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Abstract001

Detecting offensive language in Chinese is002
challenging due to homophonic substitutions003
used to evade detection. We propose a frame-004
work to improve large language models’ro-005
bustness against such phonetic attacks. First,006
we construct HED-COLD, a homophone-007
enhanced dataset based on the Chinese Of-008
fensive Language Dataset. Additionally, we009
propose a homophone-aware pretraining strat-010
egy that aligns semantics and fuses features011
to learn robust mappings between original and012
perturbed text. Experimental results show that013
our approach achieves state-of-the-art perfor-014
mance on both the COLD test set and the015
toxicity benchmark ToxiCloakCN. Notably, it016
achieves greater gains in domains especially017
prone to homophonic attacks, such as gender018
and regional content. These results demon-019
strate improved robustness and generalization020
against phonetic adversarial attacks.021

1 Introduction022

With the rapid development of the internet, content023

moderation has become increasingly important for024

maintaining a healthy online environment and pro-025

tecting user rights. In recent years, advances in026

natural language processing, especially large lan-027

guage models, have significantly improved the028

ability to detect offensive language across multi-029

ple languages (Husain and Uzuner, 2021; Pitsilis030

et al., 2018; Wei et al., 2021; Dhanya and Balakr-031

ishnan, 2021; Battistelli et al., 2020; Beyhan et al.,032

2022; Awal et al., 2023; Zhou et al., 2023).033

Among various moderation tasks, offensive lan-034

guage detection has attracted considerable atten-035

tion due to its direct impact on user experience036

and the quality of online discourse (Noever, 2018;037

Dinan et al., 2019; Jahan and Oussalah, 2023). Of-038

fensive expressions such as hate speech and online039

bullying can cause mental harm to individuals and040

disrupt public communication. While numerous041

methods have been proposed for automated offen- 042

sive language detection, and meaningful progress 043

has been made for English-language content (Wul- 044

czyn et al., 2017; Zampieri et al., 2019; Xu et al., 045

2021; Gehman et al., 2020), the task remains par- 046

ticularly challenging in Chinese. On social me- 047

dia platforms, users often attempt to evade detec- 048

tion by employing homophones, orthographic vari- 049

ations, or symbolic substitutions (Su et al., 2022; 050

Kirk et al., 2022; Xiao et al., 2024). The phonetic 051

and semantic flexibility of the Chinese language 052

is exploited by these evasive strategies, increas- 053

ing the difficulty of accurate identification and re- 054

ducing the effectiveness of conventional detection 055

models. 056

Existing research has made preliminary strides 057

in Chinese offensive language detection. Bench- 058

mark datasets such as COLD (Chinese Offensive 059

Language Dataset) has provided a foundation for 060

supervised learning(Deng et al., 2022). However, 061

such datasets often fall short in covering phonetic 062

variants and implicit expressions, limiting model 063

performance in real-world scenarios. Moreover, 064

effective offensive language detection in Chinese 065

requires more than lexical matching; it necessi- 066

tates a deep understanding of context, semantics, 067

and linguistic nuance. Although data augmenta- 068

tion is widely recognized as a method to improve 069

generalization in NLP tasks, there remains a lack 070

of systematic approaches specifically tailored to 071

homophonic obfuscation in Chinese. 072

To tackle the challenge of phonetic obfuscation 073

in Chinese offensive language, we introduce HED- 074

COLD, Homophone-Enhanced Dataset based on 075

the Chinese Offensive Language Dataset. This 076

dataset incorporates a wide range of homophones 077

and disguised expressions that retain offensive 078

meaning while varying in form and context. It re- 079

flects realistic social interactions, adding linguistic 080

diversity and contextual richness to training data. 081

We also propose a training strategy that combines 082
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feature fusion and semantic alignment to integrate083

HED-COLD with the original dataset. Our ap-084

proach improves the detection of covert offensive085

language.086

The contributions of this work are threefold:087

• We construct HED-COLD, a Chinese ho-088

mophone offensive language dataset. This089

dataset addresses significant coverage limita-090

tions in detecting homophonic attacks.091

• We propose a homophone-aware pretraining092

strategy with supervised fine-tuning to align093

semantics between original and homophonic094

expressions. It achieves state-of-the-art per-095

formance on both COLD and ToxiCloakCN,096

with greater gains in domains prone to homo-097

phonic attacks, such as gender and regional098

content.099

• We will release our dataset and code to ben-100

efit the research community. Our framework101

offers a practical benchmark. It also provides102

valuable insights for other Chinese text mod-103

eration tasks, such as rumor detection and104

sensitive content identification.105

2 Related Work106

2.1 Development of Chinese Offensive107

Language Datasets108

To advance research in Chinese offensive language109

detection, both academia and industry have devel-110

oped several relevant datasets. In Table 1, we list111

relevant existing datasets. Tang and Shen (2020)112

released a Chinese dataset COLA for categorizing113

offensive language. Based on data from Taiwan’s114

PTT platform, Hsu and Lin (2020) constructed the115

TOCP dataset, while Chung and Lin (2021) devel-116

oped the TOCAB dataset, both focusing on profan-117

ity and abuse. These datasets are derived from real-118

world online communities, reflecting the character-119

istics of offensive language in specific digital envi-120

ronments. Jiang et al. (2022) released the SWSR121

dataset, which targets gender-discriminatory com-122

ments on Sina Weibo and offers rich samples for123

studying gender-based offensive language in Chi-124

nese social media. Deng et al. (2022) proposed125

COLD dataset, which categorizes sentences into126

fine-grained types such as personal attacks and127

anti-bias expressions. This dataset provides foun-128

dational support for analyzing different forms of129

offensive behavior.The ToxiCN dataset proposed130

by Lu et al. (2023), collected from platforms such 131

as Zhihu and Baidu Tieba, incorporates a multi- 132

level labeling system for offensive language, hate 133

speech, and other harmful categories. By introduc- 134

ing a hierarchical annotation framework, it signifi- 135

cantly broadens the scope of offensive language re- 136

search. Furthermore, Deng et al. (2023) extended 137

the COLD dataset by adding 1 million new sam- 138

ples through large-scale data crawling and genera- 139

tion techniques, resulting in the augmented dataset 140

AugCOLD. 141

However, previous studies mainly focused on 142

explicit offensive language. They struggled with 143

covert attacks using homophones, emojis, and 144

other disguises. The ToxiCloakCN dataset added 145

such obfuscations to test large language mod- 146

els(Xiao et al., 2024). It evaluated their robustness 147

in hidden scenarios. Results showed substantial 148

performance drop across all evaluated models on 149

the ToxiCloakCN dataset. It highlights the need 150

for such datasets. They are crucial for improving 151

models and guiding future research. 152

Table 1: Summary of Offensive Language Datasets

Dataset Research Scope Size
COLA (Tang
and Shen,
2020)

Offensive language in-
volves insults, anti-social
behavior, and illegal con-
tent.

18k

TOCP (Hsu
and Lin,
2020)

Obscene language pertain-
ing to sexual acts, geni-
talia, and similar inappro-
priate topics.

16k

SWSR (Jiang
et al., 2022)

Gender-discriminatory
offensive language

9k

COLD (Deng
et al., 2022)

Offensive and anti-bias ma-
terial concerning race, gen-
der, and region.

37k

ToxiCN (Lu
et al., 2023)

Data encompassing sexism,
racism, regional prejudice,
anti-LGBTQ+ sentiments,
and similar categories.

12k

AugCOLD
(Deng et al.,
2023)

Enhancing Offensive Lan-
guage Detection with Data
Augmentation and Knowl-
edge Distillation.

1000k

HED-COLD Offensive anti-bias data en-
hanced by homophones, re-
lated to race, gender, and re-
gion.

10k

2.2 NLP Techniques for Chinese Offensive 153

Language Detection 154

Significant progress has been made in Chinese of- 155

fensive language detection through the adoption of 156

advanced NLP techniques. Dai et al. (2020) com- 157

bine BERT with multi-task learning to better han- 158
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dle noisy social media texts. Chen et al. (2020)159

propose a hierarchical multi-task framework capa-160

ble of detecting multiple types of offensive content161

and concealment strategies. AugCOLD use multi-162

teacher distillation to label one million unlabeled163

samples, enhancing model robustness on hard and164

out-of-domain examples. Wullach et al. (2022) in-165

troduce a character-level hypernetwork trained on166

automatically generated data, which outperforms167

large pretrained models like BERT in some scenar-168

ios while maintaining a smaller model size. To de-169

tect implicitly offensive language, such as sarcasm170

and insinuation, Zhang et al. (2022) propose a171

multi-hop reasoning approach that incorporates ex-172

ternal knowledge to infer deeper contextual mean-173

ings.174

From an architectural perspective, Chinese-175

specific pretrained models like RoBERTa and176

ERNIE, combined with multi-feature fusion and177

attention mechanisms, have significantly im-178

proved semantic understanding and detection ac-179

curacy (Hou et al., 2024; Li et al., 2023). Hybrid180

models integrating Bi-GRU, CNN, and attention181

(Xu and Liu, 2023) further enhance the representa-182

tion of global and local features. Techniques such183

as subword modeling, dialect normalization, and184

data augmentation have played critical roles in ad-185

dressing linguistic complexity and dataset limita-186

tions. While transfer learning and cross-cultural187

approaches show potential, their effectiveness is188

often constrained by cultural biases.189

2.3 Limitations and Research Gaps190

Despite notable advances in Chinese offensive191

language detection, significant challenges re-192

main. Existing research predominantly focuses on193

BERT-based models, with limited exploration of194

LLMs in this domain. Most systems are designed195

to identify explicit toxicity, yet they underperform196

when confronting obfuscated offensive content, es-197

pecially homophone-based expressions. The use198

of phonetic substitutions to evade moderation has199

become increasingly prevalent, presenting a persis-200

tent blind spot for current datasets and models.201

Homophonic attacks are a relatively underex-202

plored yet crucial challenge in Chinese offensive203

language detection. Existing datasets rarely in-204

clude such variations, leaving models ill-equipped205

to recognize covert abuse. The lack of dedicated206

resources targeting homophonic transformations207

limits both model training and evaluation in these208

scenarios.209

3 Dataset Construction 210

To fill the gap in homophonic datasets, we propose 211

the HED-COLD dataset. It is constructed from the 212

original COLD dataset through multiple transfor- 213

mation steps, resulting in a high-quality dataset. 214

The entire construction process is illustrated in 215

Figure 1. 216

3.1 Data Selection and Preprocessing 217

We selected 10,000 samples from the COLD 218

dataset, including 7,000 from the training set and 219

3,000 from the test set. This dataset contains 220

Chinese sentences annotated as either offensive or 221

non-offensive. These samples were chosen due to 222

their high potential for phonetic manipulation, as 223

they frequently include words or phrases that can 224

be substituted with homophones commonly used 225

in offensive language. 226

3.2 Construction of the Homophone 227

Dictionary 228

To accommodate the linguistic characteristics of 229

Chinese, we constructed an initial phonetic-shape 230

mapping table based on the Xinhua Dictionary of 231

Chinese Homophones1. To ensure high-quality 232

substitutions, we applied a two-tier filtering strat- 233

egy: (1) phonetic similarity measured by pinyin 234

edit distance2, and (2) orthographic similarity as- 235

sessed by prefix matching in Wubi input codes3. 236

For each Chinese character, the top three most 237

plausible homophonic candidates were identified. 238

A manual review phase followed, during which se- 239

mantically ambiguous candidates were excluded. 240

The result is a refined, high-quality homophone 241

dictionary used for substitution tasks. 242

3.3 Lexical Replacement and Syntactic 243

Rewriting 244

Based on the homophone dictionary, lexical-level 245

phonetic substitutions were applied to sentences in 246

the COLD dataset. For example, the original offen- 247

sive sentence“这个废物湖南人怎么教都不会， 248

简直是一头蠢猪”(“This useless Hunanese can’ 249

t learn anything no matter how you teach, just a 250

dumb pig”) can be transformed into“这个飞舞糊 251

1Xinhua Dictionary is a widely used Chinese language
dictionary, often used in schools and education. It provides
standard pronunciations and character meanings.

2Pinyin is a system that uses the Latin alphabet to show
how Chinese words are pronounced.

3Wubi is a typing method for Chinese that uses character
structure instead of sound.
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Data Selection

Extract data from COLD dataset

Homophone Dictionary 

Construction

废物

费物 沸物 废五

废舞 飞舞

废勿 费5

…

Two-tier Filtering strategy

Pinyin Wubi

pronunciation character form

Lexical Replacement and Syntactic 

Rewriting

original offensive sentence

这个废物湖南人怎么教都不会，简直是一头蠢猪

飞舞 糊蝻 春竹

lexical replacement sentence

这个飞舞糊蝻人怎么教都不会，简直是一头春竹

syntactic rewriting sentence

这个飞舞糊蝻人简直是一头春竹，怎么教都不会

replace

rewritie

extract grammatical structures

homophonic word substitution

Semantic Filtering

embeddings

cosine similarity 

scores

＞threshold ＜threshold

HED-COLD Dateset

train set test set

gender,  race,  regionhomophone dictionary 

Figure 1: The construction of the HED-COLD dataset. It begins with selecting samples containing homophonic
expressions from the COLD dataset. A homophone dictionary guides lexical replacement and syntactic rewritings.
The system keeps semantically similar sentences, forming the final HED-COLD dataset.

蝻人怎么教都不会，简直是一头春竹”, where252

words are replaced with similar-sounding but ob-253

fuscated characters.254

To further increase linguistic variety, we ap-255

plied syntactic paraphrasing techniques to the ho-256

mophonically perturbed sentences. Specifically,257

we used the LTP toolkit developed by HIT (Che258

et al., 2020) to extract grammatical structures and259

applied a set of syntactic transformation rules to260

generate alternate formulations. For instance, the261

sentence above could be rearranged into “这个262

飞舞糊蝻人简直是一头春竹，怎么教都不会”263

while preserving its original semantics.264

3.4 Semantic Filtering265

To ensure semantic consistency between the orig-266

inal and transformed sentences, we employed pre-267

trained language models to generate sentence em-268

beddings for both. We then calculated cosine sim-269

ilarity scores between each original–transformed270

pair. A similarity threshold was applied to retain271

only those homophonic sentences whose semantic272

content closely matched that of the original. The273

threshold value was empirically determined using274

a small set of manually labeled semantically con-275

sistent sentence pairs, with fine-tuning conducted276

to identify the optimal cutoff point.277

The final HED-COLD dataset, derived from fil-278

tered sentences, comprises 10,000 samples focus-279

ing on gender, region, and race. It contains a train-280

ing set with 7,000 samples and a test set with 3,000281

samples. 282

4 Homophone-Aware Pretraining 283

Strategy 284

We propose a homophone-aware pretraining strat- 285

egy built upon the constructed HED-COLD 286

dataset. This strategy aims to align semantically 287

equivalent expressions and enforce consistent pre- 288

dictions under phonetic variations. The entire pro- 289

cess is illustrated in Figure 2. 290

4.1 Input Mixing Mechanism 291

During training, we mix the original training set 292

from the COLD dataset and the training set from 293

the HED-COLD dataset to construct the final train- 294

ing data. This input mixing strategy serves as a 295

form of data augmentation, aimed at improving 296

the model’s robustness and generalization when 297

detecting offensive language. 298

4.2 Semantic Alignment 299

To enhance the model’s understanding of homo- 300

phonic expressions, the semantic alignment train- 301

ing mechanism employs supervised fine-tuning 302

(SFT). The process begins with the model receiv- 303

ing an original sentence and generating its of- 304

fensiveness judgment and semantic interpretation. 305

Next, a new sentence with the same meaning but 306

modified through homophonic substitution is in- 307

troduced, and the model is trained to produce the 308

same judgment and interpretation as the original. 309
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Query

这个废物湖南人怎么教都不会，
简直是一头蠢猪

这个飞舞糊蝻人怎么教都不会，
简直是一头春竹

Interpretation: This waste 

Hunan person can’t be taught 

anything. It's just a stupid pig.

LLM

Semantic 

Alignment

LLM

SFT

Consistent Output 

Distribution

1

Prediction

0

Text

Encoder

Figure 2: Overview of the Homophone-Aware pretraining strategy. Data from HED-COLD and COLD are mixed
and inputted into the model. Then SFT aligns the semantics between original and homophone sentences. Finally,
the output is simplified to a binary classification.

Through multiple rounds of supervised learning,310

the model learns to align inputs with similar mean-311

ings but different forms.312

4.3 Binary Classification Output313

To improve the efficiency of detecting offensive314

language in real-time content moderation, we use315

a binary classification output mechanism. This316

method simplifies sentence judgment and seman-317

tic interpretation into two labels: 0 for non-318

offensive and 1 for offensive. During training, the319

model processes both original sentences and their320

homophonic variants. It learns to assign the same321

binary label to sentences with the same meaning.322

We add a classification head to the pre-trained323

model. Combined with a sigmoid activation func-324

tion, this converts hidden states into binary outputs.325

This approach greatly improves the efficiency of326

real-time content moderation. It simplifies the out-327

put format and supports fast deployment.328

5 Experiments329

5.1 Experimental Setup330

5.1.1 Dataset331

The experiments consist of training and testing332

phases. For training, we adopt a homophone-333

aware pretraining strategy. The training set is a334

combination of the original COLD training data335

and the augmented HED-COLD data, consisting336

of 25,726 original COLD samples and 7,000 ho-337

mophonic samples.338

For testing, evaluation is conducted on both the339

COLD test set and the HED-COLD test set. The340

former is used to assess the model’s ability to341

detect offensive content in clean inputs, while the342

latter evaluates its robustness in identifying offen- 343

sive language under homophonic perturbations. 344

5.1.2 Contrast Systems 345

To thoroughly evaluate the performance of our ap- 346

proach, we compare it against several representa- 347

tive models: 348

Qwen2.5-3B: Used as the baseline model to es- 349

tablish a reference point for performance. 350

Qwen2.5-7B: Included to investigate the impact 351

of increased model capacity. 352

BERT: A widely used, general-purpose pre- 353

trained model that serves as a strong baseline 354

across various NLP tasks. 355

Chinese-RoBERTa-wwm-ext: An improved 356

variant of RoBERTa optimized for Chinese, serv- 357

ing as a strong contextualized encoder. 358

5.1.3 Settings 359

On the basis of these backbone models, we fur- 360

ther apply our proposed homophone-aware fine- 361

tuning strategy. The resulting models are denoted 362

as XXX+ours, where XXX refers to the corre- 363

sponding base model. 364

Experiments are conducted on a server with 365

four NVIDIA A800 GPUs, running Ubuntu 20.04 366

and CUDA 11.8. 367

5.1.4 Metrics 368

Standard classification metrics are used: Accuracy, 369

Precision, Recall, and F1-score. Among them, F1- 370

score is the primary metric to comprehensively 371

evaluate model robustness under homophone inter- 372

ference. 373
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5.2 Experimental Results374

5.2.1 Training Dynamics Observation375

 

Figure 3: Short-term training loss curve.

 

Figure 4: Long-term training loss curve.

Figure 3 and 4 show the short-term and long-376

term loss curves during training, respectively.377

Models trained with the homophone-enhanced378

dataset exhibit better convergence compared to379

the original across both time scales. As illus-380

trated in Figure 3, the enhanced model’s loss381

curve drops steadily with lower volatility, indicat-382

ing rapid adaptation to homophonic interference.383

In Figure 4, the enhanced model consistently main-384

tains a lower loss over long-term training, demon-385

strating improved learning ability under complex386

linguistic disturbances.387

5.2.2 Model Test Performance Comparison388

To verify the effect of homophone-aware fine-389

tuning, we compare model performance under390

equal training steps.391

As seen in Figure 5, the model trained with392

homophone enhancement (red curve) significantly393

outperforms the original model (blue curve) early394

in training. While both improve over time, the en-395

hanced model consistently maintains higher accu-396

racy, validating its superior capacity in detecting397

homophone variations.398

 

Figure 5: Accuracy comparison of original vs.
homophone-enhanced models on the test set.

To further assess practical effectiveness, all four 399

models are evaluated on the original COLD test 400

sets and HED-COLD test sets. 401

As shown in Table 2, the baseline models ex- 402

hibit substantial performance differences between 403

the COLD and HED-COLD test sets. Taking 404

Qwen2.5-3B as an example, the model demon- 405

strates consistently high recall but significantly 406

low precision across both datasets, suggesting a 407

strong tendency toward overgeneralization and a 408

high rate of false positives. In contrast, Qwen2.5- 409

7B and BERT-based models display more bal- 410

anced metrics; however, their performance still 411

degrades on the HED-COLD set, indicating lim- 412

itations in handling phonetic variants commonly 413

used in adversarial attacks. 414

After incorporating the proposed homophone- 415

augmented training strategy, all models achieve 416

consistent improvements in precision, recall, 417

and F1-score, with particularly notable gains 418

on the HED-COLD test set. For instance, 419

Qwen2.5-7B+ours improves its F1-score from 420

0.6531 to 0.8759 on HED-COLD, representing 421

a relative increase of over 34%. Similarly, 422

BERT+ours and chinese-roberta-wwm-ext+ours 423

yield F1-score gains of approximately 2.7 and 424

2.1 percentage points, respectively. These results 425

demonstrate the effectiveness and generalizability 426

of our homophone-enhancement approach in im- 427

proving the models’ ability to detect phonetic ad- 428

versarial content. 429

A deeper analysis reveals that the core bottle- 430

neck in baseline models stems from the distribu- 431

tional mismatch between pretraining corpora and 432

phonetic attack patterns. By injecting curated ho- 433

mophonic word pairs into training, our approach 434

enables the model to construct a tri-level map- 435

ping among phonetic form, orthographic structure, 436
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Table 2: Model performance comparison

Models COLD Test HED - COLD Test
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Qwen2.5-3B 0.5656 0.4763 0.9682 0.6385 0.5259 0.4540 0.9753 0.6196
Qwen2.5-3B+ours 0.8232 0.8894 0.8078 0.8467 0.8529 0.9041 0.8364 0.8689
Qwen2.5-7B 0.7366 0.6501 0.7247 0.6854 0.7221 0.6453 0.6610 0.6531
Qwen2.5-7B+ours 0.8279 0.8912 0.8111 0.8493 0.8587 0.9121 0.8425 0.8759
Bert 0.8144 0.7246 0.8667 0.7893 0.8082 0.7247 0.8310 0.7742
Bert+ours 0.8212 0.7336 0.8605 0.7920 0.8290 0.8008 0.8018 0.8013
Chinese-roberta-wwm-ext 0.8251 0.7379 0.8657 0.7967 0.8136 0.7409 0.8134 0.7755
Chinese-roberta-wwm-ext+ours 0.8371 0.8012 0.7826 0.7918 0.8364 0.7852 0.8072 0.7961

and semantic meaning. For example, to correctly437

identify attacks such as ‘‘马” (horse) → ‘‘妈”438

(mom), the model must jointly engage phoneme-439

level recognition (e.g., /ma/) and semantic disam-440

biguation (e.g., kinship term vs. animal name).441

Experimental results suggest that this training442

strategy significantly enhances the model’s abil-443

ity to dynamically balance phonetic similarity and444

semantic deviation, thereby improving robustness445

against phonetic perturbations.446

5.2.3 Homophone Adaptability Analysis447

To assess the impact of homophone data, we cal-448

culate F1-score differences between COLD and449

HED-COLD test sets:450

∆ = F1HED-COLD − F1COLD451

Table 3: F1-score difference across test sets

Models Gender Region Race Total
Qwen2.5-3B -0.026 -0.036 0.007 -0.019
Qwen2.5-3B+ours 0.024 0.017 0.029 0.022
Qwen2.5-7B -0.063 -0.049 0.006 -0.032
Qwen2.5-7B+ours 0.025 0.020 0.029 0.025
Bert -0.021 -0.012 -0.005 -0.0151
Bert+ours 0.023 0.015 0.010 0.0093
Chinese-roberta-wwm-ext -0.013 -0.032 -0.022 -0.0212
Chinese-roberta-wwm-ext+ours 0.007 0.008 0.002 0.0043

As shown in Table 3, baseline models without452

homophone augmentation exhibit notable perfor-453

mance degradation on the HED-COLD test set454

compared to the original COLD set, with F1-455

score reductions observed across multiple task456

categories. The most pronounced drops occur457

in the Region and Gender categories. For in-458

stance, Qwen2.5-7B shows an F1-score decline of459

0.049 in Region and 0.063 in Gender, indicating a460

lack of robustness in handling phonetic perturba-461

tions within these contexts. In contrast, models462

fine-tuned with our homophone-augmented data463

demonstrate consistent performance gains across464

all categories, with the most stable and signifi- 465

cant improvements observed in the Race category. 466

These results suggest that the proposed augmenta- 467

tion strategy not only improves overall model ro- 468

bustness but also mitigates sensitivity disparities 469

across task-specific categories. 470

A deeper investigation reveals that Gender and 471

Region are the categories most susceptible to pho- 472

netic attacks, largely due to their lexical charac- 473

teristics. Terms related to gender and geographi- 474

cal regions are frequently manipulated via homo- 475

phonic substitutions to evade detection—for ex- 476

ample, replacing ‘‘东北” (northeast) with ‘‘东百” 477

or ‘‘男人” (man) with ‘‘蝻人.” Such transforma- 478

tions preserve phonetic similarity while altering 479

surface forms, making them difficult for character- 480

level models to detect. Our proposed homophone- 481

enhancement strategy addresses this challenge by 482

incorporating structured homophonic variants dur- 483

ing training. The results underscore the neces- 484

sity of modeling phonetic variation in Chinese 485

safety-sensitive NLP tasks, especially when de- 486

fending against adversarial attacks targeting social 487

attributes. 488

5.2.4 Evaluation on ToxiCloakCN 489

Benchmark 490

To further evaluate the generalization capacity 491

of our homophone-aware training strategy under 492

cross-domain settings, we conduct experiments on 493

the ToxiCloakCN dataset as an external bench- 494

mark (Xiao et al., 2024). ToxiCloakCN is a Chi- 495

nese adversarial toxicity detection dataset, specifi- 496

cally designed to reveal the vulnerability of main- 497

stream large language models (LLMs) when faced 498

with various evasion tactics. Prior studies have 499

shown that existing models struggle to robustly de- 500

tect toxicity when the surface form of offensive 501

content is obfuscated using phonetic variants. 502

In this experiment, we fine-tune a set of 503
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Table 4: Models’ performance on the ToxiCloakCN

Models Training Set Instruction Type Homophone Base
COLDetector COLD - 0.566 0.625

HED-COLD - 0.658 0.647
LLAMA-3-8B COLD Chinese_text 0.599 0.689

HED-COLD Chinese_text 0.702 0.693
Mistral COLD Chinese_text 0.547 0.691

HED-COLD Chinese_text 0.718 0.704
Qwen1.5-MoE A2.7B COLD Chinese_text 0.650 0.700

HED-COLD Chinese_text 0.719 0.712
Qwen2.5-3B COLD Chinese_text 0.603 0.688

HED-COLD Chinese_text 0.705 0.697
Qwen2.5-7B COLD Chinese_text 0.624 0.693

HED-COLD Chinese_text 0.725 0.701

representative models, including COLDetector,504

LLAMA-3-8B, Mistral, and several Qwen vari-505

ants on two distinct training sets: the origi-506

nal COLD dataset and the homophone-enhanced507

HED-COLD dataset. Each trained model is then508

evaluated on two subsets of ToxiCloakCN: the509

Base set, which contains clean toxic samples with-510

out obfuscation, and the Homophone set, which511

includes adversarial examples featuring homo-512

phonic substitutions. All models are prompted us-513

ing the same instruction template. This experimen-514

tal setup enables us to assess both the robustness515

of the models against phonetic attacks and the gen-516

eral transferability of the learned representations.517

As shown in Table 4, models trained on COLD518

generally perform worse on the Homophone sub-519

set than on the Base subset, indicating a lack of520

robustness in handling adversarially obfuscated521

toxicity. In contrast, models fine-tuned with522

HED-COLD consistently exhibit substantial per-523

formance gains across both evaluation sets. For in-524

stance, models such as Mistral and Qwen1.5-MoE525

achieve over 10 percentage points of improvement526

on the Homophone subset after homophone-aware527

training, underscoring the effectiveness of our aug-528

mentation in enhancing attack resilience. More no-529

tably, we also observe moderate improvements on530

the Base set (e.g., Qwen1.5-MoE improves from531

0.700 to 0.712), suggesting that the benefits of532

homophone-enhanced training extend beyond tar-533

geted adversarial defense and contribute positively534

to general semantic understanding. These results535

collectively demonstrate that our strategy strength-536

ens the model’s capacity to detect semantically537

toxic content even when it is obfuscated via pho-538

netic camouflage, while maintaining or improving539

performance on standard inputs—a desirable trait540

for building robust and trustworthy Chinese con-541

tent moderation systems.542

6 Conclusion and Future Works 543

This study addresses the challenge of defending 544

against homophonic adversarial attacks in Chinese 545

online environments by proposing a robustness- 546

enhancing framework for large language models. 547

We introduce HED-COLD dataset and develop 548

a homophone-aware pretraining strategy to equip 549

models with phonetic resilience. Experimental re- 550

sults consistently show that traditional models suf- 551

fer from significant performance degradation un- 552

der homophonic attack scenarios, whereas mod- 553

els trained with our augmented data demonstrate 554

improved stability and robustness. In particular, 555

the proposed method achieves balanced improve- 556

ments across sensitive attributes such as gender 557

and region, highlighting its domain-generalizable 558

effectiveness. Furthermore, evaluation on the out- 559

of-domain ToxiCloakCN benchmark confirms that 560

our strategy not only enhances detection of pho- 561

netic adversaries but also improves performance 562

on clean inputs, validating its broad transferability 563

and real-world applicability. 564

In future work, we plan to explore multimodal 565

homophone attacks that combine phonetic pertur- 566

bations with visual and structural noise, such as 567

emoji insertion, character distortion, and code- 568

switching. Finally, we envision building adaptive 569

adversarial training pipelines that integrate phono- 570

logical knowledge dynamically during pretraining 571

and finetuning, enabling more robust and context- 572

aware defense systems for open-domain Chinese 573

NLP applications. 574

7 Limitations 575

While our work demonstrates promising results in 576

enhancing the robustness of Chinese offensive lan- 577

guage detection, several limitations remain. 578

Firstly, our homophonic perturbation approach 579

8



depends on predefined pinyin similarity rules and580

curated dictionaries. This design may not fully581

capture the diversity and complexity of real-world582

phonetic variations, especially those involving am-583

biguous pronunciations, polyphonic characters, or584

informal user expressions.585

Secondly, our work focuses exclusively on of-586

fensive language detection. It is unclear whether587

the proposed homophone-aware training strategy588

can be effectively applied to other NLP tasks such589

as sentiment analysis, rumor detection, or dialogue590

moderation. This limits the generalizability of our591

method.592

Thirdly, the model is trained and evaluated593

on datasets that reflect specific annotation guide-594

lines for offensive content. These standards may595

vary across platforms and cultural contexts, which596

could impact the model’s ability to generalize to597

different real-world settings.598

8 Ethics Statement599

This research focuses on detecting offensive lan-600

guage in Chinese, particularly when such con-601

tent is disguised through homophonic substitu-602

tions. Our goal is to develop an effective method603

for identifying offensive content even when sur-604

face forms are intentionally altered to evade detec-605

tion, thereby supporting safer and more respectful606

online environments.607

To evaluate model robustness, we construct608

HED-COLD, a dataset generated by systemati-609

cally applying homophonic perturbations to sen-610

tences from the publicly available COLD dataset.611

While this process is essential for studying ad-612

versarial resilience, we acknowledge the potential613

risk that similar techniques could be used to im-614

prove evasion tactics. However, our work is solely615

intended to enhance offensive language detection616

and is not designed to promote censorship or re-617

strict legitimate expression.618

No new user-generated content was collected in619

this study. All data is derived from existing pub-620

lic resources, and perturbations were generated621

through controlled rule-based transformations.622

To ensure privacy and ethical compliance, we623

carefully examined the dataset to confirm that it624

does not contain personally identifying informa-625

tion (PII) or offensive content beyond the targeted626

categories. Although the original COLD dataset is627

publicly available and anonymized, we performed628

manual and automated screening to mitigate poten-629

tial risks of sensitive information leakage or unin- 630

tended amplification of harmful content. We re- 631

mind users to handle the dataset responsibly to pro- 632

mote ethical research practices. 633

We adhere to the stated academic use of the 634

COLD dataset and comply with the MIT license 635

governing the use of external tools, including 636

pypinyin. The homophone replacements were 637

based on authoritative resources such as the Xin- 638

hua Dictionary and Wubi input codes. 639

This work is conducted with a clear ethical pur- 640

pose: to improve the robustness and fairness of 641

content moderation tools, ensuring that online plat- 642

forms can better manage harmful content while up- 643

holding the principles of open communication. 644

This study only uses publicly available and 645

anonymized datasets without collecting new data 646

or involving direct interaction with human sub- 647

jects. Therefore, the research protocol was 648

deemed exempt from Institutional Review Board 649

(IRB) approval as it does not meet the criteria for 650

human subject research requiring formal ethical 651

oversight. 652
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A Partial Samples from the HED-COLD820

Dataset821

Figure 6 shows several randomly selected samples822

from the HED-COLD dataset.823

Each sentence in the dataset comes from one of824

three topics: gender, race, and region. Every sen-825

tence has a label. A label of 0 means the sentence826

is non-offensive. A label of 1 means the sentence827

is offensive and may harm the online environment.828

For each sample, we present the original sen-829

tence from the COLD dataset and its homophone-830

perturbed version from the HED-COLD dataset.831

Words highlighted in blue indicate those to be re-832

placed by homophones. Words in red show the833

result after homophone substitution.834

Besides word replacements, our method also ap-835

plies sentence structure changes to simulate more836

diverse variations.837

B Dialogue Example of Offensive838

Language Detection839

Figure 7 shows how the model detects offensive840

content in a homophone-perturbed sentence.To841

save space, we have excerpted several parts 842

and only show one end-to-end Chain-of-Thought 843

(CoT) example. 844

The system part is the prompt template, which 845

defines the role and task of the large model. The 846

model acts as a hate speech detection expert. It is 847

asked to judge whether the given statement con- 848

tains offensive, abusive, or potentially harmful 849

content, and to output the result strictly in the spec- 850

ified format. 851

The user part is the core, defining a series of 852

judgment rules and providing the input statement 853

to be evaluated. 854

The assistant part shows the large model’s out- 855

put after detecting the sentence. The output is bi- 856

nary: ’0’ means that the sentence is not offensive, 857

and ’1’ means that the sentence is offensive. 858

C Model Training Setup and 859

Hyperparameter Details 860

During model training, we employed a parameter- 861

efficient fine-tuning method based on LoRA (Low- 862

Rank Adaptation), with the LoRA rank set to 8, 863

a scaling factor of 32, and a dropout rate of 0.1. 864

These were applied primarily to key projection lay- 865

ers within the self-attention mechanism to enable 866

effective low-rank adaptation. The training used a 867

per-device batch size of 4 combined with a gradi- 868

ent accumulation step of 4, resulting in an effective 869

batch size of 16. The model was trained for a total 870

of 3000 epochs with a relatively low learning rate 871

of 1 × 10−8 to ensure stable fine-tuning. To re- 872

duce memory usage, gradient checkpointing was 873

enabled, and gradient clipping was applied with a 874

maximum norm of 1.0 to prevent gradient explo- 875

sion. The model was saved every 100 steps, and 876

logging was performed at every step. The maxi- 877

mum input sequence length was limited to 384 to- 878

kens. Training data was processed through a cus- 879

tom function to tokenize inputs and generate corre- 880

sponding labels and attention masks, ensuring con- 881

sistent input formatting and effective training. 882
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topic label TEXT

COLD dataset HED-COLD dataset

gender 1 男权为了反女权真是什么恶都能作，高。 高，腩权为了反籹拳真是什么恶都能作。

region 0
这么说东北还人人黑社会呢，你也是从知乎

上了解的吧？

这么说冻倍还人人黑涩会呢，你也是从知乎

上了解的吧？

race 1 印度人打架是不敢还手的，欺软怕硬 印肚人欺软怕硬，打价是不敢还手的

region 1
送河南同事一个包着蝴蝶结的大井盖，然后

说“心里有歧视才看什么都是歧视”？

送荷蓝同事一个包着蝴蝶结的大景盖，然后

说“心里有歧视才看什么都是歧视”？

gender 0
我们这些偏瘦的男士，一直再为120130的体

重奋斗。

我们这些偏瘦的蝻士，一直再为120130的体

重粪逗。

race 1

他们才不会真正改善黑人的社区和教育呢。

白左只是为了故作姿态，获取强烈的道德优

越感。

他们才不会真正改善嘿人的社区和较育呢。

白左只是为了故作姿态，获取强烈的道德忧

越感。

region 1
成都人常被诟病的内容：1、懒，2、假，3、

好逸恶劳、不踏实、不思进取……

成肚人常被诟病的内容：1、烂，2、假，3、

好逸恶劳、不塌实、不思进取……

race 0
林书豪真的完了，作为一个亚裔很励志但是

这次的伤非同小可。

林书豪，作为一个哑裔很厉志但是这次的伤

非同小可，真的完了。

… … … …

Figure 6: Examples of original and homophone-perturbed sentences from the HED-COLD dataset.

System：

你是一位仇恨言论检测专家，请判断给定的言论是否包含冒犯、辱骂或可能伤害他人的内

容，并严格按照指定格式输出结果。

User：

1.任务：判断待检测言论是否包含冒犯、辱骂或潜在伤害他人的内容。

2.判断规则：

" - 种族：涉及种族歧视或刻板印象的内容为违规，单纯提及种族的不算。" 

" - 地域：涉及地域歧视或刻板印象的内容为违规，单纯提及地区的不算。" 

" - 性别：涉及性别歧视或刻板印象的内容为违规，对男性或女性的中立提及不算。" 

3. 待检测言论：“这个飞舞糊蝻人简直是一头春竹，怎么教都不会”

4.输出格式： " - 请你对上述言论进行判断，并以“0”或者“1”的格式提供判断结果。如果言

论包含歧视性或冒犯性的仇恨言论，请输出“1”；否则，请输出“0”。"

Assistant：

1

user input

Figure 7: dialogue example of offensive language detection.
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