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Abstract

The alignment problem, ensuring AI systems001
adhere to human values, remains a significant002
challenge despite the collection of increasingly003
high-quality and expensive datasets. Reinforce-004
ment Learning from Human Feedback (RLHF)005
offers a promising solution, leveraging human006
judgment during training. However, standard007
RLHF often relies on static prompts, potentially008
wasting resources and neglecting areas need-009
ing improvement. This work proposes a novel010
approach for efficient and effective RLHF fine-011
tuning of large language models (LLMs). We012
introduce a dynamic prompt generation system013
that adapts based on the model’s intermediate014
performance. This allows the model to focus015
on areas requiring the most human guidance,016
leading to faster and more targeted alignment.017
We evaluate our method by comparing three018
models trained with the same resources: a stan-019
dard RLHF baseline, a Starts-On-Policy (SOP)020
model with static prompts based on initial per-021
formance, and our Always-On-Policy (AOP)022
model with dynamically generated prompts.023
Results demonstrate that AOP significantly out-024
performs all other models showcasing the ef-025
fectiveness of our approach.026

1 Introduction027

In the rapidly evolving field of artificial intelligence028

(AI), ensuring that AI systems act in ways that are029

aligned with human values and intentions presents030

a significant challenge, known as the alignment031

problem. This problem arises from the difficulty032

in creating models that can reliably understand and033

adhere to human ethical standards and goals, partic-034

ularly as these systems become more autonomous035

and capable.036

In recent years, large language models have be-037

come all pervasive, and more capable. However,038

these systems still display varying levels of mis-039

alignment, which requires improved alignment al-040

gorithms for LLMs that can be used across different041

use cases (including those with modest data collec- 042

tions). 043

Reinforcement Learning from Human Feedback 044

(RLHF) stands out as a promising strategy for ad- 045

dressing the alignment problem. Unlike traditional 046

methods reliant solely on predefined reward func- 047

tions, RLHF harnesses human feedback to train 048

AI models. This approach leverages human judg- 049

ment to steer AI behavior, enhancing the likelihood 050

of alignment with human values and intentions. 051

By embedding human feedback directly into the 052

learning process, RLHF serves as a bridge between 053

human preferences/values and the AI’s objective- 054

driven learning system. This method proves es- 055

pecially valuable in situations where crafting an 056

explicit reward function encompassing all facets of 057

desired behavior poses challenges or proves infea- 058

sible. 059

One limitation of standard RLHF model training 060

today is that it often uses static prompts during 061

RL fine-tuning. In this paper, we find that this 062

both wastes iterations on prompts the model may 063

already be good at (which is expensive) and also 064

takes focus away from true failures in alignment. 065

Here, we fine-tuned a target LLM, in a more 066

effective and efficient way, to align it to human 067

preferences using a modification of RLHF. To this 068

end, we generated a dynamic fine-tuning prompt 069

set based on the model’s intermediate performance. 070

For proving its efficacy, we train three models with 071

the same number of training steps and with the 072

same number of records; a vanilla RLHF with 073

synthetically generated data, a Starts-On-Policy 074

(SOP) model that trains on a initial-performance 075

based synthetic dataset, and a final Always-On- 076

Policy (AOP) model, where the performance-based 077

dataset is dynamic and changes with each iteration 078

of RLHF. 079

In this work, we show that AOP results in signif- 080

icant gains when compared to vanilla RLHF and 081

the SOP models. These results suggest that there is 082
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a trade-off being largely ignored by RLHF practi-083

tioners today: the trade-off between RLHF training084

compute and prompt selection compute. With these085

results, we argue that dynamic prompt selection086

should become a standard practice for alignment087

of LLMs.088

This work can also be seen as a novel form of089

distillation, when training a smaller policy using090

dynamic prompt generation from a larger AI feed-091

back model. While distilling demonstrations for092

SFT is a well-explored technique, this more dy-093

namic form of distillation targeted towards areas094

of relative weakness of a mid-RLHF policy has not095

yet been well studied.096

2 Background097

2.1 Training language models to follow098

instructions with human feedback.099

Large language models in recent times have made100

great strides in instruction-following capabilities101

(Wang et al., 2022; Gupta et al., 2022; Chung et al.,102

2022; Wei et al., 2022) and generalization capabili-103

ties (Sanh et al., 2022; Xu et al., 2022; Muennighoff104

et al., 2023). However, despite expensive training105

processes, these instruction fine-tuned models are106

still misaligned with human intent (Kenton et al.,107

2021; Bommasani et al., 2022), and as seen in108

Mishra et al. (2022), also fail to follow instructions109

when off distribution.110

Reinforcement Learning from Human Feedback111

addresses the problem of language models not be-112

ing aligned to human preferences. While several113

domain-specific works have been published using114

this algorithm (Christiano et al., 2023; Stiennon115

et al., 2022), InstructGPT by Ouyang et al. (2022)116

generalized this for broader applications. It uses a117

dataset comprising of prompts and corresponding118

model behavior to solve this issue in three steps,119

namely, Supervised Fine-Tuning, Reward Model120

Training and PPO-based training (Schulman et al.,121

2017). The resulting model with 175B is preferred122

over GPT-3, 85± 3% of time, suggesting that the123

fine-tuning process with human feedback did suc-124

cessfully align the InstructGPT model with user125

intent. Nevertheless, InstructGPT does not sig-126

nificantly improve over GPT-3 on the Winogender127

(Ouyang et al., 2022) and CrowSPairs(Nangia et al.,128

2020) datasets that addresses bias on race, religion129

and gender, indicating that modern SOTA model130

training algorithms do have room for improvement.131

2.2 Aligning Language Models with Offline 132

Learning from Human Feedback. 133

RLHF has emerged as a compelling approach to 134

align models with human preferences and values to 135

enhance model safety and reliability (Ouyang et al., 136

2022). The method involves incorporating direct 137

human feedback during training, followed by re- 138

inforcement learning to guide the model’s outputs 139

toward desired behaviors (Christiano et al., 2017; 140

Stiennon et al., 2020). While RLHF enhances align- 141

ment with human values, offers customization and 142

flexibility, and allows continuous learning (Ouyang 143

et al., 2022), it faces challenges in terms of feed- 144

back and quality bias, along with cost-related limi- 145

tations for obtaining human annotations (Xiao et al., 146

2024). Hu et al. (2023b) address the problem of 147

utilizing PPO as the policy training algorithm in the 148

RLHF pipeline owing to its complexity in training 149

LLMs. Additionally, performing large-scale dis- 150

tributed training with PPO can be inefficient due to 151

its challenging distributed system implementations 152

(Islam et al., 2017; Hu et al., 2023a; Henderson 153

et al., 2018). Comparing offline policy training 154

algorithms such as Conditional Alignment (CA) 155

with the performance of PPO, CA outperforms or 156

is comparable to PPO on different tasks. Further, 157

CA gives the additional advantage of needing a less 158

complex system to perform large-scale distributed 159

training. However, it does not account for out- 160

of-distribution (OOD) issues introduced by offline 161

learning. This could hamper its performance in 162

complex scenarios (Xiao et al., 2024). 163

2.3 RLAIF and Synthetic Data Generation 164

RLHF-based methods to improve alignment in 165

LLMs depend on high-quality human annotators 166

to curate the fine-tuning dataset (Lee et al., 2023). 167

As an alternative, generating data from LLMs can 168

be effective (Gilardi et al., 2023). This technique 169

of training the SFT model using LLM-generated 170

output is called RLAIF. Comparing RLHF and 171

RLAIF on summarization, helpful dialogue genera- 172

tion, and harmless dialogue generation, the RLHF 173

model was preferred over the baseline fine-tuned 174

SFT for text summarization 73% of the time and 175

the RLAIF model was preferred 71%, which indi- 176

cates no significant difference, and that RLAIF is 177

nearly as efficient as RLHF. In addition, RLAIF 178

techniques that use synthetic data generation based 179

on few-shot examples help reduce the cost and 180

time involved in data collection, especially when 181
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data is scarce (Gholami and Omar, 2023), and help182

mitigate privacy and ethical issues related to col-183

lecting real-world personal data (Yoo et al., 2021).184

The flexibility provided by the diverse, high-quality185

data tailored for the specific NLP task based on the186

few-shot examples also improves model robustness,187

generalizability, and scalability (Li et al., 2023).188

3 Baselines and Notations189

To prove our hypothesis, we train four types of190

models. The first model is a supervised fine-tuned191

model, trained on the Dolly 15K dataset, using a192

pre-trained GPT-2 Medium (345M parameters) as193

a base. This is referred to as SFT (model). We194

try to improve on this model using three different195

methods.196

While the SFT model is a good baseline to be-197

gin with, we also create an RLHF baseline. Since198

we fine-tune it on a dataset without any on-policy199

prompt calculations, as is usually done in RLHF,200

we name this model vanilla RLHF.201

Since our hypothesis enlists us to explore how202

significant the continual presence of ‘on-policy’ in-203

put prompts can aid training (keeping everything204

else constant), our vanilla model is trained on the205

exact same number of records that the correspond-206

ing ‘SOP’ and ‘AOP’ models (defined below) are207

trained on, and also synthetically generated by the208

same LLM, with the same stylistic properties of209

the those datasets. 1210

Next, we create a synthetic prompt dataset based211

on the initial SFT model performance. Hence it is212

initially on-policy, but not necessarily so as training213

continues. Since it starts on policy, we can name214

this model Starts-On-Policy (SOP).215

The final method under test involves the same216

synthetic generation process, except we ensure that217

each training iteration uses prompts that are on-218

policy. This dynamic prompt-based RLHF model219

is called Always-On-Policy (AOP).220

1Given this requirement, we fix the total number of records
that would be used to train each of these three models (i.e.
vanilla, SOP and AOP) to be 8000, for 4 epochs each (125
steps for each batch of 16, and using each data point twice).
This is all in an effort to ensure the exact same training styles
are applied, and a fair comparison is made possible. The
hyperparameters and training methods for RLHF are described
in Section 5.

4 Data 221

4.1 Supervised Fine-Tuning Dataset 222

For our baseline supervised fine-tuned (SFT) 223

model, we used the Databricks Dolly 15K dataset 224

(Conover et al., 2023), which contains a wide va- 225

riety of prompts, from open and closed QA, to 226

open-ended creative generations, all natural sound- 227

ing and human-written. 228

4.2 Reference Dataset 229

The key motivation here is that during fine-tuning, 230

if we were to provide specific input prompts to the 231

model on the things that it is currently perform- 232

ing poorly in, we can more effectively teach the 233

model. For this, it is essential to test the model per- 234

formance on a diverse set of prompts, across topics. 235

Further, since the overarching goal is that of align- 236

ment, continuing the human-written trend in the 237

SFT data chosen, we pick the Stanford Human Pref- 238

erences (SHP) (Ethayarajh et al., 2022b) dataset. It 239

includes 18 different domains sourced from Red- 240

dit, focusing on collective human preferences for 241

helpfulness in responses. The dataset’s primary use 242

is to reflect how helpful one response is relative 243

to another, not for harm-minimization, making it 244

different from other datasets like Anthropic’s HH- 245

RLHF (Bai et al., 2022). In our work, we use a 246

subset of this dataset as a held-out dataset to test in- 247

termediate model proficiency. As described in the 248

following subsections, we also use another held-out 249

set of this data for few-shot prompting. 250

4.3 Vanilla Prompt Generation and 251

Clustering Pipelines 252

In this task, our goal was to build a dataset of 253

synthetically generated questions/prompts similar 254

to the ones seen in the SHP dataset, to be used 255

for vanilla RLHF. Though we could have directly 256

picked prompts for RLHF exploration from the 257

Stanford SHP dataset, we didn’t want to have any 258

biases of synthetic versus human-generated data on 259

the Vanilla RLHF model. 260

To get started, we considered the 18 categories of 261

subreddits in the SHP data, and for each, we came 262

up with a list of 100 diverse ‘keywords’ around 263

which the questions could be generated. For ex- 264

ample, the keywords for the ask_science subreddit 265

included words like experiment, quantum physics, 266

peer reviewed journal, titration, pollution, seismol- 267

ogy, etc. We then prompted Gemini-1.5 Pro (Team 268

et al., 2024) to come up with a set of 20 ques- 269
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tions that could be asked based on each of the key-270

words. The prompting strategy was refined multi-271

ple times to ensure (i) the questions are informal,272

use personal pronouns, or anecdotes like the ones273

seen on Reddit, (ii) the questions are diverse and274

non-repetitive for each keyword, (iii) the questions275

are of varying lengths and could be aimed at ask-276

ing answers/opinions/sharing experiences, and (iv)277

the questions follow any syntax/rules of the cor-278

responding subreddit (for example, questions in279

Explain Like I’m Five subreddit have the abbrevia-280

tion ELI5 always). The next task was to refine this281

large dataset further to retain only the best, most282

diverse questions. It was possible for similar ques-283

tions to arise because of three reasons: (i) Gemini284

generated similar questions despite the prompt ask-285

ing for diverse ones (ii) similar keywords within286

each subreddit could lead to the generation of simi-287

lar questions, and (iii) subreddits themselves might288

have a lot of intersection. To overcome this, we289

computed the sentence embeddings of each ques-290

tion, and then performed K-Means clustering, after291

an intermediate step of dimensionality reduction292

using Principal Component Analysis. 2 By per-293

forming the clustering in such a manner, we not294

only grouped similar keywords within one subred-295

dit, but also grouped similar questions from differ-296

ent subreddits together. For each of the resulting297

clusters, we used cosine similarities to eliminate298

similar sets of questions. 3299

4.4 Score-Based Prompt Generation300

For our SOP and AOP models, we built a pipeline301

to generate prompts dynamically to fine-tune our302

model, based on the current model’s capabilities,303

that is, creating on-policy prompts. At the start of304

every fine-tuning iteration, we used the held-out305

SHP data to evaluate the performance of the cur-306

rent model. Rewards were computed based on the307

answers generated for each question in this dataset308

(see Section 5.1). The held-out set questions, the309

generated answers, the category (i.e. subreddit)310

of the questions, and the reward scores were then311

used to generate a new set of questions, to try and312

2We considered n_clusters = 11, selected by manually
going through the 18 categories and understanding which
subreddits could fit together. For example, ask_baking and
ask_culinary subreddits could have a lot of overlap. Similarly,
ask_science and ask_physics or ask_vet and ask_doctors could
potentially have a lot of overlap.

3The cosine similarities were sorted across different clus-
ters (rather than sorting within each cluster) to ensure that not
many questions from just one cluster were lost.

refine the model specifically in the parts where it 313

struggled. 314

We randomly sampled 15 questions from each 315

category and presented Gemini-1.5 Pro with the 316

domain-question-answer-reward quadruple. This 317

random sampling was performed 40 times to get 318

different sets of samples. For each sample, we 319

prompted Gemini to identify the type of questions 320

that were being answered well (high reward scores) 321

and those that weren’t being answered well (low 322

reward scores). For those with low reward scores, 323

we prompted Gemini to identify (i) the subreddits 324

in which the model performed poorly and (ii) com- 325

mon properties in the questions. These common 326

properties could include question length, frequently 327

occurring words, use of proper nouns/world knowl- 328

edge, etc. The same analysis was done on the 329

questions which were answered well. We then 330

prompted Gemini to use the properties in ques- 331

tions that obtained a high score to generate more 332

questions (with similar properties) in the subreddit 333

classes that performed poorly. By doing so, both 334

common patterns and common domains in ques- 335

tions that performed poorly were being addressed 336

specifically. By explicitly guiding Gemini to lever- 337

age properties of high scoring prompts, we create 338

new prompts where performance improvements in 339

the policy are attainable. 340

The prompt we queried Gemini with is as fol- 341

lows: 342

You are a writing expert. You are given 343

a set of questions and answers, along 344

with the domain of the question, and the 345

helpfulness score for the answer with re- 346

spect to the question. A higher score 347

means that the answer is helpful with 348

respect to the question. First, identify 349

the domains in which the answers have 350

received a poor score. Among these 351

questions check for common patterns. 352

For example, these questions could be 353

fact-related, might use proper nouns, etc. 354

Next, check for similar patterns in do- 355

mains with a high score. Come up with a 356

set of 50 questions, primarily focused 357

on domains that have received a low 358

score. Use common patterns from the 359

high-performing questions while fram- 360

ing these questions, so that the gener- 361

ated questions would receive a high score 362

despite being from the low-scoring do- 363
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mains. Make the questions informal, like364

the ones seen on Reddit, and provide a365

mixture of long and short length ques-366

tions.367

For the SOP prompt set, we ran the process on368

the SFT model, and generated 8000 prompts, to369

be used over four iterations of PPO-based RLHF.370

And for AOP, this process was performed across371

four iterations to generate a total of 8000 AOP data372

points/prompts in total. Note that the AOP iteration373

1 model is the same as the SOP iteration 1 model,374

since both stipulate prompts to be based on the SFT375

model performance.376

This pipeline was initially built with Gemini-1.5377

Pro, but we also experimented with using GPT4378

(OpenAI et al., 2024) in its stead. Our results hold379

when swapping the model for AI feedback.380

4.5 Test Data381

Apart from general alignment and instruction fol-382

lowing abilities, our primary goal in this paper is383

creative a more helpful model, that is capable of384

answering human-like diverse queries in a natural385

way. To this end, we select a 2000 record subset of386

the helpful-base split of the Anthropic HH-RLHF387

dataset (Bai et al., 2022). 4388

5 Methodology389

5.1 Reward Model Selection390

A reward model is crucial in RLHF as it defines391

the criteria for evaluating the quality of model out-392

puts based on human preferences. It guides the393

training process by providing feedback that helps394

the model learn to produce responses that align395

with human expectations, ultimately improving396

the relevance and helpfulness of its outputs. In397

this work, we picked six high-performing mod-398

els from the RewardBench Leaderboard (Lambert399

et al., 2024) - SteamSHP - FlanT5 L/XL (Etha-400

yarajh et al., 2022a), Llama3 (AI@Meta, 2024),401

Gemma2B (Dong et al., 2023), Mistral7B (Xiong402

et al., 2024), and DeBERa V3 (He et al., 2021). We403

then evaluated each of these models specifically404

for our use case by picking 50 questions at random405

from each of the 18 categories of the SHP dataset,406

resulting in an evaluation of 900 data points for407

each model. Since the SHP dataset consists of408

questions along with two answers and data about409

4Random split from HuggingFace (Wolf et al., 2020)
‘HuggingFaceH4/h4-anthropic-hh-rlhf-helpful-base-gen’ is
used.

which answer is preferred by humans, this served 410

as our ground truth. For each reward model and 411

each category from SHP, we calculated the number 412

of times (out of 50) the reward model’s preferences 413

matched the ground truth human preference. While 414

the Steam models performed great on the helpful- 415

ness criteria, manual inspection suggested that they 416

weren’t as effective on other aspects such as toxic- 417

ity, actuality, and brevity, and seemed more likely 418

to give a more positive reward. Hence, we chose 419

DeBERTa as the reward model in this work. These 420

results are explained in Table 1. 421

5.2 Codebase and Setup 422

For all the experiments in this paper, we use the 423

Transformer Reinforcement Learning (TRL) li- 424

brary (von Werra et al., 2020), by HuggingFace 425

(Wolf et al., 2020). This provided compute and 426

memory efficient implementations of various parts 427

of the RLHF pipeline, from SFT to RLHF trainers. 428

To establish a proof of concept and to prevent over- 429

fitting, we ran the SFT training for 4 epochs (about 430

4 hours on the GPU). Past this, the validation loss 431

stopped improving. This is a reasonable estimate 432

since the Dolly dataset has around 15000 records 433

only. Hence, we trained each of our models for 434

four epochs, with identical training configurations, 435

all improving the SFT model. 436

5.3 RLHF Experiments 437

As alluded to in Section 3, we want to prove that 438

keeping prompts on-policy during training will 439

help us train more effectively and efficiently than 440

without such considerations. To establish this, we 441

first build the Vanilla RLHF model, trained on a 442

synthetic dataset for 4 iterations, using a total of 443

8000 records (see Section 4), where each data point 444

is used twice. During PPO, the optimization is con- 445

strained by the reference policy. Having a small 446

batch size led to jerkier updates. Hence, we used a 447

batch size of 16 with a mini-batch size of 8. This 448

allowed us to run larger batch sizes since it could 449

accumulate gradients across the mini-batches and 450

apply it to a batch. 451

5.3.1 Using SteamSHP 452

Initial experimentation on the vanilla model was 453

conducted using the SteamSHP model as the re- 454

ward model. However, this failed to train well and 455

resulted in very high policy ratios. A high policy 456

ratio meant that the probability of generating a par- 457

ticular token was much greater in the new policy 458
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SteamL SteamXL Gemma2B Mistral 7B Llama3 DeBERTa
askdocs_train 42 42 24 39 26 41
explainlikeimfive_train 41 42 24 36 24 43
askphysics_train 42 42 31 40 25 39
askengineers_train 40 43 25 37 23 41
askcarguys_train 36 47 22 34 30 40
askphilosophy_train 38 39 28 39 26 37
askhistorians_train 37 39 34 38 27 39
asksicencefiction_train 44 41 26 31 31 40
askbaking_train 31 35 26 30 23 39
askacademia_train 42 43 23 46 29 47
askanthropology_train 41 41 30 34 30 40
asksocialscience_train 44 41 29 42 29 39
askhr_train 36 38 28 41 27 47
askculinary_train 33 40 31 39 30 42
askvet_train 38 39 28 32 26 41
changemyview_train 34 37 28 36 23 38
askscience_train 37 40 32 30 24 43
legaladvice_train 42 39 29 37 27 30
No. of matches (/900) 698 728 498 661 480 730
Avg. matches (/50) 38.78 40.44 27.67 36.72 26.67 40.56

Table 1: Reward Model Performance

than in the reference policy.459

Ratio =
Probability Under Current Policy

Probability Under New Policy
(1)460

Used as a way to stop the model from deviating461

too much from the reference policy, this implemen-462

tation of PPO adds a ratio threshold, where batches463

having ratios greater than 10.0 are skipped and their464

updates/gradients are not considered. Initially, this465

scenario was frequently encountered, prompting466

a closer examination of the training dynamics as467

depicted in the training graphs (Figures 1, 2). Anal-468

ysis suggested that while the value loss showed469

improvements, the policy loss remained stagnant,470

and the KL divergence exhibited considerable fluc-471

tuations.472

After exploring different RLHF hyperparame-473

ters, we swapped out the SteamSHP reward model474

with the DeBERTa model. This resulted in im-475

proved training and a reduced policy ratio (Figure476

3).477

5.4 Implementation Details478

In this project, we trained all the models with uni-479

form training configurations, in order to ensure fair-480

ness in comparison. In this implementation using481

Figure 1: Value Loss Improvement - No Training

TRL library, we used a batch size of 16 (and a mini- 482

batch size of 8), all applied with the CausalLM 483

PPO Trainer. The inputs were all padded to a fixed 484

length of 512 tokens, and the length of output gen- 485

eration fixed to 64 tokens for quick PPO learning 486

(took about 1.5 hours on an A100 GPU per epoch). 487

During PPO, we set generation arguments in a way 488

that incited the model to explore better; namely, we 489

used nucleus sampling (top-p) set to 1 and temper- 490

ature 0.9. We disable top-k sampling to ensure that 491

the chance of unexpected outputs (measured using 492

KL divergence between reference and current LM) 493
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Figure 2: No Improvement in Policy Loss with
SteamSHP

Figure 3: Policy Loss in Vanilla

is minimized. 5494

5.5 Training Observations495

Note that the prompts AOP receives would cause it496

to see the kind of questions that it gets wrong a lot.497

So, while training proceeds, and these facets im-498

prove, the reward will remain fairly steady. In each499

iteration of AOP, each training point is seen twice,500

and the same is done for SOP, where it sees each501

of its initially curated 4000 ‘AOP’ records twice,502

once in each iteration. Hence this is a fair com-503

parison that proves that using on-policy prompts504

during RLHF shows better, more efficient training505

that learns more effectively. Section 6 shows an506

in-depth comparison of these models.507

5Top-k sampling can make the model pick less likely words
even if they’re within the top options for that particular model,
leading to a higher difference between the models, causing
KL-divergence to become negative.

6 Results 508

In this work, we attempt to show gains of using 509

on-policy prompt data, which is updated across it- 510

erations of AOP. Though we could simply focus on 511

testing gains of the AOP model against the Vanilla 512

RLHF with a static dataset, our main focus is to 513

show gains of using AOP versus SOP, a stronger 514

baseline. 515

6.1 LLM-based Evaluation 516

Since it is notoriously unreliable to get quantitative 517

scores from other LLMs to judge the quality of out- 518

put generations, we opted for a standard pairwise 519

model evaluation scheme. We prompted an LLM 520

judge to compare the generations of two models 521

for identical prompts, and selected the preferred 522

response in terms of helpfulness. We manually in- 523

spected random samples of the LLM judgments to 524

ensure quality. 525

Winrate(A) =
Frequency of Preference A

Total Number of Test Records
(2) 526

In this, we take our 2000 test data prompts (Sec- 527

tion 4.5) and pass them to Gemini Pro 1.5 (Team 528

et al., 2024), along with the instructions below, 529

where it should return one of three values: ‘A’ (re- 530

sponse A preferred), ‘B’ (response B preferred) or 531

‘C’ (tie - both responses A and B are similar in 532

quality). Prompt: 533

Imagine you are an evaluator who is eval- 534

uating answers. You need to evaluate two 535

potential responses to determine whether 536

any one is more helpful in resolving your 537

issue or following the guidance provided. 538

Consider which response provides the 539

most practical, informative, and support- 540

ive guidance for your situation. Return C 541

if both the responses are similar in qual- 542

ity and helpfulness. Question/task: {} 543

Response A: {} Response B: {}. Return 544

answer as single letter: A or B or C. Do 545

not add any additional text to the answer. 546

The win rate of a model A over model B (and 547

over and above equally good generations) is calcu- 548

lated using Equation 2. For this project, we com- 549

pare all the epochs of the SOP model with the AOP 550

model (epochs 2, 3 and 4) and all of Vanilla with 551

AOP models (epochs 1, 2, 3 and 4). The results are 552

shown in Table 2 and Table 3 respectively. 553
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Iteration AOP Wins SOP Wins Ties
2 67.85 3.05 29.00
3 73.15 3.30 23.45
4 59.50 6.00 34.50

Table 2: Win Rates (in %) of AOP versus SOP across 4
epochs of training. Note: At epoch 1, SOP and AOP are
the same. Also note, rows are meant to sum to 100%.
There is a very small fraction of prompts for which
Gemini failed to return a judgment; these were dropped
from the results tables.

Iteration AOP Wins Vanilla Wins Ties
1 72.45 2.35 25.15
2 77.45 2.05 20.45
3 80.75 0.45 18.75
4 61.85 0.80 37.30

Table 3: Win Rates (in %) of AOP versus Vanilla RLHF
across 4 epochs of training.

6.2 Human Evaluation554

In this work, we also perform human evaluation,555

collecting preference judgements from multiple556

raters, judging helpfulness on a random subset of557

100 records from the test dataset. In this, we com-558

pare generations across iterations 2, 3 and 4 of SOP559

versus AOP.560

To ensure there is no bias in the preference judge-561

ments, we not only mask the model and iteration562

names, but also shuffle the order in which the563

choices are presented to the annotators, and only564

tell them to mark the response (A or B) they felt565

was more helpful to the prompt passed, or mark566

‘C’ if they both were equal. These are then further567

processed by shuffling back to the original order,568

combining and voting on the preferences. Based569

on this, the win rates are calculated according to570

Equation 2. The results from the human evaluation571

are shown in Table 4.572

7 Conclusion573

This work demonstrates the efficacy of dynamic on-574

policy prompt data in fine-tuning large language575

models through Reinforcement Learning from Hu-576

man Feedback (RLHF). By comparing the Always-577

Iteration AOP Wins SOP Wins Ties
2 44 30 26

Table 4: Win Rates (in %) of AOP versus SOP at epoch
2, according to voting-based human evaluation.

On-Policy (AOP) model with the Starts-On-Policy 578

(SOP) and Vanilla RLHF models, we have shown 579

significant improvements in alignment with human 580

values. The AOP model, which continuously up- 581

dates its training data based on intermediate per- 582

formance, outperforms other models in terms of 583

reward efficiency and effectiveness. This approach 584

not only optimizes the use of human feedback but 585

also ensures that the model focuses on its areas of 586

weakness, leading to more efficient training. Note 587

that while SOP and vanilla RLHF start to make up 588

some of the lost ground on AOP over time, this 589

takes far more iterations. 590

Future work can explore the distillation view- 591

point of this work. As mentioned before, AOP can 592

be viewed as a novel form of distillation, which 593

may provide even tighter feedback loops when com- 594

pared to vanilla distillation-for-SFT-demonstration- 595

data methods used today. AOP’s wins over SOP 596

and vanilla RLHF also suggest that the field should 597

invest more effort in building prompt curriculums. 598

8 Limitations 599

We acknowledge some limitations inherent to this 600

study. Firstly, the dataset used for testing com- 601

prises 2,000 entries. Testing our models with larger 602

data will make them more robust and improve their 603

generalizability. Secondly, our experiments were 604

conducted on the GPT-2 medium model. It is pos- 605

sible that larger models, which exhibit emergent 606

properties, might respond differently in terms of 607

rewards. Lastly, conducting additional iterations 608

on these larger models could potentially yield im- 609

proved outcomes. 610
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