising score matching as follows:

Lf = E[∥f̃ inner −∇f inner
log p(f inner)∥2], (16)

= kE[∥∂Eθ(A, X̃)

∂X̃L

+
∆XL

σ2
∥2] (17)
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Algorithm 1 Training procedure (single data point)
Require: A protein-ligand complex C(A,X)

1: Sample a noise level σ.
2: Sample forces for each atom in ligand f ∼ N (0, σ2I).
3: Calculate the translation of each atom ∆XL with the

forces via Eq. 10.
4: Calculate the work of outer forces W via Eq. 12.
5: Apply the noise to the original complex to get the per-

turbed complex Ĉ = (A, X̃) via Eq. 11.
6: Predict the energy of both complexes Eθ(A,X) and

Eθ(A, X̃) via energy model.
7: Minimize the energy loss Le and force matching loss

Lf from Eq. 13 and Eq. 16.

Different from DSMBind (Jin et al., 2024), the self-
supervision is on each atom instead of the combined trans-
lation and rotation of the whole ligand (Song et al., 2024a;
Yim et al., 2023; Song et al., 2024b). More details can be
found in Appendix. A.4.

4.4. Model Architecture

The whole model consists of a protein encoder, a ligand
encoder, and an energy-based module, as shown in Fig. 2.
We use the encoders to encode the protein and ligand into
representation vectors. Then the vectors are input into the
energy model to model the interactions between protein and
ligand. Finally, the energy-based module outputs the bind-
ing energy of the complex. The training procedure for our
CEBind is described in the Algorithm 1. The first five steps
can be done in the dataloader and these operations do not
require gradient calculation in the backward propagation.
Therefore, CEBind is more memory-efficient. Besides, CE-
Bind follows physics laws, including rigid dynamics and
the law of energy conservation.

5. Experiment & Discussion
We trained the energy model with our CEBind framework.
We first compare the performance of our CEBind with other
approaches. Then we analyze our CEBind in terms of effi-
cacy. Finally, we propose an atom-only variant of CEBind
to explore the generalization of the unsupervised binding
energy prediction approaches.

5.1. Setup

Dataset. The datasets used in this work consist of protein-
small molecule dataset and antibody-antigen dataset fol-
lowing (Jin et al., 2024). The protein-small molecule
dataset contains 4806 protein-ligand complexes from PDB-
bind V2020 database for training (Su et al., 2018), 357
complexes randomly sampled from PDBbind in (Stärk et al.,

2022) for evaluation, and 258 complexes from the PDBbind
core set with labels of binding energy (Su et al., 2018) for
test. The protein is cropped to its binding pocket in the
protein-small molecule dataset. The pocket is defined as the
residues with a distance less than 10Å from the ligand. The
antibody-antigen dataset includes 3416 antibody-antigen
complexes from the structural antibody database (SAbDab)
(Schneider et al., 2022) for training, 116 complexes from
CSM-sb (Myung et al., 2022) for evaluation, and 566 com-
plexes with labels of binding affinity from SAbDab for test.
All test samples never exist in the training datasets. Each
entry in the training sets contains only the protein-ligand
complexes. The binding affinity labels exist only in the
validation and test sets.

Evaluation metrics. We mainly employ the Pearson cor-
relation coefficient between the ground truth protein-ligand
binding affinity and the predicted binding energy, which is
calculated as follows:

rp =

∑
i(Eθ(A,X)i − Eθ(A,X))(yi − y)√∑

i(Eθ(A,X)i − Eθ(A,X))2
∑

i(yi − y)2
,

(18)
where yi is the ground truth binding energy of the i-th
protein-ligand complex. We train the model with five dif-
ferent random seeds and report the mean and standard de-
viation of rp. The complete results can be found in the
Appendix. C.1.

Compared approaches. For protein-small molecule bind-
ing, we mainly compare our CEBind with physics-
based potentials (including Glide (Friesner et al., 2006),
AutoDockvina (Eberhardt et al., 2021), MM/GBSA
(Miller III et al., 2012), and DrugScore2018 (Dittrich et al.,
2018)), unsupervised models (including standard Gaussian
denoising score matching (Gauss DSM) (Jin et al., 2024),
Contrastive learning (Chen et al., 2020), and DSMBind
(Jin et al., 2024)), and supervised approaches (including
IGN (Jiang et al., 2021) and PLANET (Zhang et al., 2023))
following Jin et al. (2024). The supervised approaches
were trained with over 19,000 samples with binding affinity
from the PDBBind database. For antibody-antigen bind-
ing, we also compare our CEBind with physics-based mod-
els (including all the approaches in the CCharPPI server
(Moal et al., 2015)), unsupervised models (including con-
trastive learning (Chen et al., 2020), Gauss DSM (Jin et al.,
2024), ESM-1v (Meier et al., 2021), ESM-IF (Hsu et al.,
2022), and DSMBind (Jin et al., 2024)), and supervised
approaches, frame-averaging neural network (FANN) (Puny
et al., 2022). FANNab is trained on extra 273 antibody-
antigen samples with binding affinity labels from protein-
protein binding mutation database (SKEMPI) (Jankauskaitė
et al., 2019). FANNtransfer is trained on extra 5427 samples
from SKEMPI (Jankauskaitė et al., 2019) and then fine-
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Figure 3. Implementation of CEBind. (a) Protein encoder and small molecule encoder. The protein encoder consists of the atom embedding
module, ESM module, and atom positions. The small molecule encoder contains a graph neural network (GNN), atom embedding module,
and atom positions. They both output the combination of the three features. ESM module outputs the representation of each residue in the
protein. (b) A general encoder for both small molecules and proteins. The general encoder outputs the representation of ligands with a
combination of their atom embedding and atom positions. (c) The architecture of the energy-based model. The energy model includes an
equivariant GNN and a protein-ligand interaction modeling module. ⊗ indicates the multiplication.

tuned on the 273 samples. The comparison mainly follows
DSMBind (Jin et al., 2024).

5.2. Implementation Details

The implementation of our CEBind is illustrated in Fig. 3.
We implement two variants of the ligand encoder. Following
previous works (Jin et al., 2024; Schneider et al., 2022; Eber-
hardt et al., 2021), we first implement the ligand encoder
for protein and small molecules, respectively, as shown in
Fig. 3(a). The protein encoder consists of an atom embed-
ding module to represent each atom in the protein as a vector
and an ESM module to model the interaction inside the pro-
tein and embed each residue into a vector. Then, the two
vectors and atom positions are concatenated to represent
each atom as follows:

RLP = Embed(AL)⊕ ESM(P L)⊕XL, (19)

where ⊕, AL, and P L indicate the concatenation, atom
representation, and protein residues.

The small molecule encoder consists of a GNN to model the
interaction inside the molecule and embed each atom into a
vector. With the atom representation from the atom embed-
ding module and the atom positions, the atom representation
of the small molecule is obtained through:

RLM = Embed(AL)⊕GNN(G)⊕XL. (20)

To explore the gap between small molecules and proteins,
we implement a general ligand encoder for both small
molecules and proteins as shown in Fig. 3(b). The gen-
eral encoder consists of an atom embedding module. By
concatenating the atom positions and atom embedding as

RL = Embed(AL)⊕XL, (21)

the general encoder can be used for both proteins and small
molecules.

The energy-based module contains an equivariant graph
neural network and a protein-ligand interaction modeling
module following Jin et al. (2024) as shown in Fig. 3(c).
With the two modules, the representations for each atom
in the ligand is obtained as [RL

′,RP
′] = ϕ([RL,RP]),

where RP is obtained through Eq. 19 or Eq. 21. Then a
multiplication is performed between the atom representation
RL

′ and RP
′ to get the energy of each atom pair. The

binding energy of a complex is the sum of the energies of
all the atom pairs within a distance threshold.

5.3. Experimental Results

The comparison of CEBind with previous methods demon-
strates the efficacy of CEBind. Then we demonstrate the
efficiency of CEBind both theoretically and empirically. Fi-
nally, we conduct experiments with the general atom-only
protein and ligand encoder to explore the gap between small
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Table 1. Pearson correlation on protein-small molecule and antibody-antigen datasets. ∗ denotes that the results are reproduced from their
official code. rp denotes the Pearson correlation. The best results in each category of approaches are labeled in bold.

Protein-small molecule Antibody-antigen
Method rp ↑ Method rp ↑

Supervised PLANET 0.811 FANNab 0.325 ± 0.014
IGN 0.837 FANNtransfer 0.350 ± 0.033

Physics-based

Glide 0.467 ZRANK 0.318
Autodockvina 0.604 CP PIE 0.234
DrugScore2018 0.602 PYDOCKvina 0.248
MM/GBSA 0.647 AP PISA 0.323

Unsupervised

ESM-1v 0.024
ESM-IF 0.024

Contrastive 0.625 ± 0.002 Contrastive 0.308 ± 0.037
Gauss DSM ∗ 0.636 ± 0.008 Gauss DSM ∗ 0.360 ± 0.016
DSMBind ∗ 0.644 ± 0.003 DSMBind ∗ 0.365 ± 0.011
CEBind 0.652 ± 0.005 CEBind 0.374 ± 0.009

Table 2. Pearson correlation on protein-small molecule and antibody-antigen datasets. CEBindatom denotes the general encoder for
ligands. Cross Val denotes that CEBindatom is trained and tested on different datasets.

Method DSMBind CEBind CEBindatom Cross Val

Protein-small molecule 0.644±0.003 0.652±0.005 0.648±0.003 0.646±0.001
Antibody-antigen 0.365±0.011 0.374±0.009 0.346±0.004 0.320±0.002

Table 3. Ablation study. Pearson correlation on the protein-small molecule and antibody-antigen datasets. Le and Lf denote the energy
conservation and force matching, respectively.

Le Lf ESM Protein-molecule(rp ↑) Antibody-antigen(rp ↑)

✓ ✓ 0.646 ± 0.002 0.361 ± 0.016
✓ ✓ 0.646 ± 0.001 0.362 ± 0.025

✓ ✓ 0.650 ± 0.004 0.346 ± 0.010
✓ ✓ ✓ 0.652 ± 0.005 0.374 ± 0.009

molecules and proteins in the unsupervised protein-ligand
binding energy prediction task.

We compare CEBind with previous methods on the protein-
small molecule dataset and antibody-antigen dataset. CE-
Bind outperforms previous unsupervised models in terms
of the Pearson correlation coefficient on both datasets, as
shown in Table 1. For protein-small molecule binding en-
ergy prediction, supervised methods outperform unsuper-
vised approaches, including CEBind, since they are trained
with plenty of labeled data. Although the best physics-
based approach, MM/GBSA, is comparable with CEBind,
it is computationally intensive.

For antibody-antigen binding energy prediction, unsuper-
vised CEBind outperforms all previous approaches, includ-
ing supervised models, since the labeled data for super-
vised model training is scarce. The supervised model

FANNtransfer is pre-trained on the 5427 samples from
SKEMPI (Jankauskaitė et al., 2019) and fine-tuned with
273 antibody-antigen samples with binding affinity labels.
FANNab is trained directly on the 273 samples with binding
affinity labels. The training for supervised models is done
because there are only 566 samples with binding affinity
labels in SAbDb and all of them are in the test set.

5.4. Ablation Study

To evaluate the effectiveness of our conservation of energy
and force matching, we conducted an ablation study as
shown in Table. 3. Both force matching and conservation
of energy are effective, with which CEBind achieves an
improvement of 2.2% and 2.1%, respectively. ESM plays
an important role in antibody-antigen binding energy predic-
tion. However, it is not essential for protein-small molecules
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since atom-scale interaction is more important in protein-
small molecule interaction. More visual results can be found
in Appendix. C.4.

5.5. Discussion

5.5.1. EFFICIENCY OF CEBIND

We mainly compare CEBind with the second-best unsuper-
vised approach, DSMBind, in terms of training time and
GPU memory consumption. All the comparisons are per-
formed with the same settings. The average training time
of each batch for DSMBind and CEBind is 0.0152 seconds
and 0.0116 seconds, respectively. CEBind is faster than
DSMBind since the process of performing rigid dynamics
is done before training in data processing, i.e., the first five
steps in Algorithm 1. The average peak GPU memory uti-
lization for CEBind and DSMBind is 4.89 GB and 6.43 GB,
respectively. CEBind requires less GPU memory for train-
ing than DSMbind, which sheds light on co-training with
other models, like designing a complex with high binding
affinity. The low memory requirement of CEBind is due to
the fact that fewer operations require gradient calculation.
More details can be found in the Appendix. C.2.

5.5.2. BIAS OF FORCE APPLICATION

CEBind applies the sampled forces exclusively to ligands,
not to the target protein, which could introduce bias. How-
ever, any other forces can be applied to the complex without
altering our framework. We also explore the application
of forces on both protein and ligand in a complex. The
results of applying the forces to both protein and ligand and
applying forces only to ligand are comparable on both the
protein-ligand and antibody-antigen datasets as shown in
Table. 4. On the protein-small molecule dataset, by apply-
ing forces on both ligand and protein, the performance of
CEBind increases slightly since the side chains are included
in the rigid dynamics. On the Antibody-antigen dataset,
the performance decreases slightly since too many atoms
are included. For both datasets, the results are comparable
since all relative positions of the proteins and ligands can be
obtained by moving only the ligands if the side chains are
not taken into account.

5.5.3. GAP BETWEEN PROTEIN-SMALL MOLECULE AND
ANTIBODY-ANTIGEN

To explore the gap between small molecules and proteins
as ligands in protein-ligand binding, we implement a gen-
eral encoder for both protein and small molecule ligands,
as shown in Fig. 3(b). We explore the gap through two
ways: (1) Evaluate an atom-only model with the general
encoder, CEBindatom. (2) Train CEBindatom on one dataset
and evaluate it on the other dataset. The Pearson correlation
results are shown in Table. 2. CEBindatom and CEBind are

Table 4. Pearson correlation on protein-small molecule and
antibody-antigen datasets. ”Only ligand” and ”Both” indicate
forces applying on the ligand and forces applying on the ligand
and protein, respectively.

Model Protein-small
molecule

Antibody-
antigen

Only ligand 0.652±0.005 0.374±0.009
Both 0.665±0.011 0.362±0.015

comparable on the protein-small molecule dataset, while on
the antibody-antigen dataset, CEBindatom performs worse
than CEBind due to the absence of ESM. Although both
GNN and ESM model the interaction inside ligands, ESM
is critical for proteins because of its large-scale pre-training,
while GNN is not essential for molecules since the interac-
tion modeling is also performed in the energy-based model.
Although the performance of CEBindatom decreases on the
antibody-antigen dataset, it is still comparable with the best
supervised model (rp = 0.350) and better than the best
physics-based approach (rp = 0.323).

In the Cross Val, CEBindatom trained on the antibody-
antigen dataset is well generalized to the protein-small
molecule dataset, with a performance better than all
previous unsupervised models. Although generalizing
CEBindatom trained on the protein-small molecule dataset
to the antibody-antigen dataset is hard since the size of
molecules and proteins differs, it is still comparable with
the best physics-based model. The size range of samples in
the antibody-antigen training set encompasses almost all the
sample sizes in the protein-small molecule test set. How-
ever, the size ranges of the protein-small molecule training
set and the antibody-antigen test set overlap only marginally.
More details can be found in Appendix. C.3.

With the results that CEBindatom is generalizable in both
datasets, our CEBind and AlphaFold3 (Abramson et al.,
2024) come to the same conclusion that a universal ap-
proach to all biomolecules, including both proteins and
small molecules, is possible.

6. Conclusion
In this work, we propose an efficient training framework for
unsupervised protein-ligand binding energy prediction via
the conservation of energy, named CEBind. By sampling
forces on each atom and applying them rigidly to the ligand,
CEBind follows physics laws, including rigid dynamics
and the energy conservation law. Experiments demonstrate
that CEBind is memory-effective and outperforms previous
methods. Furthermore, we implement a general encoder
for both antibodies and small molecules to explore the gap
between them. The generalization of the general encoder
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indicates that a potential universal approach exists for all
biomolecules, including both proteins and small molecules,
which is the same as AlphaFold3.

Impact Statement
The goal of this work is to advance the field of Machine
Learning and Computational Biology. While there are many
potential societal consequences of our work, we believe that
none of which must be specifically highlighted here.

References
Abramson, J., Adler, J., Dunger, J., Evans, R., Green,

T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard,
A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A.,
Hung, C.-C., O’Neill, M., Reiman, D., Tunyasuvunakool,
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A. Method Details

(1)

Translation
and rotation 
of the whole 

ligand

(2)

First 
rotatable 

bond

(3)

Second 
rotatable 

bond

Figure 4. Force performing process. (1) Calculate the rotation and translation of the whole ligand. (2) For the first rotatable bond, we fix
the substructure connected to the bond and calculate the new position with the sample forces according to the kinematic theory. (3) For
the second rotatable bond, we repeat the process (2).

A.1. Rigid Dynamics Derivation

Given a protein-ligand complex, C = (A,X), we randomly sample forces f ∈ R3 for each atom in the ligand, Then we
apply these forces to the ligand, following the rigid dynamics. The translation of each atom in the ligand consists of three
parts: (1) the translation of the ligand caused by combined forces; (2) the ligand rotation, which causes the translation of all
the atoms in the ligand; and (3) the rotation of bonds that can rotate.

(1) Ligand translation:

∆XL1 =
1

2

∑N
i=0 f i

M
∆t2. (22)

(2) Ligand rotation: The translation caused by the ligand rotation is obtained through rigid dynamics. First of all, we
calculate the inertia matrix IN ∈ R3×3 and torque τ ∈ R3 of the ligand as follows:

IN =

N∑
i=1

∥xi − µ∥2 − (xi − µ)(xi − µ)⊤, (23)

τ =

N∑
i=1

(xi − µ)× f i, (24)

where µ is the center of the ligand and calculated as follows:

µ =
1

N

xi∈XL∑
i

xi. (25)

Then we apply the torque to the ligand and the acceleration is:

a = I−1
N τ . (26)

with the acceleration, we have the angular displacement as:

ω =
1

2
I−1
N τ∆t2. (27)

With the rotation equation in Eq. Rotation, we have the atom coordinates as:

XL
′ = Rot(ω,XL − µ). (28)

Finally, we have the translation of the atoms caused by the rotation as:

∆XL = XL
′ −XL = Rot(

1

2
I−1
N τ∆t2,XL − µ)−XL. (29)

where the operation Rot is described in Eq. Rotation.
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(3) Side chain rotation. The derivation of translation caused by the side chain rotation is similar to the ligand rotation as
above.

A.2. Force Performing Process

The process of performing sampled forces is illustrated in Fig. 4. First, we calculate the translation and rotation of the whole
ligand. Then for each rotatable bond, we fix the two substructures connected to the bond and calculate the rotation of each
substructure as a rigid. Finally, we sum the position changes calculated for all the rotatable bonds and the whole ligand as
the final position of a ligand.

A.3. Work of Outer Forces (the Energy Change).

Given the combined forces f , inner force f inner, and outer force fouter, f = f inner + fouter. We perform the f during
(0, 1

2∆t) and −f during ( 12∆t, ∆t). In a small range of ∆X , we model the inner force between the ligand and the protein
to be proportional to their distance, i.e. f inner ∝ (Xt −X0) (More accurate force field modeling can be adapted here
without changing our framework). With a scaler k, the force is represented as f inner = k(Xt −X0). The work of the
combined forces is equal to zero since the displacement X1 during (0, 1

2∆t) equals the displacement X2 during ( 12∆t, ∆t)
as follows:

W combine = fX1 + (−fX2) = 0.

Inner and outer forces do work of the same magnitude and in opposite directions as follows:∫ Xt

X0

f inner dX +

∫ Xt

X0

fouter dX =

∫ Xt

X0

f dX

= fX1 + (−fX2)

= 0.

Therefore we have: ∫ Xt

X0

f inner dX = −
∫ Xt

X0

fouter dX

i.e.,
W inner = −W outer. (30)

Therefore, to calculate the work of outer forces, we can calculate the work of inner forces.

W outer = −W inner

=

∫ X0+∆X

X0

f inner dX

=

∫ X0+∆X

X0

k(X −X0) dX

=
1

2
k∆X2

The energy model is trained to predict the energy of 1
kE(C). Therefore, the energy of a complex C is kEθ(C). For energy

conservation, we have the work of outer forces equals the energy changes as follows:

kEθ(C̃)− kEθ(C) = W outer =
1

2
k∆X2,

i.e.,

Eθ(C̃)− Eθ(C) =
1

2
∆X2,

Therefore, the loss for energy conservation is:

Le = E[∥Eθ(A, X̃)− Eθ(A,X)− 1

2
∆XL

2∥2]
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A.4. Force score matching

The force score matching follows the score matching of score-based diffusion model (Dittrich et al., 2018). The object of
score matching is

argmin
θ

1

2
Epdata(x)

[
∥sθ(x)−∇x log pdata(x)∥2

]
where sθ(x) is the prediction of model .i.e. f̃ inner in our model. ∇x log pdata(x) is the derivatives of data distributions. The
distribution of f inner in our work is approximately a Gaussian distribution as f inner ∼ N(0, σ2). Therefore, we have:

p(f inner) =
1√
2πσ2

exp

(
−f inner

2

2σ2

)
Taking the natural logarithm of p(f inner) gives:

log p(f inner) = log

(
1√
2πσ2

)
− f inner

2

2σ2

= −1

2
log(2πσ2)− f inner

2

2σ2
.

Then take the derivative f inner of log p(f inner) and have:

∂

∂f inner

log p(f inner) = −f inner

σ2
.

Therefore, we have the object:

Lf = E[∥f̃ inner −∇f inner
log p(f inner)∥2]

= E[∥∂kEθ(A, X̃)

∂X̃L

+
f inner

σ2
∥2]

= E[∥∂kEθ(A, X̃)

∂X̃L

+
k∆XL

σ2
∥2]

= kE[∥∂Eθ(A, X̃)

∂X̃L

+
∆XL

σ2
∥2]

Therefore, for the total loss of training, the scaler k can be ignored.

B. Training Details
B.1. Hardware

We train CEBind, Gauss DSMBind, and DSMBind for 10 epochs. All our experiments are conducted on a computing cluster
with 8 GPUs of NVIDIA GeForce RTX 4090 24GB and CPUs of AMD EPYC 7763 64-Core of 3.52GHz. All the inferences
are conducted on a single GPU of NVIDIA GeForce RTX 4090 24GB.

B.2. Hyper-parameter

We train all the models with the same hyperparameters following DSMBind (Jin et al., 2024). The batch size, learning rate,
and hidden vector size are 4, 1e-3, and 256, respectively. We use the pre-trained ESM of version esm2 t36 3B UR50D for
protein residue embedding. We use the SRU (Lei et al., 2017) as our protein-ligand interaction modeling model following
DSMBind. We assign the duration of ∆t as a random number from 0 to 1.

C. Additional Results
C.1. Results with Different Random Seed

The Pearson correlation on the antibody-antigen and protein-small molecule datasets with different random seeds is shown in
Table. 5, where ”-” denotes that no positive Pearson correlation is available with this random seed. The results of DSMBind
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Table 5. Pearson correlation on antibody-antigen and protein-small molecule dataset with different random seeds. Gauss DSM indicates
the Gaussian DSMbind method. Mean and dev denote the average value and standard deviation, respectively.

antibody-antigen protein-small molecule
seed DSMBind Gauss DSM CEBind DSMBind Gauss DSM CEBind

0 0.3551 0.2619 0.3405 0.5937 0.5747 0.6489
1 0.3273 0.3381 0.3478 0.6455 0.6248 0.6510
2 - 0.3873 0.3724 - 0.6328 0.6441
3 0.2943 0.3249 0.3360 0.6061 0.4877 -
4 0.3572 0.3431 0.3384 0.6200 0.4781 -
5 0.3595 0.3639 0.3365 0.3397 0.1667 0.6431
6 0.3736 0.3339 0.3423 0.6453 0.6376 0.6467
7 0.3190 0.3207 0.2347 0.6249 0.4780 0.6457
8 0.2897 0.3356 0.3556 0.6388 0.6358 0.6456
9 0.3433 0.3465 0.3249 0.6327 0.5630 0.6461

10 - 0.3402 0.3830 0.6422 0.3282 0.6494
11 0.3315 0.3389 0.3784 0.6470 0.5366 0.6629
12 0.3821 0.2402 - 0.6066 0.6492 0.5312
13 0.3515 0.3595 0.3784 - 0.4507 0.6417
14 - 0.3171 0.3474 0.6039 0.2564 0.6273

Top-5 mean 0.3655 0.3600 0.3735 0.6438 0.6361 0.6518
Top-5 dev 0.0105 0.0157 0.0096 0.0029 0.0079 0.0052

Top-10 mean 0.3500 0.3487 0.3584 0.6309 0.5820 0.6483
Top-10 dev 0.0190 0.0160 0.0168 0.0149 0.0609 0.0054

and Gauss DSMBind are produced through their official codes. CEBind is much better than previous models in terms of
the Pearson correlation on both antibody-antigen datasets and protein-small molecule datasets. Besides, CEBind is more
stable than DSMBind, as shown in Table 5: the standard deviation of DSMbind is smaller than DSMBind. Fig. 5 shows the
robustness of DSMBind over previous models intuitively.

Figure 5. Boxplot of Pearson correlation on the
antibody-antigen datasets.

Figure 6. Boxplot of Pearson correlation on the
protein-small molecule dataset.
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Algorithm 2 Training procedure of CEBind (single data point)
Require: A protein-ligand complex C(A,X)

1: Sample a noise level σ.
2: Sample forces for each atom in ligand f ∼ N (0, σ2I).
3: Calculate the translation of each atom ∆XL with the forces via Eq. 10.
4: Calculate the work of outer forces W via Eq. 12.
5: Apply the noise to the original complex to get the perturbed complex Ĉ = (A, X̃) via Eq. 11.
6: Predict the energy of both complexes Eθ(A,X) and Eθ(A, X̃) via energy model.
7: Minimize the energy loss Le and force matching loss Lf from Eq. 13 and Eq. 16.

Algorithm 3 Training procedure of DSMBind (single data point)
Require: A protein-ligand complex C(A,X)

1: Sample a noise level σ, rotation vector, and translation vector for the whole rigid.
2: Apply the noise to original complex to get the perturbed complex.
3: Predict the energy of the perturbed complex.
4: Calculate the gradient of the energy with respect to the atom coordinate.
5: Calculate the rotation of the rigid with the gradient.
6: Minimize DSM objective.

Table 6. Performance comparison of different training datasets

Dataset protein-small molecule antibody-antigen
Separately 0.648± 0.003 0.346± 0.004
Cross Val 0.646± 0.001 0.320± 0.002

Union 0.646± 0.004 0.352± 0.007

Table 7. Pearson correlation on protein-small molecule and antibody-antigen datasets with pre-training on protein-protein pair dataset.

Pre-train Freeze Protein-molecule(rp ↑) Antibody-antigen(rp ↑)

✓ ✓ 0.646 ± 0.002 0.361 ± 0.013
✓ 0.646 ± 0.002 0.375 ± 0.014

0.652 ± 0.005 0.374 ± 0.009

C.2. Comparison between DSMBind and CEBind

The training procedures of CEBind and DSMBind are shown in Algorithm. 2 and Algorithm. 3, where the blue color denotes
that the process does not require a gradient, while the red color denotes that the process requires a gradient. The process of
calculating the dynamics of the ligand requires a gradient in DSMbind. While CEBind does not require a gradient for the
rigid dynamic calculation process, the process can be done in the data loader, which can not only cut down on GPU memory
consumption but also accelerate the training process.

C.3. Generalization

The distribution of the antibody-antigen training set and protein-small molecule test set is shown in Fig. 7. The distribution
of the antibody-antigen test set and protein-small molecule training set is shown in Fig. 8. The size range of samples in the
antibody-antigen training set encompasses almost all the sample sizes in the protein-small molecule test set. However, the
size ranges of the protein-small molecule training set and the antibody-antigen test set overlap only marginally. This is the
reason why the CEBindatom trained on the antibody-antigen training set can generalize to the protein-small molecule test set,
while the CEBindatom trained on the protein-small molecule training set cannot generalize to the antibody-antigen test set.
When trained on the union of antibody-antigen dataset and protein-small molecule dataset, the results on antibody-antigen
are improved compared with the training on each dataset separately, while the results on protein-small molecule vary a little
as shown in Table. 6. The variation in the results is due to the distribution of training data and test data as shown in Fig. 9.
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Figure 7. The distribution of the number
of atoms in the training antibody and test
molecules data.

Figure 8. The distribution of the number
of atoms in the training molecules and
test antibody data.

Figure 9. The distribution of the number
of atoms in the union of the protein-small
molecule and antibody-antigen training
dataset and test data.

C.4. Visualization

The heatmap of epitope and paratope binding is shown in Fig. 10 where each pixel indicates the binding energy and the
darker the higher. The Spearman correlation between experimental binding energy affinity and predicted binding energy
of the Equibind dataset is shown in Fig. 11. The heatmap of pocket and small molecule binding is shown in Fig. 12. The
Spearman correlation between experimental binding energy affinity and predicted binding energy on the SAbDab dataset is
shown in Fig. 13.

Figure 10. The heatmap of the epitope and paratope binding. Figure 11. The Spearman correlation between experimental
binding energy affinity and predicted binding energy of the
Equibind dataset.

C.5. Pre-train CEBind with large-scale protein dataset

We try to pre-train CEBind with a large-scale protein dataset. The protein pre-training dataset contains 27,692 protein-protein
pairs. The results are shown in Table 7, where freeze denotes that the parameters of the encoder are frozen in training.
With pre-training, the Pearson correlation on protein-small molecule gets even worse and the results on antibody-antigen
get slightly better. For the protein-small molecule dataset, the pre-trained model with a frozen encoder performs worse
than the model without pertaining for two reasons: (1) the model is pre-trained on the protein-protein pairs instead of the
protein-small molecule. (2) the parameters of the encoder are frozen, which limits the learning ability of the model. With
the pre-trained model as the initial parameters, the model without freezing the encoder parameters still performs worse,
which indicates that the model with a bad initialization would also trapped in the local optimal. For the antibody-antigen
dataset, the pre-trained model performs better without the encoder parameters freezing. The better performance owes to the
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Figure 12. The heatmap of the Pocket
and Small molecule binding.

Figure 13. The Spearman correlation between experimental
binding energy affinity and predicted binding energy on the
SAbDab dataset.

knowledge obtained through the protein-protein pair pre-training.
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Figure 14. The distribution of affinity of original SAbDab
dataset

Figure 15. The distribution of log affinity of SAbDab dataset

Figure 16. The distribution of affinity of original Equibind
dataset

Figure 17. The distribution of log affinity of Equibind dataset
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Figure 18. The distribution of affinity and energy on SabDab
dataset

Figure 19. T-SNE visualization of embedding, where colors
indicate binding affinity. As shown, there appear to be two
clusters. The left one indicates high affinity and the right one
low affinity.
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