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ABSTRACT

The generalization of Deep Neural Networks (DNNs) to Riemannian mani-
folds has garnered significant attention across various scientific fields. Re-
cent studies have demonstrated that several manifolds, including hyperbolic,
spherical, Symmetric Positive Definite (SPD), and Grassmann manifolds, ad-
mit gyro-structures—powerful algebraic structures that enable the principled ex-
tension of DNNs to manifolds. Inspired by these advancements, we introduce
a novel gyro-structure for SPD manifolds, leveraging the flexible and power-
ful Power-Euclidean (PE) geometry. Moreover, full-rank correlation matrices,
which are scale-invariant, serve as compact representations of SPD manifolds.
Consequently, we propose two novel gyro-structures for correlation matrix mani-
folds, based on two theoretically and empirically convenient metrics: Euclidean-
Cholesky (EC) and log-Euclidean-Cholesky (LEC) geometries. Extensive experi-
ments on knowledge graph completion tasks validate the effectiveness of our pro-
posed gyro-structures.

1 INTRODUCTION

Deep Neural Networks (DNNs) have driven significant progress across numerous areas (Krizhevsky
et al.l 2012} |[He et al., 2016} Vaswani et al, [2017). Typically, DNNs operate under the assump-
tion that data conform with Euclidean geometry. However, in many scientific fields, data possess
a strongly non-Euclidean latent structure, such as Riemannian manifolds (Bronstein et al., |2017).
Therefore, substantial efforts have been made to extend DNNs to manifolds (Huang & Van Gool,
2017;|Huang et al.,[2018}; Brooks et al., 2019;|[Nguyen et al.,[2019;Wang et al.,[2021;|Nguyen, 2021}
Chen et al., [2023} [2024a}; [Wang et al.| 2024bja)). Recently, several manifolds has been proven to ad-
mit gyrovector structures (Nguyen, [2022; {Ungar, 2005)), which naturally extends the Euclidean vec-
tor structure. Leveraging gyro-structures, several typical DNNs have been generalized into different
geometries in a principled manner. Such manifolds include matrix manifolds, such as Symmetric
Positive Definite (SPD) (Nguyen, 2022; Nguyen & Yang}|2023)), Grassmann (Nguyen, [2022), Sym-
metric Positive Semi-definite (SPSD) manifolds (Nguyen & Yang, [2023)), and constant curvature
spaces, such as hyperbolic (Ganea et al., 2018} |Shimizu et al., 2020) and spherical (Skopek et al.,
2019) manifolds.

As shown by [Cruceru et al.| (2021); Nguyen et al.| (2024), matrix manifolds such as the SPD mani-
fold, provide a compelling balance between structural richness and computational feasibility, serving
as appealing alternatives to hyperbolic spaces. [Nguyen| (2022) identified three gyro-structures over
the SPD manifold based on Affine-Invariant (AI) (Pennec et al.,2006)), Log-Euclidean (LE) (Arsigny
et al., 2005), and Log-Cholesky (LC) (Lin, 2019) metrics. Apart from the above metrics, Power-
Euclidean (PE) metric (Dryden et al., 2010) has also shown promising performance in different
applications |Li et al.[(2017);|Wang et al.|(2020); [Chen et al.|(2024cb). However, the gyro-structure
under PE geometry remains unexplored.

On the other hand, the manifold of full-rank correlation matrices has recently garnered increasing
attention, as it provides a normalized, compact representation of the SPD manifold (David & Gul,
2019; Thanwerdas & Pennecl [2022b). Since full-rank correlation matrices are scale-invariant, they
are particularly effective for representing data where scale is irrelevant to the problem (Thanwerdas)
2024])). In domains such as Diffusion Tensor Imaging (DTI) (Pennec et al., 2006), Brain-Computer
Interfaces (BCI) (Jalili & Knyazeval [2011;|Barachant et al., 2013)), and Gaussian graphical networks
(Epskamp & Fried, |2018)), using correlation matrices instead of covariance matrices is both natural
and effective. Recently, several Riemannian structures have been proposed for full-rank correla-
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tion matrices, including the Euclidean-Cholesky (EC) and Log-Euclidean-Cholesky (LEC) metrics
(Thanwerdas & Pennec, 2022b)). This motivates us to further explore algebraic gyro-structures for
full-rank correlation matrices.

Based on the above discussions, we propose a novel SPD gyro-structure based on PE geometry
alongside two new gyro-structures for full-rank correlation matrices induced by EC and LEC ge-
ometries, respectively. On the SPD manifold, as the PE metric converges to the LE metric when
the matrix power approaches zero, the proposed PE gyrovector structure naturally recovers LE gyro
space. We expect the proposed PE gyro-structure to provide a flexible alternative to the existing LE
gyro space. Regarding correlation matrices, we emphasize that these two proposed gyro-structures
are the first to be introduced for this manifold. We anticipate that these algebraic structures will ad-
vance deep learning over correlation matrices. In summary, our main contributions are summarized
as follows:

e SPD gyro-structure based on PE geometry. We propose a novel SPD gyro-structure
under the PE geometry, which recovers the LE gyro when power tends to 0.

e Two novel correlation gyrovector structures. Inspired by correlation matrices as the
compact alternatives of the vanilla covariance matrices, we propose two novel gyro-
structures for full-rank correlation matrices, induced by the theoretically and computation-
ally efficient EC and LEC metrics.

o Empirical validation in knowledge graph completion tasks. We validate the effective-
ness of our approach through extensive experiments on knowledge graph completion tasks,
demonstrating the effectiveness of our algebraic gyro structures.

Main theoretical results. Lem.[3.T|and Lem. [3.2]introduce the binary operation and scalar multipli-
cation under SPD manifolds based on the PE geometry, respectively. We then define the SPD gyro-
structure under the PE geometry in Thm. Additionally, we propose two new gyro-structures
for full-rank correlation matrices induced by EC and LEC geometries. The corresponding binary
operation and scalar multiplication are provided in Lem. [5.1] Lem.[5.4] Lem.[5.4|and Lem.[5.5] The
definitions of gyrovector space are presented in Thm. and Thm. [5.6] Due to page limits, all the
proofs are placed in App.[C]

2 PRELIMINARIES

2.1 GYROVECTOR SPACES

Gyrovector spaces naturally extend the vector structures into manifolds (Ungar, 2005; [2014; 2022
Nguyen, 2022)). We briefly review gyrogroups and gyrovector spaces in the following. For more
in-depth discussions, please refer to|Ungar (20055 20125 2014)).

Definition 2.1 (Gyrogroups (Ungar, 2014)). A pair (G,®) is a groupoid in the sense that it is
a nonempty set, G, with a binary operation, ®. A groupoid (G,®) is a gyrogroup if its binary
operation satisfies the following axioms for a, b, c € G-

(G1) There is at least one element e € G called a left identity such that e & a = a.
(G2) There is an element Sa € G called a left inverse of a such that ©a & a = e.
(G3) There is an automorphism gyr|a, b] : G — G for each a,b € G such that
a® (bdc)=(adb)®gyrfa,blc (Left Gyroassociative Law). (1)
The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b.

(G4) gyr|[a, b] = gyr[a & b, b] (Left Reduction Property).
Definition 2.2 (Gyrocommutative Gyrogroups (Ungar, 2014)). A gyrogroup (G, @) is gyrocommu-
tative if it satisfies

a®b=gyr[a,b](bda) (Gyrocommutative Law). (2

Building on this foundation, some researchers expanded the concept (Kim, 2015} |2016; [2020a;b).
The work in [Nguyen| (2022)) proposed a more rigorous definition of gyrovector spaces and key
operations on them.
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Definition 2.3 (Gyrovector Spaces (Nguyen, [2022)). A gyrocommutative gyrogroup (G,®)
equipped with a scalar multiplication

(t,z) >tz :RxG—=G 3)
is called a gyrovector space if it satisfies the following axioms for s,¢ € R and a, b, c € G:
VD)1oa=a,00a=t0e=¢c,and (—1) ® a = Sa.
V2) (s+t)©a=s0adtOa.
(V3) (st) ®a=s0 (tO®a).
(V4) gyrla, b](t @ c) =t © gyr|a, blc.
(V5) gyr[s ® a,t ® a] = I, where I is the identity map.

Given a manifold M, the gyro operations can be defined by the following definition.

Definition 2.4 (Gyro Operations (Nguyen, 2022))). Let P,Q, R € M, t € R and I denotes the
identity element in M, the gyro operations, such as binary operation, scalar multiplication and
gyroautomorphism, are defined as:

P& Q= Expp (I'i-p (Log; (Q))) “4)
t ® P = Exp;(tLog;(P)), &)
gyr[P.QIR= (6 (Po Q))& (Pa(QaR)). (6)

If a groupoid (G, @) conforms with axioms of Defs. and it forms a gyrocommutative gy-
rogroup. When endowed with the scalar multiplication ®, and if (G, ®, ®) satisfies with axioms of
Def. it further forms a gyrovector space.

2.2  GEOMETRIES OF SPD AND FULL-RANK CORRELATION MATRICES

The SPD geometry: The space of SPD matrices forms a manifold, known as the SPD manifold
(Arsigny et al.l [2005), which has been successfully applied in various fields (Huang & Van Gool,
2017; Brooks et al., 2019} [Sukthanker et al., 2020; Nguyen, [2022). To respect the non-Euclidean
geometry, several Riemannian structures on the SPD manifold were proposed (Pennec et al., 2006;
Arsigny et al.l 2005 [Lin, 2019; |Bhatial [2009; Thanwerdas & Pennec| 2022a). Due to the fast
computation speed and theoretical convenience of the Power-Euclidean (PE) metric, and when the
power tends to 0, this metric approaches the Log-Euclidean (LE) metric, building a bridge between
Euclidean and LE metrics. Based on the above advantages, the PE metric has already seen successful
applications in other fields (Zhou & Miiller| |2022; [Pennecl [2020; [Pereira et al., 2024)).

The correlation geometry: Full-rank correlation matrices, known as the open elliptope, have re-
cently been described as a quotient manifold of SPD matrices due to the smooth, proper, and free
congruence action of positive diagonal matrices (David & Gu, [2019). Specifically, a full-rank cor-
relation matrix is obtained by dividing the covariance matrix by the standard deviation of each
variable. Some applications can benefit from the well-suited geometric structure of this manifold,
such as Brain Connectomes (Varoquaux et al., |2010), Gaussian graphical networks (Epskamp &
Fried, |2018)) and Phylogenetic trees (Garba et al., [2021). However, its geometry has been much
less studied than that of SPD matrices. Recently, some researchers proposed some metrics based on
full-rank correlation matrices: Euclidean-Cholesky (EC) and log-Euclidean-Cholesky (LEC) met-
rics (Thanwerdas & Pennecl|2022b)). The basic operators based on different metrics are summarized

in App.
2.3 NOTATION

The homogeneous Riemannian manifold is denoted as M, T'» M is the tangent space at P € M and
gp(-,-) is the Riemannian metric at P € M. Logp(-) and Expp(-) as the Riemannian logarithm
and Riemannian exponential at P, exp(P) and log(P) as the usual matrix exponential and logarithm
of P, T'p_,qo(W) as the parallel transport of a tangent vector W € Tp M from P to ) € M along
geodesics connecting P and (), d(-,-) as the geodesic distance, respectively. Denote by M,, ,,, the
space of n x m matrices, Sym, the space of n x n SPD matrices, Sym,, the space of n x n
symmetric matrices, Gr,, ,, the p-dimensional subspaces of R™, Cor;!" the space of n x n full-rank

correlation matrices, LT,(,)L the space of the lower triangular part of n X n matrices with null diagonal
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elements, LT:L the space of the lower triangular part of n X n matrices with unit diagonal elements,
Hol,, the space of n x n symmetric matrices which diagonal elements are 0. Other notations will be
introduced in appropriate paragraphs. Our notations are summarized in App. [A]

3 PE GYROVECTOR SPACES OVER SPD MATRICES

This section investigates the gyro-structure of SPD manifolds based on PE geometry and uncovers
the hidden connection between SPD manifolds in PE geometry and Euclidean space. As shown by
Dryden et al.|(2010), the PE metric recovers the LE metric with the matrix power approaching zero.
In this sense, PE geometry can be viewed as a balanced metric of the vanilla LE metric. Furthermore,
this metric enjoys theoretical and computational convenience. As shown by App.|B} the associated
Riemannian operators, such as exponential & logarithm maps and parallel transport, have simple
closed-formed expressions. This motivates us to explore the gyro-structure of SPD manifolds with
the power-Euclidean (PE) geometry. As the PE exponential map at the identity matrix ExpI(-)
is defined locally, the PE gyro addition and scalar product are well-defined only if the involved
exponential map is well-defined.

Lemma 3.1. || For P,Q € Sym,!, the binary operation P @pe Q is given as

1
P@pe Q= (P"+ Q% —1,)* ,P*+ Q" — I, € Sym,, (M
where I, is the n X n identity matrix.

I, is the identity element of Sym;f. Thus, using Eq. , we can obtain the inverse of P which is
given by

&P = (21, — P*)% 21, — P* € Sym?. 8)
Lemma 3.2. For P € Sym, and t € R, the scalar multiplication t Qpe P is given as

t @pe P = (tP* + (1 — t) )" ,tP™ + (1 —t) I,, € Sym]'. )

Similar to the gyrovector spaces on the Grassmann manifold (Nguyen) |2022), in the following, we
implicitly assume the PE §yr0 operations are well-defined.
Theorem 3.3. [M] (Sym,’, ®pe) forms a gyrocommutative gyrogroup. Endowed with the scalar

multiplication ®p., (Sym, Bpe, Ope) further forms a gyrovector space.

4  MERITS OF CORRELATION MATRICES

The full-rank correlation matrices have been successfully applied across various fields (Varoquaux
et al.| 2010; [Epskamp & Fried, 2018};|Garba et al., |2021). However, their geometry has received far
less attention compared to that of SPD matrices. A correlation matrix is obtained from the covari-
ance matrix by dividing by the standard deviation of each variable. Specifically, for an invertible
covariance matrix P = (Cov (X;, X)) € Sym,! of a random vector X. the corresponding

1<i,j<n
correlation matrix C is given by
Xi, X
C = Cor (X;, X;) = Cov ( )
V/Cov (X;, X;)/Cov (X;, X;) 10
P;; _1 1
= ——7_— = [Diag (P)" 2 PDiag (P)” 2}, ;,

where Diag(P) is the diagonal matrix of the same size as matrix P. Thus, it is often viewed as
a quotient manifold of the SPD manifolds by the space of positive diagonal matrices and often
considered as covariance matrices on which one can use the classical tools. It is unreasonable to
directly apply the SPD metric to the full-rank correlation matrix. First, because correlation matrices
have strong diagonal constraints (diagonal elements equal to one), SPD metrics cannot enforce these
constraints. Additionally, correlation matrices are not stable under the action of the orthogonal
group, unlike covariance matrices, which are invariant under transformations of the form P —
OT PO, where O is an orthogonal matrix. Consequently, O(n)-invariant metrics on SPD matrices,
such as the Al metric, are not applicable to full-rank correlation matrices. Furthermore, compared
to the SPD matrix space, the space of full-rank correlation matrices is more compact (Thanwerdas),
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2024). For two different covariance matricesP;, P, € Sym.!, using Eq. (10), their corresponding
correlation matrix may be the same. For example, we choose

Pt el 0

Their corresponding correlation matrices can be calculated as follows:

. -1 . -1 05 0|4 2|05 0 1 1
Cy = Diag (P) 2 PDiag(P) 2 = {0 1} {2 1} {0 1} = [1 1} , (12)
|t 0jf1 o5(|1 0} |1 1 (13)
10 V2|05 050 V2| |1 1|”
Additionally, assume two pairs of points P; ~ P, and ()1 ~ ()1 on the SPD manifolds. Their
corresponding correlation matrix will be the same, i.e.,

N[

C, = Diag (Q) ™% QDiag (Q)~

Nl=

Diag (P,)” ¢ P,Diag (P)”? = Diag (P,) % P,Diag (P2) "¢, (14)
Diag (Q1)”* Q1 Diag (Q1) * = Diag (Q2) * Q>Diag (Q2) * . (15)

When using metrics on SPD manifolds, such as the widely used LE and LC metrics, the distance
d(P1,Q1) # d(Ps,Q2). While the distances might be equal under the Al metric, they can dif-
fer when applying other operations. Let’s take the logarithmic mapping as an example. Due to
Tp,Sym,” # Tp,Sym, it is straightforward to show that Logp, Q1 # Logp,Q2. Therefore, we
use the metrics on SPD manifolds to operate it, and the results will be different. However, within the
space of correlation matrices, P1 and P2 as well as Q1 and Q)2 become the same correlation ma-
trices. This implies that fundamental operations—such as matrix operations, exponential mappings,
and logarithmic mappings—will yield the same results. This also demonstrates that the correlation
matrix space is more compact, indicating that correlation matrices might capture more compact sta-
tistical information. This motivates us to explore correlation matrices and extend the gyrovector
spaces to correlation matrix manifolds.

5 GYROVECTOR SPACES OF FULL-RANK CORRELATION MATRICES

Compared to SPD matrices, the geometry of full-rank correlation matrices has been less studied.
In this subsection, we explore the gyro-structure of full-rank correlation matrix manifolds under
Euclidean-Cholesky (EC) and log-Euclidean-Cholesky (LEC) geometries.

5.1 EC GYROVECTOR SPACES

The Cholesky map has already been applied to SPD matrices (Wang et al.| [2003). To extend
this to correlation matrices, the EC metric on full-rank correlation matrices was recently proposed
(Thanwerdas & Pennec} [2022a)) with much faster computations (Thanwerdas & Pennec| [2022a)).
Therefore, it is valuable to explore the gyro-structure of full-rank correlation matrix manifolds
based on the EC geometry. Let Diag(P) denote the diagonal matrix of the same size as matrix
P, and Chol(P) represents the lower triangular matrix obtained from the Cholesky decomposition
of matrix P € Cor;'.

Lemma 5.1. For P,Q € Cor}", the binary operation P ®,. Q is given as

P&®.Q=2 (Diag (Chol (P)) ™" Chol (P) 4 Diag (Chol (Q)) ™" Chol (Q) — In) . (16)
where ®(X) = Diag(XXT)~2 X XTDiag(X XT)~2, I,, is the n x n identity matrix.

I, is the identity element of Cor:. Thus, using Eq. , we can obtain the inverse of P which is
given by

SecP = @ <2In — Diag (Chol (P)) ™! Chol (P)) . 17)
Lemma 5.2. For P € Cor,l and t € R, the scalar multiplication t ®.. P is given as
t @ P = (tDiag (Chol (P)) ™" Chol (P) + (1 — t) In) . (18)

Theorem 5.3. (Cori7 Bec) forms a gyrogroup. Endowed with the scalar multiplication ®e.,
(Cor, ®ee, ®ec) further forms a gyrovector space.
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5.2 LEC GYROVECTOR SPACES

Since the matrix logarithm is a smooth diffeomorphism from LT. to LT?, the EC metric can be
extended to the Log-Euclidean-Cholesky (LEC) metric by matrix logarithm. Under this metric, we
can obtain the associated gyro-structures.

Lemma 5.4. For P,Q € Cor}, the binary operation P ®.. Q is given as

n’
P @ec Q@ = ® 0 exp (log (Diag (Chol (P)) ™" Chol (P)) + log (Diag (Chol (Q)) " Chol (Q))), (19)
where ®(X) = Diag(XXT)~2 X XTDiag(XX7T)~2, I, is the n x n identity matrix.

I,, is the identity element of Cor,". Thus, using Eq. , we can obtain the inverse of P which is
given by

StecP = P71 (20)
Lemma 5.5. For P € Cori and t € R, the scalar multiplication t Q. P is given as
t ®jec P = P'. 1)

Theorem 5.6. || (Cor,f , Plec) forms a gyrogroup. Endowed with the scalar multiplication ®je.,
(Corl, Biee, Riee) further forms a gyrovector space.

6 EXPERIMENTS

To demonstrate the effectiveness of the proposed method, we apply it to learning entity and rela-
tion embeddings within the SPD and full-rank correlation matrix manifolds for knowledge graph
completion tasks.

6.1 GYRO FOR KNOWLEDGE GRAPH COMPLETION

Problem Formulation: Knowledge graphs (KGs) represent heterogeneous knowledge as triples of
the form (subject, relation, object), where the subject and object denote entities, and the relation
describes the interaction between them (Balazevic et al., |2019). KGs exhibit complex and diverse
structures, with entities connected by symmetric, antisymmetric, or hierarchical relations. As KG is
often incomplete, the goal is to predict missing links and identify valid but unobserved connections.
Let F = (£,R,T) represent a knowledge graph, where £ is the set of entities, R is the set of
relations, and 7 C £ x R x & is the set of triples stored in the graph. The typical approach is to
learn a scoring function ¢ : £ x R x & — R that evaluates the likelihood of a triple being true,
enabling accurate ranking of missing triples. To achieve this, we propose learning entity embeddings
within the SPD and full-rank correlation manifolds.

Scoring Model: Our model learns a scoring function given below
dles,m,e0) = —d((A® S) ® R, 0)* + by + b, (22)

where S, O represent embeddings, bs, b, € R are respectively scalar biases for the subject and object
entities, and A, R are two matrices that depend on the relation . The scaling transformation (matrix
scaling) ® is defined as

A® S = Exp;(AxLog;(95)), (23)

where * denotes the Hadamard product, A here signifies the tangent vector of matrix manifolds. For
the SPD manifold, A € Sym,,, while A € Hol,, in the case of full-rank correlation matrix manifold.

Product manifold-based Fusion mechanism: Our methods combine with the recently proposed
gyro-structure of Grassmann manifolds (Nguyen,[2022)). Inspired by Balazevic et al.|(2019); Nguyen
(2022)), we train the entity embeddings on two product manifolds, i.e., Gryq 5 X Sym:lr2 and Gty p X
Cor;,. The binary operation & on these manifolds is defined as

(Pspdv Pgr) S (Rspd; Rgr) = (Pspd EBspd Rspd7 Pgr @gr Rgr)a (24)
(Pcor; Pgr) ¥ (Rcora Rgr) - (Pcor DBeor Rcora Pgr @gr Rgr)7 (25)
where Pspq, Ropa € Sym:ZQ, P.ory Reor € CorZQ, and Py, Ry € Grz1 . The symbols ©,pq

and @, respectively denote the binary operations under the SPD and full-rank correlation matrix
manifolds, while @, signifies that of the Grassmann manifolds (Nguyen, 2022, Sec 3.2).
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Table 1: The necessary operators in the network based on the different metrics.

Manifold | SPD | full-rank correlation matrices
Metric | PE metric | EC metric | LEC metric
Tangent vector | Sym,, | Hol,, | Hol,,
Exp,(W) | (P°+L)" | @+ LWJ) | exp(1V)
PeR | (PP+R°—1,)% | ®(O(P)+ 2) | @ oexp (log (O (P)) +log (© (R)))
A®S | (AS*4+I,—A)7 | (40 (S)+1,—A) | ® o exp (Alog (0 (9)))
dP,R) | IP*=R | |O®R) -6 | |log(O(R))-log(O(P))]

The corresponding scalar operation ® on these manifolds is formulated as

(Aspd7 AQT) & (Sspda Sgr) = (Aspd ®spd Sspda Agr ®gr Sgr)a (26)
(A(‘OT‘7 Agr) (SCOT'y S ) = (Acor ®co7' Sco7'7 Agr ®gr Sgr); (27)
where S;pq € Syan, Secor € CornQ, Sgr € Grnlp, Aspa € Sym,,5, Acor € Holpo, and Ay, €
Gr ;,nkp are six matrices associated with the relation r. The symbols ®,q and ®.,, respectively

represent matrix scaling operations under the SPD and full-rank correlation matrix manifolds, while
®gr denotes the corresponding operation on the Grassmann manifolds (Nguyen, 2022, Sec. 4.2.2).

Similarly, the distance functions d(-, -) on these manifolds are defined as
d ((Pspd7 Pgr) s (Rspdv Rgr)) = ndspd (Pspd7 Rspd) + dgr (Pgra Rgr) s (28)
d ((PCOT‘a Pgr) ) (Rcor7 Rgr)) = ndcor (Pcm“7 Rcor) + dgr (Pgr7 Rgr) 5 (29)

where 7 is a constant, dgpq(-,-) and deor (-, -) respectively signify the distance functions under the
SPD and full-rank correlation matrix manifolds, while dg. (-, -) represents the corresponding func-
tion under the Grassmann manifolds (Nguyen, 2022, Sec 4.2.2). We summarize the necessary oper-
ators involved in the proposed model in Tab. [1} where ©(X) = Diag (Chol (X)) Chol (X) and
| W | denotes the strictly lower triangular terms of .

6.2 DATASETS AND EXPERIMENTAL SETTINGS

We evaluate the performance of the proposed method on two benchmarking datasets: WN18RR
(Bordes et al.| 2013} |Dettmers et al., [2018)) and FB15k-237(Bordes et al., 2013; Toutanova & Chen,
2015). The WN18RR dataset is a subset of WordNet (Miller, [1995), a hierarchical collection of
relations between words. It was created from WN18 (Bordes et al.,2013) by removing the inverse of
many relations from the validation and test sets, making the dataset more challenging. This datasets
consists of 93,003 triples, featuring 40,943 entities and 11 relations. The FB15k-237 dataset, a
subset of Freebase (Bollacker et al., 2008)), is derived in a manner akin to WN18RR (Bordes et al.,
2013)), containing 14,541 entities and 237 relations.

Following the criterion in [Lopez et al.| (2021), we use binary cross-entropy loss as the training
objective and AdamW optimizer for 5000 epochs. Each batch contains 4,096 samples, with 10
negative samples per positive instance. For evaluation, we adopt the mean reciprocal rank (MRR)
and hits at K (H@K, where K = 1, 3, 10) metrics to assess the proportion of correctly ranked entities
within the top K positions (Lopez et all [2021; Nguyen, |2022). To ensure model efficiency, early
stopping is triggered when the MRR on the validation set does not improve after 500 consecutive
epochs. The model checkpoint with the highest MRR on the validation set are used for subsequent
testing. For our proposed product manifold-based models, we set the candidate sets of 7, learning
rate, and weight decay to {0.5,1,1.5}, {be — 4,1e — 3,2.5e — 3}, and {le — 2,1e — 3,1e —
4,1e — 5}, respectively. All experiments are run on a PC equipped with an i9-13900HX CPU and
16GB of RAM. Despite the code’s compatibility with GPUs, leveraging GPU resources does not
expedite training due to the dominance of eigenvalue operations, which is identified as the primary
computational bottleneck (Lopez et al., [2021)).

Drawing inspiration from |(Chami et al.| (2019)); Lopez et al.|(2021), we use trivialization via the Rie-
mannian exponential map to optimize non-Euclidean parameters (Lezcano Casadol 2019). Specifi-
cally, each SPD parameter is modeled by a symmetric matrix via the exponential map at the identity
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Table 2: Results on the WN18RR dataset

Model MRR | H@1 | H@3 | H@10 | Lime (seconds)
Train/epoch | Test
SPDY_ 417 | 365 | 445 | 511 206 621.0
SPD’ 408 | 363 | 429 | 495 29.6 617.2
SPDE " 24 | 84 | 334 | 473 20.8 618.9
SPD’, 265 | 18.1 | 307 | 429 29.8 616.5
SPDE 410 | 37.1 | 427 | 476 30.1 613.1
SPDEL 397 | 359 | 415 | 463 30.1 611.4
GyroGRLE-KGCNet | 415 | 353 | 449 | 52.1 9.5 5.4
GyroECGR-KGCNet | 42.6 | 373 | 452 | 516 9.0 92
GyroLECGR-KGCNet | 429 | 37.6 | 459 | 51.8 10.0 14,6
GyroPEGR-KGCNet | 44.4 | 39.3 | 46.8 | 53.4 272 147

Table 3: Results on the FB15k-237 dataset

Model MRR | H@1 | H@3 | H@10 | Lime (scconds)
Train/epoch | Test
SPDE._ 205 | 21.0 | 323 | 463 91.9 14352
SPDI 201 | 197 | 306 | 45.1 91.9 1445.9
SPDE 200 | 202 | 317 | 465 927 1419.4
SPD, 278 | 190 | 303 | 447 927 1416.8
SPDIt 281 | 199 | 306 | 447 92.9 1410.8
SPDEL 271 | 190 | 294 | 431 92.9 1408.6
GyroGRLE-KGCNet | 29.2 | 205 | 32.1 | 467 26.8 12.3
GyroECGR-KGCNet | 29.8 | 21.2 | 32.5 | 470 774 214
GyroLECGR-KGCNet | 29.6 | 21.0 | 32.4 | 47.0 27.6 27.8
GyroPEGR-KGCNet | 29.7 | 21.0 | 32.6 | 47.3 82.4 32.5

matrix. For full-rank correlation parameters, we model them in the tangent space at the identity, i.e.,
TrCor," = Hol,, followed by applying the exponential map at this point. This formulation enables
all parameters to be optimized through standard Euclidean techniques, thereby circumventing the
numerical instability often associated with Riemannian optimization (Bécigneul & Ganeal 2018;
Lopez et al., [2021).

6.3 RESULT

We compare our method with SPD models, which use three feature transformations (scaling, rotation
or reflection) and two distance metrics (the Finsler One metric and the Riemannian metric) (Lopez
et al |2021), as well as with GyroGRLE-KGCNet (Nguyen, |2022). Following |[Nguyen| (2022), our
models with 21 degrees of freedom (DOF) learn embeddings in Sym; x Grj 5 and Cors x Grp ».
For fairness, we keep the DOF of all models equal, allowing SPD models to learn embeddings in
Symg and GyroGRLE-KGCNet to learn embeddings in Sym; x Grs,2. Tab.|2|and Tab. repre-
sent the result of our models on the WN18RR and FB15k-237 datasets. Our models outperform the
SPD models and GyroGRLE-KGCNet in the WN18RR and FB15k-237 datasets, achieving higher
MRR, H@1, H@3, and H@10 scores. The proposed model GyroPEGR-KGCNet shows a signifi-
cant improvement over GyroGRLE-KGCNet on both datasets, with MRR, H@ 1, H@3, and H@10
being 2.9%, 4.0%, 1.9%, and 1.3% higher on the WN18RR dataset, and 0.5%, 0.5%, 0.5%, and
0.6% higher on the FB15k-237 dataset. Compared to the SPD models, our models have a clear
advantage in computation time. However, our GyroPEGR-KGCNet model requires more time than
the GyroGRLE-KGCNet model due to the involvement of Singular Value Decomposition (SVD).
Specifically, when learning the score function in each epoch, it involves four SVD-based matrix
functions with the time complexity of O(4aln3 ), where d, n denote batch size, the matrix dimen-
sion, respectively. Additionally, the proposed model based on the correlation matrix achieves higher
scores than the SPD models and GyroGRLE-KGCNet, which are modeled on SPD spaces, in most
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cases. This further demonstrates that correlation matrix spaces can capture richer geometric infor-
mation.

6.4 ABLATIONS

Table 4: Results on the WN18RR dataset

Model MRR | H@1 | H@3 | H@10 |._Lime (seconds)
Train/epoch | Test
GyroLE-KGCNet | 37.8 | 334 | 399 | 452 2.0 31
GyroGR-KGCNet | 115 | 59 | 11.1 | 250 6.5 2.8
GyroEC-KGCNet | 31.9 | 235 | 372 | 464 33 74
GyroLEC-KGCNet | 31.8 | 232 | 370 | 473 3.4 3.8
GyroPE-KGCNet | 39.6 | 34.0 | 43.0 | 488 20.8 12.0

Table 5: Results on the FB15k-237 dataset

Model MRR | H@1 | H@3 | H@10 |__1ime (seconds)
Train/epoch | Test
GyroLE-KGCNet | 260 | 177 | 283 | 431 7.0 54
GyroGR-KGCNet | 183 | 12:6 | 196 | 300 20.8 7.6
GyroEC-KGCNet | 27.0 | 188 | 295 | 435 78 147
GyroLEC-KGCNet | 269 | 187 | 295 | 433 8.0 19.4
GyroPE-KGCNet | 287 | 202 | 31.3 | 454 62.4 26.8

To further illustrate the effectiveness of our method, we implemented models that learn embeddings
in Sym;r and Cor;. A notable observation from Tab. E] and Tab. [5|is that, compared to GyroLE-
KGCNet and GyroGR-KGCNet, which learn embeddings in Sym5+ and Grs o, respectively, our
models demonstrate superior results on the WN18RR and FB15k-237 datasets. The performance
improvements are significant in all cases, highlighting the effectiveness of our approach.

Table 6: Results on the WN18RR dataset

Model MRR | H@1 | H@3 | H@10 |__1ime (seconds)
Train/epoch | Test
GyroECGR-KGCNet 26 | 373 | 452 | 516 9.0 9.2
GyroLECGR-KGCNet 429 | 376 | 459 | 51.8 10.0 14.6
GyroPEGR-KGCNet 444 | 393 | 468 | 534 27.2 14.7
GyroPRECGR-KGCNet | 45.3 | 39.7 | 47.8 | 54.9 30.9 252
GyroPELECGR-KGCNet | 452 | 39.8 | 47.7 | 54.8 31.0 27.4

In addition to learning embeddings in Sym7 x Grs o or Cory x Grso, we also explore learn-
ing embeddings in Sym7 x Sym7 x Grso. We conduct experiments on the WN8IRR dataset,
and the results are shown in Tab. 6| We can observe that the models GyroPEECGR-KGCNet and
GyroPELECGR-KGCNet which learn learning embeddings in Sym7 x Symy x Grs o, improve the
proposed models that learn embeddings in Sym7 x Grs 2 or Corg x Grs 5 in all the cases. This
proves the effectiveness of embeddings in product spaces of SPD, full-rank correlation matrices and
Grassmann manifolds.

7 CONCLUSION

In this paper, we extend the SPD gyro-structure into the PE geometry which recovers the existing
LE gyro space when power tends to 0. Besides, we also explore the geometric structure of correla-
tion matrices and propose two novel gyro-structures for full-rank correlation matrices, induced by
the theoretically and computationally convenient EC and LEC metrics. Extensive experiments on
knowledge graph completion tasks demonstrate the effectiveness of our algebraic structures.
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A  NOTIONS

For better clarity, we summarize all the notations used in this paper in Tab.

Table 7: Summary of notations.

Symbol | Explanation
M, m Space of n X m matrices
Sym; Space of n x n SPD matrices
Sym,, Space of n X n symmetric matrices
Sym,P¢ | Space of n x n SPD matrices with PE geometry
Cor," Space of n x n full-rank correlation matrices
Cor,e° Space of n x n full-rank correlation matrices with EC geometry
Cor:{’l“ Space of n x n full-rank correlation matrices with LEC geometry
Hol, Space of n X n symmetric matrices which diagonal elements are 0
LT, Space of the lower triangular part of n X n matrices
LT? LT,, with null diagonal elements
LT} LT,, with unit diagonal elements
M Homogeneous Riemannian manifold
TpM Tangent space at P € M
exp(P) Matrix exponential of P
log(P) Matrix logarithm of P
Chol(P) | Cholesky decomposition of matrix of P
| P| the strictly lower triangular terms of P
Diag(P) | Diagonal part of matrix of P
Expp(-) | Riemannian exponential map at P € M
Logp(-) | Riemannian logarithmic map at P € M
Tp_q(W) | Parallel transport of W from P to @ in M
da(-,-) Geodesic distance
gp(-y+) Riemannian metric at P € M
@®pe> Ope | Binary and inverse operations in Sym;’ ¢
®pe Scalar multiplication operations in Sym;"
@ec» Oce | Binary and inverse operations in Cor,
®Ree Scalar multiplication operations in Cor;/*°
Blec» Stee | Binary and inverse operations in Cor:’lec
Rlec Scalar multiplication operations in Cor," stee

B THE BASIC OPERATIONS BASED ON THE DIFFERENT METRICS

PE metric: For P,Q € Sym., W € TpSym., the key operations based on the PE metric (Dryden:
et al.,[2010) is given by

1
Riemannian distance: d(P, Q) = EHPQ -Q%,

Riemannian exponential map: Expp(W) = (P* + dppow,, (W))% )

Riemannian logarithmic map: Log»(Q) = (dppow,) ' (Q% — P%),

Parallel transport: I'p_,o (W) = (deOWQ)_l (dppow,, (W)).

(30)
€1y
(32)
(33)

EC metric: For P,Q € Cor,”, W € TpCor], the key operations based on the EC metric (Thanwer-
das & Pennec|, |2022b) is given by

Riemannian distance: d(P, Q) = [|©(Q) — O(P)]|
Riemannian exponential map: Expp(W) = 07!

Riemannian logarithmic map: Logp(Q

(©(P) +dpO® (W)),
(drO)~' (B(Q) - B (P)),
(

) =
Parallel transport: I'p_,q (W) = (dg®) ! (dp© (W)),

14

(34)
(35)
(36)
(37
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where ©(P) = Diag (Chol (P)) ™" Chol (P).

LEC metric: For P,Q € Cor;’,WW € TpCor,", the key operations based on the LEC metric

(Thanwerdas & Pennec|,2022b) is given by
Riemannian distance: d(P, Q) = || log (©(Q)) — log (6(P)) ||,
Riemannian exponential map: Exp (W) = ©~* o exp (log (O (
" (log (0 (Q)) — log (O (P)))
Parallel transport: I' p_, o (W) = (dg (log 00)) " (dplog o (W)),

Riemannian logarithmic map: Logp(Q) = (dp (log 00))”

where ©(P) = Diag (Chol (P)) ™" Chol (P).

C PROOFS OF THE PROPOSITIONS AND THEORIES IN THE MAIN PAPER

Proof of Lem. . Using the basic operations based on the PE metric , we can deduce that
P @pe Q = Expp (I'r,—p (Logy, (Q)))
= Bxpp ((dypow,) ™ (@7 — 1))
— (P* 4+ Q% —I,)~.

Proof of Lem.[3.2] . Using Egs. (31) and (32)), it is straightforward to see that
t® P =Exp; (tLog; (P))

= Bxp,, ((dznpow )7 (P~ 1)
= (tP* + (1 — 1)1,

Q\»—‘

(38)

P)) +dp (logc©) (W)), (39)

(40)
(41)

(42)

(43)

O

Proof of Thm. . The gyroautomorphism can be determined from the binary operations (Ungar,

2005;2012;2014). Using Eq. @, we can deduce that

VTpe [P, QIR = (Spe (P ©pe Q) Spe (P Bpe (Q Spe R))
= (9pe (P +Q~ —I,)~ ) Dpe (P Bpe (Q° + R* — 1))
(31, — P* — QO‘) Ope (P*+Q” + R* —2I,,)

(3L, —P*—Q*+P*+Q“+R*-2I, - I,)
= R.

—
~—

Q=

)

A
[\
=
Q=

Q=

e

The above derivation comes from the following.
(1) and (3) follow from Eq. (7).
(2) follows from Eq. (8).

(44)

We can deduce that gyr,,.[a, b] = I4. Next, we will prove that (Sym,!, @,.) forms a gyrogroup, i.e.,

it satisfies axioms G1, G2 G3, G4 and Gyrocommutative Law.

Axiom (G1)

Proof. For P € Sym:, we have

Q=

I ®pe P = (P*+ 1, — I,)* = P.
Therefore, I,, is a left identity in Sym,’.

Axiom (G2)

15

(45)
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1

Proof. For P € Sym}, let Q = (2I,, — P*)= € Sym;’, we have

1
o

Qpe P = (P + (2L - Pa)i)a -1,

= (P* +2I, — P* —I,,)%
= 1I,.

1

Therefore, Q = (21, — P*)™ is a left inverse of P.
Axiom (G3)

Proof. For P,Q, R € Sym:, we have

P @pe (Q @pe R) = P @ (Q + R — L))"
= (P*+ Q%+ R* —2I,)

Q=

Since gyr,,.[P, Q]R = R, we have

(P @pe Q) Dpe 8YTpe [P, QIR = (P ©pe Q) ©pe R
= (P +Q“—I,)" ®pe R

— (P* 4+ Q%+ R — 2I,,)~.

Therefore, P ©pe (Q ©pe R) = (P ©pe Q) Spe 2y, [P, QI R.
Axiom (G4)

Proof. For P,Q, R € Sym,", we have

gyrpe [P ®P5 Q? Q]R
= (epe (P Dpe Q Dpe Q)) Dpe ((P Dpe Q) Dpe (Q Dpe R))

= (G (P*+2Q" —21)% ) @y (P +Q" = [n)¥ @pe (Q° + B = 1)*)

= (4l — P* — 2Q%) % @pe (P™ +2Q% + R* — 31,)>

= (41, — P —2Q% + P® + 2Q“ + R* — 31, — I,,)
=R.

Q=

Therefore, gy, [P, QIR = gyr, [P ©pe Q, Q]R.
Gyrocommutative Law

Proof. Since we have proved that gyr,.[P, Q] = I, we have

gyrpe[P7 Q]<Q @Pe P) = Q @P@ P
= (QOL“‘POL_In)é
= P&, Q.

Therefore, it satisfies P @y Q = gyr,, [P, Q](Q ©pe P).

(46)

(47)

(48)

(49)

(50)

O

Thus, (Sym;}, ®,) forms a gyrogroup. Then, we will prove (Sym,", ., @) that endowed with
the scalar multiplication, further forms a gyrovector space i.e., satisfying axioms V1, V2, V3, V4,

V5 for gyrovector spaces.

Axiom (V1)

16
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Proof. Fort € Rand P € Sym,", we have

|
e

Pe+(1-1)1,)"
1

1®pe P = (
P=(I,)" =1,

(

(

0 @pe
t Qpe 1, = t[f; + (1 ft) In)
1@y P = (=P + (1= (=1)) I,)* = ,.P.

Axiom (V2)

Proof. For s,t € Rand P € Sym,", we have

Q=

(s+1t)@pe P=((s+t) P+ (1—(s+1)) I,)

(5 ®pe P) @pe (t @pe P) = (sP* + (1 = 8) [,)* Bpe (tP* + (1 — 1) I,))
=P+ (1—s)I, +tP*+(1—1t)I, —

1
a

=((s+t)P*+(1—(s+1)I,)
Therefore, (s + t) ®pe P = (5 Qpe P) Bpe (t Qpe P).

Axiom (V3)

Proof.

Q\)—‘

(st) @pe P = (stP“ 4 (1 —st) I,)
5 Qpe (t Ope P) = 5 Qpe tP* + (1 1) I,)
=(s@P*+(1=t)1n) + (1 =5)1n)
= (stP* + (1 — st) I,)
Therefore, (st) ®pe P = 5 Qpe (t Dpe P).

Q=

Q\H

Axiom (V4)

Proof. Fort € Rand P,Q, R € Sym,!, since we have proved that gyTpe [P, Q] = 14, we have
yrpe [Pv Q] (t ®P€ R) =1 ®P€ R=t ®;D€ gyrpe [P7 Q]R

Axiom (V5)

Proof. For s,t € Rand P, R € Sym, we have

yrpe[s ®pe P,t @pe PIR
= (Ope ((5 @pe P) Bpe (t Dpe P))) Dpe ((8 ®pe P) ®pe (t @pe P @pe R))

= (©pe (s 1) @pe P)) @pe (5P + (1= 8) L) ® Dpe (P + (1 = 1) L + R — L)% )

=(—(s+t)P*+ (s+t+1) )% Bpe (s +1) P* — (s +t) I + RY)a

=(—(s+t)P*+(s+t+ 1)1, +(s+t)P* —(s+t) I, + R* = I,)
= R.

Q=

Therefore, gy, (s ®pe Pyt @pe PIR =14

Thus, (Sym:; , Bpe, @pe) further forms a gyrovector space.
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Proof of Lem.[5]] . Using the basic operations based on the EC metric , we can deduce that
P ®ee Q = Expp (I'r,—p (Log;, (Q)))
= Expp ((4r0) ™ (0/(Q) ~ 1)) -

~1 (61)
- (Diag (Chol (P))~" Chol (P) + Diag (Chol (Q)) ™! Chol (Q) — In> ,
where ®(X) = ©~1(X) = Diag(XX7T)~ 2 X X Diag(X X7)~=. O
Proof of Lem.[5.2] . Using Egs. (33) and (36), it is straightforward to see that
t® P =Exp;, (tLog; (P))
= Expy, ((41,0)7" (£(O (P) ~ 1)) .
071 ((t0(P) + (1 - )1,) ©2
- (tDiag (Chol (P))~" Chol (P) + (1 — t) In) .
O

Proof of Thm. . The gyroautomorphism can be determined from the binary operations (Ungar,
2005520125 2014). Using Eq. @, we can deduce that

gyT. [P, QIR = (Sec (P Bec Q)) Bec (P Bec (Q Bec R))
L (0e (07O (P) +0(Q) — 1)) Bew (P e (071 (O(P) +0(Q) — 1))
2 (OB, -0(P)-0(Q) @ (071 (O(P)+0(Q) +O (R)—2I,))  (63)

Y o131, -0(P)-0(Q)+0O(P)+0(Q)+0O(R)—2I, —I,)
~R.

The above derivation comes from the following.
(1) and (3) follow from Eq. (T6).
(2) follows from Eq. (I7).

We can deduce that gyr,_[a, b] = I,. Next, we will prove that (Cor,", @..) forms a gyrogroup, i.e.,
it satisfies axioms G1, G2, G3, G4 and Gyrocommutative Law.

Axiom (G1)
Proof. For P € Cor,’, we have
I, ®ee P=0"1(,+6(P)-1,) =P. (64)

Therefore, I,, is a left identity in Cor:{. O

Axiom (G2)

Proof. For P € Cor!,letQ = ® (QIn — Diag (Chol (P)) ™" Chol (P)) =0(2I,-06(P)) ¢

Cor;", we have

Q@ecP:@il(@(Q)"i_@(P)_In)

=072, -0 (P)+0O(P)—-1,) (65)
=1,
Therefore, Q = O (2I,, — © (P)) is a left inverse of P. O
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Axiom (G3)

Proof. For P,Q, R € Cor:, we have

P Dec (Q DPec R) =P DBec (6_1 (@ (Q) + © (R) - In))
=071 (0(P)+0(Q)+O(R) - 2I,)

Since gyr,.[P, Q]R = R, we have
(P @ec Q) Dec 8YTee[P, QIR = (P Bec Q) Bec R

=(©71(O(P)+0(Q) —In) ®ec R
=071(0(P)+0(Q)+06(R)-2I).

Therefore, P @ (Q Beec R) = (P ®ec Q) Bee 8YTo. [P, Q)R
Axiom (G4)

Proof. For P,Q, R € Corj{, we have

gy [P Bec Q, QIR
= (Bec (P Bec Q Bec Q)) Pec (P Bee Q) Pec (Q ®ec R))
= (Gec (071 (O (P) +20(Q) — 21)))

Bee (071(O(P)+0(Q) — 1)) Bee (e L
= (07 (4L, — O (P) - 20(Q))) e (071 (O(
=R.

Therefore, gyr,.[P, Q]R = gyr..[P ®ec @, Q) R.
Gyrocommutative Law

Proof. Since we have proved that gyr,.[P, Q] = I, we have

gyrec[Pa Q](Q Bec P) = Q DBec P
— 0 (0(Q)+6(P) - I,)
=P P Q.

Therefore, it satisfies P @ Q = gyr, [P, Ql(Q @ec P).

0(Q)+ 6O (R) —1I.)))
P)+20(Q) + © (R) — 3I,.))
=0 '(4, -0 (P)-20(Q)+O(P)+20(Q)+ O (R)—3I, —I,)

(66)

(67)

(68)

(69)

O

Thus, (Cor,, @..) forms a gyrogroup. Then, we will prove (Cor,", ©e., ®e.) that endowed with
the scalar multiplication, further forms a gyrovector space i.e., satisfying axioms V1, V2, V3, V4,

V5 for gyrovector spaces.

Axiom (V1)

Proof. Fort € Rand P € Cor:[, we have

Axiom (V2)
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Proof. For s,t € Rand P € Cor,, we have

(54+1)@ec P=0" ((s+1)O(P)+ (1 — (s +1)1,). (74)
5®ecP> ec t®ecP)
(9 ! (S ( ) (1 - S) In)) Dec (6_1 (t@ (P) + (1 - t) In)) (75)
=0 (sO(P)+(1—38)L,+tO(P)+ (1 —t)1, — I,,)
=0 ((s+H)O(P)+(1—(s+1)1).
Therefore, (s + ) ee P = (8 ®cc P) Dec (t Qec P). N
Axiom (V3)
Proof.
(5t) ®ee P =07 (stO (P) + (1 — st) I,,) . (76)
8§ ®ec (t Rec P) = 8 Ree (071 (O (P) + (1 —t) 1))
=0 's(tOP)+(1—t)1,) +(1—s)1,) (77)
=0 (stO(P)+ (1 —st)1,).
Therefore, (st) Qec P = 8§ Qee (t Qee P). O
Axiom (V4)
Proof. Fort € Rand P,Q, R € Cor,, since we have proved that gyr,.[P, Q] = I;, we have
gyrec[P7 Q] (t ®€C R) = t ®ec R = t ®ec gyrec[P? Q]R (78)
O
Axiom (V5)
Proof. Fors,t € Rand P, R € Cor,, we have
gYTee[S ®ec Pyt ®ec PR
- (@ec ((3 ®ec P) Dec (t ®ec P))) Dec ((5 Rec P) Dec (t ®ec P Dec R))
- (@ec ((3 + t) ®ec P))
Dec (07 (O (P) + (1 =) 1)) @ec (07" (1O (P) + (1 —t) I + O (R) — I,.)))
=07 2L —(s+1)O(P)—(1—5—1)1,)) ®ec (0" ((s +1)O(P) — (s +t) I + O (R))) 7
=07 Q2L —(s+1)OP)—(1—s—) I+ (s+t)O(P) = (s+t) I, + O (R) — I,
=07 (0(R))
= R.
Therefore, gyr,.[$ ®cc Pyt ®ec PIR = 14. O
Thus, (Cor;f, Dees ®ec) further forms a gyrovector space. O]
Proof of Lem. . Using the basic operations based on the LEC metric, we can deduce that
P ®iec Q = Expp (FLLHP (LOgIn (Q)))
— Expp ((dp (log 00))~* (log (8 (Q)))) - 0
=0 oexp (log (B (P)) +log (0 (Q)))
= ® o exp (log (Diag (Chol (P))~! Chol (P)) + log (Diag (Chol (Q))™" Chol @)),
where ®(X) = ©~1(X) = Diag(XX7)~2 X X Diag(X XT)~ 2. O
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Proof of Lem.[5.3] . Using Egs. (39) and (@0), it is straightforward to see that
— Expy, ((dr, (10g©)) ™" (0 (P)))
=0"toexp(tlog (O (P)))
= pt.

81

O

Proof of Thm.[5.6] . The gyroautomorphism can be determined from the binary operations (Ungar],
200520125 2014)). Using Eq. @, we can deduce that

gyriec [P, QIR
= (Blec (P Blec Q)) Biec (P Bice (Q Biec R))
Y (G1ec (07" 0 exp (1og (O (P)) +1og (0 (Q)))))
Diee (P Bree (07" 0 exp (log (O (P)) + (log (© (P)))))) (82)
2 0™ oexp (~log (O (P)) — log (0(Q)) + log (6 (P)) + log (©(Q)) + log (O (R)))
=0 ' oexp (log (O (R)))
= R.
The above derivation comes from the following.
(1) follows from Eq. (19).
(2) follows from Eq. (20).

We can deduce that gyr..[a,b] = I,. It is easy to verify axioms Gl, G2, G3, G4. Thus,
(Cor:, @iec) forms a gyrogroup. Endowed with the scalar multiplication ®e.., it satisfies axioms
V1, V2, V3, V4, V5 for EC gyrovector spaces(the proof follows similar logic as in Thm. [5.3).
Therefore, (Cori , Plec, lec) further forms a gyrovector space. O
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