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ABSTRACT

Semi-supervised learning based methods are current SOTA solutions to the noisy-
label learning problem, which rely on learning an unsupervised label cleaner first
to divide the training samples into a labeled set for clean data and an unlabeled
set for noise data. Typically, the cleaner is obtained via fitting a mixture model to
the distribution of per-sample training losses. However, the modeling procedure
is class agnostic and assumes the loss distributions of clean and noise samples are
the same across different classes. Unfortunately, in practice, such an assumption
does not always hold due to the varying learning difficulty of different classes,
thus leading to sub-optimal label noise partition criteria. In this work, we re-
veal this long-ignored problem and propose a simple yet effective solution, named
Class Prototype-based label noise Cleaner (CPC). Unlike previous works treat-
ing all the classes equally, CPC fully considers loss distribution heterogeneity and
applies class-aware modulation to partition the clean and noise data. CPC takes
advantage of loss distribution modeling and intra-class consistency regularization
in feature space simultaneously and thus can better distinguish clean and noise la-
bels. We theoretically justify the effectiveness of our method by explaining it from
the Expectation-Maximization (EM) framework. Extensive experiments are con-
ducted on the noisy-label benchmarks CIFAR-10, CIFAR-100, Clothing1M and
WebVision. The results show that CPC consistently brings about performance
improvement across all benchmarks.

1 INTRODUCTION

Deep Neural Networks (DNNs) have brought about significant progress to the computer vision com-
munity over past few years. One key to its success is the availability of large amount of training data
with proper annotations. However, label noise is very common in real-world applications. Without
proper intervention, DNNs would be easily misled by the label noise and yield poor performance.

In order to improve the performance of DNNs when learning with noise labels, various methods
have been developed (Liu et al., 2020; Li et al., 2020a; Reed et al., 2014; Nishi et al., 2021). Among
them, semi-supervised learning based methods (Nishi et al., 2021; Li et al., 2020a) achieve the most
competitive results. The semi-supervised learning methods follow a two-stage pipeline. They first
model the loss distribution of training samples to construct a noise cleaner based on the “small-loss
prior” (Han et al., 2020), which says in the early stage of training, samples with smaller cross-
entropy losses are more likely to have clean labels. The prior is widely adopted and demonstrated to
be highly effective in practice (Han et al., 2020). Given the noise cleaner, the training samples are
divided into a labeled clean set and an unlabeled noise set. Then, semi-supervised learning strategies
like MixMatch (Berthelot et al., 2019) are employed to train DNNs on the divided dataset.

The key to their performance lies in the accuracy of the label-noise cleaner (Cordeiro et al., 2022).
Usually, a single Gaussian Mixture Model (GMM) (Li et al., 2020a) is used to model the loss distri-
bution of all the training samples across different categories. However, this modeling procedure is
class-agnostic, which assumes a DNN model has the same learning speed to fit the training samples
in different categories, thus the same loss value on samples in different categories can reflect the
same degree of noise likelihood.

Unfortunately, such assumption does not hold in practise. In Fig. 1, we present the cross-entropy
loss distribution of training samples at the end of DNNs warm-up period. We conduct Kolmogorov-
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Figure 1: Loss distribution of samples in CIFAR-100 with 90% symmetric noise at epoch 30 (left)
and CIFAR-10 with 40% asymmetric noise at epoch 10 (right), where the curves indicate mean
probability density over all the categories while the shadow indicates the 95% confidence interval.
The loss distribution for each class deviates significantly from the average loss distribution.

Smirnov test (Massey Jr, 1951) to quantify the loss distribution difference between the samples in
each class and samples in the whole dataset. The results show that for 54% categories in CIFAR-100
under 90% symmetric noise, the p-value is lower than 0.051 for the hypothesis test that the proba-
bility distribution of clean samples in the class is the same with the probability distribution of clean
samples in the whole dataset, while the number in the case of noise samples is 53%. Therefore, the
class-agnostic label noise cleaner, which establishes a overly rigid criterion shared by all the classes,
would introduce more noise samples to the clean set while reject clean samples, and consequently
get the model perform poorly. A straightforward remedy to the problem is to fit distinct GMMs
to losses of samples in different classes respectively, yielding a class-aware GMM cleaner. Nev-
ertheless, this class-aware modeling strategy implicitly assumes that label noise is existed in every
class. In the case of asymmetric noise e.g., CIFAR10-asym40%, where samples in parts of classes
are clean, such a naive strategy would classify most of hard samples in the clean classes as noise,
and results in negative affect on model training.

Considering that images in the same category should share similar visual representations, the sim-
ilarity between a sample and the cluster center (e.g., class prototype) of its labeled class is helpful
for recognizing label noise. In this paper, we propose a simple Class Prototype-based label noise
Cleaner (CPC) to apply class-aware modulation to the partitioning of clean and noise data, which
takes advantage of intra-class consistency regularization in feature space and loss distribution mod-
eling, simultaneously. CPC learns embedding for each class, i.e., class prototypes, via intra-class
consistency regularization, which urges samples in the same class to gather around the correspond-
ing class prototype while pushes samples not belonging to the class away. Unlike the aforementioned
naive class-aware GMM cleaner, CPC apply class-aware modulation to label noise partitioning via
representation similarity measuring without assuming that label noise is existed in every class, which
is more general for different label noise scenarios. Meanwhile, CPC leverages the “small-loss prior”
to provide stronger and more robust supervision signals to facilitate the learning of prototypes.

We plug CPC to the popular DivideMix(Li et al., 2020a) framework, which iterates between la-
bel noise partitioning and DNNs optimization. With the stronger label noise cleaner in the first
stage, DNNs can be trained better in the second stage, which would further improve the learning of
class prototypes. We theoretically justify the procedure from Expectation-Maximization algorithm
perspective, which guarantees the efficacy of the method. We conduct extensive experiments on
multiple noisy-label benchmarks, including CIFAR-10, CIFAR-100, Clothing1M and WebVision.
The results clearly show that CPC effectively improves accuracy of label-noise partition, and brings
about consistently performance improvement across all noise levels and benchmarks.

The contribution of our work lie in three folds: (1) We reveal the long-ignored problem of class-
agnostic loss distribution modeling that widely existed in label noise learning, and propose a simple
yet effective solution, named Class Prototype-based label noise Cleaner (CPC); (2) CPC takes ad-
vantage of loss distribution modeling and intra-class consistency regularization in feature space si-

1A p-value < 0.05 suggests the probability that the class-wise loss distribution are the same with the global
loss distribution is lower than 5%.
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Figure 2: Illustration of the training pipeline in a single epoch. Blue modules are utilized in the first
stage, where we update the prototypes in CPC and partition the training data. Green modules are
utilized in the second stage, where the DNN model is trained based on the partitioned data.

multaneously, which can better distinguish clean and noise labels; (3) Extensive experimental results
show that our method achieves competitive performance compared to current SOTAs.

2 RELATED WORK

Recent advances in robust learning with noisy labels can be roughly divided into three groups. (a)
Label correction methods aim to translate wrong labels into correct ones. Early studies rely on
an auxiliary set with clean samples for clean label inference (Xiao et al., 2015a; Vahdat, 2017; Li
et al., 2017b; Lee et al., 2018). Recent efforts focus on performing label correction procedures
without supervision regarding clean or noise labels. (Yi & Wu, 2019a; Tanaka et al., 2018) propose
to jointly optimize labels during learning model parameters. Li et al. (2020b) propose to correct
corrupted labels via learning class prototypes and utilize the pseudo-label generated by measuring
the similarity between prototypes and samples to train model. Wu et al. (2021) and Li et al. (2021)
introduce neighbouring information in feature space to correct noise label, and propose a graph-
based method and a class prototype-based method, respectively. (b) Sample selection methods
select potential clean samples for training to eliminate the effect of noise labels on learning the true
data distribution. (Han et al., 2018; Jiang et al., 2018; 2020; Yu et al., 2019) involve training two
DNNs simultaneously and focus on the samples that are probably to be correctly labeled. (c) Semi-
supervised learning methods conceal noise labels and treat these samples as unlabeled data (Ding
et al., 2018). DivideMix (Li et al., 2020a) is a typical algorithm among these works, which compro-
mises an unsupervised label noise cleaner that divides the training data to a labeled clean set and an
unlabeled noise set, followed by semi-supervised learning that minimize the empirical vicinal risk
of the model. Inspired by DivideMix, a series of methods (Cordeiro et al., 2022; Nishi et al., 2021;
Cordeiro et al., 2021) are proposed, which achieve SOTA performance. However, all these meth-
ods rely on the class-agnostic loss distribution modeling to achieve the label noise cleaner, which
hinders the performance of the model. The class-agnostic loss distribution modeling implicitly as-
sumes a DNN model has the same learning speed to memory training samples in different categories.
However, in reality, the memorization speed are actually different and will cause the the problem of
under learning in hard classes as revealed by Wang et al. (2019). In this paper, we focuses on another
problem, i.e., class agnostic loss distribution modeling problem caused by the issue in the context
of label noise cleaner. In our method, we propose the simple yet effective class prototype-based
label noise cleaner to solve the problem. Besides, compared to previous prototype-based label noise
learning methods (Li et al., 2020b; 2021), our method are different from them in two folds: (1) we
utilize prototypes as label noise cleaner to effectively improve the semi-supervised learning based
methods; (2) CPC takes advantage of both loss distribution modeling and intra-class consistency
regularization in feature space simultaneously which learns better prototypes.

3 PRELIMINARY

In label noise learning, given a training set D = (X,Y ) = {(xi, yi)}Ni=1, where xi is an image and
yi ∈ {1, 2, ...,K} is the annotated label over K classes, the label yi could differ from the unknown
true label ŷi. In this paper, we follow the popular label noise learning framework DivideMix (Li
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et al., 2020a), which first warms up the model for a few epochs by training on all the data using
the standard cross-entropy loss, and then trains the model by iterating a two-stage pipeline. The
pipeline comprises an unsupervised label cleaner Q to divide training samples into a labeled set for
clean data X and an unlabeled set for noise data U , followed by a semi-supervised learning stage
that trains the model to minimise the empirical vicinal risk (EVR) (Zhang et al., 2017):

ℓEV R =
1

|X ′|
∑
X ′

ℓX ′(p(ỹ′i|x
′
i), y

′
i) +

λ

|U ′|
∑
U ′

ℓU ′(p(ỹ′i|x
′
i), y

′
i), (1)

where X ′ and U ′ indicate MixMatch (Berthelot et al., 2019) augmented clean and noise set. lX ′ and
lU ′ denote the losses for samples in set X ′ and U ′, which are weighted by λ. p(ỹ′i|x′

i) is the softmax
output of DNNs, where ỹ′i is the predicted label. For more details about EVR, please refer to the
appendix A.1.

In Li et al. (2020a), the unsupervised label cleaner is operated under the “small-loss prior”, which
is widely adopted and demonstrated to be highly effective (Han et al., 2020). The prior assumes
that in the early stage of training, samples with smaller cross-entropy losses are more likely to have
clean labels. The well known insight behind the “small-loss prior” is that DNNs tend to learn simple
patterns first before fitting label noise (Arpit et al., 2017). Given a training sample xi and the soft-
max output p(ỹi|xi) of DNNs, where ỹi is the predicted label, the cross-entropy loss l(p(ỹi|xi), yi)
reflects how well the model fits the training sample.

To achieve the unsupervised label cleaner Q, a two-component Gaussian Mixture Model (GMM) is
employed to fit the loss distribution of all training samples, i.e., ℓ(p(ỹi|xi), yi) ∼ ϕ0N (µ0, σ0) +
ϕ1N (µ1, σ1), where µ0 < µ1, and ϕ is a mixing coefficient. The component with smaller mean
represents the distribution of clean samples and the other one is for noise samples. We use zi ∈
{0, 1} indicates the data is clean or not. Then, q(zi = 0) represents the clean probability of xi,
which is the posterior probability of its loss belonging to the clean component. The label cleaner is
shared by training samples across different classes, which is actually class-agnostic. A hypothesis
implicitly accompanying this loss distribution modeling method is ignored by current works, which
assumes the loss distributions of clean and noise samples are consistent across different categories.
Unfortunately, as illustrated in Fig.1, the hypothesis dose not hold in practise. In this paper, we
propose the class prototype-based label noise cleaner which applies class-aware modulation to the
partitioning of clean and noise data and improves label noise learning.

4 METHODOLOGY

4.1 OVERVIEW

Our method follows the two-stage label noise learning framework DivideMix (Li et al., 2020a) and
improves the framework with the proposed CPC. CPC comprises class prototypes C = {ck ∈
R1×d|k = 1, 2, ...,K}, where ck indicates the prototype of k-th class and d is the dimension of pro-
totype embedding. Our DNN model consists of a CNN backbone, a classifier head and a projection
layer. The backbone maps an image input xi to a feature vector vi ∈ R1×D. The classifier takes
vi as input and outputs class prediction p(ỹi|xi). The projection layer serves to project the high
dimension feature vi to a low-dimensional embedding v′i ∈ R1×d, where d < D.

As shown in Fig. 2, we update the DNN as well as the CPC by iterating a two-stage training pipeline
in every epoch. In the first stage, we update CPC as well as the projector in DNN, and utilize the
updated CPC to partition label noise. We first calculate the cross-entropy loss of every training
sample and fits a GMM to the losses. We utilize the GMM as a label noise cleaner to get a labeled
clean set XGMM and a unlabeled noise set UGMM . The data partition XGMM and UGMM are
utilized to update the prototypes in CPC and parameters in the projector. Note that we cut off the
gradient back-propagation from the projector to the CNN backbone. Then, the updated CPC is
employed to re-divide the training data into another two set X and U . In the second stage, we train
DNN model to minimise the EVR in Eq. (1) with data partitioned by the cleaner. In the first e epochs,
we wait CPC to warm up, and minimise the EVR of DNNs based on training data partitioned by
the GMM cleaner. After the e-th epoch, the label noise estimation results of CPC, i.e., X and U
are employed to train DNNs, while the estimation results of GMM cleaner are only used to update
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prototypes in CPC. In inference, we utilize DNN classifier for image recognition, directly. In A.5,
we further delineate the full framework.

4.2 CLASS PROTOTYPE-BASED LABEL NOISE CLEANER

In order to apply class-aware modulation to the label noise partitioning, we propose to learn an
embedding space where samples from the same class are aligned with their class prototypes, and
leverage the prototypes to recognize noise labels. The prototypes are typically learnt with intra-class
consistency regularization, which urges samples in the same class to align with the corresponding
class prototype while keeping samples not belonging to the class away. Previous methods (Wang
et al., 2022; Li et al., 2020b) apply the intra-class consistency regularization to prototype learning via
unsupervised contrastive objectives, e.g., prototypical contrastive objective (Li et al., 2020c), where
the unsupervised training labels are typically determined by the similarity between samples and
prototypes. The accuracy of the training labels are highly depends on the quality of representation
learnt by the CNN encoder, which would be too low to effectively update the prototypes, especially
in the early stage of training. In contrast, we empirically find that the GMM cleaner, which is
operated under the well evaluated “small-loss prior”, are not as sensitive as the prototypes to the
representation quality, and can provide more robust and accurate training labels.

Therefore, we propose to take samples in clean set XGMM as positive samples and those in noise
set UGMM as negative samples to update prototypes. Specifically, given the feature embedding v′i
of a sample xi from XGMM, we update prototypes C as well as the parameters of the projector to
maximize the score q(zi = 0) between ck=yi

and v′i, and minimize the score between ck ̸=yi
and v′i

via minimize LXGMM :

LXGMM = − 1

|XGMM |
∑

XGMM

K∑
k=1

ℓk(v
′
i, yi), where

ℓk(v
′
i, yi) =

{
log(sigmoid(v′ic

⊤
k )), k = yi,

λneg log(1− sigmoid(v′ic
⊤
k )), k ̸= yi,

(2)

where λneg = 1
K weights the losses between positive pair and negative pairs to avoid under-fitting

the positive samples. Given v′i of a sample xi from UGMM, we update prototypes ck as well as the
parameters of the projector to minimize the score q(zi = 0) between ck=yi and v′i via minimizing
LUGMM :

LUGMM = − 1

|UGMM |
∑

UGMM

log(1− sigmoid(v′ic
⊤
k )), where k = yi. (3)

At last, for noise samples in UGMM with high classification confidence, the samples are more likely
to belong to the class predicted by DNNs, which is potentially valuable to the update of prototypes.
Therefore, we collect such training samples XP from UGMM taking the averaged classification
confidence of samples in XGMM as the threshold. Specifically, given a sample in UGMM with the
label predicted by DNNs k = maxk(p(ỹi|xi)), the sample is collected into XP if p(ỹi|xi)k >
average({p(ỹi|xi)k|(xj , yj |yj = k) ∈ XGMM}). Then, we update the prototypes and projectors to
minimize L(XP ):

LXP = − 1

|XP |
∑
XP

log(sigmoid(v′ic
⊤
k )),where k = max

k
(p(ỹi|xi)). (4)

The overall empirical risk LC for prototypes and the projector is as follows:
LC = LXGMM + LUGMM + αLXP , (5)

where α is the weight scalar.

CPC distinguishes a clean sample (xi, yi) with the score q(zi = 0) = sigmoid(v′ic
⊤
k=yi

) and the
threshold τ . Samples with q(zi = 0) > τ are classified as clean, and otherwise as noise.

4.3 THEORETICAL JUSTIFICATION ON THE EFFICACY OF CPC

We provide theoretical justification on the efficacy of CPC from the perspective of Expectation-
Maximization algorithm, which guarantees that though CPC does not follow the classical prototyp-
ical contrastive objective, it can still learn meaningful prototypes and act as an effective cleaner.
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We consider training data with label noise D = (X,Y ) = (xi, yi)
N
i=1 as the observable data, and

Z ∈ {0, 1}N as the latent variable, where zi = 0 iff (xi, yi) is clean (i.e., yi = ŷi). The prototypes
C in the cleaner are taken as parameters expected to be updated. Then, the negative log likelihood
for D given C is as follows:

NLL(D|C) = −
∑
D

log
∑

zi∈{0,1}

p(xi, yi, zi|C) = −
∑
D

log
∑

zi∈{0,1}

q(zi)
p(xi, yi, zi|C)

q(zi)
, (6)

where q(zi) = p(zi|xi, yi, C). According to the Bayes theorem and Jensen’s inequality , we have

NLL(D|C) = −
∑
D

log
∑

zi∈{0,1}

q(zi)p(xi, yi|C),

≤ −
∑
D

∑
zi∈{0,1}

q(zi) log p(xi, yi|C)

= −
∑
D

∑
zi∈{0,1}

q(zi) log p(yi|C, xi) + const,

(7)

where −
∑

D

∑
zi∈{0,1} q(zi) log p(yi|C, xi) is the upper bound of NLL(D|C). Typically, we can

adopt the EM algorithm to find the prototypes C that minimize the upper bound by iterating:

E-step: Compute a new estimate of q(zi) (i.e., clean or noise) according to prototypes Cold from
the last iteration:

q(zi) = p(zi|xi, yi, C
old). (8)

M-step: Find the prototypes C that minimizes the bound:

Cnew = argmin
C

−
∑
D

∑
zi∈{0,1}

q(zi) log p(yi|C, xi) (9)

In our method, in order to introduce the “small-loss prior” to provide stronger and more robust su-
pervision signals to the learning of CPC, in the E-step, we estimate the distribution of clean or noise
of samples, denoted as q(z′i), via the GMM cleaner instead of q(zi) in Eq. (8). And consequently,
we replace the q(zi) in Eq. (9) to q(z′i) and find the prototype C minimize the bound. Next, we
provide the justification that the EM algorithm still work by proving that q(z′i) can be considered as
an approximation to q(zi) in our framework.

In our method, q(z′i) = p(z′i|l(p(ỹi|xi), yi)), where ỹi ∼ p(ỹi|xi, θ), which is the label predicted
by the DNN parameterized by θ. As introduced in section 4.1, in the first stage of each epoch, the
CPC’s estimation results zi ∼ q(zi) are utilized to divide training samples into a labeled set for clean
data X = {(xi, yi)|zi = 0} and an unlabeled set for noise data U = {(xi, yi)|zi = 1}. Then the
parameters of DNNs, which we denote as θ, are optimized using Eq. (1) in the second stage. There
exists an optimal θ∗ with respected to zi, with which the softmax output p(ỹi|xi) of DNNs satisfies:

ℓ(p(ỹi|xi), yi) = 0, if zi = 0, otherwise 1, (10)

where ℓ(p(ỹi|xi), yi) is the cross-entropy loss between the network prediction and the annotated
label. With these loss values, the subsequent GMM cleaner can easily distinguish samples of X
from samples of U . In other words, under the optimal θ∗, the estimation of the GMM cleaner
would be consistent with the partition of CPC, i.e., z′i = zi. In practice, in each epoch, we takes
the θ optimized to minimize Eq. (1) as an approximation to the optimal θ∗ with respect to zi, and
consequently we can get q(z′i) as an approximation to q(zi). Therefore, we can see that with the
“small loss prior” introduced into the prototype learning, the EM optimization procedure would still
work, which guarantees CPC can learn meaningful prototypes and act as an effective cleaner. In ap-
pendix A.4, we further present more details and empirical results to demonstrate the approximation
is hold in practice.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We evaluate our method on the following popular LNL benchmarks. For CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009), we experiment with two types of synthetic noise: symmetric
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and asymmetric, which are injected into the datasets following the standard setup in (Li et al., 2020a).
Clothing1M (Xiao et al., 2015b) and WebVision1.0 (Li et al., 2017a) are two large-scale real-world
label noise benchmarks. Clothing1M contains 1 million images in 14 categories acquired from
online shopping websites, which is heavily imbalanced and most of the noise is asymmetric (Yi &
Wu, 2019b). WebVision1.0 contains 2.4 million images crawled from the web using the concepts in
ImageNet-ILSVRC12 (ILSVRC12). Following convention, we compare with SOTAs on the first 50
classes of WebVision, as well as the performance after transferring to ILSVRC12.

Implementation details. We plug the proposed CPC to the DivideMix (Li et al., 2020a) framework.
For Clothing1M and CIFAR-10 with asymmetric noise, we employ a single class-agnostic GMM for
loss-distribution modeling. For other cases, we find that class-aware GMMs would further improve
the performance of CPC. Following DivideMix, we employ ResNet18 (He et al., 2016) for CIFAR-
10 and CIFAR-100, and utilize ImageNet pre-trained ResNet-50 for Clothing1M. Since previous
works chose different backbones, e.g., Inception-resnet v2 (Szegedy et al., 2017) and ResNet-50,
we adopt the weaker one, i.e., ResNet-50 according to (Zheltonozhskii et al., 2021), and train it
from scratch for fair comparison. The threshold of CPC τ is set 0.5 by default for all the datasets
except for the extremely imbalanced Clothing1M where it is set to 0.3. For CIFAR-10 and CIFAR-
100, we train the models for 450 epochs. For the large-scale dataset Clothing1M and WebVision1.0,
we train the model for 80 and 100 epochs, respectively. The warm-up periods of prototypes for all
the datasets is set to the first 5% epochs after network warm-up, except in CIFAR-100 with noise
ratios larger than 80% when set to 10% of total epochs. For the other settings, we simply follow the
standard set-up as in DivideMix. For more implementation details, please refer to the appendix A.2
and codes in supplementary materials.

Table 1: Comparison with SOTAs on Real-world Benchmarks. Following GJS(Englesson & Az-
izpour, 2021), we run our method three times with different random seeds and report the mean and
standard deviation of classification accuracy. ♢ indicates methods utilize ResNet50 for WebVision,
while others utilize Inception-resnet v2. The best results are indicated with boldface.

WebVision WebVision → ILSVRC12 Clothing1M
top1 top5 top1 top5

ELR+ 77.78 91.64 70.29 89.76 74.8
DivideMix 77.32 91.64 75.2 90.84 74.76

DivideMix♢ 76.3±0.36 90.65±0.16 74.42±0.29 91.21±0.12 74.76
LongReMix 78.92 92.32 - - 74.38

NGC 79.16 91.84 74.44 91.04 -
AugDMix - - - - 75.11

NCR♢ 80.5 - - - 74.6
GJS♢ 79.28±0.24 91.22±0.3 75.5±0.17 91.27±0.26 -

Baseline♢ 76.3±0.36 90.65±0.16 74.42±0.29 91.21±0.12 74.73±0.02

Ours♢ 79.63±0.08 93.46±0.10 75.75±0.14 93.49±0.25 75.40±0.10

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Real-world noise benchmarks. We evaluate our method on real-world large scale data sets, and
compare our method with latest SOTA label noise learning methods, including DivideMix(Li et al.,
2020a), LongReMix(Cordeiro et al., 2022), NGC(Wu et al., 2021), GJS(Englesson & Azizpour,
2021), ELR+(Liu et al., 2020), AugDMix(Nishi et al., 2021) and NCR(Huang et al., 2021). For
WebVision, we measure the top1 and top5 accuracy on WebVision validation set and ImageNet
ILSVRC12 validation set. We take ResNet50-based DivideMix (Zheltonozhskii et al., 2021) as
baseline. As shown in Table 1, our CPC improves top1 and top5 accuracy over baseline model
on WebVision by 3.33% and 2.81%, respectively. Our method achieves competitive performance
on WebVision, and shows stronger transferable capability, outperforming other competitors on the
ILSVRC12 validation set significantly. For Clothing1M, we apply the strong augmentation strategy
(Nishi et al., 2021) to DivideMix as our baseline, and rerun the method three times. Our method
achieves 75.4% accuracy on this challenging benchmark, outperforming all the other SOTAs. We
also notice that though NCR achieves SOTA result on WebVision, it shows moderate performance
compared to ELR+, DivideMix and AugDMix on Clothing1M containing asymmetric noise with
imbalanced data distribution. It reveals that our method could be more robust across different label
noise scenarios.
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Table 2: Comparison with SOTAs on CIFAR-10 and CIFAR-100. Following previous work (Wu
et al., 2021), we run our method three times with different random seeds and report the mean and
standard deviation of classification accuracy. † indicates our baseline. * indicates semi-supervised
learning based label noise learning methods. SOTA results are indicated with boldface.

CIFAR-10 / CIFAR-100 (Sym) CIFAR-10 (Asym)
20% 50% 80% 90% 40%

ELR+ 94.9 / 76.3 93.9. / 72.0 90.9. / 57.2 74.5 / 30.9 88.9
NCR 95.2 / 76.6 94.3 / 72.5 91.6 / 58.0 75.1 / 30.8 90.7

ProtoMix 96.4 / 80.3 95.3 / 76.0 93.3 / 61.1 77.4 / 33.1 92.6
DivideMix* 96.1 / 77.3 94.6 / 74.5 93.2 / 60.2 76.0 / 31.5 93.4

LongReMix* 96.2 / 77.8 95.0 / 75.6 93.9 / 62.9 82.0 / 33.8 94.7
AugDMix*† 96.3 / 79.5 95.6 / 77.2 93.6 / 66.4 91.9 / 41.2 94.6

NGC 95.88 / 79.31 94.54 / 75.91 91.59 /62.7 80.46 / 29.76 90.55
±0.13 / ±0.35 ±0.35 / ±0.39 ±0.31 / ±0.37 ±1.97 / ±0.85 ±0.29

GJS 95.33 / 75.71 - 79.11 / 44.49 - 89.65
±0.18 / ±0.25 - ±0.31 / ±0.53 - ±0.37

Ours* 96.50 / 80.22 95.64 / 79.31 94.78 / 69.56 92.55 / 54.60 94.73
±0.10 / ±0.21 ±0.01 / ±0.13 ±0.01 / ±0.34 ±0.58 / ±0.24 ±0.04

Synthetic noise benchmarks. We evaluate the performance of CPC on CIFAR-10 and CIFAR-100
datasets with symmetric label noise level ranging from 20% to 90% and asymmetric noise of rate
40%. We take AugDMix as the baseline, and compare our method with latest SOTA methods, where
DivideMix, LongReMix and Aug-DMix are semi-supervised learning based methods. Following
NGC and GJS, we run our method three times with different random seeds and report the mean
and standard deviation. For other methods, e.g., ProtoMix (Li et al., 2021), we report the best
results reported in their papers. As shown in Table 2, though with a baseline method as strong as
AugDMix, our method brings about performance improvement across all noise levels as well as
noise types consistently, and establishes new SOTAs on CIFAR-10 and CIFAR-100. Additionally,
we notice that, under asymmetric noise set-up, semi-supervised learning based methods consistently
outperform other methods that achieve SOTA results on WebVision benchmark,including NGC, GJS
and NCR. The results reveal that semi-supervised learning based method could be more robust to
asymmetric noise, while our method achieves SOTA performance among them.

5.3 ANALYSIS

Is CPC a better label noise cleaner? We evaluate the performance of label noise cleaner under
both symmetric and asymmetric label noise set-ups. For symmetric noise, we use CIFAR-100 with
90% noise as benchmark to reveal the relationship between CPC and the significant performance
improvement under this set-up. For asymmetric noise, we employ the most commonly adopted
CIFAR-10-asym40% as benchmark. The AUC of clean/noise binary classification results of a
cleaner is calculated as the evaluation metric. We take the original class-agnostic GMM cleaner
(GMMagn) proposed in DivideMix as baseline, and compare it to our CPC and the aforementioned
naive class-aware GMM cleaner (GMMawr). Furthermore, we also implement another version of
CPC that trained based on the class-aware GMM cleaner. To distinguish these two CPC, we denote
the regular one trained based on conventional class-agnostic GMM cleaner as CPCagn, and the other
one as CPCawr. As shown in Figure 3, in both cases, the regular CPCagn outperforms the baseline
GMMagn as well as GMMawr, which demonstrates our class prototype-based method is the better
label noise cleaner. As for the comparison between GMMagn and GMMawr, we find that in the
situation of high symmetric noise, though GMMagn shows better performance in the early stage of
training, GMMawr outperforms it in the second half stage of training. In the case of asymmetric
noise, GMMawr, which tend to classify hard clean samples in clean categories as noise wrongly,
consistently underperforms GMMagn across the whole training period. The results further prove
that our class prototype-based method is the better choice for applying class-aware modulation to
label noise cleaning, which is more robust across different noise types. Moreover, we find that in the
case of asymmetric noise, CPCagn achieves higher AUC compared to GMMagn, which shows our
method can partially make up for the shortcomings of GMMagn. In the case of symmetric noise, we
find that GMMagn can further improve the performance of CPC, where CPCawr achieves the best
performance among the four cleaners.
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Figure 3: AUC of different label noise cleaners with respect to the training period. Left is the
results on CIFAR-100 under high symmetric noise ratio 0.9. Right is the results on CIFAR-10 under
medium asymetric noise ratio 0.4.

Table 3: The affect of different label noise cleaner to the final classification accuracy. The best
results are indicated with boldface.

Model CIFAR-100 WebVision CIFAR-10 Clothing1Msym-90% top1 asym-40%

w/ GMMagn 41.2 76.32 94.6 74.73
w/ GMMawr 45.6 78.66 94.18 74.18
w/ CPCagn 48.88 79.4 94.73 75.4
w/ CPCawr 54.6 79.63 94.29 74.36

How do different label noise cleaners affect label noise learning? We plug different cleaners
to DivideMix framework, and keep all the other training settings the same as described in the im-
plementation details. As shown in Table 3, the final performance of the model is consistent with
the performance of the cleaner used. On CIFAR-100 with 90% symmetric noise, performance im-
provement bought about by CPCagn are 7.68%, while model with CPCawr outperforms the baseline
method by 13.4%. We also report the comparison results on large-scale WebVision dataset, where
the performance of different models show the same trend of change as in CIFAR-100-sym90%. As
for the asymmetric noise situation, i.e., CIFAR-10-asym40% and Clothing1M, model with CPCagn,
which has superior label noise partitioning capability as shown in Fig.3, achieves best performance
while CPCawr beat GMMawr in both cases. The results demonstrate that CPC is helpful to train a
better model in label noise learning.

Is the GMM cleaner beneficial to the learning of prototypes? In our method, we propose to
leverage the GMM cleaner to facilitate the learning of prototypes via the “small loss prior”. To val-
idate the effectiveness of our method, we first compare the quality of prototypes learnt in CPC with
prototypes learnt in another prototype-based label noise learning method MoPro (Li et al., 2020b).
We take WebVision as benchmark and utilize prototypes to classify test samples via measuring the
similarity between samples and prototypes. The results show that, on the first 50 classes of WebVi-
sion, our prototype achieves a top1 accuracy of 78.44%, while MoPro’s accuracy is 72.23%, which
demonstrates that our method is able to learn better prototypes. To further verify the contribution of
the GMM cleaner, we remove the GMM cleaner and learn class prototypes in CPC via the typical
prototypical contrastive objective as in MoPro. In experiments, we find that without the help of the
GMM cleaner, the learnt prototypes generate less accurate data partition that further drawing back
the overall training framework for DNNs, which proves the benefits of the GMM cleaner to our
method. For more details and discussion, please refer to A.3.

6 CONCLUSION

In this paper, we reveal the long-ignored problem of class-agnostic loss distribution modeling that
widely existed in label noise learning, and propose a simple yet effective solution, named Class
Prototype-based label noise Cleaner (CPC). CPC takes advantage of loss distribution modeling and
intra-class consistency regularization in feature space simultaneously, which can better distinguish
clean and noise labels. We justify the effectiveness of our method by explaining it from the EM
algorithm perspective theoretically and providing extensive empirical proves. The experimental
results show that our method achieves competitive performance compared to current SOTAs.
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A APPENDIX

A.1 EMPIRICAL VICINAL RISK

We introduce the Empirical Vicinal Risk following Cordeiro et al. (2022). In the semi-supervised
learning based label noise learning framework, with the labeled set X and unlabeled set U from a
cleaner, the DNNs are trained to minimise the empirical vicinal risk (EVR) (Zhang et al., 2017):

ℓEV R =
1

|X ′|
∑
X ′

ℓX ′(p(ỹ′i|x
′
i), y

′
i) +

λ(U ′)

|U ′|
∑
U ′

ℓU ′(p(ỹ′i|x
′
i), y

′
i), (11)

where lX ′ and lU ′ denote the losses for set X ′ and U ′, which are weighted by λ(U ′). X ′ and U ′

indicate MixMatch (Berthelot et al., 2019) augmented clean and noise set:

X ′ = (x′
i, y

′
i) : (x

′
i, y

′
i) ∼ f(x′

i, y
′
i|xi, yi), (xi, yi) ∈ X ,

U ′ = (x′
i, y

′
i) : (x

′
i, y

′
i) ∼ f(x′

i, y
′
i|xi, yi), (xi, yi) ∈ U ,

(12)

with

f(x′
i, y

′
i|xi, yi) =

1

|X ∪ U|
∑
X∪U

Eλ[δ(x
′
i = λxi + (1− λ)xj , y

′
i = λyi + (1− λ)yj)], (13)

where δ is a Dirac mass centered at (x′, y′), λ ∼ Beta(a, a), and a ∈ (0,+inf).

A.2 OTHER TRAINING DETAILS

A.2.1 TRAINING CONFIGURATIONS

In our method, we follow most of training set-up of DivideMix(Li et al., 2020a). We present the
detailed training configures as follows:

• CIFAR-10 and CIFAR-100. For all the experiments on CIFAR, we train our DNN model
as well as class prototypes in CPC via SGD with a momentum of 0.9, a weight decay of
0.0005, and a batch size of 128. The network is trained for 450 epochs. We set the initial
learning rate as 0.02, and reduce it by a factor of 10 after 225 epochs. The warm up period
for the DNN is 10 epochs. The weight λ(U ′) is set to {0,25,50,150} as in DivideMix.

• Clthing1M. We train our DNN model as well as class prototypes in CPC via SGD with a
momentum of 0.9, a weight decay of 0.001, and a batch size of 32. The model is trained
for 80 epochs. The warm up period for the DNN is 1 epoch. The initial learning rate is set
as 0.002 and reduced by a factor of 10 after 40 epochs. For each epoch, we sample 1000
mini-batches from the training data. The weight λ(U ′) is set to 0.

• WebVision. We train our DNN model as well as class prototypes in CPC via SGD with a
momentum of 0.9, a weight decay of 0.001, and a batch size of 32. The model is trained
for 100 epochs. The warm up period for the DNN is 1 epoch. The initial learning rate is
set as 0.01 and reduced by a factor of 10 after 50 epochs. For each epoch, we sample 1000
mini-batches from the training data. The weight λ(U ′) is set to 0.

A.2.2 HYPER-PARAMETER STUDY

In this paper, we mainly follow the tuning procedure as in DivideMix to determine the newly intro-
duced hyper-parameters. First of all, we initialize the hyper-parameters to e = 5%, τ = 0.5, α = 1.
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Table 4: The variation of performance of CPC with respect to the change of hyper-parameters. The
classification accuracy of DNNs is reported. The best results are indicated with boldface.

baseline CPC Warm-up epochs (e) CPC threshold (τ) Prototypical loss weight (α)
5% 10% 15% 0.5 0.6 0.7 0 0.5 1

CIFAR-100(sym90%) 41.2 52.32 54.60 53.7 54.60 54.33 54.05 54.60 54.48 54.51
WebVision 76.3 79.63 79.32 79.04 79.63 79.52 79.36 79.16 79.44 79.63
CIFAR-10(asym40) 94.60 94.73 94.68 94.59 94.73 94.71 94.65 94.73 94.68 94.72
Clothing1M 74.73 75.40 75.04 74.89 75.08 75.15 75.40 75.35 75.28 75.40

Table 5: Ablation study on the contribution of GMM cleaner.The classification accuracy of DNNs
is reported. The best results are indicated with boldface.

method CIFAR-100(sym90%) WebVision CIFAR-10(asym40%) Clothing1M
Baseline 41.2 76.3 94.6 74.73
CPC w/o GMM Cleaner 42.9 26.8 93.92 74.09
CPC 54.6 79.63 94.73 75.4

Then, for the large scale real world benchmark Clothing1M and WebVision, the hyper-parameter
tuning is done on the validation set of Clothing1M and transferred to WebVision. For CIFAR, a
small validation set with clean data is split from training data for hyper-parameter tuning. Due
to the diversity of experimental set-ups, it would be an irritating task to tune hyper-parameters
for each experimental set-up, respectively. Therefore, we only tune the hyper-parameters under
CIFAR-100(sym80%) and CIFAR-100(sym50%), and transfer the hyper-parameters obtained un-
der CIFAR-100(sym80%) to the noisier set-up i.e., CIFAR-100(sym90%), and those obtained under
CIFAR-100(sym50%) to the less challenge set-ups i.e., noise ratio lower than 50% and all noise
ratio on CIFAR-10.

In practical, when a clean validation set is inaccessible, it would be the difficult to tune the hyper-
parameters. To shed some light to the hyper-parameter set-up in these cases, we try to conclude
some empirical solutions via studying the variation of performance of CPC with respect to the newly
introduced hyper-parameters on different benchmarks. According to experimental results, we find
that CPC is robust in the choice of hyperparameters in the range listed in Tab.4. Generally, e =
5%/10%, τ = 0.5, α = 0/1 can be a good choice in most cases.

A.3 DISCUSSION ON THE CONTRIBUTION OF GMM CLEANER TO CPC

In typical prototypical contrastive objective, the unsupervised training labels are determined by sim-
ilarity between samples and prototypes. Compared to it, we empirically find that GMM cleaner
provides more accurate training labels for prototypes, especially in the early stage of training. For
example, in CIFAR-10(asym-40%), the averaged accuracy of training labels from GMM cleaner is
9.7% higher during the CPC warming up period.

To evaluate the contribution of GMM cleaner in our framework, we further present ablation study
results in Tab. 5. For CPC w/o GMM Cleaner, we remove the GMM cleaner and learn class proto-
types in CPC with prototypical contrastive objective as in MoPro (Li et al., 2020b). In experiments,
we find that without the help of the GMM cleaner, the learnt prototypes generate less accurate data
partition that further drawing back the overall training framework for DNNs as shwon in Tab. 5. The
situation is especially severe on the challenging benchmark with more diverse data, e.g., WebVision.
The results demonstrate the benefits of the GMM cleaner in our method.

To prove the superiority of our method, we also compare the quality of prototypes learnt in our
method with prototypes learnt in MoPro (Li et al., 2020b) on the first 50 classes of WebVision. To
evaluate the quality of prototypes learnt in CPC, we utilize the prototypes to classify test samples
via measuring the similarity between samples and prototypes. We implement the experiment with
the official code released by the MoPro team. The results show that our prototype achieves a top1
accuracy of 78.44%, while MoPro’s accuracy is 72.23%. The result demonstrates that our method
is able to learn better prototypes.
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Figure 4: The left figure shows the KLD between q(z′i) and q(zi). The right figure presents the
consistency rate between z′i and zi. Results are collected from CIFAR-10-aysm40%.

A.4 SUPPLEMENTARY DISCUSSION ON THE THEORETICAL JUSTIFICATION

A.4.1 IS q(z′i) A PROPER APPROXIMATION TO q(zi) IN PRACTICAL?

In Section 4.3, we replace the estimation of CPC q(zi) in Eq. (9) with the estimation of GMM
cleaner q(z′i) and justify q(z′i) can be considered as an approximate to q(zi). To investigate if the
approximation holds in practical, we calculate the K-L Divergence as well as classification consis-
tency between q(z′i) and q(zi). As shown in Figure 4, as the training going on, the KLD between
q(z′i) and q(zi) is converged and the classification consistency increases.

A.4.2 TRAINING PROTOTYPES WITH LC IS AN APPROXIMATION TO THE M-STEP IN EM

As illustrated in Section 4.3, in order to introduce the “small-loss prior” to provide stronger and
more robust supervision signals to the learning of CPC, in the E-step, we estimate the probability
distribution of clean or unclean of samples, denoted as q(z′i), via the GMM cleaner, which is an
approximation to the q(zi) in Eq. (8). And consequently, we replace the q(zi) in Eq. (9) with q(z′i)
and find the prototype C to minimize the bound, which makes the loss function LC in Eq. (5) an
approximation to Eq. (9). The detailed analysis on the relationship between Eq. (5) and Eq. (9) is as
follows.

Firstly, we replace the estimation of CPC q(zi) in Eq. (9) with the estimation of GMM cleaner q(z′i)
which is a justified approximate to q(zi):

Cnew = argmin
C

−
∑
D

∑
zi∈{0,1}

q(zi) log p(yi|C, xi)

≈ argmin
C

−
∑
D

∑
z′
i∈{0,1}

q(z′i) log p(yi|C, xi)

= argmin
C

−
∑
D

[q(z′i = 0) log p(yi|C, xi) + q(z′i = 1) log p(yi|C, xi)]

(14)

In Eq. (5), q(z′i) is quantified to 1 and 0 by the threshold τ , which makes it a “hard” version to
Eq. (14). Specifically, the first term in Eq. (14) updates the prototypes C to better align the samples,
that classified as clean, with labeled class prototypes. It is equivalent with the effect of Eq. (5) to
positive samples, where:

l = log(sigmoid(v′ic
⊤
k )), k = yi, z

′
i = 0 (15)

where v′i is the embedding of sample xi. The second term in Eq. (14) updates C to prevent the
samples, that classified as noise, aligning with labeled class prototypes so as to better recognize the
sample as noise (i.e., z′i = 1), which is equivalent with the effect of Eq. (5) reducing the probability
of negative samples to be recognized as clean:

l = log(1− sigmoid(v′ic
⊤
k )), k = yi, z

′
i = 1 (16)

A.5 ILLUSTRATION TO THE OVERALL FRAMEWORK

In this paper, we plug CPC to the popular DivideMix framework. We delineate the overall training
framework in Alg.1.
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Algorithm 1 CPC based DivideMix

1: Input: Dataset D = (X,Y ), DNNs θ(1), θ(2), CPC with class prototypes C(1), C(2), clean
probability τ , CPC warm-up period e.

2: θ(1), θ(2) = WarmUp(X,Y, θ(1)), WarmUp(X,Y, θ(2)) //standard training to warm-up DNNs

3: while epoch < MaxEpoch do
4: // get GMM cleaners by loss distribution modeling and calculate clean/noise probability dis-

tribution
5: Q(2)(Z ′) =GMM(X,Y, θ(1))
6: Q(1)(Z ′) =GMM(X,Y, θ(2))
7: // calculate clean/noise probability distribution via CPC
8: Q(2)(Z) =CPC(X,Y, θ(1), C(1))
9: Q(1)(Z) =CPC(X,Y, θ(2), C(2))

10: for r ∈ {1, 2} do
11: // stage1 begin
12: XGMM(r) = {(xi, yi, wi)|wi = q(r)(z′i = 0), q(r)(z′i = 0) > τ, (xi, yi) ∈ D, q(r)(z′i =

0) ∈ Q(r)(Z ′ = 0)}
13: UGMM(r) = {xi|q(r)(z′i = 0) ≤ τ, xi ∈ X, q(r)(z′i = 0) ∈ Q(r)(Z ′ = 0)}
14: Get noise labels {yi|(xi, yi) ∈ D,xi ∈ UGMM(r)}
15: Update Ck based on Eq.5
16: // stage1 end
17: // stage2 begin
18: if epoch < e then
19: X (r) =XGMM(r),U (r) = UGMM(r) //use data partition from GMM cleaner to

update DNNs during the CPC warm-up period
20: else
21: X (r) = {(xi, yi, wi)|wi = q(r)(zi = 0), q(r)(zi = 0) > τ, (xi, yi) ∈ D, q(r)(zi = 0) ∈

Q(r)(Z = 0)}
22: U (r) = {xi|q(r)(zi = 0) ≤ τ, xi ∈ X, q(r)(zi = 0) ∈ Q(r)(Z = 0)}
23: end if
24: Update θr based on Eq.11 as in standard DivideMix
25: // stage2 end
26: end for
27: epoch← epoch+ 1
28: end while
Output: DNNs θ(1), θ(2)
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